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1 Introduction

These are notes from the course ”Topics in Stability Theory” given at Notre
Dame by Anand Pillay in the fall of 2018. They are the result of the collaborative
work of all students enrolled in the class. We will assume familiarity with basic
model theory, for which [TZ12] is a good reference.

The course first covered, in the preliminaries section, the tools required to
develop stability theory, such as indiscernibles, imaginaries... A brief incursion
into continuous logic was also on the program. After this, in the typical modern
fashion, local stability was developed, and consequences for stable theories were
then discussed.

The course then became more expository, starting with an survey of classifi-
cation theory, and different strengthening of stability. Followed an exploration
of Zilber’s conjecture and related algebraic issues. Finally, after a brief intro-
duction to Keisler measures, the stable regularity lemma was proven, using the
tools of stability theory.

2 Preliminaries

The notations for this class follow Pillay’s model theory notes [Pil02]. Although
most of them are standard, we will start these notes by reminding them to the
reader :

The letter T will always denote a complete 1-sorted first order theory, in a
language L. Models of said theory will be M,N |= T , and their subset will be
A,B, · · · . Finite tuples of some models are denoted ā, b̄ · · · . If A ⊂M , then by
Th(M,A) we mean the complete theory of M with a constant symbol for each
element of A .

As is the usual in model theory, we will fix a large cardinal κ̄, and a κ̄-
saturated and strongly κ̄-homogeneous model M of T . We will sometimes refer
to it as the monster model. All sets of parameters considered will be of size
strictly smaller than κ̄.

Note. With the above notation, any model of cardinality ≤ κ̄ will be isomorphic
to an elementary substructure of M̄ .

If Σ(ȳ) denotes a set of LA-formulas, and ϕ(ȳ) denotes an LA-formula, then
Σ(ȳ) |= ϕ(ȳ) means ∀b̄ ∈ M̄ , if M̄ |= Σ(b̄), then M̄ |= ϕ(b̄).

Remark 2.1. If M is κ̄-saturated and Σ(ȳ) |= ϕ(ȳ), then there exists a finite set
of formula Σ′(ȳ) ⊂ Σ(ȳ) such that Σ′(ȳ) |= ϕ(ȳ).

Proof. Otherwise every finite subset of Σ(ȳ) ∪ {¬ϕ(ȳ)} will be consistent. By
compactness, this set of formulas would then be consistent. Saturation of M
yields that the set of formulas is realized in M , contradicting Σ(ȳ) |= ϕ(ȳ).
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A subset X of M̄ is said to be A-definable in M̄ if ∃ϕ(x̄) ∈ LA such that
X = {b̄ ∈ M̄ : M̄ |= ϕ(b̄)}. Finally, If A ⊆M , and b̄ ∈M , then the type of b̄ in
M in LA is the set of formulas {ϕ(x̄), M̄ |= ϕ(b̄)}, and is denoted tpM̄ (b̄/A).

2.1 Indiscernibles

Definition 2.2 (Indiscernible). Let (I,<) be a totally ordered set and (āi : i ∈ I)
a sequence of finite tuples from M of the same length. We say (āi : i ∈ I) is
indiscernible in M if for each i1 < . . . < in and j1 < . . . < jn ∈ I,

tpM̄ (āi1 , . . . , āin) = tpM̄ (āj1 , . . . , ājn).

Equivalently, ∀ϕ(x̄1, . . . , x̄n) ∈ L,

M̄ |= ϕ(āi1 , . . . , āin) iff M̄ |= ϕ(āj1 , . . . , ājn).

Note. The above definition can be extended to make sense for any model M
and also for formulas over A ⊆M .

Example. Let M = (Q, <), and I = (Q, <). Then (q, q ∈ Q) is indiscernible
by quantifier elimination for dense linear orders.

Theorem 2.3. Compactness lets us “stretch” indiscernibles. Formally, let
(ai : i ∈ ω) be indiscernible in M̄ , and (I,<) an ordering of cardinality smaller
than κ̄. Then there exists an indiscernible (bi : i ∈ I) in M̄ such that ∀i1 < . . . < in ∈ I,

tpM̄ (ā1, . . . , ān) = tpM̄ (b̄i1 , . . . , b̄in).

Proof. Introduce new constant symbols ci, i ∈ I and let

Σ = {ϕ(c1, . . . , cn) : M̄ |= ϕ(a1, . . . , an)},

Σ′ = {ϕ(c1, . . . , cn)↔ ϕ(ci1 , . . . , cin) : i1 < . . . < in ∈ I}.

Then Σ ∪ Σ′ ∪ T is consistent by compactness, i.e. has a model. Take a such
model, of cardinality ≤ κ̄. By κ̄-saturation and strong κ̄-homogeneity, such a
model is isomorphic to an elementary substructure of M̄ . Then

M̄ |= ϕ(ā1, . . . , ān)↔ M̄ |= ϕ(c̄1, . . . , c̄n) (by Σ′)

↔ M̄ |= ϕ(c̄i1 , . . . , c̄in). (by Σ)

Indiscernible sequences are a fundamental tool of model theory, and there
are many ways to obtain them. In what follows, we will discuss three such
methods : Ramsey’s theorem, coheirs, and the Erdös-Rado theorem.

Fact (Ramsey, extended). Let n1, . . . , nr < ω. For each i = 1, . . . , r, let Xi,1,
Xi,2 be a partition of ω[ni], the set of ni-element subsets of N. Then there
is an infinite subset Y ⊆ ω which is homogeneous, i.e. ∀i = 1, . . . , r, either
Y [ni] ⊆ Xi,1 or Y [ni] ⊆ Xi,2.
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We can apply Ramsey’s theorem to obtain indiscernible sequences.

Definition 2.4. Let A ⊆ M̄ be small and Σ(x̄) be a collection of LA-formulas
in the variable x̄. We say “Σ(x̄) is consistent” if Σ(x̄)∪Th(M̄,A) is consistent.

Fact 2.5. Σ(x̄) is consistent iff every finite subset Σ′(x̄) ⊆ Σ(x̄) is realized in
M̄ .

Proof. If Σ(x̄) is consistent, then by saturation it is realized in M̄ , and in par-
ticular every finite subset Σ′(x̄) ⊆ Σ(x̄) will also be realized in M̄ . For the
converse, if every finite subset is realized, every finite subset is consistent. Then
from compactness Σ is consistent.

Proposition 2.6. For each n ∈ ω, let Σn(x1, . . . , xn) be a collection of L-
formulas in variables x1, . . . , xn. Suppose that there are a1, a2, · · · ∈ M̄ such
that

M̄ |= Σn(ai1 , . . . , ain), ∀i1 < . . . < in < ω.

Then there exists an indiscernible (bi : i ∈ ω) in M̄ such that

M̄ |= Σn(bi1 , . . . , bin), ∀i1 < . . . < in < ω.

Example. Suppose Σ2 = {x1 6= x2} . Then the previous proposition yields the
existence of infinite indiscernible sequences.

Proof. (of Proposition 2.6) Consider the following set of L-formulas

Γ(x1, x2, . . .) = {ϕ(xi1 , . . . , xin)↔ ϕ(xj1 , . . . , xjn) :

i1 < . . . < in, j1 < . . . < jn ∈ ω, ϕ ∈ L}

∪
⋃
n

Σn(x1, . . . , xn).

By Fact 2.5, it is enough to prove that every finite subset of Γ is consistent.
Let Γ′ be a finite subset of Γ. By choosing n large enough, we can assume the
only variables appearing in Γ′ are x1, . . . , xn. Let ϕ1, . . . , ϕr be the L-formulas
appearing in Γ′. For i = 1, . . . , r, let

Xi,1 = {(j1, . . . , jn) : j1 < . . . < jn ∈ ω, M̄ |= ϕi(aj1 , . . . , ajn)},
Xi,2 = {(j1, . . . , jn) : j1 < . . . < jn ∈ ω, M̄ |= ¬ϕi(aj1 , . . . , ajn)}.

By Ramsey’s theorem, there exists an infinite Y ⊆ N such that ∀i = 1, . . . , r,
Y [ni] is either contained in Xi,1 or in Xi,2. Write Y = {k1 < k2 < . . .}. Interpret
each xi as aki to satisfy Γ′.

Note. Proposition 2.6 also works when we consider tuples instead of elements,
and when we consider formulas over some small fixed A ⊂ M̄ .

Another to obtain indiscernibles is the use of special types, called coheirs.
We will define them now. First recall that if A is any set of parameters, then
Sx̄(A) denotes the class of complete types over A.
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Definition 2.7. Let M ≺ N ≺ M̄ be models, and p(x̄) ∈ Sx̄(N). We say
p is finitely satisfiable in M , or p(x̄) is a coheir of p � M ∈ Sx̄(M), if every
ϕ(x̄) ∈ p(x̄) is satisfied by some ā ∈ M , or equivalently, every finite subset of
p(x̄) is realized by some ā ∈M .

Note. Any ϕ(x̄) ∈ p is realized in N as ϕ(x̄) ∈ LN and N ≺ M̄ and ϕ(x̄) is
realized in M̄ , but there is no reason to expect ϕ to be realized in M .

Remark. p(x̄) ∈ Sx̄(N) is finitely satisfiable (f.s.) in M if and only if p(x̄) is in
the topological closure of {tp(ā/N) : ā ∈M}) ⊆ Sx̄(N).

Proof. Suppose first that p(x̄) is finitely satisfiable. Let ϕ(x̄) ∈ p(x̄), and let
[ϕ(x̄)] be the corresponding open set. Then ϕ is realized in M , say by ā ∈ M .
Hence tp(ā/N) ∈ [ϕ(x̄)].

For the other direction, assume p(x̄) is in the closure of {tp(ā/N) : ā ∈
M}) ⊆ Sx̄(N). Let ϕ(x̄) ∈ p(x̄), then by assumption, there is ā ∈M such that
tp(ā/N) ∈ ϕ(x̄), so we obtain M |= ϕ(ā).

Lemma 2.8. Suppose p(x̄) ∈ Sx̄(M) and M ≺ N . Then there is p′(x̄) ∈ Sx̄(N)
such that p ⊆ p′ and p′ is finitely satisfiable in M .

Proof. Consider Γ(x̄) = p(x̄) ∪ {¬ϕ(x̄) : ϕ(x̄) ∈ LN and not realized in M}. It
is enough to show that Γ(x̄) is consistent because any extension of such Γ to a
complete type p′(x̄) ∈ Sx̄(N) will work. Let Γ′ be a finite subset of Γ, written
in the form Γ′ = {Ψ(x̄),¬ϕ1(x̄), . . . ,¬ϕr(x̄)} ∈ p. Then any solution ā of Ψ in
M satisfies Γ′, as the ϕ1, · · · , ϕr are not realized in M .

Remark. The following is a proof of the above fact using analysis. Let iM denote
the map from M x̄ to Sx̄(M) such that m 7→ tp(m/M). We define iN : M x̄ →
Sx̄(N) similarly. Let r denote the restriction map from Sx̄(N)→ Sx̄(M). Note
that r ◦ iN = iM , and the set of types in Sx̄(N) that are finitely satisfiable
in M is exactly the closure of iN (M x̄) in Sx̄(N). Hence its image under the
restriction map is closed. However the image must contain iM (M x̄), which is
dense in Sx̄(M). Therefore it must be onto, which proves the desired result.

Note. Lemma 2.8 also works when we consider formulas over some A ⊂M , i.e.
if A ⊂ M and p(x̄) ∈ Sx̄(M) is finitely satisfiable in A, then for any model
N � M , there is p′(x̄) ∈ Sx̄(N) such that p ⊆ p′ and p′ is finitely satisfiable in
A.

Proposition 2.9. Let p(x̄) ∈ Sx̄(M), N �M be |M |+-saturated, and p′(x̄) ∈ Sx̄(N)
a coheir of p. Let ā1, ā2, . . . ∈ N be defined as follows:

ā1 realizes p(x̄),
ā2 realizes p′(x̄) � (M, ā1),
ā3 realizes p′(x̄) � (M, ā1, ā2),
. . . .

Then (āi : i ∈ ω) is indiscernible over M .
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Proof. We prove by induction on k that for any n ≤ k and i1 < . . . < in ≤ k
and j1 < . . . < jn ≤ k, we have

tpM (āi1 , . . . , āin/M) = tpM (āj1 , . . . , ājn/M).

Assume this is true for k, and consider k + 1. Let ii < . . . < in ≤ k, j1 < . . . <
jn ≤ k. We need to show that

tpM (āi1 , . . . , āin , āk+1/M) = tpM (āj1 , . . . , ājn , āk+1/M).

Consider a formula ϕ(x̄1, . . . , x̄n, x̄n+1) ∈ LM . Assume by contradiction that

M |= ϕ(āi1 , . . . , āin , āk+1) ∧ ¬ϕ(āj1 , . . . , ājn , āk+1).

But tp(āk+1/M, ā1, . . . , āk) is finitely satisfiable in M , so there is ā′ ∈ M such
that

M |= ϕ(āi1 , . . . , āin , ā
′) ∧ ¬ϕ(āj1 , . . . , ājn , ā

′),

which contradicts the induction hypothesis.

Finally, the Erdös-Rado theorem allows us to obtain indiscernible. We will
not expand on this, but let us state the following :

Proposition 2.10. Given T , there exists λ ∼ i(2|T |)+ (assumed < κ̄) such

that if (āi : i < λ) is a sequence of finite tuples in M̄ , then there exists an
indiscernible sequence (b̄i : i < ω) in M̄ (tuples of the same length as the āi)
such that for all n < ω, there are α0 < . . . < αn < λ satisfying

tpM̄ (b̄0, . . . , b̄n) = tpM̄ (āα0 , . . . , āαn).

2.2 Definability and Generalizations

Let A ⊆ M̄ . Recall an A-definable set in M̄ is a subset X ⊆ M̄n defined
by an LA-formula ϕ(x1, . . . , xn). We will call ϕ(x̄),Ψ(x̄) ∈ LM̄ equivalent if
M̄ |= (∀x̄) (ϕ(x̄)↔ Ψ(x̄)). That is, the formulas Φ, Ψ define the same definable
set.

Lemma 2.11. Let X ⊆ M̄n be definable (with parameters in M̄). Then X is
definable over A (i.e. X is definable by an LA-formula) iff X is Aut(M̄/A)-
invariant.

Proof. Let us start with the forward implication. Given σ ∈ Aut(M̄/A) and
ā ∈ A,

σ(X) = {σ(x̄) : ϕ(x̄, ā)}
= {x̄′ : ϕ(x̄′, σ(ā))} (since ϕ(x̄, ā)↔ ϕ(σ(x̄), σ(ā)) for automorphisms)

= {x̄′ : ϕ(x̄′, ā)} (since σ(ā) = ā)

= X.

To prove the converse, we need to use strong κ̄-homogeneity of M̄ . Suppose X
is defined by ϕ(x̄, b̄), where b̄ ∈M are parameters.
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Claim. Given b̄′ ∈ M̄ , if tp(b̄′/A) = tp(b̄/A), then ϕ(x̄, b̄′) is equivalent to
ϕ(x̄, b̄).

Proof. Follows from strong κ̄-homogeneity of M̄ , which yields some σ ∈ Aut(M̄/A)
such that σ(b̄) = b̄′.

Let p(ȳ) = tpM̄ (b̄/A). The claim yields p(ȳ) |= (∀x̄) (ϕ(x̄, ȳ) ↔ ϕ(x̄, b̄)).
Then compactness yields some ψ(ȳ) ∈ p(ȳ), ψ ∈ LA such that

ψ(ȳ) |= (∀x̄) (ϕ(x̄, ȳ)↔ ϕ(x̄, b̄)).

So X can be defined by the LA-formula

θ(x̄) = (∃ȳ) (ϕ(x̄, ȳ) ∧ ψ(ȳ)) ∈ LA.

The equivalence of definablity and invariance under automorphisms can be gen-
eralized, as shown in the following definition and lemma.

Definition 2.12. X ⊆ M̄n is definable almost over A if there is an A-definable
equivalent relation E on M̄n with finitely many classes and X is a union of
some E-classes.

Lemma 2.13. Let X ⊆ M̄ be definable, and A ⊂ M̄ be small. The following
are equivalent :

i X is definable almost over A.

ii |{σ(X) : σ ∈ Aut(M̄/A)}| < ω.

iii |{σ(X) : σ ∈ Aut(M̄/A)}| < κ̄.

Proof. ii ⇒ iii is immediate.

i ⇒ ii also follows from definition: Let ϕ(x̄1, x̄2) ∈ LA be the A-definable
equivalence relation E, and let b̄1, . . . , b̄n ∈ M̄ be representatives in each equiv-
alence class so that each class can be written as [b̄i] = {x̄ : ϕ(x̄, b̄i)}. Given
σ ∈ Aut(M̄/A), since ϕ(x̄1, x̄2)↔ ϕ(σ(x̄1), σ(x̄2)), the image of each [b̄i] under
σ will be

σ([b̄i]) = {σ(x̄) : ϕ(x̄, b̄i)} = {x̄′ : ϕ(x̄′, σ(b̄i))} = {x̄ : ϕ(x̄, b̄ji)} = [b̄ji ],

for some ji ≤ n. Now X is a disjoint union of some [b̄i]’s, so σ(X) is a disjoint
union of some [b̄j ]’s. Since there are only finitely many equivalence classes, there
can only be finitely many possibilities for disjoint unions of these classes, which
completes the proof.
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ii ⇒ i: Let ϕ(x̄, b̄) ∈ LA define X and let p(y) = tp(b̄/A). From the above
argument, given σ ∈ Aut(M̄/A), we have σ(X) = {x̄′ : ϕ(x̄′, σ(b̄))}. Then from
assumption, there must be distinct b̄ = b̄1, . . . , b̄n ∈ M̄ so that

{σ(X) : σ ∈ Aut(M̄/A)} = {{x̄ : ϕ(x̄, b̄i)} : i ≤ n}.

Now if b̄′ ∈ M̄ has the same type as b̄, then strong κ̄-homogeneity of M̄ yields
some σ ∈ Aut(M̄/A) such that σ(b̄) = b̄′. Then the above argument again
shows that ϕ(x̄, b̄′) defines σ(X) for some σ ∈ Aut(M̄/A). Thus

{x̄ : ϕ(x̄, b̄′)} = {x̄ : ϕ(x̄, b̄i)}

for some i ≤ n. Therefore

p(ȳ) |=
∨
i≤n

(∀x̄) [ϕ(x̄, ȳ)↔ ϕ(x̄, b̄i)].

Then compactness yields some ψ(ȳ) ∈ p(ȳ) such that

ψ(ȳ) |=
∨
i≤n

(∀x̄) [ϕ(x̄, ȳ)↔ ϕ(x̄, b̄i)]. (∗)

Define the equivalence relation E(x̄1, x̄2) by the formula

θ(x̄1, x̄2) = (∀ȳ)[ψ(ȳ)→ (ϕ(x̄1, ȳ)↔ ϕ(x̄2, ȳ))] ∈ LA.

Now E has only finitely many equivalence classes from (∗), and X is the equiv-
alence class represented by b̄.

iii ⇒ ii: Assume for contradiction that

|{σ(X) : σ ∈ Aut(M̄/A)}| = λ ≥ ω.

Using the same notation as in the proof of ii ⇒ i, we can find λ-many elements
(b̄i : i < λ) ⊂ M̄ to represent the distinct images under automorphisms {x̄ :
ϕ(x̄, b̄i)}. Then the set of formulas

q(ȳ) = p(ȳ) ∪ {¬(∀x̄) [ϕ(x̄, ȳ)↔ ϕ(x̄, b̄i)] : i < λ}

will be finitely satisfiable because λ ≥ ω. By κ̄-saturation, q(ȳ) must be realized
in M̄ by some b̄′ ∈ M̄ . But such b̄′ has the same type as b̄ over A, and so strong
κ̄-homogeneity yields some σ ∈ Aut(M̄/A) such that σ(b̄) = b̄′. Yet applying
such σ on X gives the image

σ(X) = {σ(x̄) : ϕ(x̄, b̄)} = {x̄′ : ϕ(x̄′, σ(b̄))} = {x̄ : ϕ(x̄, b̄′)} = {x̄ : ϕ(x̄, b̄i)}

for some i < λ, which contradicts b̄′ satisfying the formula in variable ȳ

¬(∀x̄) [ϕ(x̄, ȳ)↔ ϕ(x̄, b̄i)].
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Recall that Sx(A) is the set of complete types in free variables x with pa-
rameters from A. (Equivalently, the complete types in the language LA in free
variables x extending the LA-theory Th(M).) Since M is saturated and A is
small, this is also the set of all tpM (a/A) for some a ∈M .

