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Introduction

Recently, Dmitry Jakobson, Yuri Safarov and Alexander Strohmaier, in the paper
[JSS13], proved a Quantum Ergodicity Theorem (denoted QE in what follows) for
piecewise smooth Riemannian manifolds. In this lecture, I will present the result
as well as the main ideas of the proof. I will also provide a simple example
where the result applies. The message here is that, due to the possibilities of
reflexion or refraction of waves along the hypersurface of discontinuity of the
metric, the geodesic flow is no more deterministic, but can be viewed as random
process. Ergodicity makes sense for such a a Markov process. The main result
can be summarized as follows: if the geodesic flow is ergodic and if there are few
recombining geodesics, then we have QE.

Let us first recall the standard Quantum Ergodicity Theorem, due essentially
to A. Shnirelman (see [Shn74, Zel87, CdV85]):

Theorem 0.1 Let (X, g) be a smooth closed Riemannian manifold and assume
that the geodesic flow of (X, g) is ergodic. Let us denote by (φj)j=1,··· an or-
thonormal eigen-basis of L2(X, |dx|g) with ∆gφj = λjφj. Then there exists a
density one sub-sequence (λjk

)k=1,··· of the sequence of eigenvalues so that, for
any pseudo-differential operator A of degree 0 on X, we have

lim
k→∞

〈Aφjk
|φjk

〉 =

∫
S?X

σ(A)dL

where σ(A) : T ?X → R is the principal symbol of A and dL is the normalized
Liouville measure on the unit cotangent bundle S?X.

The previous result applies in particular to manifolds of < 0 sectional curvature.
A more intuitive corollary is
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Corollary 0.1 If D ⊂ X is a domain with piecewise smooth boundary,

lim
k→∞

∫
D

|φjk
|2|dx|g =

|D|
|X|

where |D| denotes the g−volume of D.

This result has been extended to manifolds with boundary in [GL93, ZZ96]. The
extension to piecewise smooth metrics proposed in [JSS13] is more subtle, because
on such manifolds the geodesic flow is not a classical flow associated to a vector
field: a ray arriving on an interface splits into a reflected and a refracted ray.
To such a situation there is a naturally attached Markov process, also called the
geodesic flow, describing the propagation of the energy of high frequency waves.
The ergodicity of the geodesic flow as a Markov process is a natural assumption
for an extension of the QE Theorem. However, a piece is missing, because the
propagation of the energy is well defined only if there is no interferences between
different geodesics which cöıncide outside a finite time interval. So that another
assumption is needed: such pairs of “recombining geodesics” are of measure 0.
Hopefully this assumption is generically satisfied. However, as we will see, it is
not satisfied in the very close context of Quantum Graphs. In this case, it is
known that QE does not hold: see [BKW04] for star graphs and [CdV13] for the
general case.

1 Laplace-Beltrami operators for discontinuous

metrics

Definition 1.1 If X is as smooth closed manifold of dimension d, a measurable
Riemannian metric g on X is uniform if, for a smooth Riemannian metric g0 on
X, there exist two constants C1 and C2, with 0 < C1 < C2, so that 0 < C1g0 ≤
g ≤ C2g0.

The Laplace operator ∆g on (X, g) is the self-adjoint operator on L2(X, |dx|g)
defined as the Friedrichs extension of the closed quadratic form Q(f) =

∫
X
‖df‖2

g|dx|g
whose domain is the Sobolev space H1(X), which is independent of g as soon as
g is uniform.

Question 1.1 Is the Weyl asymptotic formula valid for such a metric?

Definition 1.2 Let us give a smooth closed manifold X. A piecewise smooth
Riemannian metric g on X is a (uniform) Riemannian metric which is smooth
outside a closed smooth hyper-surface Xsing of X and so that the metric g extends
smoothly from both sides of the open set Xreg := X\Xsing to the metric completion
of Xreg. The metric g is in general discontinuous on Xsing.
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The previous definition can be extended to cases where X is a simplicial complex
which is not a manifold, for example X can be a graph viewed as a 1D singular
manifold, such a graph is sometimes called a Quantum graph or a metric graph.

If (X, g) is a piecewise smooth Riemannian metric, the Laplace-Beltrami op-
erator ∆g can be defined as in the Definition 1.1.

