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Abstract

This memoir develops, discusses and compares a range of commu-
tative and non-commutative invariants defined for projection method
tilings and point patterns. The projection method refers to patterns,
particularly the quasiperiodic patterns, constructed by the projection
of a strip of a high dimensional integer lattice to a smaller dimen-
sional Euclidean space. In the first half of the memoir the acceptance
domain is very general – any compact set which is the closure of its
interior – while in the second half we concentrate on the so-called
canonical patterns. The topological invariants used are various forms
of K-theory and cohomology applied to a variety of both C∗-algebras
and dynamical systems derived from such a pattern.

The invariants considered all aim to capture geometric properties
of the original patterns, such as quasiperiodicity or self-similarity, but
one of the main motivations is also to provide an accessible approach
to the the K0 group of the algebra of observables associated to a
quasicrystal with atoms arranged on such a pattern.

The main results provide complete descriptions of the (un-
ordered) K-theory and cohomology of codimension 1 projection pat-
terns, formulæ for these invariants for codimension 2 and 3 canonical
projection patterns, general methods for higher codimension patterns
and a closed formula for the Euler characteristic of arbitrary canon-
ical projection patterns. Computations are made for the Ammann-
Kramer tiling. Also included are qualitative descriptions of these
invariants for generic canonical projection patterns. Further results
include an obstruction to a tiling arising as a substitution and an
obstruction to a substitution pattern arising as a projection. One
corollary is that, generically, projection patterns cannot be derived
via substitution systems.

Mathematics Subject Classification Primary: 52C23

Mathematical Subject Classification Secondary: 19E20, 37Bxx,
46Lxx, 55Txx, 82D25
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General Introduction

Of the many examples of aperiodic tilings or aperiodic point sets
in Euclidean space found in recent years, two classes stand out as
particularly interesting and æsthetically pleasing. These are the sub-
stitution tilings, tilings which are self-similar in a rather strong sense
described in [GS] [R1] [S1] [AP], and the tilings and patterns ob-
tained by the method of cut and projection from higher dimensional
periodic sets described in [dB1] [KrNe] [KD]. In this memoir we
consider the second class. However, some of the best studied and
most physically useful examples of aperiodic tilings, for example the
Penrose tiling [Pe] and the octagonal tiling (see [Soc]), can be ap-
proached as examples of either class. Therefore we study specially
those tilings which are in the overlap of these two classes, and exam-
ine some of their necessary properties.

Tilings and patterns in Euclidean space can be compared by var-
ious degrees of equivalence, drawn from considerations of geometry
and topology [GS]. Two tilings can be related by simple geometric
tranformations (shears or rotations), topological distortions (bending
edges), or by more radical adaptation (cutting tiles in half, joining
adjacent pairs etc). Moreover, point patterns can be obtained from
tilings in locally defined ways (say, by selecting the centroids or the
vertices of the tiles) and vice versa (say, by the well-known Voronoi
construction). Which definition of equivalence is chosen is determined
by the problem in hand.

In this paper, we adopt definitions of equivalence (pointed conju-
gacy and topological conjugacy, I.4.5) which allow us to look, without
loss of generality, at sets of uniformly isolated points (point patterns)
in Euclidean space. In fact these patterns will typically have the
Meyer property [La1] (see I.4.5). Therefore in this introduction, and
often throughout the text, we formulate our ideas and results in terms
of point patterns and keep classical tilings in mind as an implicit ex-
ample.

The current rapid growth of interest in projection method pat-
terns started with the discovery of material quasicrystals in 1984
[SBGC], although these patterns had been studied before then. Qua-
sicrystaline material surprised the physical world by showing sharp
Bragg peaks under X-ray scattering, a phenomenon usually associ-
ated only with periodic crystals. Projection method patterns share
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this unusual property and in recent studies they have become the
prefered model of material quasicrystals [1] [2]. This model is not
without criticism, see e.g. [La2].

Whatever the physical significance of the projection method con-
sruction, it also has great mathematical appeal in itself: it is ele-
mentary and geometric and, once the acceptance domain and the
dimensions of the spaces used in the construction are chosen, has a
finite number of degrees of freedom. The projection method is also a
natural generalization of low dimensional examples such as Sturmian
sequences [HM] which have strong links with classical diophantine
approximation.

General approach of this book In common with many papers on
the topology of tilings, we are motivated by the physical applications
and so are interested in the properties of an individual quasicrystal or
pattern in Euclidean space. The topological invariants of the title refer
not to the topological arrangement of the particular configuration as
a subset of Euclidean space, but rather to an algebraic object (graded
group, vector space etc.) associated to the pattern, and which in
some way captures its geometric properties. It is defined in various
equivalent ways as a classical topological invariant applied to a space
constructed out of the pattern. There are two choices of space to which
to apply the invariant, the one C∗-algebraic, the other dynamical, and
these reflect the two main approaches to this subject, one starting
with the construction of an operator algebra and the other with a
topological space with Rd action.

The first approach, which has the benefit of being closer to
physics and which thus provides a clear motivation for the topology,
can be summarized as follows. Suppose that the point set T repre-
sents the positions of atoms in a material, like a quasicrystal. It then
provides a discrete model for the configuration space of particles mov-
ing in the material, like electrons or phonons. Observables for these
particle systems, like energy, are, in the absence of external forces
like a magnetic field, functions of partial translations. Here a partial
translation is an operator on the Hilbert space of square summable
functions on T which is a translation operator from one point of T
to another combined with a range projection which depends only on
the neighbouring configuration of that point. The appearance of that
range projection is directly related to the locality of interaction. The
norm closure AT of the algebra generated by partial translations can
be regarded as the C∗-algebra of observables. The topology we are
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interested in is the non-commutative topology of the C∗-algebra of
observables and the topological invariants of T are the invariants of
AT . In particular, we shall be interested in the K-theory of AT . Its
K0-group has direct relevance to physics through the gap-labelling.
In fact, Jean Bellissard’s K-theoretic formulation of the gap-labelling
stands at the beginning of this approach [B1].

The second way of looking at the topological invariants of a dis-
crete point set T begins with the construction of the continuous hull
of T . There are various ways of defining a metric on a set of patterns
through comparison of their local configurations. Broadly speaking,
two patterns are deemed close if they coincide on a large window
around the origin 0 ∈ Rd up to a small discrepancy. It is the way
the allowed discrepancy is quantified which leads to different metric
topologies and we choose here one which has the strongest compact-
ness properties, though we have no intrinsic motivation for this. The
continuous hull of T is the closure, MT , of the set of translates of
T with respect to this metric. We use the notation MT because it
is essentially a mapping torus construction for a generalized discrete
dynamical system: Rd acts on MT by translation and the set ΩT of
all elements of MT which (as point sets) contain 0 forms an abstract
transversal called the discrete hull. If d were 1 then ΩT would give
rise to a Poincaré section, the intersection points of the flow line of
the action of R with ΩT defining an orbit of a Z action in ΩT , and
MT would be the mapping torus of that discrete dynamical system
(ΩT , Z). For larger d one cannot expect to get a Zd action on ΩT
in a similar way but finds instead a generalized discrete dynamical
system which can be summarized in a groupoid GT whose unit space
is the discrete hull ΩT . Topological invariants for T are therefore the
topological invariants of MT and of GT and we shall be interested in
particular in their cohomologies. We define the cohomology of T to be
that of GT . Under a finite type condition, namely that for any given
r there are only a finite number of translational congruence classes
of subsets which fit inside a window of diameter r, the algebra AT
sketched above is isomorphic to the groupoid C∗-algebra of GT . This
links the two approaches.

Having outlined the general philosophy we hasten to remark that
we will not explain all its aspects in the main text. In particular, we
have nothing to say there about the physical aspects of the theory and
the description of the algebra of observables, referring here the reader
to [BZH] [KePu], or to the more original literature [B1] [B2] [K1].
Instead, our aim in this memoir is to discuss and compare the different
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commutative and non-commutative invariants, to demonstrate their
applicability as providing obstructions to a tiling arising as a substi-
tution, and finally to provide a practical method for computing them;
this we illustrate with a number of examples, including that of the
Ammann-Kramer (‘3 dimensional Penrose’) tiling. Broadly speaking,
one of the perspectives of this memoir is that non-commutative in-
variants for projection point patterns can be successfully computed
by working with suitable commutative analogues.

The subject of this book We work principally with the special
class of point sets (possibly with some decoration) obtained by cut
and projection from the integer lattice ZN which is generated by an
orthonormal base of RN . Reserving detail and elaborations for later,
we call a projection method pattern T on E = Rd a pattern of points
(or a finite decoration of it) given by the orthogonal projection onto
E of points in a strip (K × E) ∩ ZN ⊂ RN , where E is a subspace
of RN and K × E is the so-called acceptance strip, a fattening of E
in RN defined by some suitably chosen region K in the orthogonal
complement E⊥ of E in RN . The pattern T thus depends on the
dimension N , the positioning of E in RN and the shape of the accep-
tance domain K. When this construction was first made [dB1] [KD]
the domain K was taken to be the projected image onto E⊥ of the
unit cube in RN and this choice gives rise to the so-called canonical
projection method patterns, but for the first three chapters we allow
K to be any compact subset of E⊥ which is the closure of its interior
(so, with possibly even fractal boundary, a case of current physical
interest [BKS] [Sm] [Z] [GLJJ]).

It is then very natural to consider not only T but also all point
patterns which are obtained in the same way but with ZN repositioned
by some vector u ∈ RN , i.e., ZN replaced by ZN + u. Completing
certain subsets of positioning vectors u with respect to an appropri-
ate pseudo-metric gives us the continuous hull MT . This analysis
shows in particular that MT contains another transversal XT which
gives rise to d independant commuting Z actions and hence to a gen-
uine discrete dynamical system (XT , Zd) whose mapping torus is also
MT . This is a key point in relating the K-theory of AT with the
cohomology of T ; in the process, the latter is also identified with the
Čech cohomology of MT and with the group cohomology of Zd with
coefficients in the continuous integer valued functions over XT .

The space XT arises in another way. Let V be a connected com-
ponent of the euclidian closure of π⊥(ZN ), where π⊥ denotes the
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orthoprojection onto E⊥. We first disconnect V along the boundaries
of all π⊥(ZN )-translates of K (we speak loosely here, but make the
idea precise in Chapter I). Then XT can be understood as a compact
quotient of the disconnected V with respect to a proper isometric
free abelian group action. In the case of canonical projection method
patterns, on which we concentrate in the last two chapters, the bound-
aries which disconnect V are affine subspaces and so define a directed
system of locally finite CW decompositions of Euclidean space. With
respect to this CW-complex, the integer valued functions over XT
appear as continuous chains in the limit. This makes the group co-
homology of the dynamical action of Zd on XT accessible through
the standard machinery (exact sequences and spectral sequences) of
algebraic topology.

As mentioned, the interest in physics in the non-commutative
topology of tilings and point sets is based on the observation that
AT is the C∗-algebra of observables for particles moving in T . In
particular, any Hamilton operator which describes this motion has
the property that its spectral projections on energy intervals whose
boundaries lie in gaps of the spectrum belong to AT as well and thus
define elements of K0(AT ). Therefore, the ordered K0-group (or its
image on a tracial state) may serve to ‘count’ (or label) the possible
gaps in the spectrum the Hamilton operator [B2] [BBG] [K1]. One
of the main results of this memoir is the determination in Chapter
V of closed formulae for the ranks of the K-groups corresponding
to canonical projection method patterns with small codimension (as
one calls the dimension of V ). These formulæ apply to all common
tilings including the Penrose tilings, the octagonal tilings and three
dimensional icosahedral tilings. Unfortunately our method does not
as yet give full information on the order of K0 or the image on a
tracial state.

Further important results of this memoir concern the structure
of a K-group of a canonical projection method pattern. We find that
its K0-group is generically infinitely generated. But when the rank
of its rationalization is finite then it has to be free abelian. We ob-
serve in Chapters III and IV that both properties are obstruction to
some kinds of self-similarity. More precisely, infinitely generated ra-
tionalized cohomology rules out that the tiling is a substitution tiling.
On the other hand, if we know already that the tiling is substitu-
tional then its K-group must be free abelian for it to be a canonical
projection method tiling.

No projection method pattern is known to us which has both
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infinitely generated cohomology and also allows for local matching
rules in the sense of [Le]. Furthermore, all projection method patterns
which are used to model quasicrystals seem to have a finitely generated
K0-group. We cannot offer yet an interpretation of the fact that some
patterns produce only finitely many generators for their cohomology
whereas others do not, but, if understood, we hope it could lead to
a criterion to single out a subset of patterns relevant for quasicrystal
physics from the vast set of patterns which may be obtained from the
projection method.

We have mentioned above the motivation from physics to study
the topological theory of point sets or tilings. The theory is also
also of great interest for the theory of topological dynamical sys-
tems, since in d = 1 dimensions the dynamical systems mentioned
above have attracted a lot of attention. In [GPS] the meaning of the
non-commutative invariants for the one dimensional case has been
analysed in full detail. Furthermore, substitution tilings give rise to
hyperbolic Z-actions with expanding attractors (hyperbolic attractors
whose topological dimensions are that of their expanding direction)
[AP] a subject of great interest followed up recently by Williams [W]
who conjectures that continuous hulls of substitution tilings (called
tiling spaces in [W]) are fiber bundles over tori with the Cantor set
as fiber. We have not put emphasis on this question but it may be
easily concluded from our analysis of Section I.10 that the contin-
uous hulls of projection method tilings are always Cantor set fiber
bundles over tori (although these tilings are rarely substitutional and
therefore carry in general no obvious hyperbolic Z-action). Anderson
and Putnam [AP] and one of the authors [K2] have employed the
substitution of the tiling to calculate topological invariants of it.

Organization of the book The order of material in this memoir is
as follows. In Chapter I we define and describe the various dynamical
systems mentioned above, and examine their topological relationships.
These are compared with the pattern groupoid and its associated C∗

algebra in Chapter II where these latter objects are introduced. Also
in Chapter II we set up and prove the equivalence of our various
topological invariants; we end the chapter by demonstrating how these
invariants provide an obstruction to a pattern being self-similar.

The remaining chapters offer three illustrations of the com-
putability of these invariants. In Chapter III we give a complete
calculation for all ‘codimension one’ projection patterns – patterns
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arising from the projection of slices of Zd+1 to Rd for more or less
arbitrary acceptance domains. In Chapter IV we give descriptions of
the invariants for generic projection patterns arising from arbitrary
projections ZN to Rd but with canonical acceptance domain. Here,
applying the result at the end of Chapter II, we prove the result men-
tioned above that almost all canonical projection method patterns
have infinitely generated cohomology and so fail to be substitution
tilings. In Chapter V we examine the case of canonical projection
method patterns with finitely generated cohomology, such as would
arise from a substitution system. We develop a systematic approach
to the calculation of these invariants and use this to produce closed
formulæ for the cohomology and K-theory of projection patterns of
codimension 1, 2 and 3: in principle the procedure can be iterated
to higher codimensions indefinitely, though in practice the formulæ
would soon become tiresome. Some parameters of these formulae al-
low for a simple description in arbitrary codimension, as e.g. the Euler
characterisitc (V.2.8). We end with a short description of the results
for the Ammann-Kramer tiling.

There is a separate introduction to each chapter where relevant
classical work is recalled and where the individual sections are de-
scribed roughly. We adopt the following system for crossreferences.
The definitions, theorems etc. of the same chapter are cited e.g. as
Def. 2.1 or simply 2.1. The definitions, theorems etc. of the another
chapter are cited e.g. as Def. II.2.1 or simply II.2.1.

A note on the writing of this book Originally this memoir was
conceived by the three authors as a series of papers leading to the re-
sults now in Chapters IV and V, aiming to found a calculus for projec-
tion method tiling cohomology. These papers are currently available
as a preprint-series Projection Quasicrystals I-III [FHKI-III] cover-
ing most of the results in this memoir. The authors’ collaboration on
this project started in 1997 and, given the importance of the subject
and time it has taken to bring the material to its current state, it is
inevitable that some results written here have appeared elsewhere in
the literature during the course of our research. We wish to acknowl-
edge these independent developments here, although we will refer to
them again as usual in the body of the text.

The general result of Chapter I, that the tiling mapping torus is
also a discrete dynamical mapping torus, and that the relevant dynam-
ics is an almost 1-1 extension of a rotation on a torus, has been known
with varying degrees of precision and generality for some time and we
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mention the historical developments in the introduction to Chapter
I. Our approach constructs a large topological space from which the
pattern dynamical system is formed by a quotient and so we follow
most closely the idea pioneered by Le [Le] for the case of canonical
projection tilings. The “Cantorization” of Euclidean space by corners
or cuts, as described by Le and others (see [Le] [H] etal.), is produced
in our general topological context in sections I.3, I.4 and I.9. In this,
we share the ground with Schlottmann [Sch] and Herrmann [He]
who have recently established the results of Chapter I in such (and
even greater) generality, Schlottmann in order to generalize results of
Hof and describe the unique ergodicity of the underlying dynamical
systems and Herrmann to draw a connection between codimension 1
projection patterns and Denjoy homeomorphisms of the circle. We
mention this relation at the end of chapter III.

Bellissard, Contensou and Legrand [BCL] compare the C∗-
algebra of a dynamical groupoid with a C∗-algebra of operators de-
fined on a class of tilings obtained by projection, the general theme of
Chapter II. Using a Rosenberg Shochet spectral sequence, they also
establish, for 2-dimensional canonical projection tilings, an equation
of dynamical cohomology and C∗ K-theory in that case. It is the first
algebraic topological approach to projection method tiling K-theory
found in the literature. We note, however, that the groupoid they con-
sider is not always the same as the tiling groupoid we consider, nor
do the dynamical systems always agree; the Penrose tiling is a case
in point, where we find that K0 of the spaces considered in [BCL] is
Z∞. The difference may be found in the fact that we consider a given
projection method tiling or pattern and its translates, while they con-
sider a larger set of tilings, two elements of which may sometimes be
unrelated by approximation and translation parallel to the projection
plane.
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I Topological Spaces and
Dynamical Systems

1 Introduction

In this chapter our broad goal is to study the topology and associ-
ated dynamics of projection method patterns, while imposing only
few restrictions on the freedom of the construction. From a specific
set of projection data we define and examine a number of spaces and
dynamical systems and their relationships; from these constructions,
in later chapters, we set up our invariants, defined via various topo-
logical and dynamical cohomology theories. In Chapter II we shall
also compare the commutative spaces of this chapter with the non-
commutative spaces considered by other authors in e.g. [B2] [BCL]
[AP] [K2].

Given a subspace, E, acceptance domain, K, and a position-
ing parameter u, we distinguish two particular Rd dynamical systems
constructed by the projection method, (MPu, Rd) and (MP̃u, Rd),
the first automatically a factor of the second. This allows us to de-
fine a projection method pattern (with data (E,K, u)) as a pattern,
T , whose dynamical system, (MT , Rd), is intermediate to these two
extreme systems. Sections 3 to 9 of this chapter provide a complete
description of the spaces and the extension MP̃u −→ MPu, showing,
under further weak assumptions on the acceptance domain, that it
is a finite isometric extension. In section 7 we conclude that this re-
stricts (MT , Rd) to one of a finite number of possibilities, and that
any projection method pattern is a finite decoration of its correspond-
ing point pattern Pu (2.1). The essential definitions are to be found
in Sections 2 and 4.

In section 10 we describe yet another dynamical system connected
with a projection method pattern, this time a Zd action on a Cantor
set X, whose mapping torus is the space of the pattern dynamical
system. It will be this dynamical system that, in chapters 3, 4 and 5,
will allow the easiest computation and discussion of the behaviour of
our invariants. For the canonical case with E⊥ ∩ ZN = 0 this is the
same system as that constructed in [BCL].

All the dynamical systems produced in this memoir are almost
1-1 extensions of an action of Rd or Zd by rotations (Def. 2.15) on
a torus (or torus extended by a finite abelian group). In each case
the dimension of the torus and the generators of the action can be

10
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computed explicitly. This gives a clear picture of the orbits of non-
singular points in the pattern dynamical system. A precursor to our
description of the pattern dynamical system can be found in the work
of Robinson [R2], who examined the dynamical system of the Pen-
rose tiling and showed that it is an almost 1-1 extension of a minimal
R2 action by rotation on a 4-torus. Although Robinson used quite
special properties of the tiling, Hof [H] has noted that these tech-
niques are generalizable without being specific about the extent of
the generalization.

Our approach is quite different from that of Robinson and, by
constructing a larger topological space from which the pattern dy-
namical system is formed by a quotient, we follow most closely the
approach pioneered by Le [Le] as noted in the General Introduction.
The care taken here in the topological foundations seems necessary for
further progress and to allow general acceptance domains. Even in the
canonical case, Corollary 7.2 and Proposition 8.4 of this chapter, for
example, require this precision despite being direct generalizations of
Theorem 3.8 in [Le]. Also, as mentioned in the General Introduction,
many of the results of this Chapter are to be found independently in
[Sch].

2 The projection method and associated geometric
constructions

We use the construction of point patterns and tilings given in Chap-
ters 2 and 5 of Senechal’s monograph [Se] throughout this paper,
adding some assumptions on the acceptance domain in the following
definitions.

Definitions 2.1 Consider the lattice ZN sitting in standard posi-
tion inside RN (i.e. it is generated by an orthonormal basis of RN ).
Suppose that E is a d dimensional subspace of RN and E⊥ its ortho-
complement. For the time being we shall make no assumptions about
the position of either of these planes.

Let π be the projection onto E and π⊥ the projection onto E⊥.
Let Q = E + ZN (Euclidean closure). This is a closed subgroup

of RN .
Let K be a compact subset of E⊥ which is the closure if its

interior (which we write IntK) in E⊥. Thus the boundary of K in
E⊥ is compact and nowhere dense. Let Σ = K + E, a subset of RN

sometimes refered to as the strip with acceptance domain K.
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A point v ∈ RN is said to be non-singular if the boundary, ∂Σ, of
Σ does not intersect ZN + v. We write NS for the set of non-singular
points in RN . These points are also called regular in the literature.

Let P̃v = Σ ∩ (ZN + v), the strip point pattern.

Define Pv = π(P̃v), a subset of E called the projection point
pattern.

In what follows we assume E and K are fixed and suppress mention
of them as a subscript or argument.

Lemma 2.2 With the notation above,
i/ NS is a dense Gδ subset of RN invariant under translation by

E.
ii/ If u ∈ NS, then NS ∩ (Q + u) is dense in Q + u.
iii/ If u ∈ NS and F is a vector subspace of RN complementary

to E, then NS ∩ (Q + u) ∩ F is dense in (Q + u) ∩ F .

Proof i/ Note that RN \ NS is a translate of the set ∪v∈ZN (∂K +
E + v) (where the boundary is taken in E⊥) and our conditions on K
complete the proof.

ii/ NS ∩ (Q + u) ⊃ E + ZN + u.

iii/ (E + ZN + u) ∩ F = (Q + u) ∩ F . ¤

Remark 2.3 The condition on the acceptance domain K is a topo-
logical version of the condition of [H]. We note that our conditions
include the examples of acceptance domains with fractal boundaries
which have recently interested quasicrystalographers [BKS] [Sm] [Z]
[GLJJ].

In the original construction [dB1] [KD] K = π⊥([0, 1]N ). We
call this the canonical acceptance domain and we reserve the name
canonical projection method pattern for the patterns Pu produced from
this acceptance domain. Sometimes this is shortened to canonical
pattern for convenience.

This is closely related to the canonical projection tiling, defined
by [OKD] formed by a canonical acceptance domain, u ∈ NS and
projecting onto E those d-dimensional faces of the lattice ZN + u
which are contained entirely in Σ. We write this tiling Tu.

The following notation and technical lemma makes easier some calcu-
lations in future sections.
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Definition 2.4 If X is a subspace of Y , both topological spaces, and
A ⊂ X, then we write IntXA to mean the interior of A in the subspace
topology of X.

Likewise we write ∂XA for the boundary of A taken in the sub-
space topology of X.

Lemma 2.5 a/ If u ∈ NS, then (Q+u)∩IntK = Int(Q+u)∩E⊥((Q+
u) ∩ K) and (Q + u) ∩ ∂E⊥K = ∂(Q+u)∩E⊥((Q + u) ∩ K).

b/ If u ∈ NS, then ((Q + u)∩E⊥) \NS = ∂(Q+u)∩E⊥((Q + u)∩

K) + π⊥(ZN ).

Proof a/ To show both facts, it is enough to show that (∂E⊥K) ∩
(Q + u) has no interior as a subspace of (Q + u) ∩ E⊥.

Suppose otherwise and that U is an open subset of ∂K ∩ (Q+ u)
in (Q+u)∩E⊥. By the density of π⊥(ZN ) in Q∩E⊥, we find v ∈ ZN

such that u ∈ U + π⊥(v). But this implies that u ∈ ∂K + π⊥(v) and
so u 6∈ NS - a contradiction.

b/ By defintion the left-hand side of the equation to be proved
is equal to (∂E⊥K + π⊥(ZN )) ∩ (Q + u) which equals (∂E⊥K ∩ (Q +
u)) + π⊥(ZN ) since π⊥(ZN ) is dense in Q∩E⊥. By part a/ therefore
we obtain the right-hand side of the equation. ¤

Condition 2.6 We exclude immediately the case (Q+u)∩ IntK = ∅
since, when u ∈ NS, this is equivalent to Pu = ∅.

Examples 2.7 We note the parameters of two well-studied examples,
both with canonical acceptance domain (2.3).

The octagonal tiling [Soc] has N = 4 and d = 2, where E is a
vector subspace of R4 invariant under the action of the linear map
which maps orthonormal basis vectors e1 7→ e2, e2 7→ e3, e3 7→ e4,
e4 7→ −e1. Its orthocomplement, E⊥, is the other invariant subspace.
Here Q = R4 and so many of the distinctions made in subsequent
sections are irrelevant to this example.

The Penrose tiling [Pe] [dB1] has N = 5 and d = 2 (although
we note that there is an elegant construction using the root lattice of
A4 in R4 [BJKS]). The linear map which maps ei 7→ ei+1 (indexed
modulo 5) has two 2 dimensional and one 1 dimensional invariant
subspaces. Of the first two subspaces, one is chosen as E and the
other we name V . Then in fact Q = E ⊕ V ⊕ ∆̃, where ∆̃ = 1

5 (e1 +
e2 + e3 + e4 + e5)Z, and Q is therefore a proper subset of R5, a fact
which allows the construction of generalized Penrose tilings using a
parameter u ∈ NS \ Q.
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Note that we speak of tilings and yet only consider point patterns.
In both examples, the projection tiling [OKD] is conjugate to both
the corresponding strip point pattern and projection point pattern, a
fact proved in greater generality in section 8.