The topology on Sx(A) is generated by the basic open sets

[ϕ(x)] = {p(x) ∈ Sx(A) : ϕ(x) ∈ p(x)}

Since types are complete, these basic open sets are also closed because we have
Sx̄(A) \ [ϕ(x)] = [¬ϕ(x)]. With this topology, Sx(A) is the Stone space of the
Boolean algebra of LA-formulas ϕ(x), up to equivalence in M . It is a compact,
Hausdorff, totally disconnected space, e.g. a profinite space. (Not to be confused
with a pseudofinite space.)

Proposition 2.14. We can identify definable sets with continuous functions in
a certain setting:

1. Formulas ϕ(x), ψ(x) ∈ LA are equivalent if and only if [ϕ(x)] = [ψ(x)] in
Sx(A).

2. The clopen subsets of SX(A) are precisely the basic clopen sets.

3. Clopen subsets X of Sx(A) correspond exactly to continuous functions
f : Sx(A)→ 2, where f(p(x)) = 1 if p(x) ∈ X and 0 otherwise.

4. The definable subsets of M
n

are in one-to-one correspondence with con-
tinuous functions from Sx(A) to 2.

Proof. 1. Suppose ϕ(x) and ψ(x) are equivalent. Then M |= ∀x ϕ(x) ↔
ψ(x). In particular, [ψ(x)] ⊆ [ϕ(x)] and ϕ(x) ⊆ [ψ(x)]. Indeed, Suppose
there was a type in one but not the other. Then by consistency, it is real-
ized in the saturated model M . That would imply that there is an a ∈M
such that, for example, M |= ϕ(a) ∧ ¬ψ(a), a contradiction.

Suppose [ϕ(x)] = [ψ(x)], but they are not equivalent. ThenM |= ∃x ϕ(x)∧
¬ψ(x). Let a ∈ M be a witness. Then tpM (a/A) ∈ [ϕ(x)] but not is not
in [ψ(x)], a contradiction. Thus they must be equivalent in M .

2. We only need to show that any clopen set is a basic clopen set. Let
X ⊆ Sx(A) be a clopen set. Hence X and its complement are closed, so
each is the intersection of some collection of basic clopen sets represented
by sets P0 and P1 of LA-formulas. Then P0 ∪ P1 is inconsistent because⋂

ϕ(x)∈P0∪P1

[ϕ(x)] = X ∩Xc = ∅

Therefore, by compactness there are finite subsets {ϕ0(x), . . . , ϕk(x)} ⊆
P0 and {ψ0(x), . . . , ψj(x)} ⊆ P1 whose union is inconsistent. Therefore
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the LA-formula τ(x) defined via∧
i∈k+1

ϕi(x) ∧
∧

i∈j+1

¬ψi(x)

has [τ(x)] = X, so X is a basic clopen set as desired.

3. Suppose f : Sx(A) → 2 is as stated in the proposition. Then f−1({1}) is
open because 2 has the discrete topology and f is continuous. Similarly,
f−1({0}) = f−1({1}) is open, so f−1({1}) is clopen. Note that f−1({1})
trivially gives rise to f as described in the proposition.

Now suppose X is a clopen set and define fX : Sx(A) → 2 as described.
Clearly fX is continuous, as f−1(2) = Sx(A), f−1(∅) = ∅, f−1({0}) = Xc,
and f−1({1}) = X are all open because X is clopen.

4. By the first part of the proposition, definable sets are in one-to-one corre-
spondence with basic clopen subsets of Sx(A). By the second part, basic
clopen sets are exactly all of the clopen subsets, so definable sets are in
one-to-one correspondence with clopen sets. By the third part, clopen sets
are in one-to-one correspondence with continuous functions f : Sx(A)→ 2,
so definable sets are in one-to-one correspondence with these continuous
functions.

We can extend this idea to the general setting of continuous logic, which we
shall introduce below. The above proposition shows that traditional logic is a
special case of the following:

Definition 2.15.

1. Let C be a topological space. A C-valued formula in x over A is a contin-
uous function ϕ : Sx(A)→ C.

2. By a CL-formula (continuous logic) formula over A, we mean an R-valued
formula over A. Alternatively, the map can be into [0, 1] or R≥0.

Remark 2.16.

• Suppose ϕ : Sx(A)→ C is a C-valued formula in x over A. Then ϕ gives
rise to a map from M

n
to C given by fϕ(b) = ϕ(tpM (b/A)). We call fϕ

an A-definable function from M
n

to C.

• A definable function from M
n

to C is an A-definable function from M
n

to C for some small A ⊆M .

• For M an arbitrary model of T , a definable function from Mn to C is a
function f : Mn → C which lifts to a continuous function from Sx(M) to
C.

10



Recall that Lemma 2.11 showed that being a definable set and being invariant
under automorphism are the same thing. This result adapts to continuous logic
too.

Lemma 2.17. Let f be a definable function from M
n

to C. Let A ⊆ M be
small. Then f is A-definable if and only if f is Aut(M/A)-invariant, where the
action of Aut(M/A) on f is σ(f)(b) = f(σ−1(b)).

Proof. Notice one direction is trivial. If f is A-definable, then f is Aut(M/A)-
invariant. We prove the other direction. Assume that f is Aut(M/A)-invariant
and definable. Then, it is B-definable for some small B ⊂ M . Without loss of
generality, we can assume that A ⊆ B. Let fB : Sx(B)→ C be the map lifting
f to Sx̄(B), that is, for all p ∈ Sx̄(B), we have fB(p) = f(a) for some (any)
a |= p. Since f is B-definable, the map fB is continuous.

Similarly, since f is A-invariant, the map fA : Sx(A) → C defined via
fA(q) = f(c) where c |= q is well-defined. Let πB,A : Sx(B) → Sx(A) be the
natural restriction map. Then, the following diagram commutes:

Sx(B)
↓ ↘

Sx(A) → C

The map πB,A is a topological quotient map, meaning that Ω ⊂ Sx̄(B) is open
if and only if π−1

B,A(Ω) is open. Indeed, it is continuous, surjective and closed,
as types spaces are compact Hausdorff.

By the universal property of quotient maps and continuity of fb, we then
obtain continuity of fA.

Example 2.18. Ordinary first order formulas and definable sets are examples,
with C = {0, 1}

Example 2.19. Consider the identity from Sx(A) to itself. Then this induces
the tautological map that takes a tuple to its type, e.g. f(b) = tpM (b/A).

Example 2.20. Let T = RCOF = Th(R,+, x, 0, 1,−, <). This theory admits
quantifier elimination, that is all formulas are equivalent to some quantifier free
formula defining a semi-algebraic set. Recall that a semi-algebraic set is defined
by a finite disjunction of formulas of the form f(x) = 0 ∧ g(x) > 0.

A real closed field is a model of T , equivalently any ordered field with the
intermediate value property. In any such model M , the absolute value function
on M is definable over the empty set in the usual first order sense of definability.

In the context of real closed field, we can also produce CL-formulas.

Example 2.21. Let C = [−1, 1] ⊆ R with the subspace topology, and let M
be a model of T . Define the function f : M → C as follows:

If |x|M > 1, then f(x) = 0. Otherwise, f(x) is the unique element r of C
such that for all n ∈ N \ {0} we have |x− r|M < 1

n .

11



We first claim that such an r exists and is unique. Assuming two such reals
exist for a given x, equality follows immediately from the triangle inequality
and the least upper bound property. Therefore we only need to show existence.

Suppose |x|M ≤ 1. Then since M |= T , R can be embedded in M . Therefore,
consider {r ∈ R : r < x}. But R is complete as a metric space and |x|M | ≤ 1,
so this set has a supremum r in R. Notice that r has the required property: if
not, there is some n ∈ N \ {0} with |x− r|M ≥ 1

n , and there are two cases:

• r < x: Then |x− r|M = x− r ≥ 1
n , so r + 1

2n < x, contradicting the fact
that r is the supremum of the aforementioned set.

• x < r: Then |x− r|M = r − x ≥ 1
n , so r − 1

2n > x, contradicting the fact
that r is the supremum.

We still need to show that this map f(x), which we shall now denote as st(x)
for the ”standard part of x,” is definable in any model M of T .

Note that any rational number q is definable over the empty set. Hence, for
any type p(x) ∈ S1(M) with |x| ≤ 1, we can consider the set Lp = {q ∈ Q, q <
x ∈ p}. It is a downward closed set, and it has a least upper bound, as it is
bounded from above by 1.

This allows us to define the map :

f∗ :S1(M)→ [0, 1]

p(x)→ supLp if |x| ≤ 1 ∈ p(x)

p(x)→ 0 else

Then this map clearly induces st(x) by the above argument since the rationals
are dense in the reals. Furthermore, it is continuous: without loss of generality
assume 0 < a < b < 1 ∈ C (the other cases are similar.) Then

(f∗)−1((a, b)) =
⋃

q<r∈Q∩(a,b)

[q < x ≤ r]

Therefore the inverse image of basic open sets is open, so the function is con-
tinuous. Therefore st(x) is definable as desired.

The key thing to note with this example is that the standard part map gives us
a way to recover the usual topology on R from the Stone topology.

2.3 Imaginaries and T eq

Recall that aclM (A) (the algebraic closure of A in M) is the set of b ∈M such
that there exist an LA-formula ϕ(x) with M |= ϕ(b) and M |= ∃≤kx ϕ(x).
Similarly, the definable closure of A in M , denoted dclM (A), is the set of b ∈M
such that there exist an LA-formula ϕ(x) with M |= ϕ(b) and M |= ∃≤1x ϕ(x).

As an example, let the structure K be an algebraically closed field of char-
acteristic 0 in the language of rings. Let A ⊆ K, and let k be the subfield of
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K generated by A. Then b ∈ aclK(A) if and only if if it is an element of the
algebraic closure of k in the algebraic sense. Similarly, b ∈ dclK(A) if and only
if b ∈ k. This result is not totally trivial: for the full argument, see [Pil98].

Lemma 2.22. Assume M = M , A ⊆M is small, and b ∈M .

1. b ∈ aclM (A) if and only if {f(b) : f ∈ Aut(M/A)} is finite.

2. b ∈ dclM (A) if and only id f(b) = b for all f ∈ Aut(M/A).

Proof.

1. Suppose b ∈ aclM (A) with witness ∃≤kϕ(x). Then the set defined by ϕ(x)
has at most k elements, e.g. is finite. Hence by Lemma 2.11, the set
{m : M |= ϕ(m)} is Aut(M/A)-invariant, so {f(b) : f ∈ Aut(M/A)} ⊆
{m : M |= ϕ(m)}, therefore it is finite as desired.

Suppose {f(b) : f ∈ Aut(M/A)} is finite. Since the composition of auto-
morphisms is an automorphism, this set is Aut(M/A)-invariant. There-
fore, by Lemma 1.11, it is definable by some formula ϕ(x). Furthermore,
M |= ∃≤kx ϕ(x) for some k since the set defined by ϕ(x) is finite. Hence
b ∈ aclM (A).

2. Suppose b ∈ dclM (A) with witness ∃≤1ϕ(x). Then {b} = {m ∈M : ϕ(m)}
is a definable set, so by Lemma 2.11 it is Aut(M/A)-invariant. But any
singleton which is invariant must be fixed pointwise, so f(b) = b for all
f ∈ Aut(M/A), as desired.

Suppose f(b) = b for all f ∈ Aut(M/A). Then {b} is Aut(M/A)-invariant,
so by Lemma 1.11 it is definable over A via some formula ϕ(x). Moreover,
M |= ∃≤1x ϕ(x) since ϕ(x) defines a singleton, so b ∈ dclM (A).

Note the similarity of this lemma to lemmas 2.11 and 2.13. In fact, the the
machinery of T eq could be used to obtain these lemmas as a direct consequence
of Lemma 2.11.

The first motivation to develop T eq is dealing with quotient objects, without
leaving the context of first order logic. That is, if E is some definable equivalence
relation on some definable set X, we want to view X/E as a definable set.

We work in the setting of multi-sorted languages. Let L be a 1-sorted lan-
guage and let T be a (complete) L-theory. We shall build a many-sorted lan-
guage Leq and an Leq-theory T eq. We will ensure that in some natural sense,
Leq contains L and T eq contains T .

First we define Leq. Consider the set L-formula ϕ(x̄, ȳ), up to equivalence,
such that T models that ϕ is an equivalence relation (e.g. reflexivity, transitivity,
and symmetry). For each such ϕ, define sϕ to be a new sort in Leq. Of particular
importance is s=, the sort given by the formula ”x = y.” This sort s= will yield,
in each model of T eq, a model of T .
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Also define define fϕ to be a function symbol with domain sort sn= (where ϕ
has n free variables) and domain sort sϕ.

For each m-place relation symbol R ∈ L, make Req an m-place relation
symbol in Leq on sm= . Likewise for all constant and function symbols in L.
Finally, for the sake of formality, we put a unique equality symbol =ϕ on each
sort.

Remark 2.23. Let N be an Leq structure. Then N has interpretations sϕ(N)
of each sort sϕ and fϕ(N) : s=(N)nfϕ → sϕ(N) of each function symbol fϕ.
Additionally, N will contain an L-structure consisting of s= and interpretations
of the symbols of L inside of s=.

Definition 2.24. T eq is the Leq theory which is axiomatized by the following:

1. T , where the quantifiers in the formulas of T now range over the sort s=

2. For each suitable L-formula ϕ(x̄, ȳ), the axiom (∀s= x̄) (∀s= ȳ) (ϕ(x̄, ȳ) ↔
fϕ(x̄) = fϕ(ȳ)).

3. For each L-formula ϕ, the axiom (∀sϕy) (∃s= x̄) fϕ(x̄) = y.

Note that axioms 2 and 3 simply state that fϕ is the quotient function for
the equivalence relation given by ϕ.

Definition 2.25. Let M |= T . Then Meq is the Leq structure such that
s=(Meq) = M , and for each suitable L-formula ϕ(x̄, ȳ) of n variables, the sort
sϕ(Meq) is equal to Mnfϕ /E, where E is the equivalence relation defined by
ϕ(x̄, ȳ), and fϕ(Meq)(b̄) = b̄/E.

One can now easily verify that Meq |= T eq, as expected. Moreover, passing
from T to T eq is a canonical operation, in the following sense :

Lemma 2.26. 1. For any N |= T eq, there is an M |= T such that N ∼= Meq.

2. Suppose M,N |= T are isomorphic, and let h : M
∼−→ N . Then h extends

uniquely to heq : Meq ∼−→ Neq.

3. T eq is a complete Leq-theory.

4. Suppose M,N |= T and let ā ∈ M, b̄ ∈ N with tpM (ā) = tpN (b̄). Then
tpMeq (ā) = tpNeq (b̄).

Proof. 1. Let N |= T eq, we can take M = s=(N).

2. Suppose M,N |= T are isomorphic, and let h : M
∼−→ N . Let heq : Meq →

Neq be defined as heq(fϕ(Meq)(b̄)) = fϕ(Neq)(h(b̄)) for each L-formula
ϕ. This defines a function on Meq, because fϕ(Meq) is surjective by the
T eq axioms. Moreover heq is well-defined, bijective by the construction of
Meq and Neq, and an isomorphism by definition.
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3. Let M,N |= T eq, we want to show that they are elementary equivalent.
Assume the generalized continuum hypothesis (GCH). By GCH, there are
M ′, N ′ |= T eq which are λ saturated of size λ, fro some large λ, with
M �M ′ and N � N ′. Since we want to show elementary equivalence, we
can replace M,N with M ′ and N ′. By 1, we have M = Meq

0 , N = Neq
0

for some M0, N0 |= T . Furthermore, M0, N0 are λ-saturated of size λ. By
assumption, T is complete, so M0 ≡ N0, and therefore M0

∼= N0. By 2,
M ∼= N , and therefore M ≡ N .

Remark that although convenient, the generalized continuum hypothesis
is not necessary to prove this result. One could simply prove that there is
a back and forth system between M and N , using such a system between
M ⊃M0 |= T and N ⊃ N0 |= T

4. Let M,N |= T eq, they are elementary small submodels of M̄ , with M̄ .
Since tpM (ā) = tpN (b̄), there exists an h : M

∼−→ N automorphism of M̄
such that h(ā) = b̄. By 2, this automorphism h extends to heq : Meq →
Neq, and then tpMeq (ā) = tpMeq (b̄).

Corollary 2.27. Consider the Stone space S(s=)n(T eq). The forgetful map
π : S(s=)n(T eq)→ Sn(T ) is a homeomorphism.

Proof. Observe that it is continuous and surjective. By part 4 of the previous
lemma, it is injective. Any continuous bijection from a compact space to a
Hausdorff space is a homeomorphism.

Proposition 2.28. Let ϕ(x1, . . . , xk) be an Leq formula, where xi is of sort
SEi . There is an L-formula ψ(ȳ1, . . . , ȳk) such that :

T eq |= (∀ȳ1) . . . (∀ȳk) (ψ(ȳ1, . . . , ȳk)↔ ϕ(fE1
(ȳ1), . . . , fEk(ȳk))).

Proof. Let n be the length of ȳ1 . . . ȳk. Consider the set π(ϕ(fE1
(ȳ1), . . . , fEk(ȳk))),

it is a clopen subset of Sn(T ) by the previous corollary, hence equal to ψ(ȳ1, . . . , ȳk)
for some formula ψ. One easily checks this formula is the one we’re looking for.

Corollary 2.29. 1. Let M,N |= T , and let h : M → N be an elementary
embedding. Then heq : Meq → Neq (defined as was done earlier) is also
an elementary embedding.

2. M̄eq is also κ-saturated.

Remark 2.30. For M |= T , a definable set X ⊆ Mn can be viewed as an
element of Meq. Suppose X is defined in M by ϕ(x̄, ā) where ā ∈M . Consider
the equivalence relation Eψ defined by ψ(ȳ1, ȳ2) = (∀x̄) (ϕ(x̄, ȳ1) ↔ ϕ(x̄, ȳ2)),
and consider c = ā/Eψ = fψ(ā) ∈Meq. Then X is defined in Meq by χ(x̄, c) =
(∃ȳ) (ϕ(x̄, ȳ) ∧ fψ(ȳ) = c). Moreover, if c′ ∈ Sψ(Meq), and (∀x̄) (χ(x̄, c) ↔
χ(x̄, c′), then c = c′. To see this, let c′ = fψ(ā′), and let X ′ be defined in M
by ϕ(x̄, ā′). Then X ′ is defined in Meq by χ(x̄, c′), so we have that X = X ′ (in
Meq). And then X = X ′ (in M), so c = fψ(ā) = fψ(ā′) = c′.
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Definition 2.31. With the above considerations in mind, given M |= T and a
definable set X ⊆Mn, we call such a c ∈Meq a code for X.

Remark 2.32. Any automorphism of M̄eq fixes a definable set X set-wise if and
only if it fixes a code for X. However, the choice of a code for X will depend
on the formula ϕ used to define it, and so codes are not necessarily unique.

Definition 2.33. Let A ⊆ M |= T . Then acleq(A) = {c ∈ Meq : c ∈
aclMeq (A)}, and dcleq(A) is defined similarly.

Remark 2.34. Suppose A ⊆M ≺ N . Then aclNeq (A),dclNeq (A) ⊆Meq, so this
notation is unambiguous.

Lemma 2.35. Let M |= T , a definable subset X of Mn, and A ⊆ M . Then
X is almost over A if and only if X is definable in Meq by a formula with
parameters in acleq(A).

Proof. We can work in M̄ , since M ≺ M̄ . Let c be a code for X. From Lemma
2.13, X is almost over A if and only if |{σ(X) : σ ∈ Aut(M̄/A)}| < ω, if and
only if |{σ(c) : σ ∈ Aut(M̄/A)}| < ω, that is c ∈ acl(A).

Definition 2.36. Let ā, b̄ ∈ M̄ have length n. Let A ⊆ M̄ . Then ā, b̄ have the
same strong type over A (written as stpM̄ (ā/A) = stpM̄ (b̄/A)) if E(ā, b̄) for any
finite equivalence relation defined over A.

Remark 2.37. If ϕ(x̄) is a formula over A, then it defines an equivalence relation
with two classes by E(x̄1, x̄2) if and only if (ϕ(x̄1)∧ϕ(x̄2))∨ (¬ϕ(x̄1)∧¬ϕ(x̄2)).
Hence, strong types are a refinement of types.

Lemma 2.38. If A = M ≺ M̄ , then tpM̄ (a/M) ` stpM̄ (a/M).

Proof. Let E be an equivalence relation with finitely many classes, defined over
M , and b̄ another realization of tpM̄ (ā/M), we want to show E(a, b). Since
E has only finitely many classes, and M is a model, there are representants
e1, · · · , en of each E-class in M . Hence we must have E(a, ei) for some i, and
therefore also E(b, ei), which yields E(a, b), what we wanted.