Proposition 1.1 The domain of ∆g is the space of functions f on X which are
in the Sobolev spaces H1(X) and H2(Xreg) and whose weighted sum of the two
normal derivatives at any point of the smooth part of Xsing vanishes where the
weights at the point x of Xsing are the densities of the Riemannian volume of the
limit metrics on the corresponding sides.

We call these conditions on the behavior of f across Xsing the continuity condi-
tions.

2 Propagation of waves across Xsing

In order to see the effect of the continuity conditions on the wave propagation,
we take a simple example with constant coefficients. This will give the rules for
the propagation of the high frequency waves along the geodesics.

Let us consider on R2 = Rx ×Ry the metric g given by g = n2
+(dx2 + dy2) on

y > 0 and g = n2
−(dx2 + dy2) on y < 0. An incoming plane wave with speed 1 in

y > 0 is defined by uin(x, y) = exp(i(xξ− yη)) with η > 0 and with ξ2 + η2 = n2
+.

Figure 1: an incident geodesic with the reflected and the refracted rays.

In order to satisfy the continuity condition we have to add to u+ a reflected
wave ur on y > 0 and a refracted wave uρ of the following forms:

ur = tre
i(xξ+yη), uρ = tρe

i(xξ−yη′)
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with η′ > 0 and ξ2 + η′2 = n2
−. We have total reflexion if |ξ| > n−. In this case

the refracted wave is exponentially decaying. The angles ι± of the rays with the
normals to the y−axis satisfy sin ι± = ξ/n± which gives the Snell law

n+ sin ι+ = n− sin ι− .

The coefficients tr and tρ have to satisfy: 1 + tr = tρ (continuity of u along
y = 0) and n+η(1 − tr) = n−tρη

′ (vanishing of the sum of the weighted normal
derivatives). This allows to compute tr and tρ:

tr =
1− α

1 + α
, tρ =

2

1 + α
with α =

n−η
′

n+η−
.

The conservation of the energy density can be checked as follows: take a comppact
domain D ⊂ Y+ and let Dr and Dρ be the domains obtained from D following
the rays associated to the incident plane wave during a large enough time. Then∫

D

|duin|2|dxg+ | =
∫

Dr

|dur|2|dxg+ |+
∫

Dρ

|duρ|2|dxg−| .

Summarizing, we have:

• The refracted wave is exponentially decaying if |ξ| > n−.

• The angles of the incident and refracted rays with the normals satisfy the
Snell law.

• The conservation of energy expresses as

t2r + αt2ρ = 1 .

We define pr = t2r and pρ = αt2ρ = 1− pr.
The propagation of high frequency waves along geodesics arriving transversely

to Xsing is described as a sum of two Fourier Integral Operator’s: U(t) = Ur(t) +
Uρ(t). The associated canonical transformations Φr(t) and Φρ(t) are the the re-
flected and the refracted geodesic flows. The symbols satisfy the usual transport
equations in Xreg and are multiplied by tr (resp. tρ) for the reflected (resp. re-
fracted wave). The proof follows Chazarain’s method [Chaz73]. We can apply
Egorov Theorem with A is a pseudo-differential operator of principal symbol a:
the operators Ur(−t)AUr(t) (resp. Uρ(−t)AUρ(t)) are pseudo-differential opera-
tors of principal symbols pra (Φr(t)) (resp. pρa (Φρ(t))).

3 The geodesic flow as a Markov process

We will make the following Assumptions:
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1. The set of geodesics which are not defined for all times has measure 0.

2. The set of geodesics which are tangent for some time to the hyper-surface
of discontinuities of the metric has measure 0.

The Assumptions 2 is always true. The Assumption 1 is probably true in the
generic case; the bad geodesics hit the Xsing infinitely many times in a finite time
interval!

If a geodesic starting in Xreg hits Xsing transversely, it can be reflected or
refracted, or totally reflected. We associate probabilities to both events as follows:

Definition 3.1 The probability of being reflected is given by pr = |tr|2 and the
probability of being refracted is given by pρ = 1− pr.

Remark 3.1 Note that pr and pρ are functions on the unit ball bundles Y± of
T ?Xsing. Moreover, pr (resp. pρ) can be extended by 0 on Y− \ Y+ (resp. on
Y+ \ Y−) and these extensions are continuous.