We develop these geometric ideas in the following lemmas. The next
is Theorem 2.3 from [Se].

Theorem 2.8 Suppose that ZN is in standard position in RN and
suppose that φ: RN −→ Rn is a surjective linear map. Then there is a
direct sum decomposition Rn = V ⊕W into real vector subspaces such
that φ(ZN ) ∩ V is dense in V , φ(ZN ) ∩ W is discrete and φ(ZN ) =
(V ∩ φ(ZN )) + (W ∩ φ(ZN )). ¤

We proceed with the following refinement of Proposition 2.15 of [Se].

Lemma 2.9 Suppose that ZN is in standard position in RN and sup-
pose that φ: RN −→ F is an orthogonal projection onto F a sub-
space of RN . With the decomposition of F implied by Theorem 2.8,
(F ∩ ZN ) + (V ∩ φ(ZN )) ⊂ φ(ZN ) as a finite index subgroup.

Also, the lattice dimension of F ∩ ZN equals dimF − dimV and
the real vector subspace generated by F ∩ ZN is orthogonal to V .

Proof Suppose that U is the real linear span of ∆ = F ∩ZN . Since ∆
is discrete, the lattice dimension of ∆ equals the real space dimension
of U .

The argument of the proof of Proposition 2.15 in [Se] shows
that each element of F ∩ ZN is orthogonal to V . Therefore we have
dimR(U) ≤ dimR(F ) − dimR(V ) immediately.

Consider the rational vector space QN , contained in RN and con-
taining ZN , both in canonical position. Let U ′ be the rational span
of ∆ and note that U ′ = U ∩QN and that dimQ(U ′) = dimR(U). Let
U ′⊥ be the orthocomplement of U ′ with respect to the standard inner
product in QN so that, by simple rational vector space arguments,
QN = U ′⊕U ′⊥. Thus (U ′∩ZN )+(U ′⊥∩ZN ) forms a discrete lattice
of dimension N .

Extending to the real span, we deduce that (U∩ZN )+(U⊥∩ZN )
is a discrete sublattice of ZN of dimension N , hence a subgroup of
finite index. Also the lattice dimension of U ∩ ZN and U⊥ ∩ ZN are
equal to dimR(U) and dimR(U⊥) respectively.

Let L = (U⊥ ∩ ZN ) be considered as a sublattice of U⊥. It is
integral (with respect to the restriction of the inner product on RN )
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and of full dimension. The projection φ restricts to an orthogonal
projection U⊥ −→ U⊥ ∩ F and, by construction, U⊥ ∩ F ∩ L = 0.
Therefore Proposition 2.15 of [Se] applies to show that φ(L) is dense
in U⊥ ∩ F and that φ is 1-1 on L.

However φ(L) ⊂ φ(ZN ) and so, by the characterisation of Theo-
rem 2.2, we deduce that U⊥ ∩ F ⊂ V . However, since U⊥ ⊃ V , we
have U⊥ ∩ F = V .

We have U ∩ ZN = F ∩ ZN and φ(U⊥ ∩ ZN ) = φ(ZN ) ∩ V
automatically. Therefore (φ(ZN ) ∩ V ) + (F ∩ ZN ) = φ((U⊥ ∩ ZN ) +
(U ∩ ZN )). As proved above, this latter set is the image of a finite
index subgroup of the domain, ZN , and therefore it is a finite index
subgroup of the image φ(ZN ) as required.

The remaining properties follow quickly from the details above.
¤

Definition 2.10 Let ∆ = E⊥ ∩ ZN and ∆̃ = U ∩ π⊥(ZN ) where U
is the real vector space generated by ∆.

Note that the discrete group ∆ defined here is not the real vector
space ∆(E) defined in [Le], but it is a cocompact sublattice and so
the dimensions are equal.

Corollary 2.11 With the notation of Theorem 2.8 and taking φ = π⊥,
π⊥(ZN ) = V ⊕ ∆̃ and Q = E ⊕ V ⊕ ∆̃ are orthogonal direct sums.

Moreover, ∆ is a subgroup of ∆̃ with finite index. ¤

Example 2.12 For example the octagonal tiling has ∆ = 0 and the
Penrose tiling has ∆ = (e1 + e2 + e3 + e4 + e5)Z, a subgroup of index

5 in ∆̃.

And finally a general result about isometric extensions of dynamical
systems.

Definition 2.13 Suppose that ρ: (X,G) −→ (Y,G) is a factor map
of topological dynamical systems with group, G, action. If every fibre
ρ−1(y) has the same finite cardinality, n, then we say that (X,G) is
an n-to-1 extension.

The structure of such extensions, a special case of isometric exten-
sions, is well-known [F].
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Lemma 2.14 Suppose that ρ: (X,G) −→ (Y,G) is an n-to-1 extension
and that (X,G) is minimal. Suppose further that there is an abelian
group H which acts continuously on X, commutes with the G action,

preserves ρ fibres and acts transitively on each fibre. If (X,G)
ρ′

−→

(Z,G)
ρ′′

−→ (Y,G) is an intermediate factor, then (Z,G) is an m-to-1
extension where m divides n, and we can find a subgroup, H ′ of H,
so that

i/ H/H ′ acts continuously on Z, commutes with the G action,
preserves ρ′′ fibres and acts transitively on each fibre and

ii/ H ′ acts on X as a subaction of H, preserving ρ′ fibres and
acting transitively on each fibre.

Proof Given h ∈ H, consider Xh = {x | ρ′(x) = ρ′(hx)} which is a
closed G-invariant subset of X. Therefore, by minimality, Xh = ∅ or
X. Let H ′ = {h ∈ H | Xh = X} which can be checked is a subgroup
of H. The properties claimed follow quickly. ¤

Definitions 2.15 We will call an extension which obeys the condi-
tions of Lemma 2.14 a finite isometric extension.

We say an almost 1-1 extension of topological dynamical systems
ρ: (X,G) −→ (Y,G) is one in which the set ρ−1(y) is a singleton for a
dense Gδ of y ∈ Y . In the case of minimal actions, it is sufficient to
find just one point y ∈ Y for which ρ−1(y) is a singleton.

We say that an abelian topological group, G, acting on a compact
abelian topological group, Z say, acts by rotation if there is a contin-
uous group homomorphism, ψ : G −→ Z such that gz = z + ψ(g) for
all z ∈ Z and g ∈ G.

3 Topological spaces for point patterns

When v is non-singular, Pv forms an almost periodic pattern of points
in the sense that each spherical window, whose position is shifted
over the infinite pattern, reveals the same configuration at a syndetic
(relatively dense) set of positions [Se]. We may formulate this fact
precisely in terms of minimal dynamics in a well-known process. Here
we note the relevant constructions and lemmas.

Definition 3.1 Let B(r) be the closed ball in E, centre 0 and of
radius r with boundary ∂B(r). Given a closed subset, A, of RN ,
define A[r] = (A ∩ B(r)) ∪ ∂B(r), a closed subset of B(r). Consider
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the Hausdorff metric dr defined among closed subsets of B(r) and
define a metric (after [R1], [S2]) on closed subsets of the plane by

D(A,A′) = inf{1/(r + 1) | dr(A[r], A′[r]) < 1/r}.

We are grateful to Johansen for pointing out that the topology in-
duced by D on subsets of E is precisely the topology induced when E
is embedded canonically in its one-point compactification, the sphere
of dimension dimE, and the Hausdorff metric is used to compare sub-
sets of this sphere. Such an observation proves quickly the following
Proposition which appears first in [Ru] (see also [R1] and [Ra]).

Proposition 3.2 If u ∈ NS, then the sets {Pv | v ∈ NS} and
{Pv | v ∈ u + E} are precompact with respect to D. ¤

Definition 3.3 Define

MP = {Pv | v ∈ NS}

and
MPu = {Pv | v ∈ u + E},

the completions of the above sets with respect to D. The symbol M
is used throughout this paper to indicate a construction such as this:
a “Mapping Torus” or continuous hull.

Remark 3.4 The term “continuous hull” (of Pu with respect to D)
simply refers to the fact that MPu is the D-closure of the orbit of
Pu under the continuous group E. A similar construction starts not
with a point set or a tiling but with an operator on a Hilbert space
[B2], this is where the name came from. See [BZH] for details and
a comparison.

Note that ∆ = 0 if and only if MP = MPu for all u ∈ NS, which
happens if and only if MP = MPu for some u ∈ NS.

Also Pv forms a Delone set (see [S2]), so we deduce that, for
w ∈ E and ||w|| small enough, D(Pv, Pv+w) = ||w||/(1 + ||w||).

Proposition 3.5 Suppose that w ∈ E, then the map Pv 7→ Pv+w,
defined for v ∈ NS, may be extended to a homeomorphism of MP ,
and the family of homeomorphisms defined by taking all choices of
w ∈ E defines a group action of Rd ∼= E on NS.
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Also for each u ∈ NS, MPu is invariant under this action of E
and E acts minimally on MPu. ¤

The dynamical system MPu with the action by E ∼= Rd is the dynam-
ical system associated with the point pattern Pu, analogous to that
constructed by Rudolf [Ru] for tilings. We modify this to an action
by E on a non-compact cover of MPu as follows.

Definition 3.6 For v, v′ ∈ RN , write D(v, v′) = D(Pv, Pv′)+||v − v′||;
this is clearly a metric. Let Π be the completion of NS with respect
to this metric.

The following lemma starts the basic topological description of these
spaces.

Lemma 3.7 a/ The canonical injection NS −→ RN extends to a con-
tinuous surjection µ: Π −→ RN . Moreover, if v ∈ NS, then µ−1(v) is
a single point.

b/ The map v 7→ Pv, v ∈ NS, extends to a continuous E-
equivariant surjection, η: Π −→ MP , which is an open map.

c/ The action by translation by elements of E on NS extends to
a continuous action of Rd ∼= E on Π.

d/ Similarly the translation by elements of ZN is D-isometric and
extends to a continuous action of ZN on Π. This action commutes
with the action of E found in part c/.

e/ If a ∈ MP and b ∈ RN , then |η−1(a) ∩ µ−1(b)| ≤ 1.

Proof a/ The only non-elementary step of this part is the latter sen-
tence.

We must show that if v ∈ NS then for all ε > 0 there is a δ > 0
such that ||w − v|| < δ and w ∈ NS implies that D(Pw, Pv) < ε.
However, we know that if B is a ball in RN of radius much bigger
than 1/(2ε), then (ZN + v) ∩ B is of strictly positive distance, say
at least 2δ with δ > 0 chosen < ε/2, from ∂Σ. Therefore, whenever
π(v − w) = 0 and ||v − w|| < δ, we have Pv ∩ B = Pw ∩ B and hence
D(Pv, Pw) < δ . On the other hand, if π(v − w) 6= 0 but ||v − w|| < δ
then we may replace w by w′ = w + π(v −w), a displacement by less
than δ. By the remark (3.4), we deduce that D(Pw, Pw′) < δ and so
we have D(Pw, Pv) < 2δ < ε in general, as required.

b/ The extension to η, and the equivariance and surjectivity,
are immediate. The open map condition is quickly confirmed using
remark (3.4).
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c/ follows from the uniform action of E noted in Remark 3.4.
d/ follows similarly where uniform continuity is immediate from the
isometry.

Note that e/ is a direct consequence of the definition of the metric
D. ¤

Definition 3.8 For u ∈ NS, let Πu be the completion of E + ZN + u
with respect to the D metric.

Lemma 3.9 For u ∈ NS, Πu is a closed E + ZN -invariant subspace
of Π. If x ∈ Πu, then (E + ZN )x, the orbit of x under the E and ZN

actions, is dense in Πu. Consequently

a/ The injection, E + ZN + u −→ RN extends to a continuous
map, equal to the restriction of µ to Πu, µu: Πu −→ RN , whose image
is Q + u.

b/ By extending the action by translation by elements of E + ZN

on E +ZN +u, E +ZN acts continuously and minimally on Πu. This
is the restriction of the action of Lemma 3.7 c/ and d/.

c/ The map v 7→ Pv, v ∈ E + ZN + u, extends to an open
continuous E-equivariant surjection, ηu: Πu −→ MPu, which is the
restriction of η.

d/ If x ∈ Πu and v ∈ E + ZN acts on Πu fixing x, then in fact
v = 0.

Proof The first sentence is immediate since, by definition, Πu is the
closure of an E + ZN orbit in Π.

Suppose that x ∈ Πu and that y ∈ E +ZN +u which we consider
as a subset of Πu. Then there are xn ∈ E + ZN +u such that xn → x
in the D metric. Write βn: Πu −→ Πu for the translation action
by −xn and write α for the translation action by y. Then we have
µ(βn(x)) → 0 and so µ(αβn(x)) = y + µ(βn(x)) → y.

But, since µ is 1-1 at y ∈ NS by Lemma 3.7 a/, we deduce that
D(αβn(x), y) → 0 and so y is in the closure of the E + ZN orbit of x.
However the orbit of y is dense and so we have the density of the x
orbit as well.

The lettered parts follow quickly from this. ¤

By the results of parts b/ and c/ of Lemma 3.9, we may drop the
suffix u from the maps µu and ηu without confusion, and this is what
we do unless it is important to note the domain explicitly.
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The aim of the next few sections is to fill in the fourth corner of
the commuting square

Πu

η
−−−→ MPu

yµ

y?

(Q + u)
?

−−−→ ?

in a way which illuminates the underlying structure.

4 Tilings and Point Patterns

We now connect the original construction of projection tilings due to
Katz and Duneau [KD] with the point patterns that we have been
considering until now. We refer to [OKD] and [Se] for precise de-
scriptions of the construction; we extract the points essential for our
argument below.

We note two developments of the D metric (3.1) which will be
used ahead. The first development is also E.A.Robinson’s original
application of D [R1].

Definition 4.1 We suppose that we have a finite set of pointed com-
pact subsets of E which we call the units, and we suppose that we have
a uniformly locally finite subset of E, a point pattern. A pattern, T , in
E (with these units and underlying point pattern) is an arrangement
of translated copies of the units in E, the distinguished point of each
copy placed over a point of the point pattern, no point of the point
pattern uncovered and no point of the point pattern covered twice.
Sometimes, an underlying point pattern is not mentioned explicitly.

For example we could take a tiling of E and let the pattern con-
sist of the boundaries of the tiles with superimposed decorations, i.e.
small compact sets, in their interior giving further asymmetries or
other distinguishing features. Or we could take a point pattern, per-
haps replacing each point with one of a finite number of decorations.
See [GS] for a thorough discussion of this process in general.

By taking the union of all the units of the pattern, we obtain a
locally compact subset P (T ) of E which can be shifted by elements of
E, P (T ) 7→ P (T )+v, and these various subsets of E can be compared
using D literally as defined (3.1) (the addition of further decorations
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can also solve the problem of confusing overlap of adjacent units of
the pattern, a complication which we ignore therefore without loss
of generality). Under natural conditions (see [Ru] [S2]), which are
always satisfied in our examples, the space {P (T ) + v | v ∈ E} is
precompact with respect to the D metric and its closure, the contin-
uous hull of T written MT here, supports a natural continuous E
action. The pattern dynamical system of T is this dynamical system
(MT , E).

Definition 4.2 The second development adapts D to compare subsets
of Σ. Recall the notation B(r) for the closed Euclidean r-ball in E
(3.1). Let C(r) = π−1(B(r)) ∩ Σ and let dC(r) = π−1(∂B(r)) ∩ Σ.

Given a subset, A, of Σ define A[r] = (A ∩ C(r)) ∪ dC(r). Let
d′r be the Hausdorff metric defined among closed subsets of C(r) and
define a metric on subsets of Σ by

D′(A,A′) = inf{1/(r + 1) | d′r(A[r], A′[r]) < 1/r}

Let D
′
(v, w) = D′(P̃v, P̃w) + ||v − w||, where we recall that P̃v = Σ ∩

(ZN + v).

Let MP̃u be the D′-closure of the space {P̃v | v ∈ E +u}, and let

Π̃u be the D
′
completion of NS ∩ (Q+u). Let MP̃ be the D′ closure

of the space {P̃v | v ∈ NS}.
The analogues of Proposition 3.5 and Lemma 3.9 with respect to

P̃ , MP̃ , Π̃u, MP̃u and Q+u, continue to hold and so we define maps
µ̃: Π̃u −→ Q + u and η̃: Π̃u −→ MP̃u.

We use the projection π to compare the strip pattern with the projec-
tion pattern. It will turn out that π is a homeomorphism between Πu

and Π̃u, but that the definition of Π̃u will be more convenient than
that of Πu. Using π we may work with either space.

Theorem 4.3 There are E-equivariant maps π∗ induced by the pro-
jection π which complete the commuting square

Π̃u

π∗

−−−→ Πu

yη̃

yη

MP̃u

π∗

−−−→ MPu
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Furthermore we have the following commuting square

Π̃u

π∗

−−−→ Πu

yµ̃

yµ

Q + u ==== Q + u

in which all the labelled maps are 1-1 on NS. ¤

Consider the example of the canonical projection tiling, Tu (2.3). If

we know P̃u then we have all the information needed to reconstruct Tu

by its definition. Conversely, the usual assumption that the projected
faces are non-degenerate (see [Le] (3.1)) allows us to distinguish the
orientation of the lattice face (in ZN ) from which a given tile came.

Piecing together all the faces defined this way obtains P̃u. So the
canonical projection tiling is conjugate (in the sense defined ahead in

4.5) to P̃u.
On the other hand, the well-known Voronoi or Dirichlet tiling

[GS] obtained from a point pattern in E is a tiling conjugate to the
original point pattern provided we decorate each tile with the point
which generates it.

With these two examples of tiling in mind, we consider the pat-
tern P̃u to represent the most elaborate tiling or pattern that can be
produced by the projection method, without imposing further deco-
rations not directly connected with the geometry of the construction,
and at the other extreme, the point pattern, Pu, represents the least
decorated tiling or pattern which can be produced by the projection
method.

Definition 4.4 For a given E and K as in (2.1), we include in the
class of projection method patterns all those patterns, T , of Rd such
that there is a u ∈ NS and two E-equivariant surjections

MP̃u −→ MT −→ MPu

whose composition is π∗.
We call (E,K, u) the data of the projection method and by pre-

senting these data we require tacitly that K has the properties of
Definition 2.1, that u ∈ NS and that (Q + u) ∩ IntK 6= ∅ (2.6).
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Thus the tilings of [OKD] and the Voronoi tilings discussed above are
examples from this class when K = π⊥([0, 1]N ). In order to compare
these two constructions, or to consider projection method patterns in
the general sense of (4.4), we aim to describe π∗:MP̃u −→ MPu.

First we adopt the following definitions which possibly duplicate
notions already existing in the literature.

Definitions 4.5 Adapting a definition of Le [Le], we say that two
patterns, T , T ′, in E are topologically conjugate if there is an E-
equivariant homeomorphism, MT ↔ MT ′.

Say that the two patterns, T , T ′, are pointed conjugate if there
is an E-equivariant homeomorphism, MT ↔ MT ′, which maps T to
T ′.

A pattern T ′ is a finite decoration of a pattern T if there are
real numbers r and s so that the following happens: i/ T may be
constructed from T ′ by a transformation which alters the unit of T
at a point v ∈ Rd according only to how T appears in the ball v+B(r):
and ii/, conversely, if, for any choice of w ∈ Rd we know what T ′ looks
like in the ball w + B(s), then we can construct the remainder of T ′

from T by a transformation (depending perhaps on the appearance of
T ′ in the ball w + B(r)) which alters the unit of T ′ at a point v ∈ Rd

according only to how T ′ appears in the ball v + B(r).
Finally, we say that a pattern is a Meyer pattern if the underlying

point pattern is a Meyer set, that is a set M for which we can find R
and r so that M −M intersects every R-ball in at least one point and
intersects every r ball in at most one point.

Remark 4.6 Note that all the patterns we consider in this paper are
(pointed conjugate to) Meyer patterns. This is the starting point for
Schlottmann’s analysis of the projection method [Sch].

To tie these definitions in to the exisiting literature, we note that
topological conjugacy is strictly weaker than local isomorphism (as in
[Le] for example) and strictly stronger than equal quasicrystal type
[R1]. Pointed conjugacy is strictly stronger than mutual local deriv-
ability [BSJ] and topological equivalence [K3], but has no necessary
relation with local isomorphism and quasicrystal type. Finite decora-
tion is strictly weaker than local derivability [BSJ].

However, we have the following, an immediate application of the
definitions to the fact that an n-to-1 factor map (see 2.13) is an open
map [F].

Lemma 4.7 Suppose we have two Meyer patterns, T , T ′, in E and



24 A. FORREST, J. HUNTON AND J. KELLENDONK

a continuous E-equivariant surjection MT ′ −→ MT which is n-to-1,
sending T ′ to T . Then T ′ is a finite decoration of T . ¤

5 Comparing Πu and Π̃u

We start by examining π∗: Π̃u −→ Πu from (4.3) and seek conditions
under which it is a homeomorphism. As the section proceeds we
shall find that the conditions can be whittled away to the minimum
possible. Recall the space V , one of the orthocomponents of the
decomposition of Q in Corollary 2.11. It is the connected component
of π⊥(ZN ) containing 0.

Lemma 5.1 Suppose that u ∈ NS and that, for all v ∈ Q+u such that
v ∈ ∂((V +v)∩IntK) (the boundary taken in V +v), we have (∆+v)∩

K = {v}; then π∗: Π̃u −→ Πu is an E-equivariant homeomorphism.

Proof We ask under what circumstances could we find x ∈ Πu with
two preimages under π∗ in Π̃u? We would need two sequences vn, wn ∈
(Q+u)∩NS both converging to x in the D metric such that P̃vn

and

P̃wn
have different D

′
limits, say A and B respectively. From this we

see that A∆B ⊂ ∂Σ (symmetric difference) and yet π(A) = π(B).
Let p ∈ π(A∆B) and consider the set (A∆B)∩π−1(p). As noted

above, this set is a subset of the boundary of Σ ∩ π−1(p) ≡ K and
each pair of elements is separated by some element of ∆.

Suppose that a ∈ (A \ B) ∩ π−1(p). By construction, there are

an ∈ (Q+u)∩NS∩P̃vn
converging to a implying that a ∈ ∂((Q+u)∩

IntK). But by hypothesis, we deduce B∩π−1(p) = ∅ - a contradiction
to the fact that p ∈ π(A) = π(B).

A symmetric argument produces a contradiction from b ∈ (B \
A) ∩ π−1(p). ¤

Note that if ∆ = 0 or, more generally, if K ∩ (K + δ) = ∅ whenever
δ ∈ ∆, δ 6= 0, then the hypothesis of the Lemma is satisfied trivially.

Corollary 5.2 If ∆ = 0, then π∗: Π̃u −→ Πu is an E-equivariant
homeomorphism. ¤

In special cases the hypothesis is satisfied less trivially. We give a
slightly more special condition here.

Lemma 5.3 Suppose that J is the closure of a fundamental domain
for ∆ in E⊥, and that J = IntJ in E⊥. If K is contained in some
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translate of J , then π∗: Π̃u −→ Πu is a homeomorphism. In particu-
lar, if K = π⊥([0, 1]N ), then π∗: Π̃u −→ Πu is a homeomorphism.

Proof For the first part, suppose that a, b ∈ K and 0 6= a−b = δ ∈ ∆,
then, by construction, a and b sit one in each of two hyperplanes or-
thogonal to δ between which K lies. Note that then these hyperplanes
are therefore both parallel to V and each intersects K only in a subset
of ∂K. Therefore, a, b ∈ ∂K and further, since V +a and V +b are con-
tained one in each of the hyperplanes, we have a 6∈ ∂((V +a)∩ IntK)
(boundary in V + a) and b 6∈ ∂((V + b) ∩ IntK) (similis). Therefore
the conditions of Lemma 5.1 are fulfilled vacuously.

In the second part, suppose the domain K = π⊥([0, 1]N ) and
that δ = (δ1, δ2, ..., δN ) ∈ ∆, δ 6= 0 (the case ∆ = 0 is easy). Consider
the set I = {〈δ, t〉 | t ∈ K}, where 〈., .〉 is the inner product on RN .
This is a closed interval. Also, since δ is fixed by the orthonormal
projection π⊥, I = {〈δ, s〉 | s ∈ [0, 1]N}, from which we deduce that
the length of I is

∑
j |δj |. But since |δj | < 1 implies that δj = 0, we

have 〈δ, δ〉 =
∑

|δj |
2 ≥

∑
|δj | and so K can be fitted between two

hyperplanes orthogonal to δ and separated by δ.
Therefore K is contained in a translate of

⋂

δ∈∆,δ 6=0

{v ∈ E⊥ | |〈v, δ〉| ≤ (1/2)〈δ, δ〉 },

which in turn is contained in the closure of a fundamental domain for
∆. So we have confirmed the conditions of the first part. ¤

Remark 5.4 Using Lemma 2.5, the condition of Proposition 5.3 is
equivalent to the following condition: ((IntK) − (IntK)) ∩ ∆ = {0},
where we write A − A = {a − b | a, b ∈ A} for the arithmetic (self-
)difference of A, a subset of an abelian group. Compare with 8.2
ahead.

All of these results say that if K is small enough relative to ∆
then π∗ is a homeomorphism. In fact, we can dispense with all such
conditions, and the following construction gives a procedure to reduce
the size of a general acceptance domain appropriately.

Theorem 5.5 Suppose that E and K are as in definition 2.1, and that
u ∈ NS. Then π∗ : Π̃u −→ Πu is an E-equivariant homeomorphism.

Proof Suppose that E, K and u are chosen as required and that
∆ 6= 0. The case ∆ = 0 is covered by Corollary 5.2.
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Suppose that J is the closure of a fundamental domain for ∆ in
E⊥, such that J = IntJ in E⊥ and suppose, as we always can by
shifting J if necessary, that ∂J ∩ (Q + u) = ∅.

Let K ′ = (K + ∆) ∩ J . Then K ′ is a subset of E⊥ which obeys
the conditions required in the original definition of (2.1). Also the
placement of J ensures that the points in Q+u, in particular u itself,
which are non-singular with respect to K are also non-singular with
respect to K ′.

Moreover, if we define Σ′ = K ′+E, then, by construction, π(Σ′∩
(v +ZN )) = π(Σ∩ (v +ZN )) = Pu for all v ∈ RN . Therefore, working
with Σ′ instead of Σ, we can retrieve the projection point pattern,
Pu. So, by Lemma 5.3 and the fact that K ′ ⊂ J , we see that π∗ is a
homeomorphism between the spaces Πu and Π̃u(Σ′), the construction
of (4.2) with respect to Σ′.