Lemma 2.39. Let A ⊆ M |= T , and let ā, b̄ ∈ M . Then the following are
equivalent:

1. stp(ā/A) = stp(b̄/A)

2. ā, b̄ satisfy the same formulas almost over A

3. tpM̄ (ā/ acleq(A)) = tpM̄ (b̄/ acleq(A)).

Proof. 2 ⇔ 3 is a direct consequence of lemma 2.35, so we just need to prove 1
⇔ 2.

First, let’s do the left to right implication. Assume ā, b̄ ∈M and stp(ā/A) =
stp(b̄/A). Let X be definable almost over A, we want to show that ā ∈ X if
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and only if b̄ ∈ X. By symmetry, it is enough to do one direction. So assume
ā ∈ X.

Since X is almost over A, there is an A-definable equivalence relation E with
finitely many classes, and c̄1, · · · , c̄n such that for all x̄ ∈ M , we have x̄ ∈ X
if and only if M |= E(x̄, c̄1) ∨ · · · ∨ E(x̄, c̄n). Hence E(ā, c̄i) for some i, so by
assumption E(b̄, c̄i). Therefore b ∈ X.

Now for the right to left direction, suppose ā, b̄ satisfy the same almost over
A formulas. Let E be an A-definable equivalence relation with finitely many
classes, we want to show E(ā, b̄). The set X = {x̄ ∈ M,E(x̄, ā)} is definable
almost over A. But ā ∈ X, so b̄ ∈ X, hence E(ā, b̄).

Definition 2.40. 1. T has elimination of imaginaries (EI) if, for any model
M |= T and e ∈ Meq, there is a c̄ ∈ M such that e ∈ dclMeq (c̄) and
c̄ ∈ dclMeq (e).

2. T has weak elimination of imaginaries if, as above, except c̄ ∈ aclMeq (e).

3. T has geometric elimination of imaginaries if, as above, except e ∈ aclMeq (c̄)
and c̄ ∈ aclMeq (e).

Note that in particular, elimination of imaginaries imply the existence of
codes for definable sets, which is a very useful property. Moreover, we have the
following characterization :

Proposition 2.41. The following are equivalent:

1. T has EI.

2. For some model M |= T , we have that for any ∅-definable equivalence
relation E, there is a partition of Mn into ∅-definable sets Y1, . . . Yr, and
for each i = 1, . . . , r a ∅-definable fi : Yi →Mki where ki ≥ 1 such that for
each i = 1, . . . , r, for all b̄1, b̄2 ∈ Yi, we have E(b̄1, b̄2) iff fi(b̄1) = fi(b̄2).

3. For any model M |= T , we have that for any ∅-definable equivalence
relation E, there is a partition of Mn into ∅-definable sets Y1, . . . Yr, and
for each i = 1, . . . , r a ∅-definable fi : Yi →Mki where ki ≥ 1 such that for
each i = 1, . . . , r, for all b̄1, b̄2 ∈ Yi, we have E(b̄1, b̄2) iff fi(b̄1) = fi(b̄2).

4. For any model M |= T , and any definable X ⊆Mn there is an L-formula
ϕ(x̄, ȳ) and b̄ ∈M such that X is defined by ϕ(x, b̄) and for all b̄′ ∈M if
X is defined by ϕ(x̄, b̄′) then b̄ = b̄′. We call such a b̄ a code for X.

Proof. Note that properties in 2 and 3 concern only ∅-definable relations and
functions. Hence, if it is true in some model, it is true in any model, so 2 and
3 are equivalent. As a consequence, we can and will work in M for the rest of
the proof.

We start with 1 ⇒ 2, and therefore consider some ∅-definable equivalence
relation E. Let πE : Sn= → SE the canonical definable quotient map. Let
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e ∈ SE . By assumption, there is k ∈ N and c̄ ∈ M
k

such that e and c̄ are
interdefinable. In other words, there is a formula ϕe(x, ȳ) over ∅ such that
ϕe(e, c̄). Moreover, c̄ is the unique tuple such that |= ϕe(e, ȳ), and e is the
unique element such that |= ϕe(x, c̄).

LetXe = {x ∈M, |= (∃!ȳϕe(πe(x), ȳ))∧((∀z(E(x, z))↔ (∀y(ϕe(πE(x), ȳ))↔
(ϕe(πE(z), ȳ))))). This means that ϕe defines a function on Xe, and that this
function separates E-classes.

Then π−1({a}) ⊂ Xe. Indeed, let ā ∈ π−1({a}), then c̄ is the unique real-
ization of ϕe(πE(ā), ȳ), hence the first half of the conjunction is true.

We now prove the equivalence of the right half of the conjunction. Suppose
first E(ā, b̄), then πE(ā) = e = πE(b̄), and it is again the unique realization of
ϕe(πE(ā), ȳ), hence we get the left to right implication.

Conversely, suppose that |= ∀ȳ(ϕe(πE(ā), ȳ) ↔ ϕe(πE(b̄), ȳ)), for some b̄.
By assumption, we have ϕe(πE(ā), c̄), hence ϕe(πe(b̄), c̄). But by definition of
ϕe, this implies that e = πE(b̄), and by definition of πE , this yields E(ā, b̄).

Since each Xe contains π−1({a}), we get M
n

=
⋃

e∈πE(M
n

)

Xe, and by com-

pactness, there are e1, · · · , · · · el such that M
n

=
l⋃
i=1

Xei . We almost have what

we wanted, by considering fi = ϕei ◦ πE on each Xei . However, the Xei are not
disjoint.

But we can consider Y1, · · · , Yr to be the atoms of the boolean algebra gener-
ated by the Xi. These are disjoint, and we can pick, for each Yj , an appropriate
fi, to get the result.

We now prove 3⇒ 4. Let X be defined by ψ(x, ā). Consider the ∅-definable
equivalence relation E(ȳ, z̄)⇔ ∀x(ϕ(x, ȳ)↔ ϕ(x, z̄)). Let Yi and fi be as in 2,
and say ā ∈ Y1, and let b̄ = f1(ā). Then ∃ȳf1(ȳ) = b̄ ∧ ϕ(x, ȳ) defines X, call
this formula ψ(x, b̄).

We have to show that b̄ is unique such. Let b̄′ be such that ∃ȳf1(ȳ) =
b̄′ ∧ϕ(x, ȳ) also defines X, and let ā0 be as the ȳ in the formula. Then ϕ(x, ā0)
defines X, hence ā0Eā, which implies b̄′ = f1(ā0) = f1(ā) = b̄.

Finally, we need to prove 4 ⇒ 1. Let e ∈ Meq, then e = πE(ā), for some
ā ∈Mn

and some ∅-definable equivalence relation E.

The set X = {x̄ ∈Mn
, |= E(x̄, ā) has a code b̄ ∈Mk

, so that X = ψ(M
n
, b̄).

We are going to prove interdefinability of e and b̄ using automorphisms of M .
First suppose that σ ∈ Aut(M), and fixes e. We have M

eq |= ∀x̄(πE(x̄) =
πE(ā))↔ ψ(x, b̄). Applying σ, we get M

eq |= ∀x̄(πE(x̄) = πE(ā))↔ ψ(x, σ(b̄)),
and therefore M

eq |= ∀x̄(ψ(x, b̄) ↔ ψ(x, σ(b̄))). But b̄ is a code for X, hence
b̄ = σ(b̄). This implies b̄ ∈ dcl(e).

Now suppose σ ∈ Aut(M), and fixes b̄. Again M
eq |= ∀x̄(πE(x̄) = πE(ā))↔

ψ(x, b̄), so applying σ we get M
eq |= ∀x̄(πE(x̄) = πE(σ(ā))) ↔ ψ(x, b̄). But

ϕ(ā, b̄), so e = πE(ā) = πE(σ(ā)) = σ(e). Hence e ∈ dcl(b).

Note that condition 2 is somewhat unsatisfying, as we would like to have a
quotient function for E, that is, have r = 1. Here is a condition for this to be
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true :

Proposition 2.42. Suppose T eliminates imaginaries. We get r = 1 in condi-
tion 2 if and only if dcl(∅) has at least two elements.

Proof. First, suppose that r = 1. Consider the equivalence relation on M
2

given
by E((x, y), (x′, y′)) if and only if x = y ∧ x′ = y′ or x 6= y ∧ x′ 6= y′. In other

words, the E classes are the diagonal and its complement. Then πE(M
2
) has two

elements, and they belong to dcleq(∅). But because T eliminates imaginaries,
this implies that there is also two elements in dcl(∅).

Second, suppose that dcl(∅) contains two constants a and b. Let Yi, fi be
as in condition 2. Using a and b, we can find some number k and functions

gi : M
ki →M

k
such that the gi(M

ki
) are pairwise disjoint. We can check that

the ∅-definable function f : M
n → M

k
sending y ∈ Yi to gi(fi(y)) has all the

required properties.

Remark 2.43. Elimination of imaginaries also makes sense for many sorted the-
ories. Barring this in mind, we will now give a lemma.

Lemma 2.44 (Assume T 1-sorted). T eq has elimination of imaginaries.

Proof. We prove a strong version of (2) in proposition 2.41. Let E′ be a ∅-
definable equivalence relation on a sort sE in some model Meq of T eq. By
proposition 2.28, there is an L-formula ψ(y1, y2) (yi the appropriate length) such
that for all a1, a2 ∈M , M |= ψ(a1, a2) if and only if Meq |= E′(fE(a1), fE(a2)).
So ψ(y1, y2) is an L-formula defining an equivalence relation on Mk for the
suitable length k. Consider the map h, taking e ∈ SE to fψ(a)1 for any a ∈Mk

such that fE(a) = e. Suppose fE(a) = e = fE(a′), we easily see that fψ(a) =
fψ(a′), hence the map h is well defined, and satisfied (2) of 2.41.

In applied model theory, a substantial amount of work has been done on
proving some relative elimination of imaginaries. That is, given a theory T ,
is there some natural imaginary sorts one can add to T so that the resulting
theory has elimination of imaginaries ? The interested reader can look at what
has been achieved in the case of algebraically closed valued fields.

2.4 Examples and counterexamples

Even in the simplest case, there is some non-trivial result :

Example 2.45. The theory of an infinite set has weak elimination of imagi-
naries but not full elimination of imaginaries.

1fψ(a) ∈ Sψ .
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Proof. First, we show that T has weak elimination of imaginaries. Let M be an
infinite set and let e ∈ Meq be an imaginary element. Suppose that e = dXe
for some definable set X. Let A ⊂M be a finite set over which X is definable.
Consider the set

Â :=
⋂

σ∈Aut(M)
σ(X)=X

σ(A).

Since A is finite, there are σ1, . . . , σn such that Â = ∩iσi(A). Observe that
X is definable over Â; since automorphisms of M are just permutations, for
any finite sets B1 and B2, Aut(M/B1 ∩ B2) is generated by Aut(M/B1) and
Aut(M/B2). Therefore if X is definable over B1 and B2, then X is definable
over B1 ∩ B2. Now, it suffices to show that Â ⊆ acleq(e). Let a ∈ Â. For any
σ ∈ Aut(Meq) fixing e, we have that σ(X) = X and so σ(Â) = Â, i.e. σ(a) ∈ Â.
Thus we have the orbit Aut(Meq/e) · a is contained in Â (which is finite) and
so, by definition, a ∈ acleq(e).

To see that T does not have full elimination of imaginaries, observe that
there is never a code for any finite set. Indeed, if M is an infinite set, X ⊂ M
a finite subset, and ā an arbitrary tuple from M , we can find a permutation of
M which fixes X as a set but does not fix ā, meaning ā could not be a code for
X.

The previous example shows that non-complex theories do not necessarily
have elimination of imaginaries. And the other way around, some very complex
theories may have elimination of imaginaries :

Example 2.46. Let T = Th(M,<, ...) where < is a total well-ordering (e.g.
True arithmetic). Then, T has elimination of imaginaries.

Proof. Every definable set has a first element since < is a total well-ordering.
We verify (2) in 2.41. Let E be an ∅-definable equivalence relation on Mn. Let
f : Mn → Mn such that for any a, f(a) is the least element of the E-class of
a, with respect to the lexicographic ordering. Notice that f is ∅-definable, and
for all ā, b̄, we have f(ā) = f(b̄) if and only if E(ā, b̄).

Therefore, one should not think of elimination of imaginaries as measuring
the complexity of a theory.

Definition 2.47. A theory T is strongly minimal if for any model M of T and
any definable set X ⊂M , either X is finite or M \X is finite.

Example 2.48. The following theories are strongly minimal :

• the theory of equality

• the theory of an algebraically closed fields of any characteristic

• the theory Th(Q,+)
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From the point of view of model theory, strongly minimal theories are very
well understood, and in particular, we have :

Lemma 2.49. Let T be strongly minimal and acl(∅) be infinite (in some, any
model). Then T has weak elimination of imaginaries.

Proof. Fix a model M . Let e ∈ Meq, so e = a/E for some a = (a1, ..., an) and
E some some ∅-definable equivalence relation. Let A = aclMeq (e) ∩M . A is
infinite as it contains acl(∅).

We first prove that there exists some b ⊂ A such that E(a, b). Let X1 =
{y1 ∈ M : M |= ∃y2, ..., yn(yEa)}, it is definable over e. If X1 is finite, any b1
in X1 then belongs to A. Otherwise, X1 is cofinite, hence meets the infinite set
A. Either way, X1 ∩A 6= ∅ and we have b1 ∈ X1 ∩A.

Now let X2 = {y2 ∈M : M |= ∃y3, ..., yn(b1yEa)}. We remark that X2 6= ∅
since b1 ∈ X1. Now, X2 is either finite or cofinite since T is strongly minimal.
By the same argument above, we may find b2 ∈ X2 ∩ A. Then, repeating this
process, we may find b ⊂ A. Therefore, b ∈ aclMeq (e).

Finally, notice that that e ∈ dclMeq (b) since b/E = a/E = e.

Example 2.50. The theory ACFp has elimination of imaginaries, for any p.

Proof. By Lemma 2.49, ACFp has weak elimination of imaginaries. Therefore, it
suffices to show that that every finite set can be coded. Let K be an algebraically
closed field and let X = {c1, . . . , cn} ⊆ K. Consider the polynomial

P (x) =

n∏
i=1

(x− ci)

= xn + en−1x
n−1 + . . .+ e1x+ e0.

Then we may take the tuple ē = (en+1, . . . , e1, e0) to be our code for X. Indeed,
if an automorphism of K permutes the elements of X, then certainly the poly-
nomial P (x) is fixed and so ē is fixed. On the other hand, if some automorphism
fixes ē, then P (x) is fixed and so at most the automorphism permutes the roots
of P (x) .

Example 2.51. The theory of real closed fields has elimination of imaginaries.
To see this, we prove that T = RCF has definable choice.

Definition 2.52. A theory T has definable choice if for any formula ϕ(x̄, ȳ)
and any model M of T , there is a definable function fϕ : M ¯̄y →M ¯̄y satisfying :

• M |= ∀ȳϕ(fϕ(ȳ), ȳ)

• if ϕ(R, ā) = ϕ(R, b̄), then fϕ(ā) = fϕ(b̄)

We can then use the general property :

Proposition 2.53. If T has definable choice, then it eliminates imaginaries.
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Proof. Let E be an equivalence relation, definable over the empty set. Consider
the definable function fE . Then for any ā, b̄ we check that E(ā, b̄) if and only if
fE(ā) = fE(b̄), which yields elimination of imaginaries by Lemma 2.41.

First suppose E(ā, b̄), then since M̄ |= ∀ȳE(fE(ȳ), ȳ), we have E(fE(ā), fE(b̄)),
hence E(M̄, fE(ā)) = E(M̄, fE(b̄)), so fE(ā) = fE(b̄).

Now suppose fE(ā) = fE(b̄). We have E(fE(ā), ā) and E(fE(b̄), b̄), but also
E(fE(ā), fE(b̄)). Hence E(ā, b̄).

Proposition 2.54. The theory of real closed fields has definable choice.

Proof. We proceed by induction on |x̄|.
|x̄| = 1: By quantifier elimination, for any b̄, the definable set ϕ(R, b̄) is

a finite union of intervals (we will assume points are intervals as well). Let I
be the left-most interval of ϕ(R, b̄). We define f(b̄) in cases depending on the
shape of I:

• if I = {a} is a singleton, set f(b̄) = a,

• if I = R, set f(b̄) = 0,

• if the interior of I is of the form (c,+∞), set f(b̄) = c+ 1,

• if the interior of I is of the form (−∞, c), set f(b̄) = c− 1,

• if the interior of I is of the form (c, d), then set f(b̄) = c+d
2 .

Note that f is definable, since for any interval I, the supremum and infimum of
I are definable (provided they exist).
|x̄| = n+1: Write x̄ = (x0, x̄1), where |x̄1| = n. By the induction hypothesis,

there is a definable function f(ȳ) such that

• R |= ∀ȳ∃x0ϕ(x0, f(ȳ), ȳ), and

• ∃x0ϕ(x0,R, ā) = ∃x0ϕ(x0,R, b̄), then f(ā) = f(b̄).

Now, by the case of |x̄| = 1, we have that there is a definable function g(x̄1, ȳ) :
R|y|+1 → R such that the map ȳ 7→ (g(f(ȳ), ȳ), f(ȳ)) satisfies the requirements
of the proposition.

There is more to the interaction between definable choice and elimination of
imaginaries :

Definition 2.55. T has skolem functions if for each formula ϕ(x̄, ȳ) there is
some definable (over the empty set) function fϕ(ȳ) such that for any model M
of T , we have M |= ∀y((∃x̄ϕ(x̄, ȳ))→ (ϕ(fϕ(ȳ), ȳ))).

Note that definable choice implies definable skolem functions, but the con-
verse is false. Indeed, the theory Th(Qp,+,×) has skolem functions, but does
not have elimination of imaginaries, and hence does not have definable choice.

However we have :
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Fact 2.56. A theory T has definable choice if and only if T eq has definable
skolem functions.

We conclude this section by mentioning the following questions, which, as
far as we know, are completely unexplored :

Question 1. Consider the theories ZF and ZFC for sets. Which completion
of these theories have skolem function, elimination of imaginaries, or definable
choice ?

3 Stability

Throughout this chapter we will fix a complete theory T in some language L.
Moreover, we will have no problem in working in T eq (that is to say, to assume
T = T eq), at least for the general theory. In the context of specific examples,
however, we will only deal with 1-sorted theories.

Before we begin, a little bit of history. The origin of Stability Theory can be
traced back to Morley’s work in the sixties regarding uncountable categoricity.
He proved the following theorem:

Theorem. Suppose T is a countable theory. Then T is κ-categorical for some
κ > ℵ0 if and only if T is κ-categorical for all κ > ℵ0.

A key step in the proof of this theorem is to show that, if T is κ-categorical
for some κ > ℵ0, then T is ω-stable (a property called “totally transcendental”
by Morley). This property, ω-stability, is a strong form of stability, defined as
follows: for all n < ω and all countable models M |= T , the cardinality of Sn(M)
is at most countable (which in turn implies |Sn(M)| ≤|M | for all M |= T ).

Assuming ω-stability, additional machinery was developed (namely, Morley
rank) to, together with indiscernibles, deduce the theorem. Subsequently, it was
seen that, in fact, a theory T is κ-categorical for some/any κ > ℵ0 if and only if
T is ω-stable and unidimensional (i.e. any two types are nonorthogonal), a char-
acterisation of ℵ1-categorical theories without any mention of an uncountable
cardinal.

Later on, Shelah, who was working in Classification theory2, considered the
“test question” of what forms could the spectrum function take. For a given
theory T , the spectrum function is given as

I(T,−) : cardinals −→ cardinals

I(T, λ) = # of models of T of cardinality λ (up to isomorphism)

In solving this question, he invented Stability theory. For instance, if T is
unstable, then I(T, λ) = 2λ for all λ > ℵ0, i.e. T has the greatest possible

2Shelah was attempting to classify theories, that is to say, to find meaningful division lines
between them (for example, in former times, theories were divided between decidable and
undecidable). In this endeavor, he was trying to formulate “test questions“ that could help
classify first order theories.
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number of models in each uncountable cardinality. Hence, if we want to study
theories through their spectrum, we can restrict our attention to stable theories.

Before we start with local stability, a quick additional historical remark. The
notion of stability, as many others in mathematics, appeared more or less simul-
taneously in two different contexts. In this case, we have Grothendieck’s thesis
in which, in the context of Functional Analysis, the notion under consideration
makes an appearance, as does a proof which we will give shortly (cf. Proposition
3.7).

