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Introduction

Geometry

The
DG-MOSFET.
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About the scaling
In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 1974, the Intel 8008 processor had 6-7 thousand. In 2003 the Intel
Pentium IV had 50 million. Nowadays, for instance, Intel’s i7-4650U has 1.3 billion
transistors, whose channel is 22 nm long.

Why is it important?
Smaller MOSFETs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, due to the lower
voltages needed to switch on or off the transistor.
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The role of the insulating layers

Electrons are trapped inside a
3.15 V-deep well along the
z-dimension. For each slice
x = const of the device, the
energy levels are thus discrete.

The doping

This p+ − p− p+ device possesses a 1026m−3 doping at the source and the drain,
1018m−3 at the channel. The doping attemps to control the electrical properties
(conductivity) of the device.

The gates
The gates are metallic contacts. The potential applied at them has the role of a “tap”
that allows or prevents the flow of current across the device.
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The confinement

Dimensional coupling
Electrons are particles along the x-dimension, waves along the z-dimension.

Description of the confinement
A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

Subbands and wave functions

The eigenvalues {εν,p}(ν,p)∈{1,2,3}×Z>0 represent the energy levels, called subbands
in physics.
The eigenfunctions {ψν,p(·)}(ν,p)∈{1,2,3}×Z>0 are called wave functions in physics.

Electron population

The subbands decompose the electron population of the ν th valley into independent
populations. The densities are indexed on the pair (ν, p).
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Band structure

The three valleys

The Si band structure presents six minima in the first Brillouin zone:

The constant energy surfaces in the

wavevector space

m    = 0.19 m
0t

m    = 0.91 m
0l

x

y

z

valley of type 1

valley of type 1

valley of type 3

valley of type 3

valley of type 2

valley of type 2 x

y

z (outwards)

Projection on the (x,y)−plane

The valleys of type 1 have

effective masses:

m     along direction x

m     along direction z

The valleys of type 3 have 

effective masses:

m     along direction x

m     along direction y

m     along direction z

The valleys of type 2 have

effective masses:

m     along direction x

m     along direction y

m     along direction z
l

t

t

l

t

m     along direction yt

t

t

l

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Band structure

Non-parabolicity

The band structure around the three minima can be expanded following the Kane
non-parabolic approximation (ν indexes the valley):

εkin
ν (kx, ky) =

~2

1 +

√
1 + 2α̃ν~2

(
k2

x
me mx,ν

+
k2

y
me my,ν

)
(

k2
x

me mx,ν
+

k2
y

me my,ν

)
,

where mx,ν and my,ν are the effective masses along the unconfined dimensions and
the α̃ν are the Kane dispersion factors.

z-direction

The band structure does not depend on z as the carriers are not free to move along
that direction.

Electron population

The total amount of carriers is split into independent populations, one for each valley.
We shall index them ν = 1, 2, 3.
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The unconfined dimension

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

∂fν,p
∂t

+

free motion︷ ︸︸ ︷
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
−

force field︷ ︸︸ ︷
1
~
∂εν,p
∂x

∂fν,p
∂kx

=

scatterings︷ ︸︸ ︷
Qν,p[f ] ,

fν,p(t = 0, x, k) = %eq
ν,p(x)︸ ︷︷ ︸

equil. dens.

Mν(k)︸ ︷︷ ︸
Maxw.

.

The collision operator

Electrons are scattered by the vibration of the crystal lattice, described as phonons:

Qν,p[f ] =
∑

s

∑
ν′,p′

∫
R2

[
Ss

(ν′,p′,k′)→(ν,p,k)fν′,p′(k′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]
dk′.

Remark. In an unconfined setting, we would rather have something like

Q[f ] =
∑

s

∫
R3

[
Ss

k′→kf (k′)− Ss
k→k′ f (k)

]
dk′.
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Eigenstates, mixed states and classical states.
The classical states are the magnitudes which only depend on the unconfined
dimension x, while mixed states depend on both x and z.