However, for any v ∈ E + ZN + u, we have the equalities: Σ′ ∩
(v+ZN ) = Σ′∩((Σ∩(v+ZN ))+∆) and Σ∩(v+ZN ) = Σ∩((Σ′∩(v+
ZN ))+∆). Therefore the set Σ′∩(v+ZN ) can be constructed from Σ∩

(v + ZN ) = P̃v and vice versa. Moreover, this correspondence defines

a D metric isometry, between Π̃u(Σ′) and Π̃u, which intertwines π∗.

Completing the correspondence gives an isometry between Π̃u(Σ′) and

Π̃u which intertwines π∗, as required. ¤

Remark 5.6 We note a second process of reduction without loss of
generality. Until now we have assumed nothing about the rational
position of E, but it is convenient to assume and is often required in
the literature that E ∩ ZN = 0: the irrational case.

If we do not assume this then we can always reduce to the irra-
tional case by quotienting out the rational directions. A simple argu-
ment allows us to find in the most general case of projection method
pattern, P say, an underlying irrational projection method pattern,
P ′, with, MP = MP ′ × Tk for some value of k; and this torus factor
splits naturally with respect to the various constructions and group
actions we find later. We leave the details to the reader.

6 Calculating MP̃u and MPu

We now describe MP̃u and MPu as quotients of Π̃u and Πu respec-
tively. Although the last section established an equivalence between
Π̃u and Πu, we find it useful to distinguish the two constructions.

First we examine MP̃u and prove a generalisation of (3.8) of [Le].
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Proposition 6.1 Suppose that u ∈ NS, then there is an isometric
action of ZN on Π̃u, which factors by µ̃ to the translation action by
ZN on Q + u, and MP̃u = Π̃u/ZN . Thus we obtain a commutative
square of E equivariant maps

Π̃u

η̃
−−−→ MP̃u

yµ̃

yµ̃

Q + u −−−→ (Q + u)/ZN .

The left vertical map is 1-1 precisely at the points in NS ∩ (Q + u).
The right vertical map is 1-1 precisely on the same set, modulo the
action of ZN .

Proof The action of ZN on Π̃u, as an extension of the action on Q+u

by translation, is easy to define since the maps are D
′
-isometries.

If v, w ∈ NS then it is clear that P̃v = P̃w if and only if v −
w ∈ ZN . Moreover, there is δ > 0 so that ||v − w|| < δ implies that

D′(P̃v, P̃w) ≥ ||v − w||/2.

From this we see that, if P̃v = P̃w and P̃v′ = P̃w′ and ||v − v′|| <
δ/2 and ||w − w′|| < δ/2, then v − w = v′ − w′. The uniformity of δ
irrespective of the choice of v, w, v′ and w′ shows that the statement
η̃(v) = η̃(w) implies µ̃(v) − µ̃(w) ∈ ZN , which is true for v, w ∈

NS ∩ (Q + u), is in fact true for all pairs in Π̃u, the D
′
closure.

To show the 1-1 properties for the map on the left, suppose that
v ∈ Q + u and that p ∈ ∂Σ ∩ (ZN + v), i.e. v 6∈ NS. Then since K is
the closure of its interior and since NS is dense in RN (Lemma 2.2),
there are two sequences vn, v′n ∈ NS both converging to v in Euclidean
topology and such that p + (vn − v) ∈ Σ and p + (v′

n − v) 6∈ Σ. This

implies that any D′ limit point of P̃vn
contains p and any D′ limit

point of P̃v′
n

does not contain p. But both such limit points (which

exist by compactness of MP̃ ) are in µ̃−1(v) which is a set of at least
two elements therefore.

The 1-1 property for the map on the right follows directly from
this and the commuting diagram. ¤

The space (Q+u)/ZN and its E action, which is being compared with

MP̃u, also has a simple description.
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Lemma 6.2 With the data above, (Q+u)/ZN is a coset of the closure
of E mod ZN in RN/ZN ≡ TN . Therefore (Q + u)/ZN with its E
action is isometrically conjugate to a minimal action of Rd by rotation
on a torus of dimension N − dim ∆.

Proof The space Q mod ZN is equal to the closure of E mod ZN and
its translate by u mod ZN is an isometry which is E equivariant. The
action of E on its closure is isometric and transitive, hence minimal,
and is by translations. E is a connected subgroup of TN and so also
is the closure of E, which is therefore equal to a torus of possibly
smaller dimension. The codimension of this space agrees with the
codimension of V +E (the continuous component of Q) in RN which,
by Lemma 2.9 and Corollary 2.11, equals dim∆ as required. ¤

Now we turn to a description of MPu which is similar in form to that
of MP̃u, but as to be shown in examples 8.7 and 8.8, need not be
equal to MP̃u.

Lemma 6.3 Suppose that u ∈ NS. If v, w ∈ NS ∩ (Q + u) and
Pv = Pw then there are v∗ ∈ v + ZN and w∗ ∈ w + ZN such that
v∗, w∗ ∈ Σ and π(v∗) = π(w∗), and with this choice P̃v+∆−π⊥(v∗) =

P̃w + ∆ − π⊥(w∗).

Proof Fix po ∈ Pv = Pw and let v∗ ∈ P̃v be chosen so that π(v∗) = po

and similarly, let w∗ ∈ P̃w be chosen so that π(w∗) = po. Clearly v∗

and w∗ obey the conditions required. Also P̃w − π⊥(w∗) and P̃v −
π⊥(v∗) are both contained in po + ZN and project under π to the

same set Pv. Thus the difference of two points, one in P̃w − π⊥(w∗)

and the other in P̃v − π⊥(v∗), and each with the same image under
π, is an element of ∆ as required. ¤

Proposition 6.4 Suppose that x, y ∈ Πu and that η(x) = η(y), then
there is a v ∈ Q and a D isometry φ: Πu −→ Πu so that φ(x) = φ(y)
and the following diagram commutes

Πu

φ
−−−→ Πu

yµ

yµ

Q + u
w 7→w+v
−−−→ Q + u
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and ηuφ = ηu (here the restriction to Πu is important to note, c.f.
3.9). In this case we deduce v + u ∈ NS.

Conversely, if we have such an isometry in such a diagram and
if Pu+v = Pu, then v + u ∈ NS and ηuφ = ηu automatically.

Proof Suppose w ∈ E + ZN and that αw: Πu −→ Πu is the map
completed from the map z 7→ z +w defined first for z ∈ NS ∩ (Q+u)
(see Proposition 3.5). Then, since η(x) = η(y) and η is (E + ZN )-
equivariant, we have η(αw(x)) = η(αw(y)) for all w ∈ E + ZN . So,
by definition, the map αw(x) 7→ αw(y) defined point-by-point for
w ∈ E + ZN is a D isometry from the (E + ZN )-orbit of x onto the
(E + ZN )-orbit of y (By Lemma 3.9 d/ the mapping is well-defined).
These two orbits being dense (Lemma 3.9) in Πu, this map extends
as an isometry onto, φ: Πu −→ Πu.

Since µ is (E +ZN )-equivariant, we deduce the intertwining with
translation by v = µ(y)−µ(x). Also since ηφ = η on the E+ZN orbit
of x, the E-equivariance of η extends this equality over all of Πu.

Conversely suppose we have an isometry which intertwines the
translation by v on Q + u. Then for general topological reasons the
cardinality of the µ preimage of a point in Q + u is preserved by
translation by v and we deduce that NS ∩ (Q + u) is invariant under
the translation by v. In particular u + v ∈ NS. The equation follows
since it applies, by hypothesis and Lemma 6.3, at u and therefore, by
equivariance, at all points in E + ZN + u, a dense subset. ¤

Definition 6.5 For u ∈ NS, let Ru = {v ∈ Q | v + u ∈ NS,Pu+v =
Pu}.

Corollary 6.6 Suppose that u ∈ NS and w ∈ NS ∩ (Q + u), then
Rw = Ru. Therefore, if v ∈ Ru, then v + w ∈ NS ∩ (Q + u) for all
w ∈ NS ∩ (Q + u).

Proof By Lemma 3.9, we know that Πw
ηw
−→ Q + w equals Πu

ηu
−→

Q + u and so any isometry of Πu which factors by η through to a
translation by v also does the same for Πw. Proposition 6.4 completes
the equivalence.

The second sentence follows directly from the definition of Rw.
¤

Remarks 6.7 It would be natural to hope that the condition u+ v ∈
NS could be removed from the definition of Ru. We have been unable
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to do this in general. But since NS is a dense Gδ set (2.2) and,
anticipating Theorem 7.1, Ru is countable, we see that for a dense
Gδ set of u ∈ NS (generically) we can indeed equate Ru = {v ∈ Q :
Pu+v = Pu}.

This is bourne out in Corollary 6.6 where we see that Ru is defined
independently of the choice of u generically, and Ru can be thought
of as an invariant of Πu. This result also shows that Ru is a subset of
the translations of RN which leave NS ∩ (Q + u) invariant.

Note that, since µ is 1-1 only on NS, Ru could as well have been
defined as {v ∈ Q | ηµ−1(u + v) = {Pu} }.

It is clear that ZN ⊂ Ru.

Theorem 6.8 If u ∈ NS, then Ru is a closed subgroup of Q. Also Ru

acts by φ isometrically on Πu and defines a homeomorphism Πu/Ru ≡
MPu. Moreover the Ru action commutes with the E-action, so the
homeomorphism is E-equivariant.

Proof The main point to observe is that Ru consists precisely of those
elements v such that there is an isometry φv as in Proposition 6.4 with
ηuφv = ηu. Since the inverse of such an isometry is another such, and
the composition of two such isometries produces a third, we deduce
the group property for Ru immediately. The isometric action is given
to us and Proposition 6.4 shows directly that Πu/Ru ≡ MPu.

Closure of Ru is more involved. Suppose that vn ∈ Ru and that
vn → v in the Euclidean topology. Then φvn

is uniformly Cauchy
and so converges uniformly to a bijective isometry, ψ, of Πu which
intertwines the translation by v on Q + u. Therefore, if µ−1(u + v)
has at least two elements, then so also does ψ−1µ−1(u + v), but this
set is contained in µ−1(u), a contradiction since µ−1(u) is a singleton.
Therefore u + v ∈ NS and µ−1(u + v) = ψµ−1(u) = limφvn

µ−1(u) =
lim µ−1(u + vn) = µ−1(u). Thus v ∈ Ru and so Ru is closed.

The commutativity with the E action on Πu is immediate from
the corresponding commutativity on Q + u. ¤

7 Comparing MPu with MP̃u

In Section 4 we defined projection method patterns as those whose
dynamical system sits intermediate to MP̃u and MPu. We discover in
this section how closely these two spaces lie and circumstances under
which they are equal.

To compare MPu with MP̃u we start with the fact that Π̃u = Πu

(5.5). By Proposition 6.1 and Theorem 6.8, therefore, the problem
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becomes the comparison of Ru with ZN . Perhaps surprisingly, under
general conditions we find that Ru is not much larger than ZN and
under normal conditions the two groups are equal.

Theorem 7.1 For all u ∈ NS, ZN ⊂ Ru as a finite index subgroup.
In fact, with the notation of (2.10), Ru ⊂ ZN + ∆̃.

Proof Suppose that v ∈ Ru. Then in particular, by (6.7), Pv+u = Pu.
Therefore there is an a ∈ ZN such that π(v + u + a) = π(u) and so
by translating if necessary, we may assume without loss of generality
that v ∈ E⊥; and this defines v uniquely mod ∆.

With this assumption we deduce from Lemma 6.3 that P̃u+v +

∆ = P̃u + ∆ + v In particular, π⊥(P̃u+v) + ∆ = π⊥(P̃u) + ∆ + v.

Now each of π⊥(P̃u+v) and π⊥(P̃u) is contained in K a compact
set. Suppose that α ∈ ∆⊥ and that 〈v, α〉 6= 0, then there is t ∈ Z such
that |〈tv, α〉| > 2||α|| diamK. However, since tv ∈ Ru by Theorem 6.3,

we have π⊥(P̃tv+u) + ∆ = π⊥(P̃u) + ∆ + tv. Applying the function
〈., α〉 to both sets produces a contradiction by construction. Thus
we have v ∈ U , the space generated by ∆ (see 2.9). But if v ∈ Ru

then v ∈ Q by definition, and so we have v ∈ ∆̃, a group which, by
Corollary 2.11, contains ∆ with finite index. ¤

We note, for use in section 10, that therefore Ru is free abelian on N
generators.

Corollary 7.2 If ∆ = 0, then Ru = ZN and π∗:MP̃u ↔ MPu. ¤

The following combines Propositions 6.1 and 6.8 and fits the present
circumstances to the conditions of Lemma 2.14. Recall the definitions
of n-to-1 extension (2.13) and finite isometric extension (2.15).

Proposition 7.3 Suppose that u ∈ NS. The map π∗:MP̃u −→
MPu is p-to-1 where p is the index of ZN in Ru. The group Ru acts
isometrically on MP̃u, commuting with the E action, preserving π∗
fibres and acting transitively on each fibre. This action is mapped
almost 1-1 by µ̃ to an action by Ru on (Q + u)/ZN by rotation, and
so we complete a commuting square

MP̃u

π∗

−−−→ MPu

yµ̃

yµ

(Q + u)/ZN
mod Ru/ZN

−−−→ (Q + u)/Ru. ¤
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From this and the construction of Lemma 2.14 applied to the case
G = E and H = Ru, we deduce the main theorem of the section.

Theorem 7.4 Suppose that, E, K and u ∈ NS are data for T , a
projection method pattern. Then there is a group ST , intermediate
to ZN < Ru, which fits into a commutative diagram of E equivariant
maps

MP̃u −−−→ MT −−−→ MPu

yµ̃

y
yµ

(Q + u)/ZN
mod ST /ZN

−−−→ (Q + u)/ST
mod Ru/ST

−−−→ (Q + u)/Ru

where the top row maps are finite isometric extensions and the bottom
row maps are group quotients.

Conversely, every choice of group S′ intermediate to ZN < Ru

admits a projection method pattern, T , fitting into the diagram above
with S′ = ST . ¤

With the considerations of section 4 (in particular using 4.7) we can
count the projection method patterns up to topological conjugacy or
pointed conjugacy in the following corollary.

Corollary 7.5 With fixed projection data and the conditions of The-
orem 7.4, the set of topological conjugacy classes of projection method
patterns is in bijection with the lattice of subgroups of Ru/ZN . More-
over, each projection method pattern, T , is pointed conjugate to a
finite decoration of Pu, and P̃u is pointed conjugate to a finite deco-
ration of T . ¤

We deduce the following result also found by Schlottmann [Sch],
which is in turn a generalisation of the result of Robinson [R2] and
the topological version of the result of Hof [H].

Corollary 7.6 With the conditions assumed in Theorem 7.4, the pat-
tern dynamical system MT is an almost 1-1 extension (2.15) of a
minimal Rd action by rotation on a (N − dim ∆)-torus.
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Proof It suffices to show that the central vertical arrow in the diagram
of Theorem 7.4 is 1-1 at some point. But this is immediate since each
of the end arrows is 1-1 at u say. ¤

8 Examples and Counter-examples

In this section we give sufficient conditions, similar to and stronger
than 5.3, under which Pu or T is pointed conjugate to P̃u, and show
why these conjugacies are not true in general.

Definition 8.1 For data (E,K, u), define Bu = (Q + u) ∩ IntK (Eu-
clidean closure in E⊥).

Proposition 8.2 Suppose that E, K and u ∈ NS are chosen so that
E ∩ZN = 0 and ∆∩ [(Bu −Bu)− (Bu −Bu)] = {0}, then Ru = ZN .

In this case, therefore, Pu is pointed conjugate to P̃u.

Proof This follows from the fact, deduced directly from the condition
given, that if v ∈ NS ∩ (Q + u) and a, b ∈ Pv, then we can determine

w − w′ whenever w,w′ ∈ P̃v are such that a = π(w) and b = π(w′).

Knowing the differences of elements of P̃v forces the position of P̃v in
Σ by the density of π⊥(P̃v) in Bu. So we can reconstruct P̃v uniquely
from Pv and we have Ru = ZN . ¤

Corollary 8.3 In the case that the acceptance domain is canonical,
the condition that the points π(w) | w ∈ {−1, 0, 1}N are all distinct
is sufficient to show that Ru = ZN for all u ∈ NS. In this case,
therefore, Pu is pointed conjugate with P̃u.

Proof The condition implies that ∆ ∩ [(K − K) − (K − K)] = {0}
and this gives the condition in the proposition since Bu ⊂ K. ¤

If we are interested merely in the equation between T and P̃u, then
the case that the acceptance domain is canonical also allows simple
sufficient conditions weaker than 8.3, as we show below.

We observe first that the construction of [OKD] can be extended
to admit non-generic parameters, provided that we are comfortable
with “tiles” which, although they are convex polytopes, have no inte-
rior in E and are unions of faces of the tiles with interior. We retain
these degenerate tiles as components of our “tiling”, i.e. as units of
a pattern, giving essential information about the pattern dynamics.
We call such patterns degenerate canonical projection tilings.
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We write ej with 1 ≤ j ≤ N for the canonical unit basis of ZN .

Proposition 8.4 In the case of a canonical acceptance domain, the
condition that no two points from {π(ej) | 1 ≤ j ≤ N} are collinear
is sufficient to show that Tu, the canonical (but possibly degenerate)

tiling, is pointed conjugate to P̃u for all u ∈ NS.

Proof We show that the conditions given imply that the shape of a tile
(even in degenerate cases) determines from which face of the lattice
cube it is projected. In fact we shall show that if I ⊂ {1, 2, ..., N}
then knowing π(γI) and the cardinality of I determines I (we write
γI = {

∑
i∈I λiei | 0 ≤ λi ≤ 1, ∀ i ∈ I}).

Suppose that π(γI) = π(γJ) and I, J ⊂ {1, 2, .., N} are of the
same cardinality. It is possible always to distinguish an edge on the
polyhedron π(γI) which is parallel to a vector π(ei) for some i ∈ I;
and i is determined from this edge by hypothesis. The same is true
of this same edge with respect to J and so i ∈ J also.

Writing I ′ = I \ {i} and J ′ = J \ {i} we deduce that π(γI′

) =
π(γI) ∩ (π(γI) − π(ei)) = π(γJ) ∩ (π(γJ) − π(ei)) = π(γJ ′

). Now we
can apply induction on the cardinality of I, and deduce that I ′ = J ′

and so I = J . Induction starts at cardinality 1 by hypothesis.

Now, given this correspondence between shape of tile and its
preimage under π, we reconstruct P̃u from Tu much as we did in
Proposition 8.2 above. To complete the argument we must check that
no other element of MP̃u maps onto Tu in MTu. But if there were
such an element, then the argument above shows that it cannot be
of the form P̃u′ for u′ ∈ NS. Also, by Theorem 7.4, we deduce that
the map MP̃u −→ MTu is p-to-1 with p ≥ 2, and so, using Lemma
2.2ii/, we find Tv with two preimages of the form P̃v and P̃v′ . But
this contradicts the principle of the previous sentence. ¤

The conditions of this proposition include all the non-degenerate cases
of the canonical projection tiling usually treated in the literature (in-

cluding the Penrose tiling), so from the equation MTu = Π̃u/ZN ,
deduced from Proposition 8.4 as a consequence, we retrieve many of
the results stated in section 3 of [Le].

Now we turn to conditions under which Ru differs from ZN . We can
extend the argument of 7.1 to give a geometric condition for elements
of Ru, of considerable use in computing examples.
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Lemma 8.5 Suppose that E ∩ ZN = 0, u ∈ NS and v ∈ E⊥. Then
v ∈ Ru ∩ E⊥ if and only if v + u ∈ NS and v + (Bu + ∆) = Bu + ∆.

Proof Suppose that u, v + u ∈ NS. Then π⊥(P̃u) = (Q + u) ∩ IntK

and π⊥(P̃u+v) = (Q + u + v) ∩ IntK.

If v ∈ Ru ∩ E⊥, then, by Lemma 6.3, we have P̃u + ∆ + v =
P̃u+v + ∆. Also, since by 7.1, v is in ∆̃, we have Q + u = Q + u + v

and π⊥(P̃u)+∆+v = π⊥(P̃u+v)+∆. Putting all these together gives
the required equality v + (Bu + ∆) = Bu + ∆.

Conversely, if v + (Bu + ∆) = Bu + ∆, then, by the argument of

7.1, v ∈ ∆̃ and so, as above, Q+u = Q+u+v and π⊥(P̃u)+∆+v =

π⊥(P̃u+v) + ∆. So, if a ∈ P̃u, then there is a b ∈ P̃u+v such that
π⊥(a)−π⊥(b) ∈ ∆−v. However, since π⊥ is 1-1 on ZN , we can retrieve

the set P̃u as the inverse π⊥ image of π⊥(P̃u) ∩ IntK and similarly

for P̃u+v. This forces a − b ∈ ∆ − v therefore, and so π(a) = π(b).
Thus we see that Pu = Pu+v, as is required to show that v ∈ Ru ¤

Example 8.6 By Corollary 7.2 and the fact that ∆ = 0, the octago-
nal tiling is pointed conjugate to both its projection and strip point
patterns.

Also it is from Lemma 8.5 (and not 8.3) that we can deduce that
Ru = Z5 for the (generalised) Penrose tiling for all choices of u ∈ NS,
and so the generalised Penrose tiling is pointed conjugate to both its
projection and strip point patterns.

Lemma 8.5 makes it quite easy to construct counter-examples to the
possibility that Ru = ZN always.

Example 8.7 We start with a choice of E for which ∆ 6= 0 and ∆̃
contains ∆ properly. The E used to construct the Penrose tiling is
such an example. As in the proof of Lemma 2.6, let U be the real span
of ∆ and V the orthocomplement of U in E⊥. Choose a closed unit
disc, I, in V and let J be the closure of a rectangular fundamental
domain for ∆ in U . Let K = I +J ⊂ E⊥ and note that K has all the
propeties required of an acceptance domain in this paper and that,
by Lemma 5.1, we have Πu = Π̃u.

With u 6∈ V + ∆̃ (equivalently u ∈ NS), the rectilinear construc-
tion of K ensures that ((Q + u) ∩ IntK) + ∆ is invariant under the

translation by any element, v, of ∆̃. Also v+u ∈ NS since the bound-
ary of ((Q + u) ∩ IntK) + ∆ in Q + u is invariant under translations
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by ∆̃. So, with the characterisation of Lemma 8.5, this shows that
Ru = ∆̃ + ZN which is strictly larger than ZN .

By varying the shape of J in this example, we can get Ru/ZN

equal to any subgroup of (∆̃ + ZN )/ZN , and we can make it a non-
constant function of u ∈ NS as well.

Example 8.8 Take N = 3 with unit vectors e1, e2 and e3. Let L be
the plane orthonormal to e1 − e2 and let E be a line in L placed so
that E ∩ Z3 = {0}. Then E⊥ is a plane which contains e1 − e2 and
we have ∆ = {n(e1 − e2) | n ∈ Z}.

Write e⊥1 , e⊥2 , and e⊥3 for the image under π⊥ of e1, e2 and e3

respectively. Then e⊥1 + e⊥2 and e⊥3 are collinear in E⊥ and they are

both contained in V (the continuous subspace of V + ∆̃ = π⊥(Z3)).

∆ is orthogonal to V and e⊥1 − e⊥2 = e1 − e2. However ∆̃ = {n(e1 −
e2)/2 | n ∈ Z} which contains ∆ as an index 2 subgroup.

The set K = π⊥([0, 1]3) is a hexagon in E⊥ with a centre of
symmetry. It is contained in the closed strip defined by two lines,
V + a and V + b, where b − a = e1 − e2, and it is in fact reflectively
symmetric around an intermediate line, V +c where c−a = (e1−e2)/2.
The boundary of the hexagon on each of V +a and V +b is an interval
congruent to e⊥3 (i.e. a translate of {te⊥3 | 0 ≤ t ≤ 1}). The four
other sides are intervals congruent to e⊥1 or e⊥2 , two of each. The
vertices of the hexagon are on V + a, V + b or V + c, two on each.

The point of all this is that there is a choice of non-singular u
(in E⊥ without loss of generality) such that Bu = (Q + u) ∩ IntK
consists of the two intervals K ∩ (V + a′) and K ∩ (V + b′), where
2a′ = a + c and 2b′ = b + c (we can choose u ∈ (V + a′) ∩ NS for
example), and these intervals are a translate by ±(e1 − e2)/2 of each

other. Thus we deduce that Bu + ∆ = Bu + ∆ + v for all v ∈ ∆̃.
Upon confirming that v + u ∈ NS for all v ∈ ∆̃ as well, we use

8.5 to show that Ru = Z3 + ∆̃, which contains Z3 with index 2.

Remark 8.9 We note that Example 8.8 is degenerate and Propo-
sition 8.4 shows why this must be the case. However, under any
circumstances, there exist projection method tilings, in the sense of
4.4, pointed conjugate to Pu or to P̃u. The point here is that these
tilings will not necessarily be constructed by the special method of
Katz and Duneau.

Also, leaving the details to the reader, we mention that Exam-
ple 8.8 and its analogues in higher dimensions are the only counter-
examples to the assertion Ru = ZN when the acceptance domain is
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canonical and ∆ is singly generated (and here we find always that
Ru/ZN is at most a cyclic group of 2 elements). When ∆ is higher
dimensional we have no concise description of the exceptions allowed.

9 The topology of the continuous hull

Sections 6 and 7 tell us that the continuous hulls MPu and MP̃u are
quotients of the same space Πu ≡ Π̃u. One advantage of this equality
is that the topology of Π̃u is more easily described than Πu a priori.

Definition 9.1 Let F be a plane complementary, but not necessarily
orthonormal, to E and let π′ be the skew projection (idempotent map)
onto F parallel to E.

Let K ′ = π′(K).

Set F o
u = NS∩(Q+u)∩F and let Fu be the D

′
-closure (Def. 4.2)

of F o
u in Π̃u.
Note that, since Ru ⊂ Q, F o

u is invariant under translation by
π′(r), r ∈ Ru and by extension Fu supports a continuous Ru action.
Ru acts freely on Fu when E∩ZN = 0 (i.e. with x ∈ Fu, the equation
gx = x implies g = 0).

Similarly, Ru acts on E by translation by π(r), r ∈ Ru.

Lemma 9.2 With the data above, Fu = µ̃−1(F ∩ (Q+u)) (c.f. (7.3))

and there is a natural equivalence Π̃u ≡ Fu × E and a surjection
ν:Fu −→ ((Q + u) ∩ F ) which fits into the following commutative
square

Π̃u ←−−→ Fu × E

yµ̃

yν×id

Q + u ←−−→ ((Q + u) ∩ F ) × E.