3.1 Local Stability

We begin by recalling that, for an L-formula ϕ, to write ϕ as ϕ(x1, . . . , xn) means
that the free variables of ϕ are among x1, . . . , xn (which we assume are distinct).
Similarly, writing ϕ as ϕ(x, y) means x, y form a partition of x1, . . . , xn. (Note
that ϕ(x, y) thus given defines a bipartite graph.)

Definition 3.1. .

(i) Let M |= T . We say ϕ(x, y) is stable in M if it is not the case that there
are ai, bi in M , for i < ω, such that either, for all i, j < ω, M |= ϕ(ai, bj)
if and only if i ≤ j, or, for all i, j < ω, M |= ¬ϕ(ai, bj) if and only if i ≤ j.

(ii) We say ϕ(x, y) is stable (for T ) if it is stable in M for all M |= T .

(iii) Finally, we say T is stable if every L-formula ϕ(x, y) is stable (for T ).

Remark 3.2. A formula ϕ(x, y) is stable for T if and only if it is not the case
that there are ai, bi in the monster model M , i < ω, such that M |= ϕ(ai, bi) if
and only if i ≤ j for all i, j < ω.

Before we go on, a remark on notation. For simplicity, from now onwards
we will write tuples simply as x and a, instead of the more cumbersome x and
a. Thus, in general, when say we write ϕ(x, y), we understand x and y not as
single variables but as tuples (possibly of length 1) of variables.

We start by proving a few elementary facts about stable formulas :

Lemma 3.3. .

(i) Suppose ϕ(x, y) and ψ(x, z) are stable for T . Then ¬ϕ(x, y), (ϕ∨ψ)(x, yz)
and (ϕ ∧ ψ)(x, yz) are also stable.

(ii) Given ϕ(x, y), let ϕ∗(y, x) be ϕ(x, y). Then, ϕ(x, y) stable for T implies
ϕ∗(y, x) is stable for T as well.

(iii) The formula ϕ(x, y) is stable for T if and only if there is n < ω such
that ϕ(x, y) is n-stable: it is not the case that there are ai, bi (in M or in
some/any M |= T ), i ≤ n, such that |= ϕ(ai, bi) if and only if i ≤ j for
all i, j ≤ n.

(iv) There are T , M |= T and ϕ(x, y) such that ϕ(x, y) is stable in M but it is
not stable for T .
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In particular, as a consequence of the lemma, notice that (iii) implies that
stability is expressed by a sentence of the theory.

Proof. (i) We will only prove it for the negation, the other cases being similar.
Enrich the language L with tuples of constant symbols ci, di, i < ω, and consider
the set Σ = T ∪ {¬ϕ(ci, dj) : i ≤ j} ∪ {ϕ(ci, dj) : i > j} of formulas in the new
language. For a finite subset Σ′ ⊆ Σ, let n be the largest index occurring as a
subscript of a new constant tuple in some sentence of Σ′. Then, interpreting
ci as an+1−i and di as bn−i in M for all i ≤ n, and the rest of new constants
arbitrarily, yields a model of Σ′. In fact, this is true because i ≤ j implies
n+ 1− i > n− j, and i > j implies n+ 1− i ≤ n− j. By compactness we can
thus obtain a model of Σ, which will yield the desired tuples.

(ii) Suppose ϕ∗(y, x) is not stable, so by (i) ¬ϕ∗(y, x) is also unstable. Let
ai, bi be witnesses in M of the latter. Then, a′i = bi and b′i = ai+1, i < ω,
witness the instability of ϕ(x, y), as j + 1 > i holds if and only if i ≤ j. It
follows that ϕ∗(y, x) must be stable.

(iii) Any witnesses of the failure of stability for ϕ(x, y) yield witnesses of the
failure of n-stability for every n < ω. Thus, n-stable for some n implies stable.

On the other hand, if ϕ(x, y) is n-unstable for all n, then by an straightfor-
ward compactness argument, we can prove that ϕ is unstable.

(iv) Consider the graph G, disjoint union of all finite graphs. Then the edge
relation E is stable in G. Indeed, if it wasn’t, we would in particular have a
vertex x0 and infinitely many vertices {yi, i ∈ N} such that E(x0, yi) for all i.
But this would imply, if G0 is the graph containing x0, that yi ∈ G0 for all i,
which is impossible since G0 is finite.

But by (iii), the edge relation is not stable in Th(G).

Definition 3.4. Fix ϕ(x, y) in L. By a complete ϕ-type over M , M |= T , we
mean a maximal consistent set of instances of ϕ and ¬ϕ over M , namely LM -
formulas of the form ϕ(x, b), ¬ϕ(x, b) for b ∈ M . We write Sϕ(M) for the set
of such complete ϕ-types over M .

Remark 3.5. .

(i) By a ϕ-formula over M we mean a Boolean combination of instances (over
M) of ϕ and ¬ϕ. For example, (ϕ(x, c)∧ϕ(x, b))∨¬ϕ(x, d) is a ϕ-formula.

(ii) Any type p(x) ∈ Sϕ(M) decides any ϕ-formula ψ(x) over M , that is to say
p(x) |= ψ(x) or p(x) |= ¬ψ(x), so in fact p(x) extends to a unique maximal
consistent set of ϕ-formulas over M

(iii) By defining the basic open sets of Sϕ(M) to be {p(x) ∈ Sϕ(M) : ψ(x) ∈ p}
for ψ a ϕ-formula, Sϕ(M) becomes a compact totally disconnected space,
where in addition the clopen sets are precisely given by ϕ-formulas, i.e.
they are the basic clopen sets.

(iv) Any p(x) ∈ Sϕ(M) extends to some q(x) ∈ Sx(M) such that p = q � ϕ,
where q � ϕ is the set of ϕ-formulas in q(x) (or instances of ϕ,¬ϕ in q(x)).
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Definition 3.6. .

(i) Let p(x) ∈ Sx(M) be a complete type over M . We say that p(x) is
definable if, for each ϕ(x, y) in L, there is an LM -formula ψ(y) such that
for all m ∈ M , we have M |= ψ(m) if and only if ϕ(x, b) ∈ p (note that
such ψ(y) is unique up to equivalence). We say the type p(x) is definable
over A ⊆M if each such ψ(y) is over A.3

(ii) Likewise, we speak of the ϕ-type p(x) ∈ Sϕ(M) being definable when
{b ∈ M : ϕ(x, b) ∈ p(x)} is defined by a formula ψ(y) of LM . (Note that
in this case ψ(y) determines p(x).)

As we will see later, a theory T is stable if and only if all types over all
models of T are definable. Note that there are unstable theories for which all
the types over certain models are definable. For instance, in the case of dense
linear orders, all types over R (the standard model) are definable.

Indeed, by quantifier elimination, any non-realized 1-type over any model
of DLO corresponds to a cut in its order. But in the case of R, the order is
complete, so for any cut, there will in fact exist a real number r such that the
cut is of the form ({l ∈ R, l < r}, {d ∈ R, d > r}). Using this real number r,
one can easily show definability of 1-types over R. A similar proof would work
for higher arities.

Another example of such a model, in the the theory of p-adically closed
fields, is Qp.

Now we come to one of the fundamental results of the subject, linking de-
finability of types and stability. This is the most general version of this result,
only assuming stability of a formula in a given model. Note that Grothendieck
gave, in his thesis, a result which can be interpreted as a functional analysis
version of this (and indeed, our proposition is a consequence of it).

Proposition 3.7. Fix a model M |= T and an L-formula ϕ(x, y). Then the
following are equivalent:

(i) ϕ(x, y) is stable in M .

(ii) Whenever M∗ �M is |M |+-saturated and tp(a∗/M∗) is finitely satisfiable
in M , then tpϕ(a∗/M∗) is definable over M and, moreover, it is defined
by some ϕ∗-formula, i.e. a Boolean combination of ϕ(a, y)’s, a ∈M .

Proof. We start by proving (i) ⇒ (ii). Fix some p∗(x) = tp(a∗/M∗) finitely
satisfiable in M . We want to prove tpϕ(a∗/M∗) is definable over M by a ϕ∗-
formula. Note first that, as p∗ is finitely satisfiable in M , whether or not some
ϕ(x, b), b ∈ M∗, is in in p∗ depends only on tp(b/M); in fact, even only on
tpϕ∗(b/M) = q(y) ∈ Sϕ∗(M). To see this, suppose, by way of contradiction,
that we had b′ ∈ M∗ such that tpϕ∗(b

′/M) = tpϕ∗(b/M), but ϕ(x, b) ∈ p∗

while ¬ϕ(x, b′) ∈ p∗. Then we would have |= ϕ(a∗, b) ∧ ¬ϕ(a∗, b′), so by finite
satisfiability there would be a ∈ M such that |= ϕ(a, b) ∧ ¬ϕ(a, b′). Yet this

3This definition also occurred in the work of Gaifman regarding models of arithmetic.
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contradicts the fact that b and b′ have the same ϕ∗-type over M . Hence, we
may write ϕ(x, q) ∈ p∗ whenever ϕ(x, b) ∈ p∗ and q = tpϕ∗(b/M).

Claim. In order for p∗ � ϕ to be definable by a ϕ∗-formula over M , it suffices
to prove (*) : for any type q(y) ∈ Sϕ∗(M), if ϕ(x, q) ∈ p∗, then there is some
ϕ∗-formula ψ(y) ∈ q(y) such that, for all b ∈ M satisfying ψ(y), we have
ϕ(x, b) ∈ p∗. Similarly if ¬ϕ(x, q) ∈ p∗.

Proof of claim. Suppose for all q we find ψq(y) as above. By compactness,
finitely many ψq(y) cover Sϕ∗(M). Thus, M |= (∀y)(ψq1(y) ∨ · · · ∨ ψqn(y)) for
some q1, . . . , qn ∈ Sϕ∗(M), and we may assume the ψqiare pairwise contradic-
tory. Let ψ(y) be the disjunction of those ψqi(y) for which ϕ(x, qi) ∈ p∗. Then
ψ(y) is a ϕ∗-formula which defines p∗ � ϕ.

To prove this, we need to show that for any q, we have ϕ(x, q) ∈ p∗ if and
only if ψ(y) ∈ q. The right to left direction is by construction of the ψqi .

For the other direction, suppose b∗ ∈M∗, q = tpϕ∗(b
∗/M) and ϕ(x, b∗) ∈ p∗.

We want to show |= ψ(b∗); by contradiction, assume instead we have |= ¬ψ(b∗).
Then ψq(y)∧¬ψ(y) ∈ q and we may take some b ∈M such that |= ψq(b)∧¬ψ(b).
Now, by assumption, since |= ψq(b), we must have ϕ(x, b) ∈ p∗. Also ¬ϕ(x, b) ∈
p∗, because |= ¬ψ(b) implies |= ψqi(b) for some qi such that ¬ϕ(x, qi) ∈ p∗ by
choice of ψ. Of course, this is impossible, so |= ψ(b∗). On the other hand, if
|= ψ(b∗), then again the choice of ψ and the assumption about the ψq’s tell us
that ϕ(x, b∗) ∈ p∗. The claim is proved.

Now we prove that (*) holds. Suppose it fails for some q ∈ Sϕ∗(M) and
let b∗ ∈ M∗ realize q. Without loss of generality, we may assume ϕ(x, q) ∈ p∗.
Then, for every ϕ∗-formula ψ(y) ∈ q there is b ∈ M such that |= ψ(b) and
¬ϕ(x, b) ∈ p∗. With this we will inductively construct ai, bi ∈ M , i < ω, with
the following properties:

1) |= ϕ(ai, bj) if and only if i ≤ j,

2) |= ¬ϕ(a∗, bi) for all i, and

3) |= ϕ(ai, b
∗) for all i.

Suppose we have found ai, bi, i < n, with these properties. As tp(a∗/M∗) is
finitely satisfiable in M , using 2) we can find an ∈ M such that |= ϕ(an, b

∗)
and |= ¬ϕ(an, bi) for all i < n. Now, note that we have |=

∧
i≤n ϕ(ai, b

∗), so
the ϕ∗-formula

∧
i≤n ϕ(ai, y) is in q. Thus, since we assumed (*) fails for q,

there exists some bn ∈ M such that |=
∧
i≤n ϕ(ai, bn), but ¬ϕ(x, bn) ∈ p∗, i.e.

|= ¬ϕ(a∗, bn). Hence, we get properties 1), 2) and 3) for i < n + 1 and the
induction carries on. The resultant sequences witness the fact that ϕ is not
stable in M , a contradiction. Thus, we have shown that (i) implies (ii).
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We now will prove (ii) implies (i), so assume (ii), and by way of contradiction,
assume that ϕ is not stable in M . Then there are sequence ai, bj ∈ M , with
i, j < ω, such that M |= ϕ(ai, bj) if and only if i ≤ j.

Consider the set of formulas :

{x 6= ai, i ∈ N} ∪ {θ(x) ∈ LM∗ , for all i,M |= θ(ai)}

it is finitely satisfiable (just pick an appropriate ai), hence satisfiable by com-
pactness. Let a∗ be a realization, and p = tp(a∗/M). By construction, this type
p is finitely satisfiable in {ai, i ∈ N}, so in particular in M . By (ii), it ought to
be definable over M , so there is an M -formula ψ(y) such that for all b ∈ M∗,
we have ϕ(a∗, b) if and only if M∗ |= ϕ(b).

Suppose that ψ(bj) for some j, then if j′ > j, we have to have ψ(j′) as well.
Else, we would have ϕ(a, bj′), and since p is finitely satisfiable in {ai, i ∈ N},
some i ∈ N such that ¬ϕ(ai, bj)∧ ϕ(ai, bj′), which is impossible because j < j′.

So there are two possibilities : either ¬ψ(bj) for all j, or there is j such that
ϕ(bj′) for all j′ > j. In the second case, by cutting the sequence at j, we can
assume ψ(bj) for all j.

We will only treat the possibility ψ(bj) for all j, the other being similar.
Consider the set of formula :

ψ(x) ∪ {¬ϕ(ai, x), for all i ∈ N}
it is finitely satisfiable by what we just proved, hence satisfiable, let b ∈M∗ be
a realization (which exists by |M |+ saturation of M∗). Then M∗ |= ¬ϕ(a, b).
Indeed, suppose on the contrary that M∗ |= ϕ(a, b). Again, since p is finitely
satisfiable in {ai, i 3 N}, there has to be some i such that M |= ϕ(ai, b), which
contradicts the choice of b.

So we have both ψ(b) and ¬ψ(a, b), which is a contradiction, as ψ is supposed
to be the ϕ-definition of p.

Remark 3.8. In the last step of the proof of the first implication, given q ∈
Sϕ∗(M) such that ϕ(x, q) ∈ p∗, we actually proved a stronger statement. We
proved that, if for all positive formulas ψ(y) ∈ q we have some b ∈M such that
|= ψ(b) and ¬ϕ(x, b) ∈ p∗, then ϕ(x, y) is unstable. Thus, for such q we may
find positive ψq(y) as in (*). Since for proving the claim made in the proof, we
took as a formula defining p∗ � ϕ a disjunction of such ψq(y), we may assert
that indeed the defining formula of p∗ � ϕ in (ii) can be taken to be positive.

We now consider the consequences of 2.7 when ϕ(x; y) is stable for T .

Proposition 3.9. Let ϕ(x; y) be an L-formula. Then the following are equiva-
lent:

1. ϕ(x; y) is stable (for T ).

2. For all M |= T and p(x) ∈ Sϕ(M), p(x) is definable, i.e. there is some
LM -formula ψ(y) such that for all b ∈ M , M |= ψ(b) if and only if
ϕ(x, b) ∈ p(x).
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3. for all cardinal λ ≥ |T | and M |= T of cardinality λ, we have |Sϕ(M)| ≤ λ.

4. There is λ ≥ |T | such that for all M |= T of cardinality λ, we have
|Sϕ(M)| ≤ λ.

Proof. 1 ⇒ 2: This is a consequence of Proposition 3.7. Indeed, fix p(x) ∈
Sϕ(M). Let p′(x) ∈ Sx(M) extend p(x). Let M ≺ M∗ be |M |+-saturated and
p∗ ∈ Sx(M) a coheir of p′ (that is, extending p′ and finitely satisfiable in M).
By Proposition 3.7, we obtain that p∗|ϕ is definable over M , so p(x) = p∗|ϕ|M
is definable.

2 ⇒ 3: By assumption, each p(x) ∈ Sϕ(M) is determined by its definition
ψp(y) ∈ LM . But there are at most λ choices for such a definition, hence the
result.

3⇒ 4: Immediate.
4 ⇒ 1: We prove the contrapositive, so assume ϕ(x; y) is unstable. We

denote λ = |T |. Let µ ≤ λ be the least cardinal such that 2µ > λ (so in
particular µ ≤ λ).

Recall that µ2 denotes the set of functions µ → 2 = {0, 1}. For f, g ∈µ 2,
we define f < g if and only if there exists an ordinal α < µ such that f |α = g|α
but f(α) = 0, g(α) = 1, it is the lexicographical orderings on µ2.

Let X ⊆ µ2 be the set of eventually constant functions in µ2. By choice of
µ we see that |X| ≤ λ · µ = λ. Moreover one easily checks that X is dense in
2µ.

Recall that we assumed that ϕ is unstable, hence we get sequences (ai)i∈N
and (bj)j∈N in M̄ such that ϕ(ai, bj) if and only if i ≤ j. Hence by compactness,
we can find {af , bf , f ∈ X} in M such that ϕ(af , ag) if and only if f ≤ g.
By downward Löwenheim-Skolem, we can find such a sequence in M ≺ M of
cardinality λ. For each f, g in µ2 such that f 6= g, we have that tp(af/M) 6=
tpϕ(ag/M). Indeed, if for example f < g, we can find some f1 so that f < f1 < g
and therefore |= ϕ(af , bf1

) ∧ ¬ϕ(ag, bf1
). Hence |Sϕ(M)| ≥ 2µ > λ.

For the next results, we will need a new tool : Cantor-Bendixson rank, of
CB rank. Let us define it :

Definition 3.10 (Cantor-Bendixson Rank). Let X be a topological space. The
Cantor Bendixson rank is a function CBX : X → On ∪ {∞} (where On is the
class of ordinals). Let p ∈ X, then :

(i) CBX(p) ≥ 0,

(ii) CBX(p) = α if CBX(p) ≥ α and p is isolated in the (closed) subspace
{q ∈ X : CBX(q) ≥ α}.

(iii) CBX(p) =∞ if CBX(p) > α for every ordinal α.

For example, CBX(p) = 0 if p is isolated, equivalently if {p} is open.
CBX(p) ≥ 1 otherwise.

Note that (ii) claims that the subspace {q ∈ X : CBX(q) ≥ α} is closed for
all α. This is a consequence of the fact that the set of isolated points of any
topological space form an open set, as a union of open sets.
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Fact 3.11. Suppose X is compact and CBX(p) < ∞ for every p in X. Then
there exists a maximal element α of {CBX(p) : p ∈ X} and {p ∈ X : CBX(p) =
α} is finite and non empty.

Proof. Assume there is no maximal element. Then, for each ordinal α, there
exists some pα in X such that CBX(pα) > α. The set {pα, α ∈ On} must have
an accumulation point p in the compact set X, which cannot be isolated in any
of the {q ∈ X : CBX(q) ≥ α}. Hence CBX(p) =∞, a contradiction.

Let α = sup{CBX(p) : p ∈ X}. We want to show that Xα = {p ∈ X :
CBX(p) = α} is non-empty. By way of contradiction, assume it is empty. If
α = 0, this is an obvious contradiction. Else, there are two possibilities.

If α is a successor ordinal, then sup{β < α} < α, which, if Xα is empty,
contradicts that α = sup{CBX(p) : p ∈ X}.

Else, the ordinal α is limit. For each β less than α, we consider X<β = {p ∈
X : CBX(p) < β}. Now, the collection C = {Xβ : β < α} is an open cover of
X which clearly has no finite subcover, as α is a limit ordinal. This contradicts
the assumption that X is compact and therefore Xα is non-empty.

The subset {p ∈ X : CBX(p) ≥ α} is closed, so compact. Since α is
maximal, all points in {p ∈ X : CBX(p) ≥ α} are isolated. Therefore, {p ∈ X :
CBX(p) ≥ α} is finite.

Lemma 3.12. Suppose ϕ(x, y) is stable for T . Let M |= T . Let X = Sϕ(M).
Then, CBX(p) <∞ for each p in X.

Proof. Define Xα = {p ∈ X : CBX(p) ≥ α}. Assume that there exists some q
such that CBX(q) = ∞, then for some α, Xα 6= ∅ and has no isolated points.
Indeed, if not, then each Xα has at least one isolation point, and we could
conclude that CBX(p) ≤ |X| for any p ∈ X.