Eigenstates

The subbands and the wave functions {εν,p(x), ψν,p(x, ·)}(ν,p)∈{1,2,3}×Z>0
are

eigenstates; they depend on x only as a parameter.

Classical states

The pdf’s {fν,p(t, x, k)}ν,p are classical states, therefore the surface density

%(t, x) = 2
3∑
ν=1

∞∑
p=1

∫
R2

fν,p(t, x, k) dk

is a classical state too, and in general most of the macroscopic magnitudes.

Mixed states

The electrostatic potential V(x, z) and the volume density

N(t, x, z) = 2
3∑
ν=1

∞∑
p=1

∫
R2

fν,p(t, x, k) dk |ψν,p(t, x, z)|2 are mixed states.
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The model

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

∂fν,p
∂t

+
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
− 1

~
∂εν,p
∂x

∂fν,p
∂kx

= Qν,p[f ].

Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

− divx,z [εR∇x,zV] = − q
ε0

(N[V]− ND) , N[V] = 2
∑
ν,p

%ν,p |ψν,p[V]|2

These equations cannot be decoupled because we need the eigenfunctions to compute
the potential, and we need the potential to compute the eigenfunctions.
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The model

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

Qν,p[f ] =
∑

s

∑
ν′,p′

∫
R2

[
Ss

(ν′,p′,k′)→(ν,p,k)fν′,p′(k′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]
dk′.

Structure of the Ss

The missing dimension of the wave-vector k ∈ R2, instead of k ∈ R3, is replaced by
an overlap integral W(ν,p)↔(ν′,p′):

Ss
(ν,p,k)→(ν′,p′,k′) = Cν→ν′

1
W(ν,p)↔(ν′,p′)

δ
(
εtot
ν′,p′(k′)− εtot

ν,p(k)± some energy
)

1
W(ν,p)↔(ν′,p′)

=

∫ Lz

0
|ψν,p|2|ψν′,p′ |2 dz, [W] = m.
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Initial condition

Strategy

We want to initialize the system under the following constraints:

Fulfill electrical neutrality at the source contact:∫ Lz

0
ND(0, z) dz =

∫ Lz

0
N(0, z) dz.

Have a thermodynamical equilibrium for the system, i.e. a distribution which is
a zero for both the BTE and the scattering operator.

(Cope with the former work of Carlos and Andrés.)

Step 1: the potential at the metallic contacts

Solve Schrödinger-Poisson for the following density:

N[V] =
2
π

meκBTL

~2

∑
ν,p

√
mx,νmy,ν ln

(
1 + e−

εν,p[V](x)−εF
κBTL

)
|ψν,p[V](x, z)|2

with homogeneous Neumann boundary conditions everywhere except at gate
contacts. We retain the profile of V at the contacts: Vb(z) = V(0, z).
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Initial condition

Step 2: the thermodynamical equilibrium

Solve Schrödinger-Poisson problem for the following density:

N[V] =

∫ Lz
0 ND(0, z) dz∑

ν′,p′
√

mx,νmy,νe−
εν,p[Vb]
κBTL

∑
ν,p

√
mx,νmy,νe−

εν,p[V](x)
κBTL |ψν,p[V](x, z)|2

with Dirichlet conditions
at the four metallic
contacts and gates,
homogeneous Neumann
elsewhere. Now the
surface densities are of
the form

%eq
ν,p = Ce−

εν,p(x)
κBTL and

are, therefore, a zero for
both Boltzmann and the
scattering operator.
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The Newton scheme

The functional

Solving the Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

− div [εR∇V] = − q
ε0

(N[V]− ND)

is equivalt to seeking for the zero, under the constraints of the Schrödinger equation,
of the functional P[V]

P[V] = −div (εR∇V) +
q
ε0

(N[V]− ND) ,

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

dP(Vold,Vnew − Vold) = −P[Vold], d = Gâteaux-derivative.
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Iterative schemes for the Schrödinger-Poisson block

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

dεν,p(V,U) = −q
∫

U(ζ)|ψν,p[V](ζ)|2 dζ

dψν,p(V,U) = −q
∑
p′ 6=p

∫
U(ζ)ψν,p[V](ζ)ψν,p′ [V](ζ) dζ

εν,p[V]− εν,p′ [V]
ψν,p′ [V](z).