Moreover these maps are E-equivariant where we require that E acts
trivially on Fu. The set ν−1(v) is a singleton whenever v ∈ NS ∩F ∩
(Q + u).

The canonical action of Ru on Π̃u is represented in this equiva-
lence as the direct sum (i.e. diagonal) of the action of Ru on Fu and
E described in (9.1).

Proof This follows quickly from the observation that there is a nat-

ural, D
′
-uniformly continuous and E equivariant equivalence NS ∩

(Q + u) = F o
u + E ≡ F o

u × E, which can be completed. ¤
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Definitions 9.3 Let Au be the algebra of subsets (i.e. closed under
finite union, finite intersection and symmetric difference) of F o

u gen-
erated by the sets (NS ∩ (Q + u) ∩K ′) + π′(v) as v runs over ZN . It
is clear that this algebra is countable and invariant under the action
of Ru.

Write C∗(Au) for the smallest C∗ algebra which contains the
indicator functions of the elements of Au.

Let ZAu be the ring (pointwise addition and multiplication) gen-
erated by this same collection of indicator functions.

Let CFu be the group of continuous integer valued functions com-
pactly supported on Fu.

These three algebraic objects support a canonical Ru action in-
duced by the action of Ru on Fu described in (8.1) and so we define
three Z[Ru] modules. As ZN sits inside Ru, this action can be re-
stricted to a canonical subaction by ZN thereby defining three Z[ZN ]
modules.

Let Bu = {A | A ∈ Au} where the bar refers to D
′
closure in Fu.

And finally, we give the main theorem of this section which is of
utmost importance for the remaining chapters.

Theorem 9.4 With data (E,K, u) and Π̃u = Πu,
a/ The collection Bu is a base of clopen neighbourhoods which

generates the topology of Fu.
b/ We have the ∗-isomorphisms of C∗-algebras Co(Fu) ∼= C∗(Au)

and Co(Π̃u) ∼= C∗(Au) ⊗ Co(E) which respect the maps defined in
Lemma 8.2.

c/ CFu
∼= ZAu as a Z[Ru] module (and by pull-back as a Z[ZN ]

module).
d/ Fu is locally a Cantor Set.

First we have a lemma also of independent interest in the next section.

Definition 9.5 Write K for the D
′
-closure of the set K ′∩NS∩(Q+u)

(recall K ′ from 9.1).

Lemma 9.6 K is a compact open subset of Fu.

Proof Closure is by definition so compactness follows immediately

on observing that K ′ ∩ (Q + u) ∩ NS is embedded D
′
-isometrically
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in the space MP̃u × K ′ with metric D′ + ||.|| as the closed subset

{(P̃v, v) | v ∈ K ′ ∩ (Q + u) ∩ NS}. But MP̃u × K ′ is compact.
For openness, we appeal to an argument similar to that of (6.1).

Suppose, for a contradiction, that vn is a D
′
-convergent sequence in

(F∩NS)∩K ′ and that v′
n is a D

′
convergent sequence in (F∩NS)\K ′

and that both sequences have the same limit x ∈ Π̃u. Therefore
v = µ̃(x) is the Euclidean limit of the vn and v′

n and so v ∈ ∂K. But

by construction P̃vn
and P̃v′

n
have a different D′ limit – a contradiction

since the limit in each case must be η̃(x). ¤

Proof of Theorem 9.4 a/ The sets in Bu are clopen by Lemma 9.6
above. Therefore the metric topology on Fu we are considering, let us
call it τ , is finer than the topology τ ′ generated by Bu. Both topologies
are invariant under the action of ZN so that it suffices to show their
equivalence on some closed r-ball X of Fu. Suppose that τ ′ were
a Hausdorff topology. Then this equivalence would follow from the
continuity of the identity map (X, τ) → (X, τ ′), because compactness
of (X, τ) implies that of (X, τ ′) and so the map would automatically
be a homeomorphism. On the other hand, we will proof below that
A 7→ A yields an isomorphism of Boolean algebras between Au and
Bu. In particular, Bu is closed under symmetric differences so that τ ′

being T1 already implies that it is Hausdorff.
It remains therefore to check that τ ′ is T1, i.e. that the collection

Bu contains a decreasing set of neighbourhoods around any point in
Fu.

Certainly, if a 6= b with a, b ∈ F ∩ (Q + u), then the assumption
that Int(K)∩ (Q+u) 6= ∅ (2.6) (hence Int(K ′)∩ (Q+u) 6= ∅, interior
taken in F ) and the facts that K ′ is bounded and that π′(ZN ) is
dense in Q ∩ F , imply that there is some v ∈ ZN such that a ∈
(Int(K ′)∩ (Q+u))+π′(v) and b 6∈ (K ′ ∩ (Q + u))+π′(v) (Euclidean
closure in F ∩ (Q + u)). i.e. a and b are separated by the topology
induced by µ̃(Bu).

In particular, if x, y ∈ Fu and y ∈ ∩{B ∈ Bu | x ∈ B} then
µ̃(x) = µ̃(y).

But, if x 6= y and µ̃(x) = µ̃(y) = v, then, by (3.7)e/, η̃(x) 6=
η̃(y) and we may suppose that there is a point p ∈ η̃(x) \ η̃(y). We
use the argument of Lemma 8.6 to show that then there are two
sequences vn, v′n ∈ π′(ZN ) both converging to v in Euclidean topology
and such that p + (vn − v) ∈ Σ and p + (v′

n − v) 6∈ Σ for all n
large enough. But then, for such a choice of n, y 6∈ A (closure of

A = (NS ∩ (Q + u) ∩ K ′) + π′(p + vn) in D
′

metric) and x ∈ A, a
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contradiction to the construction of y.
Therefore x = y and so, by the local compactness (Lemma 9.6)

of Fu we have the required basic property of the collection Bu.
b/ This will follow from a/ and the equivalences in Lemma 9.2 if

we can show that Au is isomorphic to Bu as a Boolean algebra. To

show this, it is enough to show that A 7→ A (closure in D
′
metric) is

1-1 on Au; and for this it suffices to prove that if A ∈ Au is non-empty,
then its Euclidean closure has interior (in (Q + u) ∩ F ).

Note that NS ∩K ′ = NS ∩ Int(K ′), so that if A ∈ Au then A is
formed of the union and intersection of sets of the form (NS ∩ (Q +
u) ∩ Int(K ′)) + v (v ∈ π′(ZN )), and the subtraction of unions and
intersections of sets of the form (NS ∩ (Q + u) ∩ K ′) + v. With this
description and Lemma 2.5, A is equal to NS ∩ Int(A) (Euclidean
closure, and interior in (Q + u) ∩ F ), and from this our conclusion
follows.

c/ Elements of CFu are finite sums of integer multiples of indi-
cator functions of compact open sets. Such sets are finite unions of
basic clopen sets from the collection in part a/. The isomorphism in
part b/ completes the equation.

d/ Given the results of a/ and Lemma 9.6 it is sufficient to show
that Fu has no isolated points. However, by the argument of part b/
and Lemma 2.5 we see that every clopen subset of Fu has µ̃ image
with Euclidean interior (in (Q + u) ∩ F ) and so cannot be a single
point. ¤

10 A Cantor ZZd Dynamical System

In this section we describe a Zd dynamical system whose mapping
torus is equal to MT . First, assuming projection data, (E,K, u) and
E ∩ ZN = 0, we find a suitable F to which to apply the construction
of the previous section.

Definition 10.1 Suppose that G is a group intermediate to ZN and
Ru. The examples in our applications ahead are G = ZN , G = Ru

and G = ST , found in Theorem 7.4.
Fix a free generating set, r1, r2, ..., rN , for G and suppose that

the first dim ∆ of these generate the subgroup G ∩ E⊥ (this can be
required by Lemma 2.9).

Let F be the real vector space spanned by r1, r2, ..., rn, where
n = N − d.
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Note that, since E ∩ G = 0 (by Lemma 2.9 and the assumption
E ∩ ZN = 0), F is complementary to E and, since n ≥ dim ∆, F
contains ∆.

Note that by Theorem 7.1, any two groups intermediate to Ru and
ZN , G and G′ say, differ only by some elements in Ru ∩ E⊥, a com-
plemented subgroup of Ru. Thus we may fix their generating sets to
differ only among those elements which generate G ∩ E⊥ or G′ ∩ E⊥

respectively. With this convention therefore, the construction of F is
independent of the choice of group intermediate to Ru and ZN and F
depends only on the data (E,K, u) chosen at the start.

Also, more directly, the elements rdim ∆+1, ..., rN depend only on
the data (E,K, u) chosen at the start.

Definition 10.2 Suppose G0 is the subgroup of G generated by
r1, r2, ..., rn, and that G1 is the complementary subgroup generated
by the other d generators. Since n ≥ dim∆, G1 depends only on the
data (E,K, u) and not on the choice of G intermediate to ZN and Ru.

Both groups, G1 and G0 act on Fu and E as subactions of Ru

(Definition 9.1).
Let XG = Fu/G0, a space on which G1 acts continuously.

Theorem 10.3 Suppose that we have projection data (E,K, u) such
that E∩ZN = 0 and G, a group intermediate to ZN and Ru. Then XG

is a Cantor set on which G1 acts minimally and there is a commutative
square of G1 equivariant maps

Fu

q
−−−→ XG

yν

yν′

F ∩ (Q + u) −−−→ (F ∩ (Q + u))/G0.

The set ν′−1(v) is a singleton whenever v ∈ (NS ∩ F ∩ (Q + u))/G0.
The space (F ∩ (Q + u))/G0 is homeomorphic to a finite union

of tori each of dimension (N − d − dim∆). Indeed, this space can be
considered as a topological group, in which case it is the product of a
subgroup of ∆̃/∆ with the (N − d − dim∆)-torus. The action of G1

on this space is by rotation and is minimal.

Proof Assuming we have proved the fact that XG is compact then
the commuting square and its properties follow quickly. Therefore we
look at XG.
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Since G0 acts isometrically on Fu with uniformly discrete orbits
(Theorem 6.8), q is open and locally a homeomorphism and so XG

inherits the metrizability of Fu, a base of clopen sets and the lack of
isolated points (see Theorem 9.4 d/).

Now, let Yo = {
∑

1≤j≤n λjr
′
j | 0 ≤ λj < 1} ∩ (Q + u), a subset

of F ∩ (Q + u). Choose J ⊂ ZN finite but large enough that Y1 =
∪v∈J((K ′ ∩ (Q + u)) + π′(v)) contains Y o (Euclidean closure). In
particular q(∪v∈J(K + π′(v))) = XG, the image of a compact set
(Lemma 9.6) under a continuous map. So XG is also compact.

Therefore, we have checked all conditions that show XG is a
Cantor set.

Minimality follows from the minimality of the G action on Fu

which in turn follows from the minimality of the ZN + E action on
Π̃u, proved analogously to (3.9).

The structure of the rotational factor system follows quickly from
the first part of this lemma, the structure of F ∩ (Q+u), and Lemma
9.2. ¤

Now we describe XG as a fundamental domain of the action of G0.

Definition 10.4 From the details of 10.3 we constuct a clopen
fundamental domain for the action of G0 on Fu. We let G+

0 =
{
∑

1≤j≤n αjrj | αj ∈ N} and set Y + = ∪r∈G+
0
(Y1 + r) and define

Y = Y + \ ∪r∈G+
0 ,r 6=0(Y

+ + r).

Define YG = ν−1(Y ∩ NS) (closure in the D
′
metric), a subset of

Fu.

The following is immediate from this construction, using Lemma 9.6
and the equivariance of ν and ν′ in Lemma 9.3 with respect to the
Ru action.

Lemma 10.5 With data (E,K, u), E ∩ ZN = 0, and the definitions
above, Y is a fundamental domain for the translation action by G0

on F ∩ (Q + u). Moreover, YG is a compact open subset of Fu, and a
fundamental domain for the action by G0 on Fu.

There is a natural homeomorphism XG ↔ YG which is G1 equiv-
ariant. ¤

Definition 10.6 Define CXG to be the ring of continuous integer
valued functions defined on XG. Also define C(Fu; Z) to be the ring of
continuous integer valued functions defined on Fu without restriction
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on support, uniformity or magnitude (c.f. the definition of CFu from
9.3). As Z[G0] modules, the first is trivial and the second is defined as
usual using the subaction of the Ru action on Fu. Both are non-trivial
Z[G1] modules.

The following combines Lemmas 10.3, 10.5 and Proposition 9.4 and
will be of much importance in Chapter II.

Corollary 10.7 With the data of Lemma 10.5,

CFu
∼= CXG ⊗ Z[G0]

and
C(Fu; Z) ∼= HomZ(Z[G0], CXG)

as Z[G0] modules. ¤

Definition 10.8 Let E′ be the real span of rn+1, ..., rN selected in
Definition 10.1. This space contains G1 (the integer span rn+1, ..., rN )
as a cocompact subgroup.

Recall the definition of dynamical mapping torus [PT] which for
the G1 action on XG may be equated with

MT (XG, G1) = (XG × E′)/〈(gx, v) − (x, v − g) | g ∈ G1〉.

Proposition 10.9 Suppose that we have data (E,K, u) such that
E ∩ ZN = 0, and G, a group intermediate to ZN and Ru. With
the definitions above, E′ is a d-dimensional subspace of RN comple-
mentary to both F and E⊥. Also MT (XG, G1) ≡ Π̃u/G.

Proof The transformation E′ −→ E defined by rj 7→ π(rj), n + 1 ≤
j ≤ N is bijective since G1 is complementary to G0 and hence to
the subset G ∩ E⊥ of G0. From this we deduce the complementarity
immediately.

From Lemma 10.3 we see that G0 acts naturally on MT (Fu, G1)
and that MT (XG, G1) ≡ MT (Fu, G1)/G0.

To form MT (Fu, G1) we take Fu×E′ and quotient by the relation
(ga, v) ∼ (a, v − g), g ∈ G1, a ∈ Fu, v ∈ Rd. Applying the inverse of
the map of the first paragraph, we can re-express the mapping torus
as Fu × E quotiented by the relation (ga, w + π(g)) ∼ (a,w), g ∈
G1, a ∈ Fu, w ∈ E.
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However, the action of G1 on the Fu is that induced by translation
on F o

u by elements π′(g) | g ∈ G1. So, working first on the space F o
u ,

we have the equations

MT (F o
u , G1) = (F o

u × E)/〈(a + π′(g), w + π(g)) − (a,w) | g ∈ G1〉

and, since F o
u × E = NS, we may write (a,w) = v ∈ NS and so the

quotient equals

NS/〈v + g − v | g ∈ G1〉 = NS/G1

(recall that NS is G1 invariant by Corollary 6.6). Then, by com-

pleting, we deduce the equation MT (Fu, G1) = Π̃u/G1 directly. A
further quotient by G0 completes the construction. ¤

Corollary 10.10 Suppose that T is a projection method pattern
with data (E,K, u) such that E ∩ ZN = 0. Then (XT , G1)
is a minimal Cantor Zd dynamical system, whose mapping torus
MT (XT , G1) is homeomorphic to MT . The pattern dynamical sys-
tem, (MT , E) is equal to the canonical Rd action on the mapping
torus (MT (XT , G1), R

d) up to a constant time change.

Proof Choose G = ST from Theorem 7.4 which gives MT ≡ Π̃u/G.
From this, all but the time change information follows quickly from
10.9 and 10.3, noting that G1

∼= Zd.
To compare the two Rd actions, we apply the constant time

change which takes the canonical Rd(∼= E′) action on MT (XT , Zd) to
the canonical Rd(∼= E) action on MT by the isomorphism π|E′ :E′ −→
E, mapping generators of the G1 action rj 7→ π(rj) for n+1 ≤ j ≤ N .
¤

Examples 10.11 The dynamical system of 10.10 for the octagonal
tiling is a Z2 action on a Cantor set, an almost 1-1 extension of a Z2

action by rotation on T2 (see [BCL]). For the Penrose tiling, it is also
a Cantor almost 1-1 extension of a Z2 action by rotation on T2 (see
[R1]), where we must check carefully that the torus factor has only
one component (the only alternative of 5 components is excluded ad
hoc).

The correspondence in 10.9 and 10.10 respects the structures found
in Theorem 7.4 and so we deduce an analogue.
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Definition 10.12 With data (E,K, u) and the selection G = ZN ,
perform the constructions of 10.1 and 10.2, writing the G0 and XG

obtained there as Gu and Xu respectively.
Similarly, with G = ST , write G0 as GT and XG as XT .
Also, with G = Ru, write G0 as G̃u and XG as X̃u.
Note again that F and G1 are the same for all three choices of

G.

Corollary 10.13 Suppose that we have data (E,K, u) such that
E ∩ ZN = 0. Then we can construct two Cantor dynamical sys-
tems, (Xu, G1) and (X̃u, G1), the latter a finiteisometric extension
of the former, together with a compact abelian group, M , which is a
finite union of (N − d − dim∆)-dimensional tori (independent of u)
on which G1 acts minimally by rotation, and a finite subgroup, Zu, of
M .

These have the property that, if T is a projection method pat-
tern with data (E,K, u), then there is a subgroup ZT of Zu and a
commuting diagram of G1-equivariant surjections

X̃u −−−→ XT −−−→ Xu

y
y

y

M −−−→ M/ZT −−−→ M/Zu

In this diagram, the top row consists of finite isometric extensions,
the bottom row of group quotients and the vertical maps are almost
1-1.

Taking the G1-mapping torus of this diagram produces the dia-
gram of Theorem 7.4.

Proof With the groups Gu, GT and G̃u defined in (10.12). By the

remark after 10.1, we know that Gu < GT < G̃u. Using the no-
tation of sections 7, 9 and 10, set Zu = G̃u/Gu

∼= Ru/ZN and
ZT = GT /Gu

∼= ST /ZN . Also set M = ((Q + u) ∩ F )/Gu, and
note that, since ZN = G1 + Gu, a direct sum, Gu is in fact indepen-
dent of the choice of non-singular u. Thus M is independent also of u
(the uniform translation by u is irrelevant), so we attach no subscript.

With this notation and the equivalences above, together with
the description of the systems, Xu and X̃u, using Theorem 10.3, we
complete the result. ¤



II Groupoids, C*-algebras, and
their Invariants

1 Introduction

In this chapter we develop the connections between the pattern dy-
namical systems described in Chapter I and the pattern groupoid. As
with the continuous hull, a pattern groupoid, which we write GT ∗,
can be defined abstractly for any pattern, T , of Euclidean space and
we refer to [K1] [K3] for the most general definitions. Here we give
a special form for projection method patterns.

The (reduced) C∗-algebra, C∗(GT ∗), of this groupoid is a non-
commuta-tive version of the mapping torus; this should be regarded as
a more precise detector of physical properties of the quasicrystal and
the discrete Schröding-er operators for the quasicrystal are naturally
members of this algebra.

The initial purpose of this chapter is to compare the non-
commutative structure, i.e. , the groupoid, of a pattern with the dy-
namical systems constructed before. In this regard, we cover similar
ground to the work of Bellissard et al. [BCL] but, as noted in the in-
troduction, applied to a groupoid sometimes different. Our Theorem
4.2 is the complete generalization of their connection between C∗-
algebraic K-theory and dynamical cohomology, found for projection
method tilings in 2 dimensions.

The dynamical system and C∗-algebras we associate to a pat-
tern give rise to a range of ways of attaching an invariant to the
pattern T . These include C∗ and topological K-theories, continuous
groupoid cohomology, Čech cohomology and the dynamical or group
(co)homology. The second main result of the chapter is to set up
and demonstrate that all these invariants are isomorphic as groups,
though the non-commutative invariants contain the richer structure
of an ordered group. This structure appears likely to contain infor-
mation relevant to subsequent investigations, only some of which is
recoverable from the other invariants. On the other hand, as we shall
see in later chapters, the group (co)homology invariants admit greater
ease of computationand is often sufficient for other applications.

The final result of the chapter shows that all these common in-
variants provide an obstruction to the property of self similarity of a
pattern. We shall use this obstruction in Chapter IV to show that al-
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most all canonical projection method patterns fail to be substitution
systems.

The organisation of this chapter is as follows. In Section 2 we
define the various groupoids considered and their C∗ algebras, and
discuss their equivalences. In Section 3 we consider the notion of
continuous similarity of topological groupoids. This is an important
equivalence relation for us as continuously similar groupoids have the
same groupoid cohomology. In Section 4 we define our invariants and
prove them to be additively equivalent and in Section 5 we establish
the role our invariants play in discussing self similarity.

2 Equivalence of Projection Method pattern
groupoids

First we develop some general results about topological groupoids,
appealing to the definitions in [Ren]. These will lead us to the no-
tion of Equivalence of Groupoids which compares most naturally the
groupoid C∗-algebras.

Also in this section, we define several groupoids which can be
associated to a projection method pattern. We will show that many
of these groupoids are related by equivalence.

Definition 2.1 We write the unit space of a groupoid G as Go, and
write the range and source maps, r, s:G −→ Go respectively. Both
these maps are continuous and, due to the existence of a Haar System
in all our examples, we note that they are open maps as well.

Recall the reduction of a groupoid. Given a groupoid G with unit
space, Go, and a subset, L, of Go, define the reduction of G to L as
the subgroupoid LGL = {g ∈ G | r(g), s(g) ∈ L} of G, with unit space,
L.

If L is closed then LGL is a closed subgroupoid of G.

We also define GL = {g ∈ G | s(g) ∈ L} and note the maps
ρ:GL −→ Go and σ:GL −→ L defined by r and s respectively.

We say L ⊂ Go is range-open if, for all open U ⊂ G, we have
r({x ∈ U : s(x) ∈ L}) open in Go.

Suppose a topological abelian group, H, acts by homeomor-
phisms on a topological space X, then we define a groupoid called
the transformation groupoid, G(X,H), as the topological direct prod-
uct, X × H, with multiplication (x, g)(y, h) = (x, g + h) whenever
y = gx, and undefined otherwise. The unit space is X × {0}.
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This last construction is sometimes called the transformation group
[Ren] or even the transformation group groupoid, but we prefer the
usage to be found in [Pa].

We note that if H is locally compact, then C∗(G(X,H)) can be
naturally identified with Co(X)×H, the crossed product [Ren].

Lemma 2.2 Suppose that H is an abelian metric topological group
acting homeomorphically on X. Let G = G(X,H) be the transforma-
tion groupoid and suppose that L is a closed subset of X ≡ Go.

a/ If H is discrete and countable, then Go is a clopen subset of
G, and L is range-open if and only if it is clopen in X.

b/ If there is an ε > 0 such that for all neighbourhoods, B ⊂
B(0, ε), of 0 in H and all A open in L, we have BA open in X, then
L is range-open.

Proof Only part b/ presents complications. Suppose that U is open
in X × H. We want to show that r((L × H) ∩ U) is open. Pick
x = r(y, h) ∈ r(L×H ∩U) and let C× (B +h) be a neighbourhood of
(y, h) inside U , with B sufficiently small. Then A = s(C)∩L is open
in L and x ∈ (B + h)A = h(BA) an open subset of X by hypothesis.
However, (B +h)A ⊂ r((L×H)∩U) by construction, and so we have
found an open neighbourhood of x in r((L × H) ∩ U) as required. ¤

We use the constructions from [MRW] [Rie] without comment. In
particular, we do not repeat the definition of (strong Morita) equiva-
lence of groupoids or of C∗-algebras, which is quite complicated. For
separable C∗-algebras strong Morita equivalence implies stable equiv-
alence and equates the ordered K-theory (without attention to the
scale). All our examples are separable.

Lemma 2.3 Suppose that G is a locally compact groupoid and that
L ⊂ Go is a closed, range-open subset which intersects every orbit of
G. Then LGL is equivalent to G (in the sense of [MRW]) and the two
C∗ algebras, C∗(LGL) and C∗(G) are strong Morita equivalent.

Proof It is sufficient to show that GL
ρ

−→ Go is a left (G
r,s
−→ Go)-

module whose G
r,s
−→ Go action is free and proper, and that GL

σ
−→

L is a right (LGL
r,s
−→ L)-module whose LGL

r,s
−→ L action is free

and proper. In short, LGL is an abstract transversal of G and GL

a (G, LGL)-equivalence bimodule from which we can construct the
(C∗(G), C∗(LGL))-bimodule which shows strong Morita equivalence
of the two algebras directly, c.f. [MRW] Thm 2.8.



GROUPOIDS, C∗-ALGEBRAS, AND THEIR INVARIANTS 49

The definition of these actions is canonical and the freedom and
properness of the actions is automatic from the fact that L intersects
every orbit and from the properness and openness of the maps r, s.
Indeed all the conditions follow quickly from these considerations ex-

cept for the fact that GL
ρ

−→ Go is a left (G
r,s
−→ Go)-module; and the

only trouble here is in showing that ρ is an open map. However, this
is precisely the problem that range-openness is defined to solve. ¤

Together with Lemma 2.2 above, this result gives a convenient corol-
lary which unifies the r-discrete and non-r-discrete cases treated sep-
arately in [AP].

Corollary 2.4 Suppose that (X,H) and L ⊂ X obey either of the
conditions of Lemma 2.2, then, writing G = G(X,H), C∗(LGL) and
C∗(G) are strong Morita equivalent. ¤

Before passing to more special examples, we remark that there is no
obstruction to the generalisation of results 2.2, 2.3 and 2.4 to the case
of non-abelian locally compact group actions, noting only that, for
notational consistency with the definition of transformation groupoid,
the group action on a space should then be written on the right.

We define a selection of groupoids associated with projection
method patterns, all of them transformation groupoids.

Definition 2.5 Given a projection method pattern, T , with data
(E,K, u), fix G = ST as the group obtained from T (Theorem I.7.4)

so that MT = Π̃u/G. Recall the definitions of XT = XST
, YT = YST

and G1 from I.10.2 and I.10.4.
We define in turn: GXT = G(XT , G1), from the G1 action on

XT , and GFT = G(Fu, G), using the action of G on Fu, both defined
in (I.8.1).

Also define GΠ̃T = G(Π̃u, E + G).
All but the last of these groupoids are r-discrete (see [Ren]).

Lemma 2.6 Suppose T is a projection method pattern with data
(E,K, u) such that E ∩ ZN = 0. The groupoids GFT and GXT are

each a reduction of GΠ̃T to the closed range-open sets, Fu and YT .

Proof It is clear that GFT is a reduction of GΠ̃T to Fu. To prove
that this a range-open set using Lemma 2.2, we take an open subset
of Fu and examine the action of small elements of E + G on it. Only
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the E action enters our consideration and then it is clear from (I.9.2)
that if B is an open subset of E and A is an open subset of Fu, then
as topological spaces, BA ≡ A × B, which is clearly open in Π̃u.