We now fix such an α. Since there are no isolated points in Xα, we can find
p0, p1 ∈ Xα where p0 6= p1. Since Sϕ(M) is Hausdorff, we can find ψ0(x) such
that ψ0(x) ∈ p0 and ψ1(x) = ¬ψ0(x) ∈ p1. Notice that {p : p ∈ Xα} ∩ {p ∈
Sϕ(M) : ψ0(x) ∈ p} and {p : p ∈ Xα} ∩ {p ∈ Sϕ(M) : ψ1(x) ∈ p} have no
isolated points. We will apply this construction recursively to construct a tree
of formulas.

Let ψη(x), for some µ ∈ 2≤ω finite sequence, be a formula such that Aη =
{p : p ∈ Xα} ∩ {p ∈ Sϕ(M) : ψη(x) ∈ p} is non-empty and contains no isolated
points. Then, just as we did in the previous paragraph, we can find pη0, pη1 in
Aη and a formula ψη0(x) such that ψη0(x) ∈ pη0 and ψη1(x) = ¬ψη0(x) ∈ pη1.

Hence, we can inductively build a tree {ψµ, µ ∈ 2≤ω} of formula. By con-
struction, each path in T is consistent.

We will now show that we can find 2ℵ0 many types over a countable set.
If γ is a path in 2≤ω, we let Aγ = {ψη(x) : η ∈ γ}. Let γ, ρ be two distinct
paths in T . Let n be the smallest natural number such that η0 ∈ γ, η1 ∈ ρ, and
length of η is n. ψ0(x) ∈ Aγ and ψ1(x) = ¬ψ0(x) ∈ Aρ. Therefore, Aγ ∪ Aρ
is inconsistent. Since each Aγ may be extended to a complete ϕ-type, no two
paths may extend to the same ϕ-types, and since there are 2ℵ0 many paths in
2≤ω, we have that that |Sϕ(M)| ≥ 2ℵ0 .
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We now have to do this construction over a countable set of parameters.
Let C be the collection of parameters contained in each ψη for η ∈ 2≤ω, this is
a countable set. Consider Lϕ, which is the language L restricted to ϕ, it is a
countable language. By the downward Löwenheim-Skolem theorem applied to
Lϕ and the Lϕ structure M , we note that we can find some countable N ≺ M
containing C. By the argument above, we have that |Sϕ(N)| ≥ 2ℵ0 , but |N | =
ℵ0. This contradicts the assumption that ϕ is stable.

Remark 3.13. A similar proof shows that if ϕ(x; y) is stable in M , then every p
in Sϕ(M) has CB-rank, using 3.7.

We have seen that if ϕ(x; y) is stable, p(x) ∈ Sϕ(M), and M |= T , then p(x)
is definable. We will now work over sets instead of models, which will matters
more complex.

Definition 3.14. If A ⊂ M we say that p(x) ∈ Sϕ(M) is definable over A if
there is ψ(y), a definition for p(x) (i.e. for every b we have that |= ψ(b) if and
only if ϕ(x, b) ∈ p(x)), which is equivalent to a LA-formula (not necessarily a
ϕ∗-formula of A).

Lemma 3.15. Assume ϕ(x, y) is stable. Let M |= T , A ⊆ M and let p(x) ∈
Sx(A). Then there is q(x) ∈ Sϕ(M) such that p(x)∪ q(x) is consistent and q(x)
is definable ’almost over A’, i.e. over acleq(A).

Proof. We may assume that M is ||T |+ |A||+-saturated and strongly homoge-
neous, since every model of T is contained in such a model.

Consider the set X = {q(x) ∈ Sϕ(M) : p(x) ∪ q(x) is consistent}. Let
f1 : Sx(A) → Sϕ(A) and f2 : Sx(M) → Sϕ(M) be the obvious restriction
maps, then X = f−1

2 (f2(p)). Since these maps are continuous, X is closed and
therefore compact. Moreover, all p in Sϕ(M) have CB-rank, so each element q
in X has CBX rank.

We can therefore apply Fact 3.11 to X. Let X0 ⊆ X be the finite set of
elements of max CBX -rank α. Let q(x) ∈ X0 and let ψ(y) be its definition
(i.e. M |= ψ(b) if and only if ϕ(x, b) ∈ q), which is a priori over M . Note that
Aut(M/A) acts continuously on X, and X0 is invariant under this action. Hence
q(x) has only finitely many images under Aut(M/A). So ψ(y) has finitely many
images under Aut(M/A), and Lemmas 2.13 and 2.35 yield that ψ(y) is almost
over A.

Remark 3.16. When A = M0 ≺M , the previous lemma is immediate from 3.7.

Corollary 3.17. If A = acleq(A) and A ⊂ M , every ϕ-type over A has an
A-definable extension to M .

We will now prove various properties of the formulas defining types, which
will translate later into properties of forking, the fundamental tool in studying
stable theories.
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Theorem 3.18 (Symmetry). Let ϕ(x, y) be stable, p(x) ∈ Sϕ(M) and q(y) ∈
Sϕ∗(M). Let ψ(y) be the ϕ∗-formula defining p(x) and χ(x) the ϕ-formula
defining q(y). Then ψ(y) ∈ q(y)⇔ χ(x) ∈ p(x).

Proof. Note first that p, q are finitely satisfiable in M , so ψ, χ exist and are
ϕ∗, ϕ formulas, respectively. It is enough to show that ψ ∈ q → χ ∈ p, the other
implication being prove exactly the same way.

Let M ≺M∗ where M∗ is |M |+-saturated. Extend p to p̄ ∈ Sx(M) and then
to p∗ ∈ Sx(M∗), a finitely satisfiable type in M , which we can do by Lemma
2.8. The ϕ-type p∗ � ϕ is then definable over M by some ψ′(y). This formula
also defines p = (p∗ � ϕ) �M , so ψ and ψ′ are logically equivalent. Therefore ψ
defines p∗ � ϕ as well.

Let a∗ realize p∗. Since p = tpϕ(a∗/M), it is enough to show that M∗ |=
χ(a∗). For the sake of a contradiction, suppose not, so M∗ |= ¬χ(a∗).

Let b ∈ M∗ realize q. Since ψ ∈ q, we know that M∗ |= ψ(b), and because
ψ defines p∗, we have M∗ |= ϕ(a∗, b). Then M∗ |= ϕ(a∗, b) ∧ ¬χ(a∗), so by
finite satisfiablility of p∗ = tpϕ(a∗/M∗), there is an a ∈ M such that M∗ |=
ϕ(a, b)∧χ(a). Therefore ϕ(a, y) ∈ q(y) and also M∗ |= ¬χ(a), which contradicts
the fact that χ defined q ∈ Sϕ∗(M).

Remark 3.19. The above theorem can be also be proved just by using the sta-
bility of ϕ(x, y) in M .

Definition 3.20. 1. Let A ⊆ M̄ (or M̄eq), and let ϕ(x, y) be a formula.
By a ϕ-formula over A, we mean a ϕ-formula which is equivalent to a
ϕ-formula with parameters in A.

2. Any ϕ-type p over M restricts to a ϕ−type over A, denoted p � A, consist-
ing just of the formulas in p with parameters from A. If p = tpϕ(a/M),
we write tpϕ(a/A) for p � A, and let Sϕ(A) be the set of all such types.

3. A ϕ-type p over M is said to definable over A if it is definable by a ϕ∗-
formula over A.

Lemma 3.21 (Uniqueness). Let ϕ(x, y) be stable in M and let A ⊆M . If p1, p2

are ϕ-types, definable over A and p1 � acleq(A) = p2 � acleq(A), then p1 = p2.

Proof. It is enough to show that for all b ∈ M , ϕ(x, b) ∈ p1 ⇔ ϕ(x, b) ∈ p2.
Fix an arbitrary b ∈ M , let q(y) = tpϕ∗(b/A) and it extend to q′ ∈ Sx(A). By
Lemma 3.15, there is some q′′ ∈ Sϕ∗(M) consistent with q and almost definable
over A. By maximality of types, q ⊆ q′′ and q = q′′ � ϕ � A.

Let χ(x) be the defining formula for q′′, which equivalent to some χ′ definable
over acleq(A). Let ψi be the ϕ∗-formula defining pi(x) over A. Then

ϕ(x, b) ∈ p1 ⇔M |= ψ1(b)

⇔ψi(y) ∈ q (by definition of q)

⇔ψ1(y) ∈ q′′
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⇔χ(x) ∈ p1 (by 3.18)

⇔χ(x) ∈ p2 (since p1 � acle q(A) = p2 � acle q(A))

⇔ψ2 ∈ q′′

⇔ψ2 ∈ q
⇔M |= ψ2(b)

⇔ϕ(x, b) ∈ p2.

Remark. Together with existence, uniqueness shows that if A is an algebraically
closed subset of M and p ∈ Sϕ(A) then p has a unique extension p′(x) ∈ Sϕ(M)
which is definable over A.

Theorem 3.22 (Conjugacy and the Finite Equivalence Relation Theorem).
Suppose that A ⊆ M , p ∈ Sϕ(A), and X is the set of all ϕ−types extending q
which are definable almost over A. Then

1. X is finite

2. Aut(M/A), the group of automorphisms of M which fix A point-wise, acts
transitively on X if M is sufficiently homogeneous and saturated.

3. There exists an A-definable equivalence relation E such that for any q1, q2 ∈
X, we have q1 = q2 if and only if q1(x) ∪ q2(x) |= E(x1, x2).

Proof. Note first that by uniqueness, each q ∈ Sϕ(M) which is almost definable
over A is the unique extension of q � acleq(A), so X is in bijective correspondence
with Y := {q � acleq(A) : q ∈ X}. Moreover, Y is still acted upon by Aut(M/A).

Proof of (ii). It suffices to show that Aut(M/A) acts transitively on Y .
Recall that an action of a group G on a set Y is transitive if for all y1, y2 ∈ Y ,
some element of Aut(M/A) sends y1 to y2. So let q1, q2 ∈ Y .

Take p′ ∈ Sx(M) extending p. We claim that each p′ ∪ qi is consistent. Let
this be granted for now. If so, then let m1 ∈M realize p′∪q1 and m2 ∈M realize
p′ ∪ q2, by saturation. In particular, this means that q1 = tpϕ(m1/ acleq(A))
and q2 = tpϕ(m2/ acleq(A)).

Since tp(m1/A) = tp(m2/A), by homogeneity there is some automorphism
σ ∈ Aut(M/A) with σ(m1) = m2. But acleq(A) is invariant (as a set) under the
action of σ since it fixes A pointwise. Therefore σ sends every statement true
of m1 with parameters from acleq(A) to a statement true of m2 with (possibly
different) parameters from acleq(A), so σ(q1) ⊆ q2 and by maximality, σ(q1) =
q2. Therefore Aut(M/A) acts transitively on Y .

We will now prove the consistency claim.

Claim. For each i, p′ ∪ qi is consistent.

Proof of claim. Otherwise, by compactness, there is a formula σ(x) ∈ qi(x)
such that p′ ∪ σ is inconsistent. Hence each A-conjugate σ′(x) of σ over A is
inconsistent with p′(x).
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But σ is a formula over acleq(A) and as such, as only finitely many Aut(M/A)
conjugates. Let ψ(x) be the disjunction of these, it is inconsistent with p′ as
well.

But ψ(M) is Aut(M/A) invariant by construction, hence ψ is over A. More-
over, it is implied by σ(x), and thus it is in p(x). But it is inconsistent with p′,
which extends p, a contradiction.

Proof of (i). It suffices to show that Y is finite. Let q ∈ Y , it is acleq(A)-
definable, and so has only finitely many images under Aut(M/A). Since the
action of Aut(M/A) is transitive, Y is the orbit of q, which is finite.

Proof of (iii). Each two types qi, qj ∈ Y are separated by some formula θi,j(x),
i.e. θi,j(x) ∈ qi and ¬θi,j(x) ∈ qj . Consider the set of formulas {θi,j |qi, qj ∈
Y, i 6= j}, it is finite. We can close this set under Aut(M/A), to obtain a new
set of formula, which we denote Θ, finite as well.

Let E(x1, x2) be the equivalence relation defined by E(x1, x2) if and only if∧
θ∈Θ

θ(x1) ↔ θ(x2). It is easily checked that this equivalence relation has the

required property.

We will now introduce notions of forking and dividing, which are essential
to develop stability theory.

Definition 3.23. Let T be a complete theory, let A ⊂ M̄ , and let ϕ(x, b) be a
formula, where b ∈ M̄ .

(i) We say that ϕ(x, b) divides over A if there is an A-indiscernible sequence
(bi)i∈N such that b0 = b and the set {ϕ(x, bi) : i ∈ ω} is inconsistent. By
compactness and indiscernibility, we can see that it is the same as saying
the above set is k-inconsistent for some k.

(ii) We say that ϕ(x, b) forks over A if there are ψ1(x, b1), ..., ψk(x, bk) each
dividing over A and |= ϕ(x, b)→

∨
i ψi(x, bi).

Remark. If b ∈ A, then ϕ(x, b) does not divide over A, as any A-indiscernible
sequence containing b will just repeat b.

Remark 3.24. We can extend the above definition to partial types over B. Let
π(x) be a partial type over B, which we assume, without loos of generality, to be
closed under conjunction. Then π(x) divides/forks over A if there is ϕ(x) ∈ π(x)
that divides/forks over A.

For the benefit of the reader seeing these definitions for the first time, let us
try to explain the intuition behind the notion of dividing.

Note that since (bi)i∈N is A-indiscernible, each bi is the image, under an
A-automorphism, of b. Hence, we can obtain ”copies” ϕ(M̄, bi) of the definable
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set ϕ(M̄, b). Dividing states that there is k ∈ N such that the intersection of
any k different such copies is empty.

Now think about the type definable set given by X = {∃yϕ(x, y)}∪ tp(b/A).
It contains all the copies of ϕ(M̄, b), which are k-inconsistent. What this means,
geometrically, is that the ”dimension” of X(M̄) is strictly bigger than that of
ϕ(M̄, b).

Example. Let k be a small subfield of C. Let V be a variety, which we can
identify it with a definable set. Then V does not divide over k if and only if V
does not fork over k if and only if V is defined over acl(k).

Example. Let T be the theory of an equivalence relations with infinitely many
infinite classes. Then for every b, he formula E(x, b) divides over ∅. Moreover,
in this theory, let p ∈ SE(M) and A ⊂ M . Then p is defined almost over A if
and only if p does not divide over A if and only if p does not fork over A.

The following lemma will be useful in proofs :

Lemma 3.25. Let (bi)i∈N be an A-indiscernible sequence. Then for all i, we
have tp(bi/ acleq(A)) = tp(b0/ acleq(A)).

Proof. Suppose not. Then there exists an A-definable finite equivalence relation
E(y, z) and some i > 0 such that ¬E(b0, bi). By indiscernibility, this implies
that ¬E(bj , bk) for all j, k ∈ N, which contradicts E being finite.

Corollary 3.26. If ϕ(x, b) is over acleq(A), then it does not divide over A.

We will also need canonical extensions of definable types :

Lemma 3.27. Let p ∈ Sϕ(M) be a definable type, and M ≺M ′ an elementary
extension of M . There is an unique extension p′ ∈ Sϕ(M ′) with same definition
as p.

Proof. Given existence, unicity is immediate. Let ψ(y) de the defining formula
of p, and consider the family of formulas p′ = {ϕ(x, b)|b ∈ M ′,M ′ |= ψ(b)}.
We need to show this is maximal and consistent, which will yield the required
extension of p.

Maximality is immediate, so let us prove consistency. Suppose that it
isn’t, then there are ϕ(x, b1), · · · , ϕ(x, bn) formulas in p′, which are inconsis-

tent. Hence, we have M ′ |= ∃y1, · · · yn((
n∧
i=1

ψ(yi)) ∧ (¬(∃x
n∧
i=1

ϕ(x, yi)))), and

since it is an elementary extension, the model M will satisfy this formula as
well, which would imply inconsistency of p, a contradiction.

Lemma 3.28. Let ϕ(x, y) be stable, and b ∈ M̄ . The following are equivalent:

(1) There is some M containing A ∪ {b} and p(x) ∈ Sϕ(M) such that p(x) is
defined almost over A and ϕ(x, b) ∈ p.
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(2) ϕ(x, b) does not divide over A.

Proof. (i) ⇒ (ii) We may assume that M is sufficiently saturated((|T |+ |A|)+-
saturated will suffice). Let (bi)i∈N be an A-indiscernible sequence in M̄ , with
b0 = b. We need to show that {ϕ(x, bi) : i ∈ ω} is consistent.

Clearly, the above only depends on the infinite type tp((bi)i∈N/A). By
saturation, we may assume that the bi’s are in M . By assumption, there is
p(x) ∈ Sϕ(M) such that p(x) is defined almost over A and ϕ(x, b) ∈ p. Let ψ(y)
be the ϕ-definition of p, note that ψ is over acleq(A). Furthermore, we know
that M |= ψ(b), which implies M |= ψ(bi) for all i by the Lemma 3.25. Hence
ϕ(x, bi) ∈ p for all i, and in particular the ϕ(x, bi) form a consistent collection
of formulas.

(ii)⇒(i) We will show the contrapositive. We may assume that A is al-
gebraically closed. Hence we are given ϕ(x, b) such that any p(x) ∈ Sϕ(M)
definable over A contains ¬ϕ(x, b). We want to show ϕ(x, b) divides over A.

Let q(y) ∈ Sy(M) be an extension of tp(b/A) with q|ϕ∗ definable over A (it
exists by Corollary 3.17). Let M∗ be a sufficiently saturated model extending
M and let q∗(y) be a coheir extension of q to M∗. By Lemma 3.7, we know that
q∗|ϕ∗ is definable over M . Note further that it is actually definable over A since
q∗|ϕ∗|M = q|ϕ∗ and q|ϕ∗ is definable over A. Let χ(x) be the ϕ∗-definition of
q∗ and q over A.

Consider a sequence (bi)i∈N such that bi |= q∗|M ∪{b0, ..., bi−1}. We see that
(bi)i∈N is M -indiscernible, hence A-indiscernible. To complete the proof, it will
be sufficient to show the following :

Claim. The set of formulas {ϕ(x, bi) : i ∈ N} is inconsistent.

Proof of claim. If the above is consistent, let a |= ϕ(x, bi) for all i. Let p =
tpϕ(a/A). Let p∗(x) ∈ Sϕ(M∗) be an extension of p(x) that is definable over
A. Let B = acleq(A ∪ (bi)i∈N).

Since p ∪ {ϕ(x, bi) : i ∈ N} is consistent, there is an extension to r(x) ∈
Sϕ(B). By existence, we can further get r ⊂ r∗(x) ∈ Sϕ(M∗) that is definable
over B. Let ψ1(y) be ϕ-definition of p∗, which can be assumed to be a ϕ∗-formula
over A. And let ψ2(y) be the ϕ-definition of r∗(X), which can be assumed to
be over A.

Recall that χ(x), the definition of q and q∗, is a ϕ-formula over A. Note
that both p∗(x) and r∗(x) contain p(x) ∈ Sϕ(A). Hence χ(x) ∈ p∗ if and
only if χ(x) ∈ r∗. By symmetry it follows that ψ1(y) ∈ q∗|ϕ∗ if and only if
ψ2(y) ∈ q∗|ϕ∗.

By assumption, and because p∗ is definable over A, we have that ¬ϕ(x, b) ∈
p∗, hence |= ¬ψ1(b) since ψ1(y) defines p∗. Moreover ψ1(y) is a ϕ∗-formula over
A, so ¬ψ1(y) ∈ q∗|ϕ∗. Therefore ¬ψ2(y) ∈ q∗|ϕ∗.

But ψ2 defines r∗ over B, say ψ2(y) is over e ∈ B, with e ∈ acleq(A, b1, ..., bk)
for some k ∈ N. Since bk+1 |= q∗|M ∪{b0, · · · , bk}, we have |= ¬ψ2(bk+1). Since
ψ2(y) defines r∗, we obtain ¬ϕ(x, bk+1) ∈ r∗, a contradiction to the choice of
r∗.
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This finishes the proof, as (bi)i∈N is the required indiscernible sequence.

With the same method, we can conclude :

Lemma 3.29. Assume ϕ(x, y) is stable, fix A small and p ∈ Sϕ(A). Let M ⊃ A
and b ∈M . The following are equivalent :

1. (i) ϕ(x, b) ∈ p∗(x) for some p∗(x) ∈ Sϕ(M) extending p and definable
almost over A.

2. (ii) p(x) ∪ ϕ(x, b) does not divide over A.