Iterations

After computing the Gâteaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

− div (εR∇Vnew) +

∫ Lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

=− q
ε0

(
N[Vold]− ND

)
+

∫ Lz

0
A[Vold](z, ζ)Vold(ζ)dζ,

where A[V] is essentially the Gâteaux-derivative of the density N[V].
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Comparison Newton-Raphson vs. Gummel

Gummel

−div (εR∇Vnew) +
q2

ε0 kB TL
N Vnew = − q

ε0
(N − ND) +

q2

ε0 kB TL
N Vold

Newton-Raphson

−div (εR∇Vnew)+

∫ Lz

0
A(z, ζ)Vnew(ζ)dζ = − q

ε0
(N − ND)+

∫ Lz

0
A(z, ζ)Vold(ζ)dζ

Comparison
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Iterative schemes for the Schrödinger-Poisson block

Framework
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Solvers for Schrödinger and Poisson

Numerical methods
We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−~2

2
d
dz

[
1

mz,ν

dψν,p
dz

]
− q (V + Vc)ψν,p = εν,pψν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

∫ Lz

0
A(z, ζ)V(ζ) dζ = rhs

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the banded linear system is solved by
means of Library of Iterative Solvers “-i idrs -p iluc -tol 1.0e-12”.
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Numerical methods for the BTE

Adimensionalization of the wave-vector space

The wave-vector space is adimensionalized by a change of variables into ellipsoidal
variables, in order to better integrate the scattering operator and to have a simple
expression for the kinetic energy and related magnitudes.

Ellipsoidal coordinated

The wave-vector for the ν th valley reads:

(k̃x, k̃y) =

√
meκBTL

~
√

2w(1 + ανw)
(√

mx,ν cos(φ),
√

my,ν sin(φ)
)
.

The Jacobian

The magnitude sν(w) represents the dimensionless Jacobian of the change of
variables in the wave-vector space:

sν(w) =

∣∣∣∣det
∂ (kx, ky)

∂ (w, φ)

∣∣∣∣ =
√

mx,νmy,ν(1 + 2ανw).
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Numerical methods for the BTE

BTE in ellipsoidal coordinates

Let the flux coefficients

a1
ν(w, φ) =

√
2w(1 + ανw) cos(φ)

√
mx,ν

1
1 + 2ανw

a2
ν,p(x,w, φ) = −∂εν,p

∂x
1

1 + 2ανw

√
2w(1 + ανw) cos(φ)

√
mx,ν

a3
ν,p(x,w, φ) =

∂εν,p
∂x

sin(φ)
√

mx,ν
√

2w(1 + ανw)
.

Conservation-law form

∂Φν,p
∂t

+
∂

∂x

[
a1
νΦν,p

]
+

∂

∂w

[
a2
ν,pΦν,p

]
+

∂

∂φ

[
a3
ν,pΦν,p

]
= Qν,p[Φ]s(w)
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Numerical methods for the BTE

Runge-Kutta time integration

We use a Runge-Kutta time discretization.

Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta
scheme: if the evolution equation reads

Hν,p(Φ) := − ∂

∂x

[
a1
νΦν,p

]
− ∂

∂w

[
a2
ν,pΦν,p

]
− ∂

∂φ

[
a3
ν,pΦν,p

]
+Qν,p[Φ]s(w)

(no explicit time-dependency), then

1 Φ
(1)
ν,p = ∆tHν,p(Φn)

2 Φ
(2)
ν,p = 3

4 Φn
ν,p + 1

4 Φ
(1)
ν,p + 1

4 ∆tHν,p(Φ(1))

3 Φn+1 = 1
3 Φn

ν,p + 2
3 Φ

(2)
ν,p + 2

3 Hν,p(Φ(2))
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Numerical methods for the BTE

Boundary conditions for the BTE

x-derivative

We use inflow/outflow b.c.: for the incoming particles

fν,p(t,−x,w, φ) =
%eq
ν,p(0)