Recall the notation of (I.10.12), and the homeomorphism XT ↔
YT , found by Lemma I.10.5, putting G = ST . In effect, this homeo-
morphism equates XT with a fundamental domain of the GT action
on Fu. This homeomorphism is G1-equivariant if we equat e the G1

action on YT with the induced action of G/G0 on Fu/G0 = XT ≡ YT .
But this is precisely the correspondence needed to equate G(XT , G1)
with the reduction of GFT to YT considered as a subset of the unit
space of GFT . Thus GXT is the reduction of GΠ̃T to YT , and since YT
is clopen in Fu the same argument as above shows that YT is closed
and range-open in Π̃u. ¤

Now we define a groupoid connected more directly with the pattern,
T .

Definition 2.7 From Definition I.4.4, recall the two maps MP̃u −→
MT

∗
−→ MPu whose composition is π∗. Without confusion we name

the second (starred) map π∗ as well.

We also define a map ηT which is the composite Π̃u
η̃

−→ MP̃u −→
MT .

Note that η(x) = π∗(ηT (x)) for all x ∈ Π̃u and that, being a
composition of open maps (I.3.9), ηT is an open map.

Define the discrete hull of T as ΩT = {S ∈ MT | 0 ∈ π∗(S)}.
The pattern groupoid, GT , is the space {(S, v) ∈ ΩT × E | v ∈

π∗(S)} inheriting the subspace topology of ΩT × E. The restricted
multiplication operation is (S′, v′)(S, v) = (S′, v + v′), if S = v′S′,
undefined otherwise. The unit space is GT o = {(S, 0) | S ∈ ΩT },
homeomorphic to ΩT .

Also define E⊥
u = µ̃−1(E⊥), a space which is naturally homeo-

morphic to Fu; a correspondence made by extending the application
of π⊥, inverted by the extension of π′.

Lemma 2.8 Suppose T is a projection method pattern with data
(E,K, u) such that E ∩ ZN = 0. The groupoid GT is isomorphic

to a reduction of GΠ̃T to a closed range-open set.

Proof Let L be a compact open subset of E⊥
u so that ηT (L) = ΩT

and ηT is 1-1 on L. This can be constructed as follows. Define
Lo = NS ∩ K ∩ (Q + u) where the closure is taken with respect to the
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D
′
metric - a clopen subset of E⊥

u by (I.9.6). Let L = Lo\∪{gLo | g ∈

G ∩ E⊥, g 6= 0} (using the G action on Π̃u).

We claim that the reduction of GΠ̃T to L is isomorphic to the
pattern groupoid defined above.

Suppose that (x; g, v) ∈ GΠ̃T and x ∈ L and (g + v)x ∈ L, then
0 ∈ η(x) = π∗(ηT (x)) and 0 ∈ η((g + v)x). But note that the action
by v ∈ E on x ∈ NS is vx = x − v and so η((g + v)x) = η(gx) − v =
π∗(ηT (gx)) − v = π∗(ηT (x)) − v. Thus 0, v ∈ π∗(ηT (x)) and the map

ψ: (x; g, v) 7→ (ηT (x), v) is well defined LGΠ̃T L −→ GT . The E and
G equivariance of the maps used to define ψ show that the groupoid
structure is preserved.

Conversely, if 0,−v ∈ π∗(ηT (x)), then there are, by construction
of L, g, g′ ∈ G such that gx, (g′ + v)x ∈ L. Thus (gx; g′ − g, v) ∈

LGΠ̃T L showing that ψ is onto. Also, the g, g′ are unique by the
construction of L above, and so ψ is 1-1. The continuity of ψ and its
inverse is immediate, so we have a topological groupoid isomorphism,
as required.

Thus we have shown that GT is isomorphic to a reduction of GΠ̃T
to the set L which is clearly closed.

Also, L is a subset of E⊥
u , transverse to E, so that the same

argument as 2.6 shows that L is range open.
It remains to show that L hits every orbit of GΠ̃T and for this it

is sufficient to show that for any x ∈ Π̃u, Gx∩ (L×E) 6= 0 (where we

exploit the equivalence: Π̃u ≡ E⊥
u × E (I.9.2). But this is immediate

from the fact that L × E is a clopen subset of Π̃u (I.9.2), and by

minimality of the G + E action on Π̃u (as in I.3.9). ¤

Combining the Lemmas above, we obtain the following.

Theorem 2.9 Suppose that T is a projection method pattern with data
(E,K, u) such that E∩ZN = 0. The C∗-algebras C∗(GT ), Co(Fu)×G
and C(XT )×G1 are strong Morita equivalent and thus their ordered
K-theory (without attention to scale) is identical. ¤

Remark 2.10 We can compare the construction above with the
“rope” dynamical system constructed by the third author [K2] ex-
ploiting the generalised grid method introduced by de Bruijn [dB1].
The rope construction actually shows that, in a wide class of tilings
including the canonical projection tilings, there is a Cantor minimal
system (X, Zd) such that G(X, Zd) is a reduction of GT . By comparing
the details of the proof above with [K2] it is possible to show directly
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that, in the case of non-degenerate canonical projection tilings, the
rope dynamical system is conjugate to (XT , G1).

We note that the construction of Lemma 2.8 depends only on the data
(E,K, u) and on G and from this we deduce the following.

Corollary 2.11 Suppose we specify projection data (E,K, u), such
that E ∩ ZN = 0. Then, among projection method patterns, T ,
with these data, the dynamical system (MT , E) determines GT up
to groupoid isomorphism.

Thus among projection method patterns with fixed data, the dy-
namical invariants are at least as strong as the non-commutative in-
variants. ¤

Finally we reconnect the work of this section with the original con-
struction of the tiling groupoid [K1].

Definition 2.12 Recall the notation A[r] = (A ∩ B(r)) ∪ ∂B(r) etc.
defined in I.3.1 and I.4.2, for r ≥ 0 and A ⊂ RN or E. Given two
closed sets, A,A′ define the distance Do(A,A′) = inf{1/(r + 1) | r >
0, A[r] = A′[r]}.

As a metric this can be used to compare point patterns in E or
RN (as in I.3.1 and I.4.2), or decorated tilings in E as described in
I.4.1.

Given a tiling, T , of E, bounded subsets which are the closure
of their interior, the construction of the discrete hull in [K1] starts
by placing a single puncture generically in the interior of each tile
according to local information (usually just the shape, decoration and
orientation of the tile itself–the position of the puncture would then
depend only on the translational congruence class of the tile). So we
form the collection of punctures, τ(T ) of T , a discrete subset of points
in E.

We consider the set Ωo
T = {T + x | 0 ∈ τ(T + x) = τ(T ) + x},

and define a modified hull, which we write Ω∗
T in this section, as the

Do completion of this selected set of shifts of T .
As in [K1] we consider only tilings T which are of finite type (or

of finite pattern type as in [AP] or of finite local complexity) which
means that for each r the set {T ′[r]|T ′ ∈ Ωo

T } is finite. It is well
known that canonical projection tilings are finite type.

From this hull, we define the groupoid, GT ∗ exactly as for GT :
GT ∗ = {(S, v) ∈ Ω∗

T × E | v ∈ τ(S)} with the analogous rule for
partial multiplication.
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The assumption of local information dictates more precisely that
up to isomorphism GT ∗ is independent of the punctures chosen and
the map τ is continuous, E-equivariant, and 1-1 from Ω∗

T with Do

metric to the space of Delone subsets of E also with Do metric.

Remark 2.13 Although phrased in terms of tilings, this definition
can in fact be applied to patterns as well, where the idea of puncture
becomes now the association of a point with each unit of the pattern
(I.4.1). In this case the finite type condition is equated with the
condition that τ(T ) is Meyer (see [La1]), and this is sufficient to prove
the analogues of all the Lemmas below. However, we continue to use
the language of tilings and, since every projection method pattern
is pointed conjugate to a decorated finite type tiling (decorating the
Voronoi tiles for Pu for example (I.7.5)), we lose no generality in doing
so.

We note that when a projection method pattern T is in fact a tiling,
the two definitions of hull (2.7 and above) given here seldom coin-
cide nor do we obtain the same groupoids (but we note the important
exception of the canonical projection tiling in 2.16 ahead). The re-
mainder of this section shows that, never-the-less, the two groupoids,
GT and GT ∗, are equivalent. We start by comparing D and Do.

Lemma 2.14 Suppose that T is a finite type tiling as above, then
Ωo

T is precompact with respect to Do. Further D and Do generate the
same topology on Ωo

T .

Proof The precompactness of Ωo
T is proved in [K1].

For any two tilings, we have D(T , T ′) ≤ Do(T , T ′) by definition,
and so the topology of Do is always finer than that of D.

Conversely, as a consequence of the finite type condition of T
there is a number δo < 1 such that if 0 < ε < δo, then T +x, T +x′ ∈
Ωo

T and D(T + x, T + x′) < ε together imply that T + x and T + x′

actually agree up to a large radius (1/ε − 1 will do) and we conclude
Do(T + x, T + x′) < 2ε as required. ¤

Consequently, Ω∗
T is canonically a subspace of MT and we can con-

sider its properties as such.

Lemma 2.15 With respect to the E action on MT , both ΩT and Ω∗
T

are range-open.
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Proof With the notation of the proof of Lemma 2.8, ΩT = ηT (L),
where L is a compact open subset of E⊥

u . As in 2.8, L is range-open in

Π̃u and, since ηT is an open E-equivariant map, we deduce the same
of ηT (L).

For Ω∗
T , we note that (as in Section 1, 3.4 before) by the finite

type condition of T , there is a number δo so that, if x, x′ ∈ E, T ′ ∈
MT and 0 < ||x − x′|| < δo, then D(T ′ − x, T ′ − x′) ≥ ||x − x′||/2 and
Do(T

′ − x, T ′ − x′) = 1. In particular, since Ω∗
T is Do-compact and

hence a finite union of radius 1/2 Do-balls, we deduce that the map
Ω∗

T ×B(δo/2) −→ MT , defined as (T ′, x) 7→ T ′+x, is locally injective
and hence open. From here the range-openness of Ω∗

T is immediate.
¤

Theorem 2.16 If T is at once a tiling and a projection method pattern
with data (E,K, u), such that E ∩ ZN = 0, then the tiling groupoid
GT ∗ as defined in Def. 2.12 is equivalent to GT (Def. 2.7). Thus the
respective C∗-algebras are strong Morita equivalent also.

If T is a non-degenerate canonical projection tiling there is
a puncturing procedure inducing an isomorphism between the two
groupoids.

Proof Recall the definition of transformation groupoid and the ac-
tion of E on MT and consider G(MT , E). Using Lemmas 2.3 and
2.15, it suffices to show that the groupoids GT and GT ∗ are each a
reduction of G(MT , E) to the sets ΩT and Ω∗

T respectively. But this
is immediate from their definition.

To treat the case of canonical projection tilings, we note that
its tiles are parallelepipeds, and that the point pattern consists of
their vertices. Hence if we fix a small generic vector then adding
this vector to each vertex gives exactly one puncture for each tile.
Translating an element of ΩT by that vector therefore produces an
element of Ω∗

T if we use these punctures to define the latter. The map
so defined is clearly a continuous bijection which is E-equivariant
(with respect to the restricted E-action). Therefore it induces an
isomorphism between GT and GT ∗. ¤

3 Continuous similarity of Projection Method pat-
tern groupoids

The aim of this section is to compare our groupoids in a second way:
by continuous similarity. This gives most naturally an equivalence
between groupoid cohomology.
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We will show that many of the groupoids we associate with a
projection pattern are related in this way also. Further background
facts about groupoids and their cohomology and the idea of similarity
may be found in [Ren].

Definition 3.1 Two homomorphisms, φ, ψ:G −→ H between topo-
logical groupoids are continuously similar if there is a function,
Θ:Go −→ H such that

Θ(r(x))φ(x) = ψ(x)Θ(s(x)).

Two topological groupoids are continuously similar if there exist ho-
momorphisms φ:G −→ H, ψ:H −→ G such that ΦG = ψφ is continu-
ously similar to idG and ΦH = φψ is continuously similar to idH.

In all our examples, produced by Lemma 3.3 ahead, the function Θ is
continuous but note that this is not required by Definition 3.1. Our
interest in this relation lies in the following fact which we exploit
in Section 4; see [Ren] for the definition of continuous cohomology
H∗(G; Z) of a topological groupoid G.

Proposition 3.2 ([Ren], with necessary alterations for the continu-
ous category) If G and H are continuously similar then H∗(G; Z) =
H∗(H; Z). ¤

It turns out that the construction of continuous similarities follows
closely the reduction arguments in the examples that interest us.

Lemma 3.3 Suppose that (X,H) is a free topological dynamical sys-
tem (i.e., hx = x implies that h is the identity), with transfor-
mation groupoid G = G(X,H), and that L,L′ are two closed sub-
sets of Go. Suppose there are continuous functions, γ:L −→ H,
δ:L′ −→ H which define continuous maps α:L −→ L′ and β:L′ −→ L
by αx = γ(x)x and βx = δ(x)x. Then LGL and L′GL′ are continuously
similar.

Proof Construct the two homomorphisms, φ: LGL → L′GL′ and
ψ: L′GL′ → LGL by putting φ(x, g) = (αx, γ(gx) + g − γ(x)) and
ψ(y, h) = (βy, δ(hy) + g − δ(y)).

A quick check confirms that these are homomorphisms, and they
are both clearly continuous. Moreover, φψ(y, h) = (αβy, γ((δ(hy) +
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h−δ(y))β(y)) +δ(hy)+h−δ(y)−γ(βy), a rather complicated expres-
sion which can be simplified if we note that γ((δ(hy)+h−δ(y))β(y)) =
γ((δ(hy) + h)y) = γ(βhy), and define σ(y) to be the element of H
such that σ(y)y = αβy. Then σ(y) = δ(y)+ γ(βy), by definition, and
so σ(hy) = γ(hβ(y)) + δ(hy) = γ((δ(hy) + h − δ(y))β(y)) + δ(hy).
This gives φψ(y, h) = (αβy, σ(hy) + h − σ(y)).

It is now easy to see that φψ is continuously similar to the identity
on L′GL′ using the transfer function, Θ : L′ −→ L′GL′ given by Θ(y) =
(αβy,−σ(y)). This Θ happens also to be continuous.

Reciprocal expressions give the similarity between ψφ and the
identity on LGL. ¤

Remark 3.4 Note that if L′ = Go, then Lemma 3.3 can be reexpressed
in the following form. If L is a closed subset of Go for which there is a
continuous map γ:Go −→ H such that γ(x)x ∈ L for all x ∈ Go, then

LGL is continuously similar to G. (The condition on L implies that L
intersects every H-orbit of (Go, H), but the converse is not true.)

We apply this lemma and remark in two ways as we examine
continuous similarities between the various groupoids of section 2.

Lemma 3.5 Suppose that T is a projection method pattern and write
G for GΠ̃T . If L is a clopen subset of Fu then LGL is continuously
similar to G.

Proof It suffices to find the function γ in the remark.
Pick an order Â on G = ST in which every non-empty set has

a minimal element. The set EL = {vy : v ∈ E, y ∈ L} is naturally

homeomorphic to E×L by Lem. I.9.2, and hence is clopen in Π̃u. By
the minimality of the E+G action on Π̃u, (which is proved analogouly

to Lem. I.3.9), we have ∪h∈GhEL = Π̃u, so that for each x ∈ Π̃u, there
is a Â-minimal h ∈ G such that hx ∈ EL. Let γ0(x) be this g, and
note that by the freedom and isometric action of G and the clopenness
of EL, this function x 7→ γ0(x) is continuous and maps Π̃u to EL.

Now, given γ0(x)x ∈ EL, then there is a unique γ1(x) ∈ E such
that γ1(x)γ0(x)x ∈ L, and it is clear that x 7→ γ1(x) is continuous

as a map Π̃u −→ E. The desired map γ can now be taken as this
composite. ¤

Lemma 3.6 Suppose that T is a finite type tiling for which we have
chosen a puncturing and which is also a projection method pattern.
Then GT and GT ∗ are continuously similar.
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Proof We construct the maps γ and δ as follows.

Recall the metric Do(A,B) = inf{1/(r+1) : A[r] = B[r]} and the
argument of Lemma 2.14 which shows that D and Do are equivalent
on each of the sets ΩT and Ω∗

T . (Actually the argument refers only to
the second space, but the fact that π∗T is a Meyer pattern (see [La1]
and Remark 2.13) allows it to be applied directly to the first space as
well.)

We may assume without loss of generality that, for each S ∈ MT ,
each point of π∗(S) is in the interior of a tile of S (if not we shift all
the tiles in T by a uniform short generic displacement and start again
equivalently).

Suppose that S ∈ ΩT . We know that 0 ∈ π∗(S) and that by
assumption there is a unique tile in S which contains the origin in its
interior. This tile has a puncture at a point v say, and so S− v ∈ Ω∗

T .
So we have defined a map from ΩT to E, γ:S 7→ −v which is clearly
continuous with respect to the Do metric. Moreover the map, α:S 7→
S − v has range Ω∗

T .

Conversely, let r be chosen so that every ball in E of radius r
contains at least one point of π∗(T ) = Pu. Consider the sets π∗(S) ∩
B(r), as S runs over Ω∗

T and note that there are only finitely many
possibilities, i.e. the set J = {π∗(S) ∩ B(r) : S ∈ Ω∗

T } is a finite
collection of non-empty finite subsets of B(r). Furthermore, by the
continuity of π∗ on Ω∗

T with respect to the Do metric, for each C ∈ J ,
the set {S ∈ Ω∗

T : π∗(S) ∩ B(r) = C} is clopen.

For each C ∈ J choose an element v = v(C) ∈ C, and define
δ(S) = −v(π∗(S) ∩ B(r)); this is continuous by construction. Then
S + δ(S) ∈ ΩT . ¤

Now, appealing to 2.6 and 2.8, we can gather the results of this section
into the following corollary.

Corollary 3.7 Suppose that T is a projection method pattern. Then
GT , GΠ̃T , GFT and GXT are all continuously similar. If T is also a
finite type tiling, then these are all continuously similar to the tiling
groupoid, GT ∗, of [K2].

Proof Lemmas (3.5) and (2.6) and (2.8) show that GT , GFT and GXT
are all continuously similar to GΠ̃T . The second part is a restatement
of (3.6). ¤
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4 Pattern cohomology and K-theory

We are now in a position to define our topological invariants for pro-
jection method patterns and prove their isomorphism as groups.

Definition 4.1 For a projection method pattern, T , in Rd, we define
for each m ∈ Z the following groups.
(a) Hm(GT , Z), the continuous groupoid cohomology of the pattern

group-oid GT ;
(b) Hm(MT ), the Čech cohomology of the space MT ;
(c) Hd−m(G1, CXT ) and Hm(G1;CXT ), the group homology and

cohomology of G1 with coefficients CXT (I.10.6);
(d) Hd−m(ST ;CFu) and Hm(ST ;C(Fu; Z)), the group homology

and cohomology of ST with coefficients CFu (I.9.3) or C(Fu; Z)
(I.10.6);

(e) Kd−m(C∗(GT )), the C∗ K-theory of C∗(GT );
(f) Kd−m(C(XT ) × G1), the C∗ K-theory of the crossed product

C(XT ) × G1;
and, for finite type tilings (2.12),
(g) the continuous groupoid cohomology Hm(GT ∗, Z).

Theorem 4.2 For a projection method pattern T and for each value
of m, the invariants defined in (4.1)(a) to (d) are all isomorphic as
groups. If T is also a finite type tiling, then these are also isomorphic
to that defined in (4.1)(g).

The invariants defined in (4.1)(e) and (f) are each isomorphic as
ordered groups. Finally, all these invariants are related via isomor-
phisms of groups such as

Km(C(XT ) × G1) ∼=

∞⊕

j=−∞
Hm+d+2j(G1;CXT ).

These invariants are, in all cases, torsion free, and those in parts (a)
to (d) and (g) are non-zero only for integers m in the range 0 ≤ m ≤
d.

Proof It is immediate from the definition [Ren] that if W is a
locally compact space on which a discrete abelian group G acts
freely by homeomorphisms then the continuous groupoid cohomol-
ogy H∗(G(W,G); Z) is naturally isomorphic to the group cohomology
H∗(G,C(W ; Z)) with coefficients the continuous compactly supported
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integer-valued functions on W , with Z[G]-module structure dictated
naturally by the G action on W . This proves the equality of (a)
(and (g) where appropriate) with the cohomology versions of (c) and
(d) from (3.7) and the fact that GFT and GXT are transformation
groupoids.

By (I.10.10) the space MT is homeomorphic to the map-
ping torus MT (XT , G1) and as noted in [FH] the Čech coho-
mology H∗(MT (XT , G1)) is isomorphic to the group cohomology
H∗(G1, CXT ) (this is standard and follows, for example, by induction
on the rank of G1 with the induction step passing from Zr to Zr+1

coming from the comparison of the Mayer-Vietoris decomposition of
MT (XT , G1) along one coordinate with the long exact sequence in
group cohomology coming from the extension Zr → Zr+1 → Z). This
proves the isomorphism of (4.1)(b) with the cohomological invariant
of (4.1)(c).

The isomorphism of Hm(G1, CXT ) with Hd−m(G1;CXT ) is sim-
ply
Poincaré duality for the group G1

∼= Zd.
By Cor. I.10.7, a decomposition of CFu as a Z[GT ] module is

given by CXT ⊗ Z[GT ] where CXT is a trivial Z[GT ] module. Stan-
dard homological algebra now tells us that

Hp(ST ;CFu) ∼=Hp(G1 ⊕ GT ;CXT ⊗ Z[GT ])
∼=Hp(G1;CXT )

establishing the isomorphism of (4.1)(c) and (d) in homology. A sim-
ilar argument also works in cohomology for C(Fu; Z).

The isomorphism of (4.1)(e) and (f) follows from the Morita
equivalence of the underlying C∗-algebras in (2.7) and the isomor-
phism

Km(C(XT ) × G1) ∼=

∞⊕

j=−∞
Hm+d+2j(G1;CXT )

is one of the main results of [FH].
The torsion-freedom of these invariants also follows from the re-

sults of [FH], while the vanishing of the (co)homological invariants
outside the range of dimensions stated is immediate from their iden-
tification with the (co)homology of the group G1

∼= Zd.

We make one further reduction of the complexity of the computation
of these invariants. Recall first the construction of I.2.9 and I.10.1, in
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particular the equation F ∩ Q = V ⊕ ∆̃ splitting F into continuous
and discrete directions, and in which π′(ZN ), the projection of ZN

onto F parallel to E, is dense. Recall also the map µ̃: Πu −→ Q + u
defined in (I.4.3) for each u ∈ NS.

Definition 4.3 The restriction of µ̃ to Fu is written ν:Fu −→ F∩(Q+
u) = (F ∩Q)+π′(u); this map is π′(ZN )-equivariant and |ν−1(v)| = 1
precisely when v ∈ NS ∩ F ∩ (Q + u) (see Lemma I.9.2).

Let ΓT = {v ∈ ST : π′(v) ∈ V } and CVu = {f ∈ CFu :
ν(supp(f)) ⊂ V + π′(u)}, where supp refers to the support of the
function. This is consistent with setting Vu = {x ∈ Fu : ν(x) ∈
V + π′(u)} and taking CVu as the continuous integer valued func-
tions on Vu with compact support. There is a natural decomposition
CFu = CVu ⊗Z Z[∆̃].

Lemma 4.4 As a subgroup of ST = GT + G1 (the decomposition
of I.10.1), ΓT satisfies ΓT = (ΓT ∩ GT ) ⊕ G1. Moreover, ΓT is

complemented in ST by a group Γ∆, naturally isomorphic to ∆̃.
With this splitting, the action of Z[ST ] = Z[ΓT ] ⊗ Z[Γ∆] on

CFu = CVu ⊗Z Z[∆̃] is the obvious one, and hence there is an iso-
morphism of homology groups H∗(ST ;CFu) ∼= H∗(ΓT ;CVu).

Proof The decompositions and restrictions on GT and G1 follow from
the definition and the original construction of (I.10.1). The conclusion
in homology is the same homological argument as used in the previous
proof. ¤

We note that since ST ⊃ ZN and π⊥(ZN ) is dense in Q∩F , the group
ΓT acts minimally on V and hence on Vu.

Corollary 4.5 With the data above,

Kn(C∗(GT )) =
∞⊕

j=−∞
Hn+2j(ΓT ;CVu). ¤

This is, in fact, the most computationally efficient route to these in-
variants and, with the exception of Chapter III, the one we shall use
in the remainder of this memoir.
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5 Homological conditions for self similarity

To motivate the direction we now move in, we give an immediate
application of these invariants. In this section we show that the
(co)homological invariants defined in Section 4 provide an obstruc-
tion to a pattern arising as a substitution system. This result will
be used in Chapter IV to show that almost all canonical projection
tilings fail to be self similar.

We adopt the construction of substitution tilings in [AP] con-
sidering only finite type tilings whose tiles are compact subsets of Rd

homeomorphic to the closed ball. A substitution procedure as in [AP]
is based on a map which assigns to each tile of a tiling T a patch of
tiles (a tiling of a compact subset of Rd) which covers the same set
as the tile. Moreover, the map is Rd-equivariant in the sense that
translationally congruent tiles are mapped to translationally congru-
ent patches. This is useful if there is a real constant λ > 1 such that
the tiling which is obtained from T , by first replacing all tiles with
their corresponding patches and then stretching the resulting tiling
by λ (keeping the origin fixed), belongs to MT . This procedure of
replacing and stretching can then be applied to all tilings of MT thus
defining the substitution map σ : MT → MT which is assumed to
be injective. As an aside, Anderson and Putnam show that under
this condition σ is a hyperbolic homeomorphism. They establish the
following property for substitution tilings, i.e. tilings which allow for
a substitution map.

Theorem 5.1 [AP] Suppose that T is a finite type substitution tiling
of Rd. Then MT is the inverse limit of a stationary sequence

Y
γ

←− Y
γ

←− · · ·

of a compact Hausdorff space Y with a continuous map γ. ¤

Let us describe Y . Call a collared tile a tile of the tiling T decorated
with the information of what are its adjacent tiles and a collared
prototile the translational congruence class of a collared tile. As a
topological space we identify the collared prototile with a tile it rep-
resents as a compact subset of Rd, regardless of its decoration. By
the finite type condition there are only finitely many collared pro-
totiles. Let Ỹ be the disjoint union of all collared prototiles. Y is
the quotient of Ỹ obtained upon identifying two boundary points xi

of collared prototiles ti, i = 1, 2, if there are two collared tiles t̂i in
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the tiling, t̂i of class ti, such that x̂1 = x̂2 where x̂i is the point on
the boundary of t̂i whose position corresponds to that of xi in ti. If
the tiles are polytopes which match face to face (i.e. two adjacent
tiles touch at complete faces) then Y is a finite CW complex whose
highest dimensional cells are the (interiors of) the tiles represented by
the collared prototiles and whose lower dimensional cells are given by
quotients of the set of their faces of appropriate dimension. The map
γ above is induced by the substitution. Going through the details
of its construction in [AP] one finds that in the case where tiles are
polytopes which match face to face it maps faces of dimension l to
faces of dimension l thus providing a cellular map. We are then in the
situation assumed for the second part of [AP].