Here, by non-dividing we mean that for every b = b0, b1, ..., bn, ... A-indiscernible
sequence, we have some a ∈ M̄ and a |= p(x) ∪ {ϕ(x, bi) : i ∈ ω}.

We just proved a few interesting facts about dividing, but what about
forking ? Recall that a formula ϕ(x, c̄) is said to fork over A if there are

ϕ1(x, c̄1), · · · , ϕr(x, c̄r) such that |= ∀x(ϕ(x, c̄) →
r∨
i=1

ϕi(x, c̄i)), and each ϕi

divides over A.
Similarly, if Φ(x, c̄) is a partial type, we say it forks over A if Φ(x, c̄) implies

a finite disjunction of formulas, each dividing over A.
Remark that dividing trivially implies forking, but the converse is not true

in general.

Example 3.30. Consider the unit circle S1, together with the ternaryB relation
of betweeness : we say that B(x, y, z) is the counterclockwise arc from x to z
goes through y (we leave the writing of a more rigorous formulation to the
reader).

Then the formula x = x does not divide over the empty set, as it is over the
empty set. However, it does fork over the empty set. Indeed, it implies, for any
a, b ∈ S1, the disjunction B(b, x, a) ∨ B(a, x, b), and each of these two formulas
is easily verified to fork over the empty set.

However, the equivalence between forking and dividing will be true for stable
formulas, using a local definition of forking. Let us start with :

Remark 3.31. Suppose the partial type Φ(x, c̄) does not fork over A. Let M be
a saturated model containing c̄. Then there is a complete type p(x) ∈ S(M),
containing Φ(x, c̄) and not dividing over A.

Proof. Consider the set of formulas Σ = Φ(x, c̄)∪{¬ϕ(x), ϕ over M,ϕ divides over A}.
It is consistent. Indeed, if it wasn’t, by compactness we would have Φ(x, c̄) |=
ϕ1(x) ∨ · · · ∨ ϕn(x), for some ϕi over M , dividing over A.

Therefore, we can extend Σ to a complete type, which is the type we were
looking for.

Now define what we mean by local forking :
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Definition 3.32. Fix a formula ϕ(x, y), and let ϕ(x, b) be an instance of it.
We say ϕ(x, b) ϕ-forks over A if it implies a finite disjuction of ϕ-formulas, each
dividing over A.

We can now state and prove the announced result :

Theorem 3.33. Suppose ϕ(x, y) is stable. Then for any b, the formula ϕ(x, b)
divides over A if and only if it ϕ-forks over A.

Proof. The left to right direction is immediate. For the other direction, suppose
that ϕ(x, b) does not divide over A. Let M∗ be a (|T |+ |A|)+-saturated model
containing A ∪ {b}. By Lemma 3.28, there is p(x) ∈ Sϕ(M∗) definable almost
over A, containing ϕ(x, b). In particular it is invariant under Aut(M∗/ acleq(A)),
because any σ ∈ Aut(M∗/ acleq(A)) will fix the definition of p.

By way of contradiction, suppose that ϕ(x, b) |= ψ1(x, b1) ∨ . . . ∨ ψr(x, br),
with each ψi a ϕ-formula dividing over A. Note that if tp(bi/Ab) = tp(b′i/Ab)
for some b′i, then ψ(x, b′i) divides over A as well. Hence, we can assume that
bi ∈M∗ for all i, by saturation of M∗.

As ϕ(x, b) ∈ p, we have ψi(x, bi) ∈ p for some i. But again by Lemma 3.28,
this implies that ψi(x, bi) does not divide over A, a contradiction.

We now return to ranks, specifically the Cantor-Bendixson rank. Recall that
this rank was defined in 3.10, and some of its elementary properties were proven.
For stable formulas, the Cantor-Bendixson rank is finite :

Lemma 3.34. Suppose ϕ(x, y) is stable, and let X = Sϕ(M). Then CB(X) is
finite.

Proof. Suppose for contradiction that there is p ∈ Sϕ(M) with CB(p) ≥ ω. As
in lemma 3.12, we can build, for any n, a tree of formulas {ϕµ(x), µ ∈n≥ 2}
such that ϕ∅(x) is the true formula, for 0 < l(µ) < n, the formulas ϕµ∧0 and
ϕµ∧1 are of the form ϕ(x, b),¬ϕ(x, b) or ¬ϕ(x, b), ϕ(x, b) and moreover, for each
µ ∈n 2, the set of formulas {ϕµ|i(x), i ≤ n} is consistent.

By compactness and saturation, we find a tree {ϕµ, µ ∈ω≥ 2} with consistent
branches. Since we only needed the formula ϕ, and a countable set of param-
eters, to define all the formulas in this tree, this contradicts stability of ϕ (see
the proof of 3.12 for more details on this type of argument).

The Cantor-Bendixson rank can be extended to define a rank for partial
types :

Definition 3.35. Fix ϕ(x, y) a stable formula. Let Φ be a partial ϕ-type
over some small set of parameters. We define Rϕ(Φ) = max{CBX(p), p ∈
Sϕ(M),Φ ⊂ p}, where X = Sϕ(M).

Note that there are only finitely many p realizing this maximum. This rank
can be used to witness dividing, more precisely :
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Proposition 3.36. Let ϕ(x, y) be stable, a type p ∈ Sϕ(A), with A ⊂ M , a
(|T | + |A|)+-saturated model. Let p′(x) be an extension of p(x) over M . Then
p′(x) is definable almost over A if and only if Rϕ(p) = Rϕ(p′).

To prove this, we will need one more fact about local stability theory.

Lemma 3.37. Let ϕ(x, y) be stable, and ϕ(x, b) be some instance of it. Then
ϕ(x, b) does not divide over A if and only if some finite positive boolean combi-
nation of Aut(M/A) conjugates of ϕ(x, b) is consistent and over A.

Proof. Suppose ϕ(x, b) does not divide over A. Let M∗ ⊃ A be sufficiently
saturated, with b ∈ M∗. By lemma 3.28, there is p∗(x) ∈ Sϕ(M∗), definable
almost over A and containing ϕ(x, b).

Let ψ(y) be the definition of p∗, it is a ϕ-formula almost over A. Let q∗ ∈
Sϕ∗(M

∗) be definable almost over A, consistent with tp(b/ acleq(A)). Let τ(x)
be the formula, over acleq(A), defining q∗.

By remark 3.8, the formula τ(x) is a positive boolean combination of acleq(A)-
conjugates of ϕ(x, b). Notice that |= ψ(b), so ψ(y) ∈ q∗, and by symmetry, we
get τ(x) ∈ p∗. So τ is consistent.

Let e, χ be such that τ(x)↔ χ(x, e), with e ∈ acleq(A). Let e = e1, · · · en be
the realizations of tp(e/A). Then the formula χ(x, e1)∨ · · · ∨χ(x, en) is over A,
consistent, and is equivalent to a positive boolean combination of ϕ(x, b), as τ
is.

Conversely, let τ(x) be some consistent, over A, finite positive boolean com-
bination of Aut(M/A) conjugates of ϕ(x, b). Let p(x) ∈ Sϕ(A) containing τ(x).
Let M∗ be sufficiently saturated so that τ(x) is a positive boolean combination
of Aut(M∗/A) conjugates of ϕ(x, b). Let p′(x) ∈ Sϕ(M∗) extend p(x), definable
over A.

So in particular, the formula τ(x) belongs to p′(x). Since p′ is a complete
type, this implies that for some b′ with tp(b′/A) = tp(b/A), the formula ϕ(x, b′)
belong to p′. Hence ϕ(x, b′) does not divide over A, and neither does ϕ(x, b).

We now are ready to prove proposition 3.36 :

Proof of proposition 3.36. First, suppose that p′ is definable almost over A. We
can pick ψ(x) ∈ p′(x) such that Rϕ(ψ) = Rϕ(p′).

Indeed, if not, for all formulas ψ(x) contained in p′(x), we would have
Rϕ(ψ) > Rϕ(p′) = CB(p′). But because M is (|A| + |T |)+-saturated, we have
Rϕ(ψ) = max{CB(q), q ∈ Sϕ(M), ψ ⊂ q}. Hence, for all formula ψ(x) contained
in p′(x), there is a type q ∈ Sϕ(M), containing ψ(x), with CB(q) > CB(p). Now,
if we consider the open sets {[ψ(x)], ψ(x) ∈ p′(x)}, this implies, because ordinals
are well ordered, that

⋂
[ψ(x)] contains a type q ∈ Sϕ(M), with CB(q) > CB(p).

But this intersection is precisely {p′}, a contradiction.
By 3.37 and 3.28, some positive boolean combination of A-conjugates of

ψ(x) is over A. Let ψ1(x) ∨ · · · ∨ ψr(x) be this boolean combination. Each of
the ψi(x) is consistent with p(x), as ψ(x) is. Hence, their disjunction also is
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consistent with p(x). But since it is over A, it has to be equivalent to a formula
in p(x), say τ(x). In particular :

Rϕ(p) ≤ Rϕ(τ)

= Rϕ(ψ1(x) ∨ · · · ∨ ψr(x))

= max{Rϕ(ψi)}
= Rϕ(ψ)

= Rϕ(p′)

so Rϕ(p) ≤ Rϕ(p′). But we always have, if p′ is an extension of p, that
Rϕ(p) ≥ Rϕ(p′) (to see this, use the restriction map π : Sϕ(M) → Sϕ(A) and
an induction on CB rank). Hence Rϕ(p) = rϕ(p′).

Conversely, suppose that p′(x) is not definable almost over A. Let ψ(y) be
the definition of p′(x), which is therefore not over acleq(A). In particular, by
saturation of M , it has infinitely many images under Aut(M/A), giving rise to
infinitely many distinct conjugate p′i ∈ Sϕ(M) of p′, all containing p.

This implies α = Rϕ(p′) < Rϕ(p). Indeed, consider the compact set [p(x)] ⊂
Sϕ(M). This yields an infinite number of p′i, all of CB rank α and contained in
[p(x)] (their CB rank is equal to their ϕ rank by saturation of M). Hence, the
set {p′i, i ∈ I} must have an accumulation point q in [p(x)]. And because they
all have rank α, we get CB(q) > α. But we also have CB(q) < CB(p), as q
extends p, hence Rϕ(p) = CB(p) > α = Rϕ(p′).

This concludes our exploration of local stability. In the next section, we will
apply the tools we developed to stable theories.

3.2 Stable Theories

A theory T is said to be stable if every formula ϕ(x, y) is stable for T . Unless
otherwise stated, in this section we will assume that the theory T is stable, and
that M |= T is some large, sufficiently saturated and homogeneous model.

Let ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)} be a finite set of stable formulas. By a ∆-
formula, we mean a boolean combination of instances of ϕi(x, yi), 1 ≤ i ≤ n. For
some set A, a complete ∆-type over A, p(x) ∈ S∆(A) is a maximal, consistent
set of ∆-formulas over A (i.e. ∆-formulas equivalent modulo T to a formula
over A). As usual, if A = M |= T , then p(x) ∈ S∆(M) is determined by the
instances of ϕi(x, yi) and ¬ϕi(x, yi) (with parameters in M) that appear in p(x).
Everything from Section 2.1 holds for ∆-formulas and ∆-types. In particular,
we have

Lemma 3.38. Let ∆(x) = {ϕ1(x, y1), . . . , ϕn(x, yn)} be a finite set of stable
formulas.

(i) Any p(x) ∈ S∆(M) is definable (i.e. every ϕi(x, yi) has a defining for-
mula).

40



(ii) Suppose q(x) ∈ Sx(A) is a type, A ⊆M |= T . Then there is p(x) ∈ S∆(M)
such that p(x) is definable almost over A and p(x) ∪ q(x) is consistent.

From this, we can conclude the following:

Proposition 3.39. Let T be a stable theory, and let A = acleq(A) ⊆ M |= T
and p(x) ∈ Sx(A). Then, for any M ⊇ A (in particular, for M sufficiently
saturated), there is p′(x) ∈ Sx(M) such that p(x) ⊆ p′(x) and p′(x) is definable
over A. Moreover, p′(x) is the unique such type.

Proof. Fix M ⊇ A. By Lemma 3.15, for every formula ϕ(x, y), there is a
unique ϕ-type p′ϕ(x) ∈ Sϕ(M) that is consistent with p(x) and definable over
A. Consider the set of formulas

p′(x) =
⋃

ϕ(x,y)

p′ϕ(x).

We claim that p′(x) is consistent. By compactness, it is enough to show that
for any finite set of formulas ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)}, the set

p′∆(x) =

n⋃
i=1

p′ϕi(x)

is consistent. By Lemma 3.38(ii) there is a ∆-type q(x) ∈ S∆(M) such that
p(x)∪ q(x) is consistent, and such that q(x) is definable over A. By the unique-
ness of p′ϕi , we get q �ϕi= p′ϕi for 1 ≤ i ≤ n, and hence p′∆(x) ⊂ q(x) and so
p′∆(x) is consistent.

Is is maximal because each p′ϕ is a complete ϕ-type, and uniqueness comes
from the uniqueness of the p′ϕ.

Proposition 3.40. Let p(x) ∈ Sx(A), q(x) ∈ Sx(B) and p(x) ⊆ q(x). The
following are equivalent:

(i) there is M ⊇ B and q′(x) ∈ Sx(M) such that q′(x) ⊇ q(x) and q′(x) is
definable almost over A,

(ii) q(x) does not fork over A.

Proof. Assume (i). As q′(x) is definable almost over A, we can take an extension
to some (|T |+ |B|)+-saturated model. Hence, we may assume that M is (|T |+
|B|)+-saturated.

Let ϕ(x, b) ∈ q(x) ⊆ q′(x) and suppose, for a contradiction, that ϕ(x, b)
forks over A. Then there exists ψ1(x, b1), . . . , ψn(x, bn) over M , each dividing
over A, with ϕ(x, b) `

∨n
i=1 ψi(x, bi). As M is sufficiently saturated, we may

assume that the bi’s are in M . Since q′(x) is complete and ϕ(x, b) ∈ q′(x), it
follows that

∨n
i=1 ψi(x, bi) ∈ q′(x) and so there is i such that ψi(x, bi) ∈ q′(x).

Without loss of generality we may assume i = 1. Let b11, b
2
1, b

3
1, . . . ∈ M be

indiscernible over A with b11 = b1. Since q′(x) is definable over acleq(A) and
since for all k ≥ 1, tp(bk1/ acleq(A)) = tp(b1/ acleq(A)) by Lemma 3.25, we get
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that ψ1(x, bk1) ∈ q′(x) for all k ≥ 1. Hence {ψ1(x, bk1) : k ≥ 1} is consistent,
contradicting the fact that ψ1(x, b1) divides over A.

For the other direction, assume that q(x) does not fork over A. Let M ⊇ B
be sufficiently saturated. Consider the set

Σ(x) = q(x) ∪ {¬ψ(x) : ψ(x) is over M and divides over A}.

We claim that Σ(x) is consistent. If not, then by compactness there is a formula
ϕ(x) ∈ q(x) and formulas ψ1(x), . . . , ψn(x) over M that divide over A such that
ϕ(x) `

∨n
i=1 ψi(x), which contradicts the fact that ϕ(x) does not fork over A.

Let q′(x) ∈ Sx(M) be a complete type extending Σ(x). Then q′(x) does not
divide over A.

It remains to show that q′(x) is almost definable over A. Fix a formula
ϕ(x, y). Suppose that ϕ(x, b) ∈ q′(x) and let p′(x) = q′(x) �acleq(A). Since q′(x)
does not divide over acleq(A), we get that p′(x)∪{ϕ(x, b)} does not divide over
acleq(A). By Lemma 3.29, ϕ(x, b) ∈ p∗(x) for some p∗(x) ∈ Sϕ(M), definable
over acleq(A) and extending p′ �ϕ (in fact, p∗ is unique and depends only on
p′ �ϕ), and so q′ �ϕ= p∗(x). Since p∗ is definable almost over A, it follows that
q′|ϕ is definable almost over A. Since we can do this for any formula ϕ, we
obtain that q is definable almost over A.

Remark 3.41. Suppose T is stable. Then q(x) ∈ S(B) forks over A if and only
if q(x) divides over A.

Proof. By definition, if q(x) divides over A, then it forks over A. Suppose that
q(x) does not divide over A. Then for every formula ϕ(x, b) ∈ q(x), ϕ(x, b) does
not divide over A. Let M∗ be a (|T |+ |A|+ |B|)+-saturated model containing
A ∪ B. Suppose that there is ϕ(x, b) ∈ q(x) that forks over A. We can mimic
the proof of Theorem 3.33 to derive a contradiction.

Here we introduce Makkai’s anchor notation for independence. We write
ā |̂

B
C to mean that tp(ā/BC) does not fork over B. We extend this notation

to sets by writing A |̂
B
C to mean ā |̂

B
C for every finite tuple ā ∈ A.

Proposition 3.42 (Properties of |̂ /forking). Let T be a stable theory.

1. (Existence) Let p(x) ∈ Sx(A) and A ⊆ B. Then there exists q(x) ∈ Sx(B),
with q(x) ⊇ p(x) and q(x) does not fork over A.

2. (Transitivity) Let A ⊆ B ⊆ C and p(x) ∈ Sx(A), q(x) ∈ Sx(B), r(x) ∈
Sx(C), with p(x) ⊆ q(x) ⊆ r(x). Then r(x) does not fork over A iff r(x)
does not fork over B and q(x) does not fork over A.

3. (Symmetry) Given ā, and A ⊆ B, tp(ā/B) does not fork over A iff
tp(b̄/Aā) does not fork over A for all finite b̄ from B.

4. (Local Character) For all q(x) ∈ SX(B), there is A ⊆ B, |A| ≤ |T | such
that q(x) does not fork over A.

42



5. If q(x) ∈ Sx(B) is algebraic (i.e. has only finitely many realizations) and
q(x) does not fork over A, then q �A is algebraic.

6. (Uniqueness) If A = acleq(A) and p(x) ∈ Sx(A), then for all B ⊇ A there
is unique q(x) ⊇ p(x) that does not fork over A.

7. (Conjugacy and the finite equivalence relation theorem) If p(x) ∈ Sx(A)
and B ⊇ A, then p has at most 2|T | many non-forking extensions q(x) ∈
Sx(B). Moreover, if B = M |= T is |T | + |A|-saturated and strongly
homogeneous, then Aut(M/A) acts transitively on the set of non-forking
extensions q(x) ∈ Sx(M), and if q1 and q2 are distinct such non-forking
extensions of p, there is an A-definable finite equivalence relation E(x1, x2)
such that q1(x1) ∪ q2(x2) ` ¬E(x1, x2).

We can restate these properties using the anchor notation as follows:

1. (Existence) For all A ⊂ B and tuple e, there a tuple e′ satisfying both
tp(e/A) = tp(e′/A) and e |̂

A
B.

2. (Transitivity) For all A,B,C,D, we have A |̂
B
CD if and only if A |̂

B
C

and A |̂
BC

D.

3. (Symmetry) A |̂
C
B if and only if B |̂

C
A.

4. (Local Character) For all finite ā, if B is any set, there is C ⊆ B with
|C| ≤ |T | such that ā |̂

C
B.

5. (Uniqueness) If A = acleq(A), tp(a1/A) = tp(a2/A), a1 |̂ AB, and a2 |̂ AB,
then tp(a1/B) = tp(a2/B).

Proof. The proof follows from the local case.

Remark 3.43. 1. The properties of |̂ , other than uniqueness and conjugacy,
characterize a broader class of theories called simple theories. In fact, the
local character property can be taken as a definition of simple theories.
Examples of simple theories include the theory of the random graph, the
theory of pseudofinite fields, and the model companion to the theory of
algebraically closed fields with an automorphism (ACFA).

2. Uniqueness of forking is characteristic of stable theories (it fails for simple
theories). We may express uniqueness as follows: let A ⊆ M and let FA
be the set of formulas ϕ(x) over M that fork over A. Then FA is a proper
ideal in the boolean algebra of formulas over M (if ϕ(x) ∧ ψ(x) ∈ FA,
then ϕ(x) ∈ FA or ψ(x) ∈ FA). Furthermore, if A = acleq(A) and p(x) ∈
Sx(A), then there is a unique q(x) ∈ Sx(B) extending p(x) and avoiding
FA,

3. In many natural examples of stable theories, |̂ has a natural interpreta-

tion. For example, in ACF, ā |̂
k
b̄ iff tr.deg.(k(ā)/k) = tr.deg.(k(ā, b̄)/k(b̄)).
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There is also a more geometrical interpretation: let k be any field (not nec-
essarily algebraically closed) and let V be an irreducible k-variety. There
is a complete ACF type pV (x̄), which says that x̄ ∈ U for every Zariski
open U ⊆ V defined over k. Then for any field F ⊇ k, then pV (x̄) has a
unique non-forking extension to F if and only if V remains irreducible as a
variety over F . Note then that pV (x̄) has a unique non-forking extension
to kalg if and only if V is absolutely irreducible.