This way the geodesic flow is a well defined Markov process on the unit cotan-
gent bundle denoted by Z. We will associate to the geodesic flow a semi-group
of positive operators on L∞(Z) defined as follows: to any geodesic γ : [0, t] → X
crossing Xsing at a finite number of points, we associate a positive weight w(γ)
which is the product of the probability transitions at the crossing points. If t > 0
is fixed, almost all geodesics cross Xsing at a finite number of points on the interval
[0, t], and we define

Gtf(z) =
∑

γ∈Ω, γ(0)=z

w
(
γ|[0,t]

)
f(γ(t)) .

We have Gt+s = Gt ◦Gs and Gt1 = 1.

Definition 3.2 If ω is the symplectic form on T ?X, the Liouville measure on
the unit cotangent bundle is the measure

∣∣∧dω/dg?
∣∣, normalized so that it is a

probability measure denoted dL.

Proposition 3.1 The Liouville measure on the unit cotangent bundle is invari-
ant by the geodesic flow: it means that

∫
Z
GtfdL =

∫
fdL. In particular, Gt

extends to a positive operator on L1(Z, dL) of norm 1.

Definition 3.3 The geodesic flow is ergodic if and only if the only measurable
functions which are invariant by the semi-group (Gt)t≥0 are the functions which
are constant outside a measure 0 set.

As a Corollary of ergodicity, we get the
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Proposition 3.2 If the geodesic flow is ergodic and f ∈ L1(Z, dL), we have, for
almost all z ∈ Z,

lim
T→+∞

1

T

∫ T

0

Gtf(z)dt =

∫
S?X

fdL .

This is proved using the point-wise ergodic Theorem given in [DS58], Theorem
5, page 690 or in [Kr85], Theorem 3.7, page 217:

Theorem 3.1 If (Gt)t≥0 is a strongly measurable semi-group on L1(µ) whose
norms on L1(µ) and L∞(µ) are bounded by 1, then, for f ∈ L1, the averages

1

T

∫ T

0

Gtf(z)dt

converge for almost all z as T → +∞. The limit function z → f̄(z) is invariant
by Gt for all t.

This last property will be crucial for the QE Theorem.

4 How to prove ergodicity?

4.1 Invariant sets

Definition 4.1 A measurable subset A of Z is said to be invariant by the geodesic
flow if, for almost all z ∈ Z and for all t > 0, GtχA(z) = χA(z).

Lemma 4.1 Let f : Z → R be an L∞ function which is invariant by Gt, t > 0.
Then f is measurable with respect to the σ−algebra generated by invariant sets.

This is an easy consequence of Lemma 3.3, page 126 in [Kr85]. From this, we
get:

Theorem 4.1 The geodesic flow is ergodic if and only if any set invariant by the
geodesic flow is of Liouville measure 0 or 1.

Using invariance for small values of t, one gets:

Theorem 4.2 If A is an invariant set by the geodesic flow, then the set Ā of
points which are on some smooth geodesic arc in Xreg crossing A satisfies |Ā\A| =
0.
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4.2 Poincaré maps

Let us assume for simplicity that Xsing cuts X into two open disjoint parts X \
Xsing = X+ ∪X−. Let us denote by Y± the unit ball bundles for g?

± in T ?Xsing.
Let z = (x, η) ∈ Y+. There is a unique geodesic γ in X+ so that γ(0) = (x, ξ)
with g?

+(ξ) = 1 and ξ|TxXsing
= η. Let t > 0 be the first return time of γ on Xsing

and (x′, ξ′) = γ(t). Then we define P+(z) = (x′, ξ′|Tx′Xsing
). We define in a similar

way P−. It follows from the Poincaré recurrence Theorem that the map P+ (resp.
P−) is defined for almost every point of Y+ (resp. Y−). Let us consider the traces
A± of a set A on Y±. Then, if A is invariant by the geodesic flow, A+ ∪ A− is
equivalent to a set invariant by P+ and P− modulo sets of measure 0. We get:

Theorem 4.3 If Xsing is non empty, the geodesic flow is ergodic if and only if
almost all geodesics cross Xsing AND if any set C ⊂ Y+∪Y− invariant by P+ and
P− is of measure 0 or has a complement of measure 0.

5 The main result: semi-classical ergodicity for

ray-splitting billiards

Let us start with the

Definition 5.1 Two geodesics γ : R → X are called recombining geodesics if
they cöıncide outside a compact interval of R.