Corollary 5.2 Suppose that T is a finite type tiling whose tiles are
polytopes which match face to face. Then for each m, the rationalized
Čech cohomology Hm(MT ) ⊗ Q has finite Q-dimension.

Proof Like [AP] we obtain from (5.1) and the conclusion that Y is a
finite CW complex and γ a cellular map that Hm(MT ) = lim

→
Hm(Y ).

So H∗(MT ) ⊗ Q = lim
→

(H∗(Y ) ⊗ Q). Thus the Q dimension of

H∗(MT ) ⊗ Q is bounded by that of H∗(Y ) ⊗ Q and this is finite
since Y is a finite CW complex. ¤

The conclusion of (5.2) applies to much more general pattern con-
structions. Note that the only principle used is that the space MT of
the tiling dynamical system is the inverse limit of a sequence of maps
between uniformly finite CW complexes. We sketch a generalization
whose details can be reconstructed by combining the ideas to be found
in [Pr] and [Fo].

Finite type substitution tilings are analysed combinatorially by
Priebe in her PhD Thesis [Pr] where the useful notion of derivative
tiling, generalized from the 1-dimensional symbolic dynamical concept
[Du], is developed. We do not pursue the details here except to
note that the derivative of an almost periodic finite type tiling is
almost periodic and finite type, and that the process of deriving can
be iterated.

Suppose that T is an almost periodic finite type tiling. By means
of repeated derivatives, and adapting the analysis of [Fo] for periodic
lattices, we may build a Bratteli diagram, B, for T . Its set of vertices
at level t is formally the set of translation classes of the tiles in the tth

derivative tiling, and the edges relating two consecutive levels, t and
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t+1 say, are determined by the way in which the tiles of the (t+1)th

derivative tiling are built out of the tiles of the tth derivative tiling.
The diagram B defines a canonical dimension group, K0(B). Adapting
the argument of [Fo] we can define a surjection K0(B) −→ Hd(MT )
and hence a surjection K0(B) ⊗ Q −→ Hd(MT ) ⊗ Q.

In [Pr] it is shown that the repeated derivatives of a finite type
aperiodic substitution tiling have a uniformly bounded number of
translation classes of tiles and are themselves finite type. In par-
ticular, the number of vertices at each level of its Bratteli diagram B
is bounded uniformly. Thus K0(B) ⊗ Q is finite dimensional over Q,
being a direct limit of uniformly finite dimensional Q vector spaces,
and so we reprove (5.2) for the case m = d .

It is worth extracting the full power of this argument since it
applies to a wider class than the substitution tilings.

Theorem 5.3 Suppose that T is a finite type tiling of Rd whose re-
peated derivatives have a uniformly bounded number of translation
classes of tiles, then Hd(GT ) ⊗ Q is finite dimensional over Q. ¤

Therefore in Chapter IV, when we take a pattern, T , compute its
rationalized homology H0(ΓT ;CVu)⊗Q and find it is infinite dimen-
sional, we know we are treating a pattern or tiling which is outwith
the class specified in Theorem 5.3, and a fortiori outside the class of
finite type substitution tilings.



III Approaches to Calculation I:

Cohomology for Codimension One

1 Introduction

Our goal in this chapter is to demonstrate the computability of the
invariants introduced in Chapter II and we do so by looking at the
case where N = d + 1. In this case the lattice ∆ is always trivial
whenever E ∩ ZN = 0.

Recall that when ∆ = 0 the projection pattern is determined
by a small number of parameters – the dimensions d and N of the
space E and the lattice ZN ⊂ RN , the slope of E in RN and the
shape of the acceptance domain K. We shall restrict ourselves to
specific acceptance domains in later chapters, but the main result of
this chapter (3.1) characterises the invariants of patterns on Rd arising
as projection from Rd+1 for more or less arbitrary acceptance domains
K.

This chapter thus gives a complete answer to the so-called codi-
mension 1 patterns (i.e., N−d = 1). After restricting the shape of the
acceptance domain we shall give in Chapter V an alternative analysis
of this case together with formulæ for the ranks of the invariants in
the codimension 2 and 3 cases, when these are finite.

When N − d = 1 one of the most important features of K is its
number of path components. To facilitate our computations we ex-
amine in Section 2 a general technique which sometimes simplifies the
computations of projection pattern cohomology when the acceptance
domain is disconnected. We prove our main results in Section 3.

We note that the case d = 1 gives the classical Denjoy counter-
example systems whose ordered cohomology is discussed in [PSS], an
observation which has also been made by [He]. The result in this
chapter, for d = 1 and H∗ finitely generated, can be deduced from
that paper [PSS] a task which has been carried out in [He].

2 Inverse limit acceptance domains

Suppose that K and Ki, i = 1, 2, . . . , are compact subsets of E⊥

each of which is the closure of its interior, and suppose that IntK =

64
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∪iIntKi is a disjoint union and that ∂K = ∪∂Ki. Let K∗
i = ∪

j≤i
Kj ,

so that IntK∗
i = ∪

j≤i
IntKj is a disjoint union and ∂K∗

i = ∪
j≤i

∂Kj .

We define NSi = RN \ (E +ZN +∂K∗
i ) and Σi = K∗

i +E. So for

each u ∈ NSi we have P̃ i
u = ZN ∩Σi and P i

u = π(P̃ i
u). From these we

construct Π̃i
u, Πi

u, MP i
u and so on, as usual. In fact, in the following,

we shall be interested only in the strip pattern P̃ i
u.

Provided u is non-singular for K, and hence is non-singular for
all K∗

i , we can take a space F complimentary to E in RN and a
corresponding group Gu (Def. I.10.2) which will play their usual roles
for all sets of projection data (E, RN ,K∗

i ) and (E, RN ,K). For each
domain, K∗

i , we construct the corresponding F i
u etc. The following

lemma follows easily from the definitions.

Lemma 2.1 Suppose j < i is fixed throughout the statement of this
lemma. Then NSi is a dense subset of NSj and NS = ∩kNSk.
Moreover, for u ∈ NSi, we have a natural continuous E + ZN equiv-
ariant surjection Π̃i

u −→ Π̃j
u, and a natural continuous E equivariant

surjection MP̃ i
u −→ MP̃ j

u; this latter is described equivalently by the
formula S 7→ S ∩ Σj.

We also have an ZN -equivariant map F i
u −→ F j

u, and a Gu-
equivariant map Xi

u −→ Xj
u. All these maps respect the commutative

diagrams of Chapter I and they map many-to-one only when the image
is in (the appropriate embedding of) NSj \ NSi. ¤

Theorem 2.2 With the notation and assumptions above, we have the
following equivariant homeomorphisms.
(a) Π̃u

∼= lim
←

Π̃i
u, E + ZN equivariantly;

(b) MP̃u
∼= lim

←
MP̃ i

u, E-equivariantly;

(c) Fu
∼= lim

←
F i

u, ZN -equivariantly;

(d) Xu
∼= lim

←
Xi

u, Gu-equivariantly.

Proof Once again the results are straightforward from the definitions.
The map MP̃u −→ MP̃ i

u is again equivalently written S 7→ S ∩Σi. ¤

The following is now a direct consequence of (4.2), (2.2)(b) and the
continuity of Čech cohomology on inverse limits.

Corollary 2.3 There is a natural equivalence

H∗(GP̃u) = lim
→

H∗(GP̃ i
u). ¤
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3 Cohomology in the case d=N–1

In this section we determine the cohomology for projection method
patterns when d = N − 1. It is the only case for which we have such
a complete answer.

Here E is a codimension 1 subspace of RN and so E ∩ ZN = 0
implies that ∆ = 0. Therefore, MPv = MPu = MP̃u for all u, v ∈ NS
and so, given E and K, there is only one projection pattern torus MP
to consider, no need to parametrise by u, and an equation SP = ZN

(I.8.2). With this in mind, we shall avoid further explicit mention of
any particular non-singular point u.

Write e1, ..., eN for the usual unit vector basis of RN , which are
also the generators of ZN . Choose the space F as that spanned by eN ,
and so GT = 〈eN 〉 and Gu = 〈e1, e2, ..., eN−1〉. Recall that we write
K ′ = π′(K) ⊂ F , where π′ is the skew projection onto F parallel
to E and that π′ maps K homeomorphically to K ′, preserving the
boundary, ∂K ′ = π′(∂K) ∼= ∂K.

Now any compact subset of E⊥ ≡ R which is the closure of its
interior is a countable union of closed disjoint intervals; and K is such
a set. Thus ∂K and hence ∂K ′ is countable. Pick A = {p1, p2, ...},
pj ∈ ∂K ′, to be a set of representatives of π′(ZN ) orbits of ∂K ′, a
countable and possibly finite set. Write k ∈ Z+∪∞ for the cardinality
of A.

Theorem 3.1 If T is a projection method pattern with d = N − 1
and E ∩ ZN = 0, then

Hm(GT ) = Hm(TN \ k points ) =





Z(N
m) for m ≤ N − 2,

ZN+k−1 for m = N − 1,

0 otherwise.

An infinite superscript denotes the countably infinite direct sum of
copies of Z.

Proof We know that IntK ′ is the union of a countable number of
open intervals, whose closures, Ki, are disjoint. We use the notation
and results of Section 2, setting K∗

i = ∪
j≤i

Kj as the finite union of
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disjoint closed intervals, ∪
j≤i

[sjeN , rjeN ] say. As MT = MP̃ , by (2.3)

it is enough to compute the direct limit lim
→

H∗(MP̃ i).

We consider the process of completion giving rise to the space
MP̃ i which we consider as Π̃i (the completion of the non-singular
points NSi) modulo the action of ZN . The limit points introduced in

Π̃i arise as the limit of patterns P i
xn

as xn approaches a singular point,
either from a positive eN direction, or from a negative one. To be more
precise, suppose that xn = x+tneN ∈ NS is a sequence converging to
x ∈ RN in the Euclidean topology. If (tn) is an increasing sequence,

then lim
n→∞

P̃ i
xn

exists in the D metric and is the point pattern (x +

ZN ) ∩ ( ∪
j≤i

(sjeN , rjeN ] + E).

Likewise, if (tn) is a decreasing sequence then lim
n→∞

P̃ i
xn

is the

point pattern (x + ZN ) ∩ ( ∪
j≤i

[sjeN , rjeN ) + E). These two patterns

are the same if and only if x ∈ NSi. If x 6∈ NSi then these two
patterns define the two D limit points in Π̃i over x ∈ RN . Thus
the quotient MP̃ i −→ TN is 1-1 precisely when mapping to the set
NSi/ZN , and otherwise it is 2-1; we can picture the map intuitively
as a process of “closing the gaps” made by cutting TN along the finite
set of hyperplanes (∂K∗

i + E)/ZN , c.f. [Le].

We examine the space MP̃ i in more detail. Given r > 0, consider
the space M i

r = {(S ∩ B(r)) ∪ ∂B(r) : S ∈ MP̃ i
u} endowed with the

Hausdorff metric dr among the set of all closed subsets of B(r), the
closed ball in RN with centre 0 and radius r. By construction M i

r is
compact and, for s ≥ r and i ≥ j, there are natural restriction maps
M i

s −→ M j
r , whose inverse limit for fixed i = j is MP̃ i, and whose

inverse limit over all i and r by (2.2) is MP̃ . The map M i
r −→ TN

given by P̃v 7→ v mod ZN , v ∈ NSi, factors the canonical quotient
MP̃ i −→ TN .

Define Ci
r as the set {v ∈ TN : (v + ZN )∩ (∂Σi ∩ IntB(r)) 6= ∅}.

As before, M i
r −→ TN is 2-1 precisely on those points mapped to Ci

r

and otherwise is 1-1.

The intersection ∂Σi ∩ B(r) is, for all r large enough compared
with the diameter of K∗

i , equal to a finite union of codimension 1 discs,
parallel to E, and of radius at least r−1, and at most r. Each of these
discs has centre π⊥(a) for some a ∈ ∂K∗

i . Consider this collection of
discs modulo ZN and select two, say with centres π⊥(a) and π⊥(b),
where a, b ∈ ∂K∗

i . Then, for r very large and a − b ∈ π′(ZN ), these
discs will overlap modulo ZN . Since there are a finite number of
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such pairs in ∂K∗
i to consider, we have a universal r such that if

a, b ∈ ∂K∗
i and a − b ∈ π′(ZN ), then the disc with centre π⊥(a)

overlaps, modulo ZN , the disc with centre π⊥(b). If a − b 6∈ π′(ZN ),
then these discs will not overlap, modulo ZN . Hence for r sufficiently
large, ∂Σi ∩ B(r) mod ZN has precisely |Ai| components.

For the same r, Ci
r mod ZN is also a finite union of discs of radius

at least r− 1 and at most r; likewise Ci
r has exactly |Ai| components,

in direct correspondence with the elements of Ai.
The description above of the limiting points in Π̃i as we approach

Ci
r in a direction transverse to E, shows that M i

r is homeomorphic
to TN with a small open neighbourhood of Ci

r removed. There is a
natural homotopy equivalence with the space TN \ Ci

r.
We can now examine what happens as we let first r and then i

tend to infinity in this construction. For the above sufficiently large
r, the map M i

r+1 −→ M i
r is, up to homotopy, the injection from

TN \Ci
r+1 to TN \Ci

r, and this is simply, up to homotopy, the identity
from TN \ |Ai| points to itself. Hence H∗(M i

r) = H∗(TN \ |Ai| points)

and H∗(M i
r) −→ H∗(Mr+1) is the identity showing that H∗(MP̃ i) is

the cohomology of the torus with |Ai| punctures.
Finally, for each i and for r sufficiently large (depending on i)

the map M i+1
r −→ M i

r is that induced by the inclusion of Ai in Ai+1,
and this corresponds in the above description to the adding of a new
puncture for each element of Ai+1 \ Ai. In cohomology, the map
Hp(M i−1

r ) −→ Hp(M i
r) is thus the identity for p 6= N − 1, and in

dimension d gives rise to the direct system of groups and injections
· · · −→ ZN−1+|Ai| −→ ZN−1+|Ai+1| −→ · · · which gives the required
formula. ¤

We give an alternative proof of this theorem from a different perspec-
tive in Chapter V.

We note that the pattern dynamical system (X,G1) is in fact a Denjoy
example [PSS] generalized to a ZN−1 action and dislocation along k
separate orbits.

Corollary 3.2 Suppose that Γ is a dense countable subgroup of R

finitely generated by r free generators. Suppose we Cantorize R by
cutting and splitting along k Γ-orbits (as described e.g. in [PSS]) to
form the locally Cantor space R′ on which Γ acts continuously, freely
and minimally. Consider the Γ-module C of compactly supported in-
teger valued functions defined on R′. Then H∗(Γ, C) = H∗(Tr \ k
points; Z). ¤



IV Approaches to Calculation II:

Infinitely Generated Cohomology

1 Introduction

In this chapter we restrict ourselves to the classical projection tilings
with canonical acceptance domains K (so K is the projection of the
unit cube in RN ). We examine the natural question of when such
tilings arise also as substitution systems and show that the invariants
of chapter 2 are effective and computable discriminators of such tiling
properties.

Much of this chapter is devoted to giving a qualitative descrip-
tion of the cohomology of canonical projection method patterns. The
main result is formulated in Theorem 2.9. It gives a purely geometric
criterion for infinite generation of pattern cohomology and for infinite
rank of its rationalisation. As a corollary of this, by the obstruction
proved in II.5, we deduce that almost all canonical projection method
patterns fail to be substitution systems; in fact for vast swathes of
initial data all such patterns fail to be self similar.

The restriction to the canonical acceptance domain allows for a
second, geometric description of the coefficient groups CFu (I.9.3) and
CVu (II.4.3) in terms of indicator functions on particular polytopes,
we call them Cu-topes. In Section 2 we introduce this viewpoint,
setting up the notation and definitions sufficient to state the main
theorem. From here until the end of Section 5, our aim is to prove
Theorem 2.9 by establishing criteria for the existence of infinite fami-
lies of linearly independent Cu-topes. In Sections 3 and 4 we construct
such families in the indecomposable case, and complete the analysis for
the general case in Section 5. The final Section 6 gives some general
classes of patterns where the conditions of Theorem 2.9 are satisfied,
so proving the generic failure of self-similarity for canonical projection
method patterns.

2 The canonical projection tiling

For the first time in our studies, we narrow our attention to the classi-
cal projection method tilings of [OKD] [dB1]. This section outlines
the simplifications to be found in this case, and describes the main re-
sult of the remainder of this paper; a sufficient condition for infinitely

69
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generated Hd(GT ). In Chapter V we will see that this condition is
also neccessary.

Therefore we have data (K,E, u) where K = π⊥([0, 1]N ) and
u ∈ NS. From Section I.8 we see that, but for a few exceptional cases,
we have ST = ZN , and if we elect either to exclude these exceptions
(as most authors do) or to include them only in their most decorated

form (MT = MP̃u), we make ST = ZN a standing assumption.
With Theorem I.9.4 we have a description of the topology of

CFu: it is generated by intersection and differences of shifts of a
single compact open set K, formed by completing π′K∩ (Q+u)∩NS

(Lem. I.9.6). Topologically CFu ≡ CVu × ∆̃ and CVu inherits the
subspace topology and a stabilizing subaction ΓT of ST (see II.4.3).

With the choice of K as a canonical acceptance domain above,
we may follow more closely the work of Le [Le] and give other more
geometrical descriptions of the elements of CFu and CVu.

Definition 2.1 For each J ⊂ {1, 2, ..., N}, we construct a subspace
eJ = 〈ej : j ∈ J〉 (the span) of RN , where {ej} is the standard unit
basis of RN or ZN .

Write dimF = n.
Let I = {J ⊂ {1, 2, ..., N} : dimπ′(eJ) = n− 1} and define I∗ to

be the set of elements of I minimal with respect to containment.
Define ZN

n−1 = ∪{eJ + v : |J | = n − 1, v ∈ ZN}, i.e. the n − 1-
dimensional skeleton of the regular cubic CW decomposition of RN .

The following Lemma gives some combinatorial information about I∗

and describes the singular points in F - they are formed by unions of
affine subspaces of F of codimension 1.

Lemma 2.2 With the construction above,
i/ I∗ is a sub-collection of the n−1-element subsets of {1, 2..., N}.

Also every subspace of F of the form π′(eJ), with |J | = n − 1, is
contained in π′(eJ ′

) for some J ′ ∈ I∗.
ii/ RN \ NS = π′−1π′(ZN

n−1) and π′(ZN
n−1) = F \ NS.

Proof i/ Straightforward.
ii/ With the data above, π′(K) is a convex polytope in F , with

interior, each of whose extreme points is of the form π′(v) where
v ∈ {0, 1}N . By i/, each of the faces of π′(K) is contained in some
π′(eJ + v) where v ∈ {0, 1}N and J ∈ I∗. Also by i/, we have
π′(ZN

n−1) = π′(∪{eJ + v : v ∈ ZN , J ∈ I∗}).
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However, by definition, F \NS is the union of the faces of those
polytopes of the form π′(K+v), v ∈ ZN . Thus we deduce immediately
that π′(ZN

n−1) = π′(∪{eJ + v : v ∈ ZN , J ∈ I∗}) ⊃ F \ NS.
Conversely, a simple geometric argument shows that for each J ∈

I∗, there is a face of π′(K) which is contained in π′(eJ + v) for some
v ∈ ZN .

Assuming the claim, we have, for each J ∈ I∗ and each v ∈ ZN ,
some suitable shift of π′(K), π′(K + w) say, w ∈ ZN , one of whose
faces, Φ say, contains the point π′(v) as an extreme point, and Φ ⊂
π′(eJ + v). With this same Φ, therefore, we see that ∪{Φ + π′(w) :
w ∈ ZN} ⊃ ∪{π′(eJ +w) : w ∈ ZN}. Thus π′(ZN

n−1) = ∪{π′(eJ + v) :
v ∈ ZN , J ∈ I∗} ⊃ F \ NS. So we are done. ¤

Definition 2.3 Recall the subspace V from (I.2) and write dimV =
m.

Now consider the set I∗(V ) = {J ∈ I∗ : dim(π′(eJ) ∩ V ) =
m − 1}.

The following Lemma shows that the sets I∗(V ) can be found canon-
ically from the sets I∗ and describes the singular points in V + π′(u)
preparatory to a description of Vu (See II.4.3). Once again, the singu-
lar points in V +π′(u) form a union of affine hyperplanes in V +π′(u).

Lemma 2.4 i/ I∗(V ) = {J ∈ I∗ : π′(eJ) ∩ V 6= V }.
ii/ If u ∈ NS, then (V +π′(u)) \NS = (V +π′(u))∩π′(ZN

n−1) =
(V + π′(u)) ∩ (∪{π′(eJ + v) : v ∈ ZN , J ∈ I∗(V )}).

Proof Follows directly from definition of V and Lemma 2.2 ¤

With these notations in mind, we are well equipped to describe the
topology of Vu. Although Vu is best described as a subspace of Fu

formed from placing V as the affine subspace V +π′(u) in F , we prefer
to shift the whole construction back to V by applying a uniform shift
by −π′(u). There are some advantages later in having an origin and
a vector space structure.

Definition 2.5 Given u ∈ NS, we use 2.4 i/ to define a set, Cu, of
m − 1-dimensional affine subspaces of V whose elements are of the
form (π′(eJ + v)∩ (V + π′(u)))−π′(u) where J ∈ I∗(V ) and v ∈ ZN .
Such a space may also be written, π′(eJ + v − u) ∩ V .

We say that a subset of V is a Cu-tope, if
i/ it is compact and is the closure of its interior, and
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ii/ it is a polytope, each of whose faces is a subset of some element
of Cu.

We shall also say that a subset, B, of Vu is a Cu-tope if B is clopen
and ν(B) − π′(u) is a Cu-tope subset of V in the sense above (recall
ν from (I.9.2) above).

We shall show that the Cu-topes generate the topology on Vu. To help
this we describe a third possible topology as it is found in [Le].

For each element, α, of Cu, a hyperplane in V , consider the half-
spaces H±

α defined by it. The sets H±
α ∩NS can be completed in the

D metric to a closed and open subset of Vu which we write H
±
α . We

also call these subsets of Vu half-spaces.

Proposition 2.6 The following three collections of subsets of Vu are
the same:

i/ The collection of Cu-topes.
ii/ The collection of compact open subsets of Vu.
iii/ The collection of those finite unions and intersections of half-

spaces in Vu which are compact.

Proof Every Cu-tope in Vu is clearly an element of collection iii/ since
every Cu-tope in V is a finite intersection and union of half spaces in
V .

Conversely, every open half-space in V is a countable, locally
finite, union of the interiors of Cu-topes (in V ). Therefore any pre-
compact intersection of half spaces can be formed equivalently from
some union and intersection of a finite collection of Cu-topes, i.e. is
a Cu-tope, and each Cu-tope in Vu is an intersection of clopen half-
spaces.

Now compare collection ii/ with iii/ and i/.
Suppose that H is a half-space in Vu defined by the hyperplane

W ∈ Cu. As noted in 2.5, W has the form π′(eJ + v − u) ∩ V for
some J ∈ I∗(V ) and v ∈ ZN , and our choice of half-space gives a
corresponding choice of half-space in V on one side or other of W .
Since J ∈ I∗(V ) ⊂ I∗ (2.4 i/ ), this in turn defines a choice of half-
space in F one side or other of π′(eJ + v − u). Write H for the closed
half-space of F chosen this way.

Consider the collection of N -dimensional cubes in the ZN lattice
whose image under the projection π′ is contained entirely in H +
π′(u). By Lemma 2.4 ii/, the boundary of H + π′(u) is an (n −
1)-dimensional hyperplane in F , the image under π′ of an (n − 1)-
dimensional subspace of RN contained in ZN

n−1. Therefore the cubes
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collected above line up against this boundary exactly and, projected
under π′, they cover H + π′(u) exactly. In particular, H + π′(u) is
covered by ΓT -translates of π′([0, 1]N ). Restricting this construction
to the space (V + π′(u)) ∩ NS, we find that H is a locally finite
countable union of shifts of K. In short, collection iii/ is contained in
collection ii/.

Conversely, we see that π′([0, 1]N )∩NS = π′((0, 1)N )∩NS so we
are sure that the intersection (V + π′(u))∩ ((π′([0, 1]N )) + π′(v)) (for
any choice of v ∈ ZN ) is a polytope subset of V + π′(u) with interior.
The faces of this polytope are clearly subsets of NS, i.e. contained in
elements of Cu shifted along with V by π′(u). Thus every ΓT translate
of K intersects Vu either non-emptily or as a Cu-tope. Collection ii/
is contained in collection i/ therefore. ¤

Since Vu is locally compact, we can describe the topology on Vu,
defined in II.4.3, equivalently as that generated by Cu-topes, or as
that generated by half-spaces. This gives an alternative description
of CVu.

Corollary 2.7 Let V ′ = (V + π′(u)) ∩ NS) − π′(u). The group
CVu is naturally isomorphic to the group of integer-valued functions,
V ′ −→ Z, generated by indicator functions of sets of the form C ∩ V ′

where C is a Cu-tope. This group isormophism is a ring and Z[ΓT ]-
module isomorphism as well. ¤

Now we describe an important set of points.

Definition 2.8 Write P for the set of points in V which can found as
the 0-dimensional intersection of m elements of Cu. Note that, under
the assumptions on Cu, P is a non-empty countable set, invariant
under shifts by ΓT .

Say that P is finitely generated if P is the disjoint union of a
finite number of ΓT orbits, infinitely generated otherwise.

We may now express the main theorem of this Chapter.

Theorem 2.9 Given a canonical projection method pattern, T and
the constructions above. If P is infinitely generated, then Hd(GT ) is
infinitely generated and Hd(GT ) ⊗ Q is infinite dimensional.

In Chapter V (Theorem V.2.4) we prove the converse i.e. that Hd(GT )
infinitely generated is equivalent to P infinitely generated.
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We complete the proof of Theorem 2.9 in Section 5, but the final
step and basic idea, of the proof can be presented already.