4. Let T be stable, M |= T , and A ⊆ M a small set. We present some
examples of forking calculus, which will highlight the usefulness of the
anchor notation.

(i) Suppose that (aα : α < κ) are tuples in M such that aα |̂ A{aβ :
β < α} for all α < κ. Then aα |̂ A{aβ : α 6= β < κ} and we say that
{aα : α < κ} is an A-independent set.

Proof. By local character, it is enough to prove, for any α < κ, any
n and β1, · · · , βn < κ, that aα |̂ A aβ1

· · · aβn . We will do so by
induction on n. If n = 1, it is an immediate consequence of the
assumption.

Now assume n > 1. If α > βn for all n, this is the assumption. Else,
we can assume, by reordering the βi, that if i < j then βi < βj .
By assumption, we get aβn |̂ A aαaβ1 , · · · aβn−1 . Applying transitiv-
ity, this yields aβn |̂ Aaβ1

···aβn−1

aα, and by the induction hypothe-

sis (and transitivity) we get aβn · · · aβ1
|̂
A
aα, what we wanted to

prove.

(ii) (Weight) Suppose that {aα : α < |T |+} is an A-independent set of
finite tuples. Then for any b, there is α such that b |̂

A
aα.

Proof. For a contradiction, suppose that there is b such that b 6 |̂
A
aα

for all α < |T |+. We claim that for all α < |T |+, b 6 |̂
A∪{aβ :β<α} aα.

To see this, fix some α < |T |+. By assumption, aα |̂ A{aβ : β < α}.
As aα 6 |̂ A b, it follows from transitivity that aα 6 |̂ A∪{aβ :β<α} b. By

symmetry, we have that b 6 |̂
A∪{aβ :β<α} aα, as required.

Now, by local character, there is B0 ⊆ {aα : α < |T |+} such that
b |̂

AB0
{aα : α < |T |+} and |B0| ≤ |T |. As |T |+ is regular, there

is γ < |T |+ such that B0 ⊆ {aα : α < γ}. But then b |̂
AB0

aγ ,

contradicting the fact that for all α < |T |+, b 6 |̂
A∪{aβ :β<α} aα.

Denote p = tp(b/A). By what we just proved, the size of a cardinal
α such that there is and A-independent set of size α, is bounded by
|T |+. Hence, we can take the supremum of such cardinals, it is called
the preweight of the type p.

From this, we define the weight of p as the supremum of the weights
of non forking extensions of p, it is also a well-defined cardinal.
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3.3 A Survey of Classification Theory

Classification theory, in the sense of Shelah, is concerned with finding meaningful
dividing lines among complete first-order theories. In the past, decidability/un-
decidability was considered a fundamental dividing line, but it is no longer the
case, as dividing lines of a different nature became prominent. However, de-
cidability is still a meaningful proprerty, and can sometimes be deduced from
structural properties such as quantifier elimination.

In modern model theory, there are many different crosscutting notions of
complexity, some forming dividing lines.

One such measure of complexity is called the spectrum of a theory T , denoted
by I(κ, T ). Assume that T is a complete, countable theory with no finite models.
Then I(κ, T ) is defined to be the cardinality of the set of isomorphism classes
of models of cardinality κ. In 1965, Morley proved his well-known categoricity
theorem, that is, if I(κ, T ) = 1 for some uncountable κ, then I(κ, T ) = 1 for all
uncountable κ.

In the case of κ = ℵ0, much less is known. It is a famous conjecture by
Vaught that either I(ℵ0, T ) ≤ ℵ0 or I(ℵ0, T ) = 2ℵ0 (without assuming the
continuum hypothesis, of course).

In the early eighties, Shelah proved his “main gap” conjecture. To state it,
we need to recall some set theoretic notation:

Definition 3.44. We define, for any ordinal α, the cardinal iα by induction :

• i0 = ℵ0

• if α = β + 1, then iα = 2iβ

• if α is limit, then iα = sup{iβ , β < α}

The main gap theorem then states that for all ordinal α > 0, either I(ℵα, T ) =
2κ for all α ≥ 1, or I(ℵα, T ) < iω1(|ω + α|). The idea is that either a theory T
has a maximal number of models, or there is some kind of classification of the
models of T . One reason for studying stable theories is the following theorem
due to Shelah:

Theorem 3.45. For all unstable T and all uncountable κ, I(κ, T ) = 2κ.

So, from the the point of view of I(κ, T ) as a measure of complexity, we may
assume that T is stable (note that when κ = ℵ0, there is no analogous result;
the theory of dense linear orders is unstable, but is ℵ0-categorical).

Definition 3.46. Let T be a single-sorted theory. We say T is strongly minimal
if, for any formula ϕ(x) in one variable and any model M of T , ϕ(M) is either
finite or cofinite.

Note that every strongly minimal theory is stable. Suppose T is strongly
minimal, and that M is a countable model. Then there are only countably many
1-types: the algebraic types, i.e. those which contain (and are isolated by) a
formula with only finitely many realizations, and the unique (unrealized) type
p(x) expressing that x is in every cofinite set.

45



Example 3.47. The following examples can be show to be strongly minimal via
quantifier-elimination (note that quantifier-elimination does not imply strong
minimality in general, it just makes it easier to study the formulas in one vari-
able):

(i) the theory of an infinite set in the language of equality,

(ii) the theory of an infinite vector space over a countable field F in the lan-
guage of modules (i.e. the language of groups together with a function
symbol λr for scalar multiplication by r for all r ∈ F ),

(iii) algebraically closed fields,

(iv) Th(Zp∞), the theory of the Prüfer p-group.

Fact 3.48. Suppose T is strongly minimal, M |= T , and A ⊆ M . Then
the algebraic closure over A in M is a pregeometry. i.e. for a, b ∈ M if
b ∈ acl(A, a) \ acl(A), then a ∈ acl(A, b).

Definition 3.49. A tuple b1, · · · , bn is said to be A-algebraically independent
if for any i, we have ai ∈ acl(A∪ ({a1, · · · an} \ {ai})) if and only if ai ∈ acl(A).

Note that by properties of algebraic closure, if bi ∈ acl(A, a) for all i =
1, . . . , n and c ∈ acl(b1, . . . , bn, a, A), then c ∈ acl(A, a). This, and the previous
fact, allow us to define, for b a finite tuple from M , the dimension of b̄ over
A, denoted dim(b̄/A), as the maximal size of an A-algebraically independent
subtuple of b̄.

With a bit of forking calculus, the enthusiasmic reader can prove that if
A ⊂ B, then b |̂

A
B ⇔ dim(b/B) = dim(b/A).

Fact 3.50. Let T be strongly minimal. Then

I(κ, T ) =

{
1, if κ > ω,

0 or ℵ0, if κ = ℵ0.

Proof. (For when κ > ω) Let M |= T and I ⊆ M be a maximal algebraically
independent set over ∅. Then |I| is well-defined and M = acl(I). Moreover, the
type tp(I/∅) is determined by |I|. If |M | = κ > ω, then |I| = κ. If |M | = ℵ0

however, there is a bit more work to do, see [Mar06] for some details.

Definition 3.51. T is ω-stable if for some countable M |= T and finite tuple
of variables x, |Sx(M)| = ℵ0.

Note that strongly-minimal implies ω-stable, which in turn implies stable.

Fact 3.52. T is ω-stable if and only for any finite tuple of variable x and
X = Sx(M), every p ∈ X has ordinal valued Cantor-Bendxson rank. In that
case, the Cantor-Bendixson rank is better know as RM(p), the Morley rank.

We can, as was done in Definition 3.35, define the Morley rank of a formula.

46



Note. If T strongly minimal then RM(x = x) = 1. There are only finitely many
p ∈ Sx(M) which containing Φ(x) with have maximal Cantor-Bendixson rank.
This finite number is called the Morley degree dM(Φ(x)) of Φ.

A lot of natural and interesting theories are ω-stable, let us give a few ex-
amples.

Example 3.53. The theory DCF0 of differentially closed fields of characteristic
zero, is ω-stable (see 3.68 for a definition). Moreover, the formula x = x has
Morley rank ω.

There is a “structure theory” for models of T where T is ω-stable even
though there may be 2κ models of cardinality κ for all κ > ω.

Example 3.54. The theory T = Th
(
Z(ω)
p∞ ,+

)
is also ω-stable of Morley rank

ω. Moreover, the models of T are precisely given by Z(κ)
pω ⊕ Q(λ), where κ > ω

and λ > 0.

A useful property of ω-stable theories is that there are prime models over
all sets, i.e. for any M |= T and A ⊆M , the theory Th(M,a)a∈A has a unique
prime model.

The continuum hypothesis skeptical reader will be interested to learn that
Vaught’s Conjecture is known for ω-stable theories T .

Another class of stable theories, not as easily tamed as ω-stable ones, but
no completely wild either, are given by superstable theories.

Definition 3.55. T is superstable if T is stable and for every p(x) ∈ Sx(B)
there is a finite set A ⊆ B such that p(x) does not fork over A.

Fact 3.56. 1. T is ω-stable if and only if

• T is superstable

• S(T ) (=
⋃
x Sx(T )) is countable

• every p(x) ∈ S(B) has finite multiplicity (i.e. has only finitely many
non-forking extensions to a given M ⊇ B)

2. If T is not superstable, then I(κ, T ) = 2κ for all κ > ω.

3. Vaught’s Conjecture is still open for superstable theories.

Example 3.57. Th(Z,+, 0) is superstable.

Exercise. If M = (Z,+, 0), prove that |S1(M)| = 2ℵ0 .

Solution. Since the language is countable, S1(M) ≤ 2ℵ0 . For each i ∈ ω, define

ϕi(x) := “x is a multiple of the ith prime”

= (∃y) [ y + . . .+ y︸ ︷︷ ︸
ith prime times

= x].
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Then for each σ ∈ 2<ω, define pσ(x) := {ϕi(x) : σ(i) = 1}∪{¬ϕi(x) : σ(i) = 0}.
This definition can be extended in the natural way to define pf (x) for each
f ∈ 2ω. Now each pσ(x) is satisfiable, thus by Compactness theorem, each
pf (x) is also satisfiable. Therefore, by taking a completion of each pf (x), there
are at least 2ℵ0 many 1-types given by {pf (x) : f ∈ 2ω}.

Even though this theory is not ω-stable, there is a description of the models.
Let Ẑ be the profinite completion of Z, i.e. Ẑ = lim←−

n
Z/nZ.

Then the 2ℵ0-saturated models of T are precisely of the form

Ẑ⊕Q[δ], δ ≥ 2ℵ0 .

In fact the models of T are precisely of the form

G⊕Q[δ], δ ≥ 2ℵ0

for some G < Ẑ.

Note. Let G be a saturated model of T . Then G/G0 = Ẑ, i.e. G

/⋂
n nG = Ẑ.

The last, and wildest, region in the land of stable theories, is composed of
stable, not superstable theories.

Example 3.58. The following theories are stable but not superstable.

• Th(Z,+)(ω)

• Th(Fp(t)Sep)

• Th(F2, ·), where F2 is the free group on 2 generators.

Remark 3.59. The two first statements are easy to prove, but the last one is
not. It was proven by Sela, and opened a whole new area of exploration for
applied model theory.

If fact, to prove the first two facts, one can use the following general state-
ment: if T is a theory, G a group definable in a model M of T , and there is
a sequence G = G0 ≥ G1 ≥ G2 ≥ · · · of definable subgroups where Gi+1 has
infinite index in Gi for all i, then T is not superstable.

Many theories that are interesting from a model theoretic perspective are
actually unstable. For example, the theory of the reals Th(R,+,×) and the
theory of the p-adics Th(Qp,,×) are unstable.

These could be the subject of another course, but here, we will restrict our
attention to stable theories. Therefore, let us fix (again) a stable theory T .

Definition 3.60. p(x) ∈ S(A) is stationary if for all B ⊆ A there is a unique
nonforking extension q(x) ∈ S(B) of p. For example, if A = acleq(A), then any
p(x) ∈ S(A) is stationary.

Lemma 3.61. Let p(x) ∈ S(A) be stationary. Then there exists a unique
smallest A0 ⊆ dcleq(A) such that p(x) does not fork over A0, and p � A0 is
stationary. This set A0 is denoted Cb(p), and called the canonical base of p.
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Proof. (Sketch) Let M ⊇ A, and let q(x) be the nonforking extension of p(x)
to M . Then q(x) is definable by stability. For each ϕ(x, y) ∈ L, let Ψϕ(y) over
M be the ϕ-definition of p. Then A0 = dcl{codes of Ψϕ(y) : ϕ ∈ L}.

3.4 Geometric Stability Theory

In geometric stability theory, we study the “complexity” of models in terms
of dimension-like quantities that can be axiomatized in terms of combinatorial
geometry. As an example, we explore questions such as: How does a family of
subsets of C× C

{y = ax+ b : a, b ∈ C} ⊆ C2

intersect with each other? Note that this notion of complexity has nothing to
do with the complexity of computer science. When exploring the complexity of
strongly minimal sets, it is convenient to discuss Zilber’s conjecture, which we
shall give below.

Let T be a stable theory, and X a definable set in a saturated model M
of T . We call X strongly minimal (with respect to the ambient T or M) if X
is infinite and every definable (with parameters in M̄) subset of X is finite or
cofinite. Equivalently, RM(X) = dM(X) = 1.

Given any definable (without parameters) set X in M , by Xeq, we mean the
collection of all sorts SE of T eq (or M

eq
) where E is a ∅-definable equivalence

relation on X × . . .×X (n times for some n).

Zilber suggested that we could classify or describe strongly minimal sets,
and that moreover, that any ”rich enough” strongly minimal set arises from an
algebraic object :

Conjecture. (Zilber) Let X be a strongly minimal set (in M |= T ) definable
without parameters. Then exactly one of the following holds:

1. The algebraic closure in X is “trivial” i.e. for a1, . . . , an ∈ X,

aclM (a1, . . . , an) ∩X =

n⋃
i=1

(acl(ai) ∩X) .

2. X is biinterpretable with a strongly minimal group G, and the group G
satisfies that any definable (with parameters) subset of G × · · · × G is a
boolean combination of cosets of definable subgroups of G× · · · ×G

3. There is a strongly minimal field (K,+,×) definable in Xeq.

These three alternatives measure the complexity of the strongly minimal set,
from simplest to most complex. Unfortunatly, the Zilber conjecture was proven
to be false. Nonetheless, it has been extremely influencial, and we will expose
here some of the most important ideas it spawned.

First, let us define :
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Definition 3.62. Let X be any definable set, it is said to be one based if for
any tuple ā from X, and any B = acleq(B), we have Cb(tp(ā/B)) ∈ acl(ā).

Note the following proposition from general stability theory :

Proposition 3.63. Let p ∈ S(B) be a stationary type, and (ai)i∈N be a Morley
sequence in p. Then Cb(p) ∈ acl({ai, i ∈ N}).

Hence, a set is one based if and only if only one realization of the type
is needed to find the canonical base. From a geometric perspective, this is
equivalent to the non-existence of ”rich families of curves”. For example, if one
consider an algebraically closed field of characteristic zero, the formula y = ax+b
describes a rich family of curves as a and b vary, meaning that we need two points
on the line y = ax+ b to find a and b back. So this structure is not one-based.

One can easily show that Q vector spaces are an example of a one-based
structure.

This definition is linked with Zilber’s conjecture by the following :

Theorem 3.64. Let X be strongly minimal. Then X is one based if and only
if case 1. or 2. hold.

This is a non-trivial theorem, one of the main achievement of geometric
stability theory.

As we mentioned, the trichotomy is false. In fact, it fails in a very strong
sense :

Theorem 3.65 (Hrushovski). There is a strongly minimal set which is not
one-based, but does not interpret any infinite group.

Note that this indeed disproves the conjecture by Theorem 3.64, as such a
set would have to satisfy alternative 3. of Zilber’s trichotomy. But if it did, it
would interpret an algebraically closed field, and this structure does not even
interpret an infinite group !

To construct this strongly minimal set, a variant of Fraissé amalgamation
was used, called Hrushovski construction. This proved to be a very useful tool
to construct new structures. The curious reader is invited to consult [Wag10],
for example, to learn more about these.

Even if false, the trichotomy still holds in a number of natural theories. By
that we mean that if T is a theory, it satisfies Zilber’s trichotomy if and only if
strongly minimal sets definable in models of T satisfy it.

One of the most important example is DCF0, the theory of differentially
closed fields of characteristic zero, which we will now define.

Let L be the language of rings, with one additional function symbol ∂. A
differential ring R is an L-structure satisfying the ring axioms, and such that
∂ is a derivation, i.e. for all a, b ∈ R, we have ∂(a + b) = ∂(a) + ∂(b) and
∂(ab) = ∂(a)b+ a∂(b).

The theory of differential fields of characteristic zero has a model companion,
which is the theory of differentially closed fields, denoted DCF0. To describe its
axioms, we will need to define differential polynomials.
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Definition 3.66. Let (K, ∂0) be a differential field. The ring K{x} of differen-
tial polynomials over K is defined as the polynomial ring K[{∂i(x), i ∈ N}], with
the differential ring structure given by ∂ = ∂0 on K, and ∂(∂i(x)) = ∂i+1(x).

For differential polynomials, we can define :

Definition 3.67. Let f be a differential polynomial. Then the order of f is the
biggest i such that ∂i(x) appears in f .

We can now explicit the theory DCF0 :

Definition 3.68. The theory DCF0 is axiomatized by the following:

• axioms for ACF0

• for any differential polynomials f, g, with the order of g strictly larger than
the order of f , there is a such that g(a) = 0 and f(a) 6= 0

Equipped with these axioms, one can prove the following basic properties of
DCF0 :

• quantifier elimination

• elimination of imaginaries

• ω-stable of Morley rank ω

In particular, any definable set will be given as solution of differential equa-
tions and inequations.

Moreover, Zilber’s trichotomy is true in DCF0. This was first proven by
Hrushovski and Zilber, using the abstract machinery of Zariski geometry, which
we do not have time to describe here (see [Bou09] for an explanation). Later,
Pillay and Ziegler, in [PZ03], obtained a second proof, as a corollary of proving
a strong structural property of differentially closed fields, called the canonical
base property.

Let us now fix a monster model M of DCF0. Let C = {x ∈M, ∂(x) = 0} be
the field of constants of M. This is an algebraically closed field, and moreover,
any definable subset (possibly with parameters) of C is already definable in
(C,+,×), with parameters from C. We say that C is a purely stably embedded
algebraically closed field.

Let us now give a more explicit version of the trichotomy in DCF0. In case
one, nothing more can be said about the strongly minimal set X. However,
identifying exactly what differential equations give rises to trivial minimal sets
is an ongoing project of the model theory community.

In the third case, the algebraically closed field definable in the set X can be
proven to be definably isomorphic to C.

The second case is the most complex. To expose it, we need to define some
basic notions from algebraic geometry. For a more detailled introduction to this
subject, we refer the reader to [SR94]. Let K be an algebraically closed field.
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Definition 3.69. An affine algebraic variety is a subset of Kn, for some n,
defined as the zero locus of some finite system of polynomial equations.

Definition 3.70. The projective n-space, denoted by Pn(K), is defined as
Kn \ {0}, quotiented by the equivalence relation ā ∼ b̄ if and only if there
is λ ∈ K \ {0} such that ā = λ · b̄.

A projective algebraic variety is a subset of Pn(K) defined as the zero locus
of a finite system of homogeneous polynomials. Note that this zero set is well
defined because if P is an homogeneous polynomial, then there exist k ∈ N such
that for all ā, λ, we have P (λ · ā) = λk · P (ā).

Morphisms of affine algebraic varieties are given by polynomial maps. Mor-
phisms of projective algebraic varieties are also given by polynomial, under the
condition that they are well defined on the projective space.

Definition 3.71. An abelian variety is an irreducible projective variety G
equipped with a group operation m : G × G → G which is a morphism of
projective variety.

Definition 3.72. An abelian variety is simple if it has not proper nontrivial
abelian subvariety.

It can be showed that all abelian variety are commutative groups, justifying
the terminology. The following will be of importance :

Definition 3.73. Let A be an algebraic variety defined over K, and k ⊂ K
another algebraically closed field. We say that A descends to k is there is an
abelian variety A0, defined over k, isomorphic to A.

Let A be an abelian variety defined in (M,+,×), its Morley rank can be
computed as RM(A) = ω · dim(A), where dim(A) is the dimension of A as a
projective algebraic variety. Note that A can indeed be viewed as a definable
set, by elimination of imaginaries.