We will use the genericity Assumptions described in Section 3 and the following
one

Assumption 3: The set of Cauchy data of recombining classical
trajectories has measure 0.

Remark 5.1 Assumption 3 is probably generically true. It is however not true
for graphs not homeomorphic to a circle or an interval. See Section 8 for an
example where genericity is proved.

The Assumptions 1 to 3 are probably generically true. Assumptions 1 and 2
are already present in the QE Theorem for manifolds with boundary. Assumption
3 is the more important: it is needed in order to be able to follow the propagation
of the energy of waves by transport along the geodesic flow like in the Egorov
Theorem.

Theorem 5.1 Under the Assumptions 1 to 3 and assuming that the geodesic
flow is ergodic, there exists a sub-sequence S of density 1 of the set of eigenvalues
so that for any pseudo-differential operator A of degree 0, compactly supported
away from the hyper-surface of discontinuities of g and of principal symbol σ(A),
we have

lim
j→∞, λj∈S

〈Aφj|φj〉 =

∫
S?X

σ(A)dL .
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Remark 5.2 Assumption 3 is never satified for Quantum graphs not homeomor-
phic to the circle or the interval: there is no contradiction between the previous
Theorem and the non validity of QE for almost all quantum graphs proved in
[CdV13].

6 The g-trace

The proof uses a regularized trace associated to the metric g, which we call the
g-trace.

Let (X, g) be a closed Riemannian manifold with g a uniform metric. Let us
denote by λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · the eigenvalues of the Laplace operator ∆g

with an associated orthonormal basis of L2(X, |dx|g) of eigenfunctions (φj)j=1,···.

Definition 6.1 Let A : L2(X, |dx|g) → L2(X, |dx|g) be a bounded operator. We
say that A admits a g-trace if the limit

Trg(A) = lim
N→∞

1

N

N∑
j=1

〈Aφj|φj〉 .

The limit Trg(A) is called the g-trace of A.

As noticed in [JSS13], the g−trace of a compact operator vanishes. This
implies that if A is a Fourier integral operator the g−trace of A depends only of
the principal symbol of A. The precise formula is given in the

Theorem 6.1 If g is a smooth Riemannian metric on X and if A is a Fourier
integral operator of degree 0 on X associated to an homogeneous canonical dif-
feomorphism χ : T ?X \ 0 → T ?X \ 0, then the g-trace of A exists and is given
by

Trg(A) =

∫
Fix(χ)∩S?X

σ(A)dL ,

where Fix(χ) is the set of fixed points of χ, dL is the normalized Liouville measure
on the unit cotangent bundle S?X of X and σ(A) : T ?X \ 0 → C is the principal
symbol of A defined in the proof.

In particular, this formula applies if A is a pseudo-differential operator; then
Fix(χ) = T ?X \ 0 and σ(A) is the usual principal symbol of A.

The authors of [JSS13] called this result a local Weyl formula, because, I guess,
by applying it to the operators of multiplication by a smooth function one gets
that, if D is a smooth compact domain of X,

lim
λ→+∞

∑
λj≤λ

∫
D
|φj|2|dx|g

#{j | λj ≤ λ}
=
|D|
|X|

.

8



Corollary 6.1 The same result applies to a singular metric g if A vanishes near
the singular locus of g.

Proof of the Theorem.–

The scheme of the proof is as follows: In part A, we prove the Theo-
rem 6.1 with a absolutely continuous measure dL̃; in part B, we prove
the Theorem 6.1 for pseudo-differential operators with the identifi-
cation dL̃ = dL; in part C, we prove, that the formula for pseudo-
differential operators gives also the general formula.

Part A of the proof: For |t| small enough, the Schwartz kernel of
U(t)A is given by

[U(t)A](x, y) =

∫
Rd

eiφ(t,x,y,θ)a(t, x, y, θ)|dθ|

where the phase function φ is generating function of Φt ◦ χ in the
Hörmander sense where Φt is the geodesic flow, a is a smooth symbol
of degree 0. We want to evaluate, similarly to what is done in [DG75],
the sum

Σ(µ) =
∞∑

j=1

ρ(µ− µj)〈Aφj|φj〉

with µj =
√
λj and ρ is a positive Schwartz function whose Fourier

transform

ρ̂(t) =

∫
e−itµρ(µ)dµ

is positive, compactly supported near 0 and ρ̂(0) = 1. We can rewrite

Σ(µ) =
1

2π

∫
ei(tµ+φ(t,x,x,θ))ρ̂(t)a(t, x, x, θ)|dθdxdt| .