%ν,p(0)
fν,p(t, 0,w, φ),

so as to try having
∫
R2 fν,p(t, 0, k) dk = %eq

ν,p. For the outgoing particles, we just use
homogeneous Neumann b.c.

force the density to stay close

to the equilibrium density

for the incoming particles

=

Homogeneous Neumann

for the ougoing particles
=

drainsource
contact contact

x

φ (periodic)
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Numerical methods for the BTE

Boundary conditions for the BTE

w-derivative

w = 0 is no real boundary; ghost points at (−w, φ) are physical points at (w, φ+ π).
At w = wmax there should be no particles, for properly chosen meshes: just use
homogeneous Neumann b.c.

This is no real border,

so homogeneous

Neumann is taken.

Anyway, no particles

should be there.

wmax

φ+π

w

−w

physical point

at 

ghost point at

(w,      )φ
φ

0

 π

−1−2−3

0 1 2

for a     −shiftedπ angle. 

are physical points

Ghost points for negative energy

2π

(m+N  /2)%Nφ φ

m

w=0

(−w,   ) = physical point at (w,       )φ φ+π

(E
N

E
R

G
Y

, 
A

N
G

L
E

)−
V

IE
W

W
A

V
E

 V
E

C
T

O
R

 V
IE

W

Remark that we must have an even number of φ-points in order to impose the b.c.



The model Numerical schemes Experiments

Numerical methods for the BTE

Boundary conditions for the BTE

φ-derivative

As φ represents an angle, periodicity conditions are taken.

Ν    −1φ

Νφ

Ν   +1φ

= ghost points = mesh points

α ν2w(1+       ) 

α ν2w(1+       ) 

Ν    −1φ

Ν   +1φ

Νφ

w

φ

2π

0

1

2

−2

k

0

1

2

−1
−2

cos(     )

sin(      )φ

φm ν, x

m ν, y

0

−1

cartesian−
view ellipsoidal−

view
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Numerical methods for the BTE

Integrating the scattering operator

Elastic phenomena

Qν,p[Φ]sν(w) = CQ1
∑

p′

1
W(ν,p′)↔(ν,p)

I{Γ0≥0}

×
[

sν(w)

∫ 2π

φ′=0
Φν,p′

(
Γ0, φ

′) dφ′ − 2πΦν,psν (Γ0)

]

Energy gap

When electrons change their state from (ν, p) to (ν′, p′), energy jumps appear:

Γ0(x,w) = εtot
ν,p(x,w)− εν′,p′(x).

Remark, nevertheless, that they do not exchange energies with the phonons (elastic
interaction).
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Numerical methods for the BTE

Integrating the scattering operator

Here go the formulae for the integration of the collisional operator in the ellipsoidal
dimensionless variables.

Inelastic phenomena

Qν,p[Φ]sν(w)

=CQsν(w)
∑
ν′,p′

γν′→νNν′→ν
W(ν′,p′)↔(ν,p)

I{Γ−≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ′−, φ

′) dφ′

+CQsν(w)
∑
ν′,p′

γν′→ν(Nν′→ν + 1)

W(ν′,p′)↔(ν,p)
I{Γ+≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ+, φ

′) dφ′

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′Nν→ν′
W(ν,p)↔(ν′,p′)

I{Γ+≥0}sν′ (Γ+)

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′(Nν→ν′ + 1)

W(ν,p)↔(ν′,p′)
I{Γ−≥0}sν′ (Γ−)
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Numerical methods for the BTE

Integrating the scattering operator

Energy gaps

When electrons change their state from (ν, p) to (ν′, p′), energy jumps appear:

Γ±(x,w) = εtot
ν,p(x,w)− εν′,p′(x)± ~ω

κBTL

Remark that, for inelastic interactions, they exchange energies ~ω with the phonons.