Proposition 2.10 Suppose that G is a torsion-free abelian group and
that H is an abelian group, with H/2 := H/2H its reduction mod 2.
Suppose that there is a group homomorphism, φ : G −→ H/2, such
that Imφ is infinitely generated as a subgroup of H/2 (equivalently
infinite dimensional as a Z/2 vector space); then G is infinitely gen-
erated as an abelian group, and G ⊗ Q is infinitely generated as a Q

vector space.

Proof It is sufficient to prove the statement concerning G ⊗ Q.
Suppose that φ(sn) is a sequence of independent generators for

Imφ and suppose that there is some relation

m∑

n=1

qnsn = 0

for qn ∈ Q. Since G is torsion-free, we can assume the qn are integers
and have no common factor; in particular, they are not all even.
Applying the map φ then gives a non-trivial relation among the φ(sn),
a direct contradiction, as required. ¤

Therefore, to prove 2.9, we shall find a homomorphism from Hd(GT ),
equivalently H0(ΓT , CVu), to an infinite sum of Z/2 whose image is
infinitely generated. This is completed in full generality in Theo-
rem 5.4. In order to construct independent elements of H0(ΓT , CVu)
and its image, we must consider the geometry of the Cu-topes defined
in 2.5.

3 Constructing C-topes

To prove that a group or Q-vector space is infinitely generated, we
must produce independent generators. In the case of H0(ΓT , CVu),
we must find elements of CVu which remain independent modulo Γ-
boundaries. In any case, we must at least produce some elements of
CVu, and in this section we start with constructions of the simplest
objects in this space: indicator functions of Cu-topes.

Rather than refer constantly to the original tiling notation, we
abstract the construction conveniently, basing our development on a
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general collection of affine hyperplanes, C, of a vector space, V , with
group action, Γ. Always, the example in mind is C = Cu (2.5), V (I.2)
and Γ = ΓT (II.4.3), but the construction is potentially more general.
However, the first few definitions and constructions are the slightest
generalization of those of section 2.

Definition 3.1 Suppose that V is a vector space of dimension m and
that Γ is a finitely generated free abelian group acting minimally by
translation on V . Thus we write w 7→ w + γ for the group action
by γ ∈ Γ, and we may think of Γ as a dense subgroup of V without
confusion.

Suppose that C is a countable collection of affine subspaces of V
such that each W ∈ C has dimension m − 1, and such that, if W ∈ C
and γ ∈ Γ, then W + γ ∈ C.

We suppose that the number of Γ orbits in C is finite.
If W ∈ C, then we define a unit normal vector, λ(W ) (with

respect to some inner-product). The set N (C) = {λ(W ) : W ∈ C} is
finite and we suppose that we have chosen the λ(W ) consistently so
that −λ(W ) 6∈ N (C).

We suppose that N (C) generates V as a vector space.

We can consider the intersections of elements of C.

Definition 3.2 Given 0 ≤ k ≤ m−1, define C(k) to be the collection of
k-dimensional affine subspaces of V formed by intersection of elements
of C. Thus C can be written C(m−1), and, to be consistent with the
notation of section 2, C(0) can be written P.

Define a singular flag, F , to be a sequence of affine subspaces,
(θ0, θ1, ..., θm−1) of V such that θj ∈ C(j) for all 0 ≤ j ≤ m − 1, and
θj ⊂ θj+1 for all 0 ≤ j ≤ m−1. The set of singular flags is written Jo.

It is clear that each C(k) and Jo supports a canonical Γ action.
We write J = Jo/Γ, the set of Γ orbits in Jo.

Definition 3.3 We say that a subset, C, of V is a C-tope, if
i/ C is compact and is the closure of its interior, and
ii/ C is a polytope, each of whose (m− 1)-dimensional faces is a

subset of some element of C.

Definition 3.3 Convex C-topes are finite objects whose geometry and
combinatorics are immediately and intuitively related. Therefore we
think of the definition of face, edge and vertex, and more generally
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k-dimensional face, in this case, as the intuitive one. Likewise the
idea of incidence of edge on vertex, face on edge, etc is intuitive.

Suppose that C ⊂ V is a convex C-tope and that F = (θj) is a
singular flag. We say that F is incident on C if each θk contains a
k-dimensional face of C.

We write [F ] for the Γ-orbit class of F . We say that F is uniquely
incident on C if F is incident on C, but no other F ′ ∈ [F ] is incident
on C.

The main aim of this section is to build convex C topes on which
certain singular flags are uniquely incident. This will not happen
in every possible circumstance however, and we develop an idea of
decomposability which will break up the space V into a direct sum
of spaces on which such constructions can be made. In section 5 we
shall show how to recombine these pieces.

Construction 3.5 Suppose that A is a finite set of non-zero vectors
in V which spans V , and no pair of which is parallel. The example
we have in mind is N (C), the set of normals.

A decomposition of A is a partition A = A1 ∪ A2 such that V1 ∩
V2 = 0 where each Vj is the space spanned by Aj , j = 1, 2.

A is indecomposable if no such decomposition is possible. It is
not hard to show that every set A has a unique partition into inde-
composable subsets.

Suppose that B ⊂ A is a basis for V . Then, by stipulating that
B is an orthonormal basis, we define an inner product which we write
as square brackets: [., .]B .

Then we define a finite graph G(B;A) with vertices B and an
edge from x to y whenever there is a z ∈ A \ B such that [x, z]B 6= 0
and [y, z]B 6= 0. We do not allow loops.

The following is elementary.

Lemma 3.6 Suppose that A spans V , then the following are equiva-
lent:

i/ A is indecomposable
ii/ for all bases B ⊂ A, G(B;A) is connected
iii/ for some basis B ⊂ A, G(B;A) is connected. ¤

Remark 3.7 Note that if φ : V −→ V is a linear bijection, then A is
indecomposable if and only if φ(A) is indecomposable. Therefore, the
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condition N (C) indecomposable can be stipulated without reference
to a particular inner product, although an inner product must be used
to define the normals. We use this freedom in Theorem 3.10 ahead.

Construction 3.8 Suppose that A and B are as above, giving an
inner product [., .]B to V and defining a graph G(B;A). Choose b ∈ B
and let Wb be the hyperplane in V orthogonal to b and let πb be the
orthogonal projection of V onto Wb.

Consider the sets πb(A) and πb(B). Apart from 0 = πb(b) the
latter equals B \ b precisely, an othonormal basis for Wb. The former
contains B \ b and other vectors which may be of various lengths and
pairs of which may be parallel. From this set, we form Ab a new
set of vectors in Wb by taking, for each class of parallel elements of
πb(A) a single unit length representative (ignoring 0). If the class in
question is one which contains some b′ ∈ B \ b, then we let b′ be the
representative chosen. Write Bb = B \ b, so that Bb ⊂ Ab is a basis.

We consider the sets Ab, Bb in Wb and form the graph G(Bb;Ab)
with respect to the inner product [., .]Bb

, the restriction of the inner
product [., .]B to Wb.

If C is a collection of affine hyperplanes in V , then we define Cb

to be collection of affine hyperplanes in Wb of the form Wb∩W where
W ∈ C is chosen so that W is not parallel to Wb.

The following useful lemma comes straight from the definition.

Lemma 3.9 i/ The graph G(Bb;Ab) is formed from G(B;A) by re-
moving the vertex b and all its incident edges from G(B;A).

ii/ If A = N (C), then Ab = N (Cb).

Theorem 3.10 Suppose that m = dimV > 1 and that 0 6∈ A ⊂ V
spans V , and A has no parallel elements. Suppose that B ⊂ A is
a basis for V and that G(B;A) is connected, then there is a closed
convex polytope, C, of V , with interior, such that

i/ The normal of each face of C is an element of A.
ii/ v is a vertex of C which is at the intersection of exactly m

faces of C and each of these faces is normal to some element of B.
iii/ The vertex v is uniquely defined by property ii/.
(All normals are taken with respect to the inner product [., .]B.)

Proof We suppose, without loss of generality, that v = 0 and proceed
by induction on m = |B| ≥ 2.
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Suppose that |B| = 2. By graph connectedness, we find a ∈ A\B
with non-zero components in each B coordinate direction. Thus we
can construct easily a triangle, C, in V with the required properties.

For larger values of |B|, we proceed as follows.

As in Construction 3.8, define, for each b ∈ B, Wb to be the
hyperplane normal to b and let πb : V −→ Wb be the orthogonal
projection.

A simple argument shows that we can find bo ∈ B so that
G(B;A) \ bo (i.e. removing the vertex bo and all incident edges) is
connected. Thus, appealing to the description of Lemma 3.9 and by
induction on |B|, we can find a convex compact polytope subset, C1,
of Wbo

which obeys conditions i/ to iii/ above with respect to the basis
B \b and hyperplanes with normals parallel to some πbo

(a) : a ∈ A\b.

Suppose that W ′ is a hyperplane in Wbo
which contains a face of

C1 and has normal πbo
(a) for some a ∈ A. Then W ′ is in fact of the

form W ∩Wbo
, where W is the unique hyperplane in V , normal to a,

containing the space W ′. Indexing the faces of C1 with j say, each face
is contained in W ′

j with normal πbo
(aj). So construct a hyperplane

Wj in V as above, with normal aj . In the case of the faces of C1,
incident on 0 and normal to b ∈ B \ bo say, we make sure that we
choose aj = b, so that in this case Wj = Wb as defined above.

Now we build C2, a convex closed subset of V , as follows. For each
face j of C1, let Hj be the closed half-space defined by Wj , containing
the set C1. Let C2 = ∩jHj , where the intersection is indexed over all
faces of C1, so that C1 = C2 ∩ Wbo

.

C2 is almost certainly unbounded, but it is important to note
that none of its faces is normal to bo. Furthermore, by construction
of C1, there is only one edge in C2 which sits at the intersection of
m − 1 hyperplanes normal to some element of B \ bo, and this edge
contains the point 0 in its interior and is parallel to bo.

To produce a bounded set, we intersect C2 with a compact convex
polytope C4 whose faces are mostly normal to elements of B. We
construct C4 as follows.

For each b ∈ B \ bo, let Hb be the half space of V defined by the
hyperplane Wb and containing C1. Now let W+

b an affine translation
of Wb beyond the other side of C1. Precisely, we argue as follows:
since Wb contains a face of the convex set C1, either [b, c]B ≥ 0 for all
c ∈ C1, or [b, c]B ≤ 0 for all c ∈ C1; we construct W+

b in the first case
leaving the second case to symmetry. Since C1 is compact, there is
an upper bound r > [b, c]B for all c ∈ C1. Let W+

b = rb + Wb. Now
let H+

b be the half space defined by W+
b and containing C1.
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Let Hbo
be a half space of V defined by Wbo

; it doesn’t matter
which one. The intersection,

C3 =
⋂

b∈B

Hb ∩
⋂

b∈B\bo

H+
b

is therefore a semi-infinite rectangular prism whose semi-infinite axis
runs parallel to bo and whose base contains C1.

We now form an oblique face to truncate this prism. Let ao ∈
A \ bo be chosen so that [ao, bo]B 6= 0, as can indeed be done by the
assumed connectedness of G(B;A). Let Wao

be an affine hyperplane
of V with normal ao; we shall detail its placement soon. Note that,
by constuction, Wao

intersects every line parallel to bo, in particular
we may place Wao

so that it intersects (the interior of) all the edges
of C3 parallel to bo. Let Hao

be the half-space defined by Wao
and

containing C1. Let C4 = Hao
∩ C3.

The properties of C4 are summarized: C4 is compact and convex:
all its faces, except exactly one, are normal to some element of B;
exactly one of its faces is normal to bo and that face contains C1: 0
is a vertex of C4 and it is at the intersection of exactly m faces each
normal to some element of B: the other vertices of C4 for which this
can be said are in Wbo

but are all outside C1.
Let C = C2 ∩ C4. This is clearly a compact convex polytope in

V and C1 is a face of C. By construction, the point 0 is a vertex of C
and obeys property ii/. Any other vertex of C with property ii/ must
be found in C1 since there are no other faces of C2 or C4 normal to bo.
However, no other vertex of C1 can have property ii/ by its original
definition. ¤

Although the theorem above makes no reference to group actions, we
can adapt it for use in section 4.

Theorem 3.11 Suppose C is a collection of hyperplanes in V ,
dim V > 1, with Γ action as in Def. 3.1, and suppose that N (C) is
indecomposable. Suppose that F is a singular flag (3.2). Then there
is a convex C-tope on which F is uniquely incident.

Proof A singular flag is a descending sequence of singular spaces and
so we can also express it as the sequence of spaces,

W1, W1 ∩ W2, ∩1≤i≤3Wi, . . . , ∩1≤i≤kWi, . . . , ∩1≤i≤mWi,
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where Wi : 1 ≤ i ≤ m are transverse elements of C. Let {v} =
∩1≤i≤mWi.

Fix some inner product [., .] in V so that the Wi are orthogonally
transverse and let B = {λ(Wi) : 1 ≤ i ≤ m} , where the normal
λ is taken with respect to this inner product. B is an orthonormal
basis for V . We define N (C) with respect to this inner product (recall
Remark 3.7 above) and, to fit it into past notation, let A = N (C).

By hypothesis, A is indecomposable. Thus the graph G(B;A) is
connected, by 3.6, and so we may form by 3.10 a convex polytope,
Co, in V with the properties outlined in 3.10.

i/ The normal of each face of Co is an element of A.
ii/ v is a vertex of Co which is at the intersection of exactly m

faces of Co and each of these faces is normal to some element of B.
iii/ The vertex v is uniquely defined by property ii/.
However, we know that the orbit of an element, W , of C is dense

in V in the sense that for every affine hyperplane, W ′, of V , parallel
to W , and every ε > 0, there is an W ′′, in the Γ orbit class of W ,
such that W ′ and W ′′ are separated by a vector of length at most
ε. Therefore we may adjust Co slightly without disturbing the com-
binatorial properties of its faces to form a C-tope, C, with the same
properties. The vertex v need not be disturbed atall.

However, then it is clear that F is uniquely incident on C. ¤

4 The indecomposable case

We continue to consider the abstracted situation of section 3 and
reintroduce the analysis of 2.6 and 2.7 as a definition.

Definition 4.1 In the space, V ′ = V \ ∪{W : W ∈ C}, define AC to
be the collection of subsets of V ′ of the form C ∩ V ′, where C is a
C-tope, and with the empty set thrown in as well.

We write CVC for the ring of integer-valued functions generated
by indicator functions of elements of AC .

Compare this definition with the construction of the topology of Vu

in section 2.
Recall the set of singular flags, Jo, for V and C as above, the Γ

action on Jo, and the set J of Γ orbits in Jo. This transfers by a
coordinatewise action to a Γ action on groups such as ⊕Jo

Z/2, the
Jo-indexed direct sum of Z/2. In this case (⊕Jo

Z/2)/Γ = ⊕J Z/2
canonically.
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The main results of this section (4.2) and (4.6) are two similar tech-
nical results. Here is the first.

Proposition 4.2 With the constructions and notation of section 3
we suppose that m = dimV > 1 and N (C) is indecomposable. Then,
there is a Γ-equivariant homomorphism

ξo : CVC → ⊕Jo
Z/2

with the following property: for each singular flag F there is an ele-
ment e ∈ CVC so that ξo(e) has value 1 at coordinate F and value 0
at all other coordinates F ′ ∈ [F ].

The proof follows directly from section 3. Our aim is to build a Γ-
equivariant homomorphsism from CVC to ⊕Jo

Z/2 with certain further
properties. We use the following lemma to make the construction.

Lemma 4.3 i/ From 4.1 above, AC is an algebra generated by sets of
the form, C ∩ V ′, where C is a convex C-tope.

ii/ There is a one-to-one correspondance between a group ho-
momorphisms ξ : CVC −→ G to an abelian group G and maps
ξ′ from convex C-topes to G with the property that if C1 and C2

are interior disjoint convex C-topes and if C1 ∪ C2 is convex, then
ξ′(C1 ∪ C2) = ξ′(C1) + ξ′(C2).

iii/ If Γ acts homomorphically on G then ξ is Γ-equivariant when-
ever the corresponding ξ′ is Γ-equivariant.

Proof i/ Every C-tope can be decomposed into a finite interior-
disjoint union of convex C-topes.

ii/ Using the decomposition of part i/ we can define a homomor-
phism ξ : AC −→ G as follows: Take a C-tope, C, break it into interior-
disjoint cover by convex C-topes, Cj . Let ξ(C ∩ V ′) =

∑
ξ′(Cj).

To see that this is well-defined, consider a second such decompo-
sition C = ∪iC

′
i. Let Di,j be the closure in V of V ′ ∩ C ′

i ∩ Cj ; this is
either empty or a convex C-tope. With the convention ξ′(∅) = 0, the
condition on ξ′ extends inductively to show that ξ′(Cj) =

∑
i ξ′(Di,j)

and ξ′(C ′
i) =

∑
j ξ′(Di,j). Therefore

∑
j ξ′(Cj) =

∑
i ξ′(C ′

i) since
both are equal to

∑
i,j ξ′(Di,j).

It is clear that ξ is additive for interior-disjoint unions in AC , and
so extends to CVC . It is straightforward to construct a map ξ′ from
ξ.

iii/ Follows quickly from the construction of ii/. ¤
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Proof of 4.2 It is easy to define a map ξ′ on convex C-topes which
reflects the geometric idea of incidence of a singular flag. Suppose
C is a convex C-tope, then define ξ′(C) to be an element of ⊕Jo

Z/2
whose entry at the F coordinate (F ∈ Jo of course) is 1 if and only
if F is incident on C.

It is clear that ξ′ is Γ-equivariant.

To show that that ξ′ is additive, in the sense of Lemma 4.3 ii/,
we consider two interior disjoint convex C-topes C1 and C2, whose
union is a convex C-tope, and fix a particular singular flag, F . Three
cases should be checked, the third breaking down into two subcases.

Note first the general principle that a singular subspace (of any
dimension, t say) containing a face (of dimension t) of C1 ∪ C2 must
therefore contain a face (of dimension t) of C1 or a face (of dimension
t) of C2. The converse, of course, is not true as faces between C1

and C2 meet and fall into the interior of a higher dimensional faces of
C1 ∪C2; and this is generally the only way that faces can be removed
from consideration. So we have a second general principle that a
singular subspace contains a face of C1 ∪ C2 when it contains a face
of C1 and no face of C2 (matching dimensions always).

Case a/: F is incident neither on C1 nor on C2. By our first
general principle, it is immediate that F is not incident on C1 ∪ C2.

Case b/: F is incident on precisely one of C1 or C2. The second
general principle above shows then that F is incident on C1 ∪ C2.

Case c/: F = (θj)0≤j<N is incident on both C1 and C2. Suppose
that θt is the singular subspace (of dimension t) containing a face F1

(of dimension t) of C1 and a face F2 (of dimension t) of C2. We analyse
two possibilities: i/ F1 = F2: ii/ F1 and F2 are interior disjoint (as
subsets of θt). Note that we have used the convexity of C1 ∪ C2 and
other assumed properties to make this dichotomy.

Case ci/: Here F1 is no longer a face of C1 ∪ C2 and θt does not
contain a face of C1 ∪ C2. Thus F is not incident on C1 ∪ C2.

Case cii/: Here θt contains the face F1 ∪F2 of C1 ∪C2. However,
consider θt−1 (note that t ≥ 1 automatically in case ii/) which contains
a face of both C1 and C2 of dimension t−1. In fact, by convexity, this
face must be F1∩F2. However, this set is not a t−1 dimensional face
of C1∪C2, having been absorbed into the interior of the t-dimensional
face F1 ∪ F2.

Either way, in case c/ F is not incident on C1 ∪ C2.

Combining all these three cases gives the additivity mod 2 re-
quired of ξ′. Therefore, we define a Γ-equivariant homomorphism
ξo : CVC −→ ⊕Jo

Z/2 as required.
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The element e is provided by the construction of 3.11. Consider a
convex C-tope, C produced by Theorem 3.11 from the singular flag F .
The indicator function of C is an element of CVC which we will write
e. The properties claimed of e in the theorem follow automatically
from unique incidence of F on C. ¤

Γ-equivariance of the homomorphism from Proposition 4.2 allows us
to build the commuting diagram

CVC
ξo
−→ ⊕Jo

Z/2

↓q ↓q

H0(Γ;CVC)
ξ∗
−→ ⊕JZ/2

to define ξ∗, where the maps q quotient by the action of Γ. In the
indecomposable case therefore, Theorem 5.4 below is a direct conse-
quence of this observation and the reader who is only interested in the
indecomposable case can jump directly to that theorem replacing the
first words ”Given the data above” by the first sentence of Proposition
4.2. In the decomposable case, however, we need a lot more work to
establish such a diagram.

We prove an analogous technical result for the case dimV = 1. It
seems necessary and slightly surprising that its proof is not as directly
geometric.

For the remainder of the section, therefore, we assume that
dim V = 1, but, for technical reasons, we also relax the assumption
that Γ is a subgroup of V . Rather Γ is a free abelian group acting
minimally by translation, but some of these translations may be 0.
In this case we decompose Γ = Γ0 ⊕ Γ1 where Γ1 acts minimally and
freely and Γ0 fixes every point in V .

We note that in the case dimV = 1, the flags are simply single
points from P (sections 2 and 3). Thus there is a canonical corre-
spondence between Jo and P, which is clearly Γ-equivariant.

Construction 4.4 Consider the direct sum group L = ⊕J Z whose el-
ements can be considered as collections of integers indexed by elements
of J , or equivalently by Γ-orbit classes in P. Let hj : j = 1, 2, .., k
(with the obvious adaption for k = ∞) be the canonical free generat-
ing set for L.
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Let P1, ...Pk be the Γ-orbit classes of P and choose x0 ∈ P1 and,
for each 1 ≤ j ≤ k, also choose xj ∈ Pj such that xj > x0 (recall that
P ⊂ V = R in the case dim V = 1).

According to definition 4.1 above, V ′ = V \ P, and the sets
Ij = [x0, xj ] ∩ V ′ are elements of AC . Thus the functions fj which
indicate respective Ij , are elements of CVC .

This allows us to define a homomorphism β : L −→ CVC , defined
β(hj) = fj for each 1 ≤ j ≤ k. Consider ⊕Γ1L, the Γ1 indexed direct
sum of copies of L, whose elements we shall consider as Γ1-indexed
elements of L, (gγ)γ∈Γ1 , all but a finite number of which are 0. Note
that, by correponding the coordinate indices Γ-equivariantly, ⊕Γ1L
is Γ-equivariantly isomorphic to ⊕Jo

Z. (The Γ0 component of the
action acts trivially).

Now consider the homomorphism β∗ : ⊕Γ1L −→ CVC , defined as

β∗((gγ)γ∈Γ1) =
∑

γ∈Γ1

γβ(gγ)

Lemma 4.5 With the construction above, β∗ is Γ-equivariant.
i/ β∗ : ⊕Γ1L −→ CVC is injective.
ii/ The image of β∗ is complemented in CVC.

Proof The proof relies on a construction whose proper generalization
is made in Chapter 5. In the case dimV = 1, however, it is easy
enough to describe directly.

Consider those subsets, Ia,b, of AC formed from a C-tope inter-
val [a, b] ∩ V ′ (much as the sets Ij were formed above). In this case
a, b ∈ P necessarily. Therefore to this set, we associate an element of
⊕PZ namely one which is 0 at every coordinate except the a coordi-
nate, where it is 1, and at the b coordinate, where it is −1. We write
this element δ(Ia,b) = 1a − 1b in an obvious notation. This function
is additive in the sense of Lemma 4.3 and so extends to a homomor-
phism δ : CVC −→ ⊕PZ. Moreover, δ is clearly Γ-equivariant on
such intervals, and hence it is equivariant when extended to a group
homomorphism.

Recall the elements, fj , of CVC defined before. Consider an equa-
tion of the form

∑
1≤j≤k,γ∈Γ1

tj,γγfj = 0 (where tj,γ ∈ Z equal 0
for all but a finite set of indices). If we apply δ to this, we find∑

1≤j≤k,γ∈Γ1
tj,γγδ(fj) = 0, a sum in ⊕PZ, and we can now use the

equation δ(fj) = 1x0 − 1xj
.
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Decompose ⊕PZ = ⊕j ⊕Pj
Z and examine what happens on each

⊕Pj
Z.
Consider first an index j ≥ 2. In the component ⊕Pj

Z for such
a j, the sum reduces to

∑
γ∈Γ1

tj,γγ1xj
= 0 whence tj,γ = 0 for all

γ ∈ Γ1 since Γ1 acts freely on Pj .
The case remaining is j = 1 for which the sum reduces to

( ∑

1≤j≤k,γ∈Γ1

tj,γγ1x0

)
−

( ∑

γ∈Γ1

t1,γγ1x1

)
= 0

however, by the last paragraph, this reduces to
∑

γ∈Γ1
t1,γγ(1x0 −

1x1) = 0. But x1 = γ1(x0) for some γ1 ∈ Γ1 and so we find γ1f = f
where f =

∑
γ∈Γ1

t1,γγ1x0 . This implies that f = 0 (Γ1 acts freely on
⊕PZ) and so we have t1,γ = 0 for all γ ∈ Γ1 as well.

In conclusion, the equation
∑

1≤j≤k,γ∈Γ1
tj,γγfj = 0 implies

tj,γ = 0 for all j and γ, and so i/ follows.
To show ii/ we note first that CVC is isomorphic to a countable

direct sum of C(X; Z) ≡ ⊕∞Z (X Cantor) and so is itself free abelian.
Therefore to prove complimentarity of the image of β∗ it’s enough to
show that CVC/Imβ∗ is torsion free.

Therefore, we argue to the contrary and suppose that we have an
element g = (gγ)γ∈Γ1 ∈ ⊕Γ1L for which β∗(g) = tf for some t ∈ Z, t ≥
2, and f ∈ CVC . This equation may be written

∑
1≤j≤k,γ∈Γ1

tj,γγfj =
tf , where β(gγ) =

∑
1≤j≤k tj,γfj .

The analysis we have just completed in part i/ can be performed
equally well modulo t. Therefore each tj,γ = 0 mod t and we de-
duce that each β(gγ) = tfγ for some fγ ∈ β(L). In particular
f =

∑
γ∈Γ1

γfγ ∈ β∗(⊕Γ1L). Thus every element of β∗(⊕Γ1L) which
can be divided in CVC can also be divided in β∗(⊕Γ1L), i.e. the
quotient is torsion-free as required. ¤

This gives the key to the second and final technical result of this
section.

Proposition 4.6 Assume the constructions and notation of 4.4 and
section 3: in particular we suppose that dimV = 1. Then there is a
surjective Γ-equivariant homomorphism ξo : CVC → ⊕Jo

Z/2.