We now make the change of variable θ = µrω with r > 0 and ‖ω‖ = 1
and get

Σ(µ) =
µd

2π

∫
ei(µ(t+rφ(t,x,x,ω))ρ̂(t)a(t, x, x, θ)rd−1|drdtdωdx| .

Let us show that we can apply the non degenerate stationary phase
expansion to the integral w.r. to (r, t): the critical points are given
by 1 + rφt(t, x, x, ω) = 0, φ(t, x, x, ω) = 0 and the determinant of
the corresponding Hessian is −φ2

t . The phase function φ satisfies the
eiconal equation φt +H(x, φx) = 0 with H =

√
g?. Hence the Hessian

is non degenerate. This way we get

Σ(µ) = µd−1

∫
C

ei(µ(t+rφ(t,x,x,ω))ρ̂(t)
a(t, x, x, ω)

|φt(t, x, x, ω)|
rd−1|dωdx| , (1)
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where the integral is on the critical manifold C in (t, r). Let us look at
the critical points in the new integral: their set is the set of (t, x, x, ω)
in

Cφ so that the corresponding point is a fixed point of χ. We get

1. Σ(µ) = o
(
µd−1

)
if the set of fixed points of χ is of measure 0,

2.

Σ(µ) = µd−1

∫
Fix(χ)∩{H(x,ξ)=1}

σ(A)(x, ξ)dL̃+ o
(
µd−1

)
with dL̃ a suitable smooth measure to be determined now to-
gether with the meaning of the principal symbol σ(A) of A.

Now a classical Tauberian Theorem, given in Appendix A, allows
to conclude part A.

Part B of the proof: If f : Rd\0 → R is a smooth function which is

homogeneous of degree−d, the differential form ω = f(ξ)
(∑d

j=1 ξj d̂ξj

)
is closed on Rd \ 0 by Euler’s formula. We use this with f(ξ) =
a(ξ)/H(x, ξ)d and get by the Stokes formula:∫

Sd−1

a(ξ)

H(x, ξ)d
dσ(ξ) =

∫
H(x,ξ)=1

a(ξ)α

with α = H−d
(∑

ξj d̂ξj

)
. On H = 1, we have also α = dξ1 ∧

· · · dξd/dξH(x, ξ) by Euler formula.
If A is a pseudo-differential operator, the operator U(t)A is a

Fourier integral operator associated to the geodesic flow Φt. Following
Hörmander, we can take ω(x, y, ξ)− tH(x, ξ) as a generating function
where ω is a suitable generating function for the Identity map. We
get

[U(t)A](x, y) =
1

(2π)d

∫
Rd

ei(ω(x,y,ξ)−tH(x,ξ))A(t, x, y, ξ)a(y, ξ)|dξ|

(modulo compact operators), where A(0, x, x, ξ) ≡ 1 and a is the
principal symbol of A. The critical set C of Part A is given by 1 −
rH(x, ξ) = 1; t = 0. From this, we get, by Equation (1),

Σ(µ) =
µd−1

(2π)d−1

∫
Rd

x×Sd−1
ω

1

H(x, ξ)d
a(x, ω)|dxdω|+ o

(
µd−1

)
.

In order to get the g−trace of A, we apply the Tauberian Theorem
given in Appendix A.

Part C of the proof: in the fixed point set, there is a full measure
set where the canonical transformation is tangent to the identity: this
allows to reduce to the case of pseudo-differential operators.

�
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7 Sketch of the proof of Theorem 5.1

The main idea is that the unitary group U(t) = exp(it
√

∆) (the wave flow) is
a sum of FIO’s. This is not exactly true due to the singularities of the metric
and we omit the technical part of the work which consists in showing that these
singularities problems are removable. Let us assume now that U(t) = V1(t)+V2(t)
where the Vj’s are Fourier integral operators associated to classical flows ψj,t.