Occupation numbers

The occupation numbers read

Nν→ν′ =

√
mx,νmy,ν

mx,ν′my,ν′
1+2αν
1+2αν′

e
~ω
κBTL + 1(

e
~ω
κBTL + 1

)(
e

~ω
κBTL − 1

) ,

for intra-valley phenomena (γν→ν′ = 0 for ν′ 6= ν), reduce to the well-known

N =
1

e
~ω
κBTL − 1

.
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Parallelization

Parallelization: 1D block decomposition

0 1 2 3 4 5 6 7 8 9

process nr. 0 process nr. 1 process nr. 2 process nr. 3

x−dimension

The BTE

In order to parallelize Runge-Kutta, we cut the x-dimension:

Hν,p(Φ) = − ∂

∂x

[
a1
νΦν,p

]
− ∂

∂w

[
a2
ν,pΦν,p

]
− ∂

∂φ

[
a3
ν,pΦν,p

]
+Qν,p[Φ]s(w),

We need MPI to exchange data among different processes, namely for
∂

∂x

[
a1
νΦν,p

]
.

The Schrödinger equation

Same decomposition for the eigenvalue problem, in which x only acts as a parameter:

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V].
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Parallelization

Parallelization of Newton-Raphson

(0
,0

)

(0
,1

)

(0
,2

)

(0
,3

)

(0
,4

)

(0
,5

)

(1
,0

)

(1
,1

)

(1
,2

)

(1
,3

)

(1
,4

)

(1
,5

)

(2
,0

)

(2
,1

)

(2
,2

)

(2
,3

)

(2
,4

)

(2
,5

)

(3
,0

)

(3
,1

)

(3
,2

)

(3
,3

)

(3
,4

)

(3
,5

)

(4
,0

)

(4
,1

)

(4
,2

)

(4
,3

)

(4
,4

)

(4
,5

)

(5
,0

)

(5
,1

)

(5
,2

)

(5
,3

)

(5
,4

)

(5
,5

)

columns

(5,5)
(5,4)
(5,3)
(5,2)
(5,1)
(5,0)
(4,5)
(4,4)
(4,3)
(4,2)
(4,1)
(4,0)
(3,5)
(3,4)
(3,3)
(3,2)
(3,1)
(3,0)
(2,5)
(2,4)
(2,3)
(2,2)
(2,1)
(2,0)
(1,5)
(1,4)
(1,3)
(1,2)
(1,1)
(1,0)
(0,5)
(0,4)
(0,3)
(0,2)
(0,1)
(0,0)

ro
w

s

Figure : Decompisition of (x, z) taken as a unique dimension.

Updating the potential

−div (εR∇Vnew)+

∫ Lz

0
A(z, ζ)Vnew(ζ) dζ = − q

ε0
(N − ND)+

∫ Lz

0
A(z, ζ)Vold(ζ) dζ

The tasks are shared among the processes: the sole MPI-exchange is Vnew.
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Time-dependent simulations

Long-time behavior

We propose now some results relative to the long-time behavior of the system.
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Time-dependent simulations

Parallel performances
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Comparison to Monte-Carlo
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Comparison to Monte-Carlo

Comparison to Monte-Carlo

(a) For a VD = 0.1 V bias (b) For a VD = 0.5 V bias

(c) For a VD = 0.1 V bias (d) For a VD = 0.5 V bias
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Comparison to Monte-Carlo

Comparison to Monte-Carlo
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Plasma oscillations (from the one-valley solver)
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Plasma oscillations (from the one-valley solver)

Mass and temperature oscillations
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Plasma oscillations (from the one-valley solver)

Numerically-computed oscillations

The plasma frequency is given by

ωp =

√
q2Ne

εRε0m∗
.

Nhigh
D εR m? Ne ωnum ωp Ratio Expected

(×1026m−3) (×1026m−3) (×1014s−1) (×1014s−1)
ωnum
ωref

Ratio

1 11.7 0.5 .400 ωref = 1.344 1.475 1 /

2 11.7 0.5 .783 2.051 2.064 1.52
√

2
4 11.7 0.5 1.544 2.813 2.899 2.09 2
1 5.85 0.5 .400 1.848 2.086 1.37

√
2
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