Fact. A has a unique smallest Zariski dense definable in (M,+,×, ∂) subgroup
A#. If A is simple, then A# is strongly minimal.

We can now states the second alternative of the trichotomy. If X interprets
a group satisfying the properties in case 2, then there exist a simple abelian
variety A, which does not descend to C, and G can be taken equal to A#.

One of the most celebrated application of model theory was to use this to
prove function field Mordell-Lang in characteristic zero :

Theorem 3.74. Let k ⊂ K be algebraically closed subfields of characteristic
zero. Let A be an abelian variety defined over K, with k trace zero, i.e. no
abelian subvariety of A descends to k.

Let Γ be a finitely generated subgroup of A, and let X be an algebraic sub-
variety of A. Assume X ∩ Γ is Zariski dense in X. Then X is a coset of a
subgroup N ⊂ A.
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3.5 Keisler Measures and Combinatorics

We shall discuss the notion of Keisler measures on definable sets and their ap-
plications to combinatorics. References for this section include [HP11], [Pil18],
and [Kei87]. We still use the conventions that T is a complete theory and M
is κ-saturated, strongly κ-homogeneous for a sufficiently large κ, however we
no longer assume T is stable. For convenience, we will occasionally identify a
formula ϕ(x) with the set in M it defines, i.e. ϕ(M) = {m ∈M : ϕ(m) holds}.

Definition 3.75. A Keisler measure in x (a collection of free variables/sorts)
over a set of parameters A is a finitely additive probability measure µ(x) on the
Boolean algebra of sets defined by A-formulas in variables x, i.e. if ϕ(x) defines

X, then 0 ≤ µ(X) ≤ 1 is a real number. Furthermore, µ(M
|x|

) = 1, µ(∅) = 0,
and if X,Y are definable and X ∩ Y = ∅, then µ(X ∪ Y ) = µ(X) + µ(Y ). We
will feel free to abuse notation and write µ(ϕ(x)) to mean µ(X) where ϕ(x)
defines X in M (that is X = ϕ(M).)

Remark 3.76.

1. A complete type p(x) ∈ Sx(A) induces the Keisler measure µp, where
µ(ϕ(x)) = 1 if ϕ(x) ∈ p and 0 otherwise. This requires a short proof.

Because types are finitely consistent, we have x = x ∈ p, hence µp(M
|x|

) =
µp(x = x) = 1. Similarly, µp(∅) = µp(¬(x = x)) = 0.

Since p is a complete and finitely consistent, then if ϕ(M)∩ψ(M) = ∅, at
most one of ψ(x), ϕ(x) is in p, so µp(ϕ(x)∨ψ(x)) = µp(ϕ(M)∪ψ(M)) =
µp(ϕ(x)) + µp(ψ(x)).

2. Suppose ∆(x) is a finite collection {ϕ1(x, y1), . . . , ϕr(x, yr)} of L-formulas.
Then we have the Keisler ∆-measures over A, i.e. where the relevant
Boolean algebra is the set of formulas ψ(x) ∈ LA which are equivalent to
Boolean combinations of A-instances of ϕi(x, yi) for 1 ≤ i ≤ r.

3. We shall usually assume A is a model of T , i.e. A = M is an elementary
substructure of M .

Example 3.77.

1. Complete types induce Keisler measures as in Remark 3.76.

2. Let T = RCF . Let A = M = R be the standard model of T , which is
an elementary substructure of M . Consider µ, the Lebesgue measure on
[0, 1]R, the standard copy of the unit interval. (Not to be confused with
[0, 1]M .)

Given ϕ(x), make ϕ′(x) be ϕ() ∧ (0 ≤ x ≤ 1). Then since we have
quantifier elimination for real closed ordered fields, ϕ′ is a finite Boolean
combination of polynomial equalities and inequalities, so ϕ′(M) is a finite
collection of intervals and points lying in the unit interval.
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Then define µ′(ϕ(x)) = µ(ϕ′(R)). Since µ([0, 1]) = 1 and µ(A) ≤ µ(B) for
A ⊆ B, µ′ is [0, 1]-valued, µ′(x = x) = µ((x = x)′) = 1. Since µ(∅) = 0,
µ′(∅) = 0 as well. Finite additivity for µ′ follows from σ-additivity of µ.

Remark that the Lebesgue measure can also be used to defined a measure
on the sort M̄n, for any n.

3. Let {αi}i∈ω be such that Σ∞i=0 αi = 1. Then for Keisler measures {µi(x)}i∈ω
over A, µ(x) = Σ∞i=0 αiµi(x) is clearly also a Keisler measure over A. This
is called a weighted average of the µi’s. Of special note is when each of
the µi’s is given by a complete type, then this is called a weighted average
of types.

Definition.

• For a topological space X, the Borel σ-algebra of X, denoted B(X), (i.e.
closed under countably infinite unions) is the collection of sets generated
by the open sets under the actions of complementation and taking count-
able unions, or equivalently, the smallest σ-algebra containing all the open
sets of X.

• A Borel probability measure is a σ-additive measure µ : B(X)→ [0, 1].

• a Borel probability measure µ is regular if for any B ∈ B(X), we have

µ(B) = inf{µ(U) : B ⊆ U open} = sup{µ(C) : C ⊆ B closed}

Note. Note that if X is compact and totally disconnected, i.e. a Stone space,
then regularity of a Borel probability measure µ implies that for all closed
B ⊆ X, µ(B) = inf{µ(C) : B ⊆ C clopen}. That is, µ is determined uniquely
by its value on the clopen sets.

Fact 3.78. A Keisler measure µ(x) over M an elementary substructure of M
can be identified with a regular Borel probability measure on Sx(M). Similarly,
a Keisler ∆-measure µ(x) over M can be identified with a regular Borel proba-
bility measure on S∆(M).

More specifically, given a Keisler measure µ(x) over m, define µ′ to be a Borel
probability measure µ′ on Sx(M) via µ′([ϕ(x)]) = µ(ϕ(x)) for all clopen sets
[ϕ(x)]. By the above note, this is enough to uniquely determine the value of µ′

on all Borel subsets of Sx(M). (Similarly for Keisler ∆-measures and S∆(M).)

Given a regular Borel probability measure µ′ on Sx(M), define the Keisler mea-
sure µ via µ(ϕ(x)) = µ′([ϕ(x]).

Stability, Cantor-Bendixson rank and Keisler measures come together in the
following:

Lemma 3.79. (Essentially Keisler) Suppose ∆(x, z, y1, . . . , yr) is a finite col-
lection of stable formulas over A. Then any Keisler ∆-measure over M is a
weighted average of complete ∆-types.
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Proof. By the above fact, we can identify µ with a regular Borel probability
measure on S∆(M). We argue by induction on the maximum rank of elements
in the domain of µ. That is, we will prove that for any Stone space of ordinal
valued Cantor-Bendixson rank, any Borel probability measure is a weighted
average of Dirac measures (i.e. given by types, in the case of a type space).
And we will prove this by induction on the maximal Cantor-Bendixson rank of
an element (a type, in the case of a type space) of our space.

In the base case, the maximum rank is 0, so all types are isolated, and thus
there are only finitely many types, so µ(x) can be written as a weighted average
of these types. We will now take care of the inductive step.

Note that by Lemma 3.34 generalized to finite sets of formulas ∆, the rank
CB(S∆(M)) is finite. For any partial ∆-type Φ(x) over A, recall that:

R∆(Φ(x)) := max{CBS∆(M)(p) : Φ(x) ⊆ p(x)}

And from Proposition 3.36, we have :

R∆(Φ(x)) = max{R∆(p(x)) : p ∈ S∆(M) ∧ Φ(x) ⊆ p(x)}

and there are finitely many types realizing this maximum.
Let µ(x) be a Keisler ∆-measure over M . Let p1(x), . . . , pk(x) be the finitely

many complete ∆-types over M with R∆(pi(x)) = CB(S∆(M)). Without loss
of generality, assume µ({pi(x)}) > 0 for 1 ≤ i ≤ r for some 0 ≤ r ≤ k and
µ({pi(x)}) = 0 for all r < i ≤ k. Define αi = µ({pi(x)}) ∈ (0, 1] for 1 ≤ i ≤ r.
Let U = S∆(M) \ ({p1(x), . . . , pr(x)}). Then by the additivity of µ, we get

µ(U) = 1−
r∑
i=1

αi.

Set µ(U) = β. If β = 0, then notice that

µ(x) =

r∑
i=1

αipi(x)

by finite additivity, where here pi(x) stands for the Keisler measure induced by
the type pi(x) as discussed above.

Therefore, we now assume that β > 0. By regularity of µ and the above
note, for any open set V , we have µ(V ) = sup{µ(C) : C ⊆ V clopen}. In
particular, µ(U) is the supremum of a set of reals obtained as the measure of
clopen subsets, so we can find a countable sequence of clopen subsets ∅ = U0 ⊆
U1 ⊆ U2 ⊆ · · · ⊆ U such that limn→∞ µ(Un) = β, because the reals have a
countable dense subset. Set βi = µ(Ui) for all i ≥ 1.

Each of Ui+1 \ Ui for i ≥ 0 is a clopen, and hence ∆-definable over M , set
with positive µ-measure. Furthermore, since all types realizing the maximum
rank are not in U and thus not in Ui+1 \Ui for any i ≥ 0, the rank of the max-
imum element of each is strictly smaller. Therefore we can apply our induction
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hypothesis on each to get that

µ(x) � (Ui+1 \ Ui) =

∞∑
j=1

βi,jqi,j(x)

where
∞∑
j=1

βi,j = µ(Ui+1 \ Ui).

Then by σ-additivity of µ as a regular Borel probability measure, we see that

µ(x) =

r∑
i=1

αipi(x) +

∞∑
i=0

∞∑
j=1

βi,jqi,j(x)

Noting that
∞∑
i=0

∞∑
j=1

βi,j +

r∑
i=1

αi = 1

we conclude that µ is indeed a weighted average of types.

Remark. In a stable theory, every Keisler measure is locally a weighted average
of complete types. However, this is not true of all Keisler measures: In particu-
lar, the Keisler measure from Example 3.77 given from the standard Lebesgue
measure has a unique extension, which cannot be true of a Keisler measure
locally equal to a weighted average.

We now discussion an application of Keisler measures to combinatorics. We
shall work in the setting of finite bipartite graphs (L,R,E) where L and R are
sets of vertices and E ⊆ L×R is the edge relation.

Definition. A finite bipartite graph (L,R,E) is said to be ε-regular for ε > 0
if for any A ⊆ L, B ⊆ R and |A| ≥ ε|L|, |B| ≥ ε|R|, we have:

| |E ∩ (A×B)|
|A×B|

− |E ∩ |L×R|
|L×R

| < ε

That is to say, the difference between the density of edges in (A,B,E∩(A×B))
and the density of edges in the original graph is less than ε.

Theorem 3.80. (Szemerédi) For all ε > 0, there exists Nε ∈ ω such that
for any finite bipartite graph (L,R,E) there are partitions L = L1 ∪ · · · ∪ Ln,
R = R1 ∪ · · · ∪ Rm for n,m < Nε and a set of exceptions Σ ⊆ {1, . . . , n} ×
{1, . . . ,m} such that |(

⋃
(i,j)∈Σ Li × Rj)| ≤ ε|L × R| and for every (i, j) 6∈ Σ,

(Li, Rj , E ∩ (Li ×Rj)) is ε-regular.

Note. One can view this ideologically as having three components:

• The structural component, which is the partition of the graph into sub-
structures of the original.
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• The error component, which is the small set of exceptions.

• The pseudo-randomness component, which is the ε-regularity asserting
that ”most” of the graph is regular

In combinatorics, there is a strong tradition of restricting the objects of
studies to those having or not having a specific property. Given a finite bipartite
graph G = (L0, R0, E0), we shall consider finite bipartite graphs (L,R,E) which
omit G, i.e. they do not contain a substructure isomorphic to G. In doing so,
we can obtain an improved regularity theorem where the ε-regularity is replaced
by ε-homogeneity.

Definition. A finite bipartite graph (L,R,E) is said to be ε-homogenous if
either |(L × R) \ E| ≤ ε|L × R| (the graph is ”almost” the complete graph) or
|(L×R) ∩ E| ≤ ε|L×R|. (The graph is ”almost” the empty graph.)

Definition. The k-half graph (L,R,E) is the graph where L = R = {1, . . . , k}
and E(i, j) if and only if i ≤ j.

This graph should be familiar to the reader, as the one used to define stability
of a formula. And in fact, notice that a graph (L,R,E) omits the k-half graph
if and only if its edge relation is k-stable.

Theorem 3.81. (Stable Regularity Theorem) For all k ∈ N and ε > 0, there
exists Nε,k ∈ N such that whenever (L,R,E) is a finite bipartite graph which
omits the k-half graph (i.e. is k-stable), then there are partitions L = L1 ∪ · · · ∪
Ln, R = R1 ∪ · · · ∪Rm, n,m < Nε,k such that each of (Li, Rj , E ∩ (Li×Rj)) is
ε-homogeneous.

Note. In the ideological viewpoint presented above, this theorem is purely struc-
tural.

We shall prove the Stable Regularity Theorem using a statement about in-
finite graphs and some pseudofinite methods to apply it to the finite setting.

Theorem 3.82. Let (L,R,E) be a ∅-definable bipartite graph in the structure
M . Assume E(x, y) is stable. Identify E with the formula defining it. Let
µ(x) be any Keisler measure on L over M . Then for any 1 > ε > 0 we can
find definable partitions L = L0 ∪ . . . Ln, R = R1 ∪ . . . Rm such that for each
(i, j) ⊆ {0, . . . , n} × {1, . . . ,m} either:

∀b ∈ Rj µ(Li \ E(x, b)) ≤ εµ(Li)

or
∀b ∈ Rj µ(Li ∩ E(x, b)) ≤ εµ(Li)

Moreover, each Li is defined by an E-formula and each Rj is defined by an
E∗-formula.
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Proof. Let ∆ = {E(x, y)} and let µ0 be the Keisler ∆-measure over M obtained
by restricting µ to ∆-formulas. By Lemma 3.79, there is I an initial segment of
ω (i.e. either finite or infinite) such that µ0 = Σi∈I αipi where pi is the measure
obtained from a complete ∆-type pi and αi ∈ (0, 1] for all i ∈ I. As before, we
identify µ0 with a regular Borel probability measure on S∆(M).

Note that for all i ∈ I, µ({pi}) = αi. Indeed, the measure µ0 is regular, so
µ0({pi}) = inf{µ0(C) : pi ∈ C clopen}. But for any finite collection of the pj ’s,
pj 6= pi, there is a clopen set containing pi not containing any of the pj ’s, so the
αjpj factors of the weighted average contribute 0. Therefore µ0({pi}) ≤ αi + ζ
for any ζ > 0. Lastly, we have µ0({pi}) ≥ αi by regularity and the fact that µ0

is a weighted average of a collection of types containing pi.
By regularity, for each i there exist a clopen set Li such that µ0(Li) <

µ0({pi})+εµ(Li) because we can pick Li with µ0(Li) <
αi

1−ε . Then by additivity
of µ0, we get µ0(Li \ {pi}) < εµ0(Li).

Let B = S∆(M) \ {pi : i ∈ I}. Then B is Borel as the complement of
a countable union of closed sets. Furthermore, since µ0 = Σi∈I αipi, we have
µ0(B) = 0. Now let δ = α0

1−ε − µ0(L0). By regularity of µ0, there is an open set
B ⊆ U such that µ0(U) < δ.

We have obtained {U} ∪ {Li : i ∈ I}, an open cover of S∆(M). By com-
pactness there is a finite subcover, which we can assume to be {U,L0, . . . , Ln}
for some n. Furthermore, we can assume these are pairwise disjoint by letting
Li be Li \ (

⋃
j<i Li−1) for 1 ≤ i ≤ n. Each Li is clopen, so L1 ∪ · · · ∪ Ln is

clopen, hence its complement is clopen. Let L′0 = (L1 ∪ · · · ∪ Ln)c. Notice
that L0 ⊆ L′0 ⊆ U ∪ L0 and µ0(L′0) ≤ µ0(U) + µ0(L0) < δ + µ0(L0) = α0

1−ε , so
µ0(L′0) < α0

1−ε as we had before.
Therefore L′0 ∪ L1 ∪ · · · ∪ Ln is a definable partition of L(M) with µ0(Li \

{pi}) < εµ0(Li) for all 0 ≤ i ≤ n. For each 0 ≤ i ≤ n, let ψi(y) be the ∆∗-
formula defining pi ∈ S∆(M), which exists by Proposition 3.39 generalized to
finite sets of formulas.

For each J ⊆ {0, . . . , n}, let RJ(y) be the formula
∧
i∈J ψi(y)∧

∧
i 6∈J ¬ψi(y).

Then the nonempty Rj ’s are clearly a partition of R(M) by definition. Fix
0 ≤ i ≤ n and J ⊆ {0, . . . , n} with RJ(M) nonempty. Then if i ∈ J , for
any b̄ ∈ RJ(M) we have E(x, b) ∈ pi. Hence for any b ∈ Rj(M), the set
[E(x, b)] is clopen, containing pi, and Li \ [E(M, b)] ⊆ Li \ {pi}, so we obtain
µ0(Li \ [E(x, b)] < εµ0(Li). If i 6∈ J , then we have E(x, b) 6∈ pi. Apply the same
argument to get µ0(Li ∩ [E(x, b)]) < εµ0(Li).

Equipped with this theorem, we shall now prove the Stable Regularity The-
orem using some pseudofinite methods. To entertain the experienced reader,
we will provide, instead of a standard ultrafilter argument, a proof based on
non-standard models of set theory.

Proof of Stable Regularity Theorem. Assume not for sake of contradiction. Then
for some 1 > ε > 0, no N ∈ ω witnesses the existence of partitions with the
desired property. Then for each N , there is a counterexample (LN , RN , EN ).
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Hence |LN | and |RN | must tend to infinity, as for N large enough the statement
is trivial for small enough vertex sets.

Let L = {∈, l, r, e} be the language of set theory together with constant
symbols l, r, and e. Let Mn be the L-structure (V, LN , RN , EN ), where V is
the set-theoretic universe. Let Σ be the incomplete L-theory consisting of all
sentences satisified by cofinitely many MN ’s. Then Σ is finitely consistent (if
we have some finite subcollection, each of them is satisfied by cofinitely many
MN ’s, and the intersection of finitely many cofinite sets is cofinite), so it is
consistent by compactness.

Let M∗ |= Σ be (2ℵ0)+-saturated, denote M∗ = (V∗, L∗, R∗, E∗). Then
(L∗, R∗, E∗) is k-stable since each MN is k-stable, and this is witnessed by a
formula.

Note that each definable subset A of L∗ or R∗ is assigned a cardinality |A|
in M∗, which is a (possibly non-standard) natural number. Indeed, in a model
of set theory, cardinality is a definable function, so it lifts to the model M∗.

Hence, for any definable set A in say L∗, we get a nonstandard rational

number |A|
|L∗| . Now define µ(A) := st( |A||L∗| ), where st : R∗ → R is the standard

part map, sending each finite non standard real to the unique standard real
infinitesimaly close to it. This can be seen as a non-standard counting measure,
and is indeed a Keisler measure, because the counting measure is.

Therefore we can apply the above theorem to (L∗, R∗, E∗) with µ and δ = ε
2 ,

a real number outside ofM∗. (If we apply the theorem inM∗, then the partitions
might be indexed by nonstandard naturals, which will not work. One can verify,
though, that the proof did not require us to use anything about standard models,
so we can apply it outside of the model just as well.) We obtain L∗ = L∗1∪· · ·∪L∗n
and R∗ = R∗1∪· · ·∪R∗m for standard naturals n,m, all Li and Rj definable inM∗,
and each (L∗i , R

∗
j , E

∗ � (L∗i ×R∗j )) is δ-homogeneous with respect to µ. Then by

definition of µ, we have that either for all b ∈ R∗j |L∗i \E∗(x, b)| ≤ δ|L∗i | < ε|L∗i |
or for all b ∈ R∗j |L∗i ∩ E∗(x, b)| ≤ δ|L∗i | < ε|L∗i |.

Notice that there is some sentence σ in L that expresses this, i.e. uses l
to interpret L, r to interpret R, and uses e to interpret E, the language of set
theory allows us to express the existence of such a partition by a first order
sentence. Thus M∗ |= σ for infinitely many MN ’s, as otherwise ¬σ ∈ Σ as it
would be true in cofinitely many MN ’s. In particular, let N > n,m for which
such a partition exists, it is a contradiction, as (MN , RN , EN ) was assumed to
be a counterexample to the regularity theorem, i.e. assumed to not possess such
a partition.
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