Let us take a pseudo-differential operator A of degree 0 with real princi-
pal symbol a so that the integral

∫
S?X

adL vanishes. The operators Aj(t) =
Vj(−t)AVj(t) are pseudo-differential operators and admits principal symbols aj(t)(z) =
wt,j(z)a(ψj,t(z)) with 0 ≤ wt,j ≤ 1 and wt,1 + wt,2 ≤ 1. The simplified classical
ergodicity assumptions are now:

1. For all t’s, the measures of the set of fixed points of ψ1,t ◦ ψ2,−t vanish.

2. If we define the operator Wt on functions on S?X by

Wta(z) = wt,1(z)a(ψ1,t(z)) + wt,2(z)a(ψ2,t(z)) ,

then, for almost all z ∈ S?X and hence in L1(S?X, dL), we have

lim
T→∞

1

T

∫ T

0

Wtadt =

∫
S?X

adL .

We want to show that

lim
N→∞

1

N

N∑
j=1

|〈Aφj|φj〉| = 0 .

For a bounded operator B, we denote by ΛN(B) := 1
N

∑N
j=1〈Bφj|φj〉. We have,

using the Cauchy-Schwarz inequality:

1

N

N∑
j=1

|〈Qφj|φj〉| ≤ ΛN(Q?Q) .

Denoting At = U(−t)AU(t) and AT = 1
T

∫ T

0
Atdt, we get, using the fact that

U(t) is unitary,

1

N

N∑
j=1

|〈Aφj|φj〉| ≤ ΛN((AT )?AT ) .

Moreover, from

‖ATφj‖2 =
1

T 2

∫
[0,T ]2

〈A?As−tφj|φj〉dsdt ,
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we get

ΛN((A?)TAT ) =
1

T 2

∫
[0,T ]2

ΛN(A?As−t)dsdt . (2)

Using ergodicity and given ε > 0, we can choose T > 0 so that

‖ 1

T 2

∫
[0,T ]2

Wt−sadsdt‖L1(dL) ≤ ε .

From the decomposition

Aτ = V1(−t)AV1(t) + V2(−t)AV2(t) + V1(−t)AV2(t) + V2(−t)AV1(t) ,

and, using the Assumption 3, we get:

lim
N→∞

ΛN(A?Aτ ) =

∫
S?X

aWτadL .

Applying Lebesgue dominated convergence Theorem to Equation (2), we get
limN→∞ ΛN((A?)TAT ) ≤ ε.

8 An example: Gluing together two flat disks

s

u

1

0

u = χ′(s−)−1

Figure 2: Poincaré section.

Let us consider two unit Euclidian disks D+ and D− and a diffeomorphism
χ : ∂D− → ∂D+ so that χ′′(s) 6= 1 except for a finite number of values of s.
Gluing together D+ and D− along their boundaries using χ gives a topological
manifold homeomorphic to S2 with a metric gχ which is flat outside the equator
and discontinuous on the equator except at a finite number of points.

Let us first describe the Poincaré section: as in Section 4.2, we define Y± ⊂
T ?Z with Z = R/2πZ is the boundary of the disk D+ parametrized by the
arc length s. Then Y+ = {(s, u)|s ∈ Z, |u| < 1} with the symplectic structure
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ω = du ∧ ds. Using the map χ and his extension Ξ to the cotangent bundle of
D−, we get Y− = Ξ(Z×]− 1,+1[) or more explicitly

Y− = {(s, u)|s ∈ Z, |u| < ψ(s)}

with ψ(s) = 1/χ′(χ−1(s)).
The Poincaré maps P± : Y± → Y± are integrable, they preserve the foliations

F± of Y± defined by

• F+ = {L+
α | |α| < 1} with L+

α := Z × {α} on which P+ acts as a rotation of
angle ρ+(α) = 2 arccos(α) satisfying ρ′+ < 0

• F− = {L−β | |β| < 1} with L−β := {(s, βψ(s))} on which P− acts as a rotation
of angle ρ−(β) where ρ′− < 0.

We have ψ′(s) = η(s)χ′′(χ−1(s))) where η does not vanish. This implies that the
foliations F+ and F− are transverse in Y+∩Y− outside a finite number of segments
Ij := {sj}×]−min(1, ψ(s)),min(1, ψ(s))[ with 0 ≤ s1 < s2 < · · · < sN < 2π.

Our main result is:

Theorem 8.1 The geodesic flow on the 2-sphere (S2, gχ) has two ergodic com-
ponents corresponding in the Poincaré sections to u > 0 and to u < 0.

Proof.–

Following the result of Section 4.2, we have to consider a subset A0 of
Y = (Y+∪Y−)∩{u > 0} which is invariant by P+ and by P−, meaning
that P+(A0∩Y+) ≡ A0∩Y+ and P−(A0∩Y−) ≡ A0∩Y− where B ≡ C
means that the symmetric difference (B \ C) ∪ (C \ B) has measure
0. We can replace A0 by the intersection A of the images of A by
all words in P+ and P−. Then A ≡ A0 and is invariant by P+ and
P−. We want to prove that A or Y \A has measure 0. Let Ai be the
intersection of A with the leaves Lα

+ on which the rotation ρ+(α)/2π
is irrational. Then Ai ≡ A and Ai ∩ Lα

+ is measurable and invariant
by the rotation ρ+(α). Hence the measure of Ai ∩ Lα

+ is 0 or 2π by
the ergodicity of the irrational rotations of the circle. From this we
get that A∩Y+ is equivalent to a set foliated by F+. Similarly A∩Y−
is equivalent to a set foliated by F−. Let us consider now the set
Aj := A∩Dj with Dj := {(s, u)| sj < s < sj+1, 0 < u < max(1, ψ(s)).
In Dj, both foliations are transverse. This implies that Aj or Dj \Aj

is of measure 0: using smooth coordinates (x, y) in Dj so that the
two foliations correspond respectively to x = const and y = const,
the indicator function of A is equivalent to a function depending on
x only and to a function depending of y only, hence is equivalent to
a constant 0 or 1. If Aj is of measure 0, then A ∩ Y+ is of measure 0
as being foliated by F+, similarly for A∩ Y−. The conclusion follows:
all Aj are of measure 0 or all Dj \ Aj are of measure 0.
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�
If we want to apply Theorem 5.1, we have to take into account the fact

that there are two ergodic components, they are equivalent by the involution
J : (x, ξ) → (x,−ξ) which on the quantum level is the complex conjugation
φ→ φ̄. The semi-classical measures associated to real eigenfunctions is invariant
by J .

What about the main Assumption 4? We claim that this assumption holds
for a generic diffeomorphism χ: we have the

Lemma 8.1 Let us consider a word Pα
χ = P a1

− P
a2
+ · · ·P a2l

+ with aj ∈ Z \ 0. For
N ≥ 3 and D ⊂ Y+ a closed domain with a smooth boundary, so that D ⊂ Y+,
let AN

D be the manifold of all diffeomorphisms of class CN of S1 so that Pα
χ is

defined in some open set V containing D. Let us denote by π the projection of
Y+ onto S1, by W the diagonal of S1 × S1 and, for χ ∈ AN

D , by ρ(χ) the C2 map
from D into S1 × S1 defined by

ρ(χ)(z) =
(
π(z), π

(
Pα

χ (z)
))

.

Then the set of χ’s belonging to AN
D so that ρ(χ) t W is open and dense in AN .

Proof.–

By induction on |α|, we can assume that we are looking only at
the case where the projections on S1 of the points of the z−orbit
(z, P+z = z1, · · · , z|ga|−1) are pairwise distincts.

The openess is clear.
The density follows from the transversality Theorem as stated for

example in [AB63] and [AR67], page 48 (see Appendix C). We will
apply Theorem C.1 with r = 2, X = D, Y = S1 × S1 and W the
diagonal of Y .

The transversal intersection of ρ(χ) with W implies that the set of
z for which π(z) = π

(
Pα

χ (z)
)

is a submanifold of dimension 1 of Y+.

Let us consider the evaluation map ev(χ, z) = (π(z), π
(
Pα

χ (z)
)
. The

differential L of ev at a point (χ0, z0) can be written as L(δχ, δz) =
(0, L1δχ)+(δs, L2δz). In order to prove the transversality it is enough
to prove that L1 is surjective. Let us restrict ourselves to variations
of χ in some small neighborhood of s1 = χ−1(s0) where z0 = (s0, u0).
Then we have L2(δχ) = δχ(s1).

�
Hence we get the

Proposition 8.1 For any N ≥ 3 , the set of CN diffeomorphisms χ’s, whose set
of periodic points under iterations of P+, P− and their inverses is of measure 0,
is generic.

14



This implies that Assumption 4 is satisfied for a generic χ. Hence

Theorem 8.2 For a generic χ, any basis of real eigenfunctions of ∆χ is QE.

Remark 8.1 Unique Quantum Ergodicity is not satisfied because there are in-
finitely many radial eigenfunctions corresponding to the Neumann and the Dirich-
let problem for radial functions in the unit Euclidian disk.

9 Further questions

The important work [JSS13] of Dmitry Jakobson, Yuri Safarov and Alexander
Strohmaier inspires us several problems:

• Can we extend the result to more general wave equations, like for example
the elastic wave equation where we have to take into account the polariztion
of waves and the mode conversions between S- and P-waves?

• What is the deviation from the QE Theorem if the assumption 3 on recom-
bining geodesics is not fulfilled? The example of quantum graphs could be
a starting point.

• In the case of very irregular media, physicists, in particular geophysicists,
use an equation called the radiative transfer equation (RTE) which describes
the propagation of the energy of waves in the phase space (see [Bal05]
and references therein). It is known that the solutions of the RTE, after
averaging over the directions, behave for large times like the solution of
a diffusion equation on the configuration space, and are hence associated
to some Brownian motions. This is a kind of limit of our problem as the
surface Xsing becomes more and more complicated. Can we say something
more precise?

A Appendix: A Tauberian theorem

The following Tauberian Theorem is used in the proof of Theorem 6.1.

Theorem A.1 Let µj be an increasing sequence of real numbers satisfying a
Weyl law

#{µj ≤ µ} ∼ Wµd

with W > 0 and let ρ be a smooth non-negative Schwartz function so that∫
R ρ(s)ds = 1. Let us give a bounded sequence (aj)j=1,··· and assume that

∞∑
j=1

ajρ(µ− µj) = Aµd−1 + o
(
µd−1

)
15



. Then we have ∑
λj≤µ

aj =
A

dW
µd + o

(
µd

)
.

This Theorem follows for example from a simple adaptation of [DG75], Section
2.

B Appendix: A stationary phase Lemma

Lemma B.1 Let us define, for τ ∈ R, I(τ) =
∫

RN e
iτS(x)a(x)|dx| where S :

RN → R is C1 and a : RN → C is C1 and compactly supported, then

lim
τ→∞

I(τ) =

∫
{x|dS(x)=0}

eiτS(x)a(x)|dx| .

Proof of the Lemma.–

Let ε > 0 be given; since dS is continuous, there exists α > 0 so that
|{0 < ‖dS‖ ≤ α}∩Supp(a)| ≤ ε. We choose φ ∈ C1

0(RN , [0, 1]) so that
φ ≡ 1 on {x| ‖dS(x)‖ ≥ α} ∩ Supp(a) and φ ≡ 0 on {x|dS(x) = 0}.
We have

I(τ) =
∫
{x|dS(x)=0} e

iτS(x)a(x)|dx|+ · · ·
· · ·+

∫
{x|0<‖dS(x)‖≤α} e

iτS(x)a(x)(1− φ(x))|dx| +
∫

RN e
iτS(x)a(x)φ(x)|dx| .

The second integral is bounded by ε sup |a|. The third one has limit
0 as τ → ∞: we integrate by parts using the facts that the vector
field V = gradS/‖dS‖2 is continuous on the set dS 6= 0 and that
V (exp(iτS) = iτexp(iτS). Hence the third integral is O(1/τ).

�

C Appendix: the Abraham-Thom transversal-

ity Theorem

Let us give the statement of the transversality Theorem, due to René Thom,
as given in [T56, AB63, AR67]; we denote by f t Z the fact that the map
f : X → Y is transverse to the sub-manifold Z of Y , i.e. for each x ∈ X so that
z = f(x) ∈ Z, we have GzY = f ′(x) (GxX) +GzZ.
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Theorem C.1 Let r ≥ 1 and A, X and Y be Cr manifolds. We assume that A is
a Banach manifold while dimX and dimY are finite. The manifold X is assumed
to be compact with a smooth boundary. Consider a Cr map ρ : A → Cr(X, Y )
and W ⊂ Y a compact sub-manifold. The evaluation map ev : A × X → Y is
defined by ev(a, x) = ρ(a)(x) and we denote by AW the set of the a’s in A so
that ρ(a) t W . Then if r > max(0, dimX − codimW ), and ev t W , then AW is
open and dense in A.
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