Proof Lemma 4.5 builds an injective Γ-equivariant homomorphism
β∗ : ⊕Jo

Z −→ CVC whose image is complemented in CVC . Therefore
we have automatically a surjective Γ-equivariant homomorphism ξ :
CVC −→ ⊕Jo

Z reversing this (i.e. ξβ∗ = identity). Extending ξ by



86 A. FORREST, J. HUNTON AND J. KELLENDONK

the reduction mod 2, ⊕Jo
Z −→ ⊕Jo

Z/2, gives us the homomorphism
ξo : CVC −→ ⊕Jo

Z/2. ¤

5 The decomposable case

Proposition 4.2 is very close to a proof of Theorem 2.9 in the case that
N (C) is indecomposable. Rather than finish the argument for that
case, we clear up the decomposable case and so complete the most
general proof. Once again we exploit the generalities of section 3.

Construction 5.1 Suppose that N (C) is decomposable and that
N1, . . . ,Nk are its components. Let Vj be the vector space spanned
by Nj , defined for each 1 ≤ j ≤ k. Without loss of generality (see
Remark 3.7) we can impose an inner product on V which will make
the Vj mutually orthogonal and we do this from the start.

Therefore V =
∑

j Vj = ⊕jVj is an orthogonal direct sum. Let
πj be the orthogonal projection onto Vj with kernel

∑
{Vi : i 6= j}.

Let Cj be the set of those elements of C whose normal is contained
in Vj . Thus, for each j, Nj = N (Cj), an indecomposable subset of Vj .
The Γ action on C leaves each of the sets Cj invariant.

The natural Γ action on Vj is more complicated than mere re-
striction. We consider πj(Γ) as a subgroup of Vj and let Γ act by
translation: γ(v) = v + πj(γ). We call this the projected action.

On each Vj we construct the sets of singular flags, Joj and
Jj = Joj/Γ, and the spaces CVj C∗

j
according to section 3, us-

ing the projected action of Γ on Vj and the singular hyperplanes
C∗

j = {W ∩Vj : W ∈ Cj}. Note again that, for each j, N (C∗
j ) = N (Cj)

is indecomposable as a spanning subset of Vj . Moreover, Pj , the in-
tersection point set defined using C∗

j in Vj , is equal to πj(P) which in
turn is equal to P ∩ Vj .

We abbreviate the Z[Γ] module CVj C∗
j

as CVj in what follows.

Lemma 5.2 Given the constructions above, we have the following
relations:

i/ There is a canonical bijection C ↔ ∪jC
∗
j .

ii/ There is a canonical Γ-equivariant bijection ΠjPj ↔ P (direct
product of sets), where Γ acts on the direct product diagonally by its
projected actions.

iii/ V ≡ ⊕jVj is a canonical orthogonal direct sum on which the
usual Γ action on V is retrieved as the diagonal action of the projected
actions of Γ.
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iv/ CV ≡ ⊗jCVj canonically as a Z[Γ]-module, where the module
action is given by the diagonal action of the projected actions.

v/ There is a canonical Γ-equivariant surjection σ : Jo −→
ΠjJoj (direct product of sets) and a natural Γ-equivariant injection
τ : ΠjJoj −→ Jo whose composition στ is the identity.

Proof The first four parts all follow from the fact that, for each j,
the singular spaces in V break into two classes. Those spaces which
are parallel to Vj do not impinge on its singular geometry at all.
And those singular spaces, W , which are not parallel, intersect Vj in
exactly the same way as they project to Vj , i.e. πj(W ) = W ∩ Vj .

Part v/ is more involved. Consider a singular flag, F , in V with
the singular plane set C. The bijection of part i/ can be detailed: each
element of C is of the form V1 +V2 + ...+Vj−1 +Wj +Vj+1 + ..+Vk, an
orthogonal sum, where Wj ∈ C∗

j . Thus any intersection of elements
of C can be written as an orthogonal sum W1 + W2 + ... + Wk, where,
for each j, Wj is an intersection of elements from C∗

j .
Now consider the sequence of singular spaces listed in F and

their orthogonal decomposition as above. As we read from point to
hyperplane, their dimension rises by exactly one and so the orthogonal
summands rise in dimension, but only in one of the summands and
only by one dimension. Suppose in the orthogonal decomposition of
this increasing sequence, we ignore all directions but the jth say. Then
we find a nested sequence of singular spaces in Vj whose dimension
rises by at most 1 at each step, either going all the way up to Vj or
(for precisely one value of j) stopping one dimension short. Extract
the sequence as a strictly increasing subsequences, neglecting the last
term if it happens to be Vj , and call the result Fj . For each j, Fj will
be a singular flag in Vj with respect to the singular planes C∗

j . The
map F 7→ (F1,F2, ...,Fk) is σ.

To show it’s onto, we construct τ . Given Fj = (Wj,0, ...,Wj,mj−1)
(where dimension of Vj is mj) consider the sequence: W1,0 + W2,0 +
...+Wk,0, W1,1+W2,0+...+Wk,0, W1,2+W2,0+...+Wk,0,..., W1,m1−1+
W2,0 + ... + Wk,0, V1 + W2,0 + ... + Wk,0, V1 + W2,1 + ... + Wk,0, ...,
V1 + W2,m2−1 + ... + Wk,0, V1 + V2 + W3,0 + ... + Wk,0,..., V1 + V2 +
...Vk−1 + Wk,mk−2, V1 + V2 + ...Vk−1 + Wk,mk−1, where all sums are
orthogonal sums in V . This is a singular flag, in V with respect to C,
which we shall call τ(F1,F2, ...,Fk).

It is immediate from definition that σ and τ are Γ-equivariant
and that στ is the identity. ¤

Note that although P may have an infinite number of Γ-orbits, each
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of the Pj may have only finitely many Γ orbits under the projected
action. This subtle problem cuts out the possibility of an easy argu-
ment by induction on the number of indecomposable components of
N (C).

Applying τ coordinate-wise, we find

Corollary 5.3 There is a Γ-equivariant homomorphism τ+ : ⊗j ⊕Joj

Z/2 −→ ⊕Jo
Z/2. ¤

Now we are ready for the main result of this section.

Theorem 5.4 With the data above, there is a homomorphism
ξ∗:H0(Γ;CVC) −→ ⊕J Z/2 such that for all v ∈ P, there is a sin-
gular flag F = (θj)1≤j<m ∈ Jo so that θ0 = {v}, and an element
ev ∈ H0(Γ, CVC) such that ξ∗(ev) has value 1 at coordinate [F ] (i.e.
the Γ-orbit class of F , an element of J (3.3)).

Proof Suppose that N (C) = ∪jN (Cj) is an indecomposable partition,
forming the spaces Vj , of dimension mj = dim Vj , etc as above.

Note that on each Vj , Γ acts by translation by elements of πj(Γ)
and that action may or may not be free. Proposition 4.6 applies in this
case by hypothesis. Also the proof of Proposition 4.2 does not depend
on the freedom of the Γ action. No complication arises therefore if we
stick with the projected Γ action on each Vj even though the action
may not be free.

For each j, πj(Γ) is the projection of a dense subset of V and so
itself is dense in Vj . Therefore the Γ action on each Vj is minimal and
rank(πj(Γ)) > 1.

Given v ∈ P, we find πj(v) = vj ∈ Pj . By Propositions 4.2 and
4.6 we find for each j a homomorphism

ξoj : CVj −→ ⊕Joj
Z/2,

a singular flag Fj in Vj such that Fj0 = {vj}, and an element ev,j ∈
CVj so that ξo(ev,j) has value 1 in the coordinate Fj and 0 in the
coordinates of all other flags from the Γ-orbit [Fj ] of F (if dimVj = 1
flags are just points and the latter properties follow from surjectivity).
The homomorphisms ξoj are independent of the choice of v.

The equation CVC = ⊗jCVj allows us to build the homomor-
phism

⊗ξoj : CVC −→ ⊗j ⊕Joj
Z/2
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and using τ+ of Cor 5.3, we can continue this homomorphism to
⊕Jo

Z/2. This homomorphism is clearly Γ-equivariant and so we de-
duce a quotiented homomorphism: ξ∗ : H0(Γ;CVC) −→ ⊕J Z/2 which
completes a square as required

CVC
τ+(⊗jξoj)

−→ ⊕Jo
Z/2

↓q ↓q

H0(Γ;CVC)
ξ∗
−→ ⊕J Z/2

.

Given v, the element ev = ⊗jev,j ∈ CVC is mapped by τ+(⊗jξoj) to
an element with value 1 at the coordinate F = τ(F1,F2, ...,Fk) and
with value 0 at coordinates F ′ = τ(F ′

1,F
′
2, ...,F

′
k) where F ′

j ∈ [Fj ] but
F 6= F ′. In particular, τ+(⊗jξoj)(ev) has value 0 at all coordinates of
the Γ-orbit [F ] of F except at F itself. Hence qτ+(⊗jξoj) : CVC −→
⊕J Z/2 maps ev to an element with value 1 at the coordinate [F ].
The zero dimensional element of F is {v} by construction. ¤

Proof of Theorem 2.9 Suppose that P is infinitely generated and
that v1, v2, ... are representatives of distinct Γ-orbit classes. By The-
orem 5.4, we find a homomorphism ξ∗ : H0(Γ;CVC) −→ ⊕J Z/2,
singular flags Fj ∈ Jo so that the zero dimensional element of Fj is
{vj}, and elements ej ∈ H0(Γ, CVC) such that ξ∗(ej) has value 1 at
coordinate [Fj ].

By taking a subsequence if necessary we may assume that for
i < j, all the values ξ∗(ei) have value 0 at the [Fj ] coordinate. In
particular, we have ensured that the set {ξ∗(ej) : j ≥ 1} is Z/2
independent in ⊕J Z/2. By Proposition 2.10 we have H0(Γ, CVC)⊗Q

infinitely generated.
Now to prove Theorem 2.9, we apply this analysis to the con-

struction of section 2, using the same V , and setting C = Cu and
Γ = ΓT . ¤

6 Conditions for infinitely generated cohomology

To apply Theorem 2.9 we must be able to count the orbits in P. This
is a geometric exercise, and each case will have its own peculiarities.
We present in this section elementary general conditions which are
sufficient to give infinite orbits in P.
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Recall the general set-up from IV.3, and the construction of P as
points which are the proper intersection of m = dimV hyperplanes
picked from C.

Definition 6.1 Suppose that W1, ..,Wm is a set of hyperplanes cho-
sen from C, intersecting in a single point p. For each subset A of
{1, · · · ,m} the intersection

WA :=
⋂

i∈A

Wi

has dimension m − |A|. We write Ac = {1, · · · ,m} \ A and define
ΓA = {x ∈ V |∃γ ∈ Γ : {x + p} = WA ∩ (WAc + γ)}. Finally let
ΓA ⊂ Γ be the stabilizer of WA.

We think of ΓA as the projection of Γ onto WA along WAc . The
following is straightforward from the definitions.

Lemma 6.2 With the notation above:
i/ ΓA is a group with ΓA as a subgroup.
ii/ ΓA + p = P ∩ WA.
iii/ If q ∈ P ∩ WA, then (Γ + q) ∩ WA = ΓA + q.
iv/ If A1, A2 ⊂ {1, · · · ,m} are disjoint, then ΓA1∪A2 = ΓA1∩ΓA2 .

This gives immediately an easy way to determine whether we have an
infinite number of orbits in P.

Proposition 6.3 If, for some choice of W1, ...,Wm and A ⊂
{1, · · · ,m}, the stabilizer ΓA has infinite index in ΓA (equivalently,
if rk ΓA < rk ΓA), then P is infinitely generated.

Proof By Lemma 6.2 ii/ and iii/ the orbits in P which intersect WA

are enumerated precisely by the cosets of ΓA in ΓA. This is infinite
by assumption. ¤

We can pursue the construction above a little further to get even
a sharper condition for infinitely generated P. Given A1, A2 ⊂
{1, · · · ,m}, note that A1∪A2 = {1, 2, ..,m} implies WA1 ∩WA2 = {p}
and therefore ΓA1 ∩ ΓA2 = {0}. This together with Lemma 6.2 gives
the following result.

Lemma 6.4 For every choice of W1, ...,Wm as above and for every
pair of sets, A1, A2 ⊂ {1, · · · ,m} we have,
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i/ if A1 ∩ A2 = ∅, then

rk ΓA1 +rkΓA2 − rk ΓA1∪A2 ≤ rk Γ ≤ rk ΓA1 +rk ΓA2 − rk (ΓA1 ∩ΓA2),

ii/ if A1 ∪ A2 = {1, 2, ..,m}, then

ΓA1 + ΓA2 ⊂ ΓA1∩A2 ⊂ ΓA1∩A2 ⊂ ΓA1 + ΓA2

both sums being direct. ¤

Corollary 6.5 If P is finitely generated, then for every choice of
W1, ...,Wm and for every pair of sets, A1, A2 ⊂ {1, · · · ,m} we have,

i/ if A1 ∩ A2 = ∅, then

rk ΓA1 + rk ΓA2 − rk ΓA1∪A2 = rk Γ,

ii/ if A1 ∪ A2 = {1, 2, ..,m}, then

rk ΓA1 + rk ΓA2 = rk ΓA1∩A2 .

Proof Suppose A1 ∩ A2 = ∅. Then ΓA1∪A2 = ΓA1 ∩ ΓA2 ⊂ ΓA1 ∩
ΓA2 which, by Proposition 6.3, implies rk ΓA1∪A2 ≤ rk (ΓA1 ∩ ΓA2).
Hence, by Lemma 6.4 rk Γ ≤ rk ΓA1 + rk ΓA2 − rk ΓA1∪A2 and now
Proposition 6.3 and Lemma 6.4 i/ allow to conclude i/. ii/ follows
directly from Proposition 6.3 and Lemma 6.4 ii/. ¤

Definition 6.6 Let us now look at a situation in which we pick more
hyperplanes, W = {W1, · · · ,Wf}, f > m = dim V , from C demanding
that the set N (W) of normals of the planes (defined as in Definition
3.1 but for the subset W ⊂ C) is indecomposable in the sense of 3.5.
This requires that N (W) spans V and by (3.6) is equivalent to the
fact that all graphs G(B;N (W)) with B ⊂ N (W) a basis for V are
connected. Let us denote by Il the collection of subsets A ⊂ {1, · · · , f}
of m − l elements such that WA has dimension l (compare with 2.1).
Note that any A ∈ I0 defines a basis BA by the normals to all Wi,
i ∈ A.

Theorem 6.7 With W as above suppose that P is finitely generated.
Then, for all A ∈ Il

rk ΓA = l
rk Γ

dimV
.
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In particular dimV divides rk Γ.

Proof Fix i and choose an A ∈ I0 which contains i (this is clearly
possible). Applying Corollary 6.5 i/ iteratively we obtain

∑

i∈A

rk Γ{i} = (m − 1)rk Γ. (6.1)

By hypothesis there exists a j ∈ A such that the vertices of
G(BA,N (W)) corresponding to the normals of Wi and Wj are linked.
Hence there is a k /∈ A such that the normal of Wk has nonvanish-
ing scalar product [·, ·] with the normals of Wi and Wj . This implies
that, both, (A\{i}) ∪ {k} and (A\{j}) ∪ {k} belong to I0. Hence
we can apply (6.1) to both sets to conclude νi = νj . By assump-
tion G(BA;N (W)) is connected so that a repetition of the argument
shows that νi does not depend on the choice of i ∈ A. This proves the
theorem for l = m− 1 (l = m is clear). The statements for l < m− 1
follow now inductively from Corollary 6.5 i/. ¤

Theorem 6.7 contains as a special case a condition for canonical pro-
jection method patterns as to whether they have infinitely generated
cohomology which can quickly be checked.

Corollary 6.8 Suppose that T is a tiling in Rd, topologically conjugate
(I.4.5) to a canonical projection method pattern with data (E, u), and
suppose that E ∩ZN = 0. If N − rk ∆ is not divisible by N − rk ∆− d
then H0(GTu) ⊗ Q is infinite dimensional, and so Tu is not a substi-
tution tiling.

Proof In the tiling case rk ΓTu
= N −rk ∆ and dimV = N −d−rk ∆.

¤

Examples 6.9 (Cf. Examples I.2.7) The Octagonal tiling, a canonical
projection tiling with N = 4, ∆ = 0 and d = 2, and the Penrose
tiling, a canonical projection tiling with N = 5, ∆ ∼= Z and d = 2,
are both substitutional and hence have finitely generated cohomology.
Theorem 6.7 therefore tells us that the stabilizers of the hyperplanes
(here lines) have rank two.

It is clear that in the generic placement of planes the ranks of the
stabilizers of the intersections of hyperplanes will have smaller rank
than compatible with the last theorem. Thus we deduce:
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Theorem 6.10 Suppose that T is a tiling in Rd, topologically conju-
gate to a canonical projection method pattern with data (E, u) and
N > d + 1, and suppose that E is in generic position. Then
H0(GT )⊗Q is infinite dimensional, and T is not a substitution tiling.
¤



V Approaches to Calculation III:

Cohomology for Small Codimension

1 Introduction

The last chapter was devoted to the case in which the cohomology
groups of a canonical projection tiling were infinitely generated. Now
we turn to the opposite case. In particular we shall assume that P has
only finitely many Γ orbits, i.e. is finitely generated (IV.2.8). In that
case we find that the cohomology groups of canonical projection tilings
are finitely generated free abelian groups and we can provide explicit
formulae for their ranks if the codimension is smaller or equal to 3.
We obtain a formula for their Euler characteristic even in any codi-
mension. Although we saw that finitely generated P is non-generic
this seems to be the case of interest for quasicrystal physics. In par-
ticular we will present calculations for the Ammann-Kramer tiling as
an example. It is a three dimensional analog of the Penrose tilings
and often used to model icosahedral quasicrystals.

The material presented here extends [FHK] to the codimension
3 case. This is important, because all known tilings which are used
to model icosahedral quasicrystals are obtained from projection out
of a 6-dimensional periodic structure with codimension 3. Unlike in
[FHK] we use here a spectral sequence derived from a double complex
to prove our formulae.

Perhaps the first use of spectral sequences in calculation of tiling
cohomology or K-theory is found in [BCL]. However, we note that
the spectral sequence we use here differs significantly from the spectral
sequence found in [BCL]. While the sequence of [BCL] produces an
isomorphism of the K-theory of the groupoid C∗-algebra of the tiling
with its cohomology in 2 dimensions (as is generalized in Chapter
II), our sequence represents a geometric decomposition of the tiling
cohomology itself which is a powerful calculating tool.

In Section 2 we recall the set-up and state the main results
(Thms. 2.4, 2.5, 2.8 for arbitrary codimension and Thm. 2.7 for codi-
mension 3). In Section 3 we explain one part of the double complex,
namely the one which is related to the structure of the set of singu-
lar points, and in Section 4 we recall the other half which is simply
group homology. We put both together in Section 5 where we employ
the machinery of spectral sequences to proof our results. In principle

94
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there is no obstruction to pushing the calculation further to higher
codimension, it is rather the complexity which becomes overwhelming
to do this in practice. In the final section we sketch how our formulae
apply to the Ammann-Kramer tiling.

2 Set up and statement of the results

In the second chapter we defined the cohomology of a tiling as the
cohomology of one of its groupoids (it turned out that it does not
matter which one we take) and interpreted it in various forms, in
particular as a standard dynamical invariant of one of the systems.
This dynamical system is of the following type: Consider a dense
lattice Γ of rank N in a euclidian space V as it arises generically if one
takes N > dimV vectors of V and considers the lattice they generate.
Let K be a compact set which is the closure of its interior and consider
the orbit S = ∂K + Γ ⊂ V of ∂K under Γ. We showed in Chapters I
and II how such a situation arises for projection method patterns and
how in this case the rather simple dynamical system (V,Γ) (Γ acting
by translation) extends to a dynamical system (V ,Γ) which coincides
with the old one on the dense Gδ-set V \S. V is locally a Cantor set
and obtained from V upon disconnecting it along the points of S. We
are interested in calculating the homology groups Hp(Γ, CV ) of the
group Γ with coefficients in the compactly supported integer valued
continuous functions over V . Already for the results of Chapter IV we
specialized to the situation in which S is a union of a collection C of
hyperplanes, the collection consisting of finitely many ΓT -orbits. We
denoted there V by VC . We will restrict our attention to this case here
too. In the context of projection method patterns (Def. I.4.4), where
Γ = ΓT and V = V + π′(u) (II.4.3), this means that we consider only
polytopal acceptance domain K and such that the orbit of a face under
the action of Γ contains the hyperplane it spans (this is hypothesis
H3 in [FHK]). The ΓT -orbits of these hyperplanes constitute the set
C. In particular, we rule out fractal acceptance domain although this
case might be important for quasicrystal physics.

Set-up 2.1 All our results below depend only on the context described
by the data (V, Γ,W), a dense lattice Γ of finite rank in a Euclidean
space V with a finite family W = {Wi}i=1,···,f of (affine) hyperplanes
whose normals span V . Thus they are not specific for the tilings
considered here but can be applied e.g. also to the situation of [FHK].
Our aim is to analyse the homology groups Hp(Γ, CVC) where C :=
{W + γ : W ∈ W, γ ∈ Γ}.
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We extend the notation of IV.6.6.

Definitions 2.2 Given a finite family W = {Wi}i=1,···,f of hyper-
planes, recall that Jl is the collection of subsets A ⊂ {1, · · · , f} of
dim V − l elements such that WA has dimension l. On WA we have
an action of Γ|A|:

~x · WA :=
⋂

i∈A

(Wi − xi).

We call ~x · WA a singular space or singular l-space if we want to
specify its dimension l. Let Pl be the quotient Γ|A| × Jl/ ∼ with
(~x,A) ∼ (~x′, A′) if ~x·WA = ~x′ ·WA′ . It is in one to one correspondence
to the set of singular l-spaces. We denote equivalence classes by [~x,A]
and the space ~x · WA also by W[~x,A]. On Pl we have an action of
Γ: y · [~x,A] = [y · ~x,A] where (y · ~x)i = y + xi. We denote the
orbit space Pl/Γ by Il. Since this action coincides with the geometric
action of Γ (by translation) on the singular l-spaces we can use the
elements of Il to label the Γ-orbits of singular l-spaces. Note that the
map {1, · · · , f} → Idim V −1 which assigns to i the orbit of [0, {i}] is
surjective but not necessarily injective. The stabilizer of a singular
l-space depends only on its orbit class, if the label of its orbit is Θ ∈ Il

we denote the stabilizer by ΓΘ.

Fix Θ̂ ∈ Pl+k, l +k < dimV and let PΘ̂
l := {Ψ̂ ∈ Pl|WΨ̂ ⊂ WΘ̂}.

Then ΓΘ (Θ the orbit class of Θ̂) acts on PΘ̂
l (diagonally, by the

same formula as above) and we let IΘ̂
l = PΘ̂

l /ΓΘ, the orbit space. It
labels the ΓΘ-orbits of singular l-spaces in the l+k-dimensional space

WΘ̂. We can naturally identify IΘ̂
l with IΘ̂′

l if Θ̂ and Θ̂′ belong to
the same Γ-orbit and so we define IΘ

l , for the class Θ ∈ Il+k. IΘ
l is

the subset of Il labelling those orbits of singular l-spaces which have
a representative that lies in singular space whose label is Θ. Finally
we denote

Ll = |Il|, LΘ
l = |IΘ

l |

where Θ ∈ Il+k, l + k < dimV .
Note that P0 can be identified with P (Def. IV.2.8). So our as-

sumption of this chapter is that L0 is finite. The proof of the following
lemma is straightforward.

Lemma 2.3 If L0 is finite then LΘ
l is finite for all Θ and l. ¤

The proof of the following five theorems will be given in Section 5.
The first one is the converse of Theorem IV.2.9.
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Theorem 2.4 Suppose given data (V,Γ,W) as in (2.1) with L0 finite.
Then Hp(Γ, CVC) ⊗ Q has finite rank over the rational numbers Q.

We denote
Dp = rkHp(Γ, CVC) ⊗ Q.

Theorem 2.5 Suppose given data (V,Γ,W) as in (2.1) with L0 fi-
nite. Then Hp(Γ, CVC) is free abelian. In particular it is uniquely
determined by its rank which is Dp.

Note that Theorems 2.4 and 2.5 exclude the possibility that
H(Γ, CVC) would contain e.g. the dyadic numbers as a summand,
a case which occurs frequently in cohomology groups of substitution
tilings.

Recall that, if the normals of the hyperplanes W form an in-
decomposable set in the sense of IV.3.4 and L0 is finite then Theo-
rem IV.6.7 implies that the rank of the stabilizer ΓΘ depends only on
the dimension of the plane it stabilizes, i.e.

rk ΓΘ = ν dimΘ

where ν = rk Γ
dim V and dim Θ = l provided Θ ∈ Il.

Recall Theorem III.3.1 applied to the present situation where
we have data (V, Γ,W) with L0 finite and dimV = 1. Then
Hp(Γ, CVC) = ZDp with

Dp =

(
ν

p + 1

)
, p > 0, (2.1)

D0 = (ν − 1) + L0. (2.2)

If {Mi : i ∈ I} is a family of submodules of some bigger module we
denote by 〈Mi : i ∈ I〉 their span. For a finitely generated lattice G
we let ΛG be the exterior ring (which is a Z-module) generated by it.
In [FHK] we obtained the following theorem.

Theorem 2.6 Given data (V,Γ,W) as in (2.1) with dimV = 2.
Suppose that L0 is finite and that the normals of the hyperplanes W
form an indecomposable set in the sense of IV.3.4. Then

Dp =

(
2ν

p + 2

)
+ L1

(
ν

p + 1

)
− rp+1 − rp, p > 0,



98 A. FORREST, J. HUNTON AND J. KELLENDONK

D0 =

(
2ν

2

)
− 2ν + 1 + L1(ν − 1) + e − r1

where
rp = rk 〈Λp+1Γ

α : α ∈ I1〉,

and the Euler characteristic is

e :=
∑

p

(−1)pDp = −L0 +
∑

α∈I1

Lα
0 .

The main result of this chapter is an extension of this result to codi-
mension 3.

Theorem 2.7 Given data (V,Γ,W) as in (2.1) with dimV = 3.
Suppose that L0 is finite and that the normals of the hyperplanes W
form an indecomposable set in the sense of IV.3.4. Then, for p > 0,

Dp =

(
3ν

p + 3

)
+ L2

(
2ν

p + 2

)
+ L̃1

(
ν

p + 1

)
− Rp − Rp+1,

D0 =
3∑

j=0

(−1)j

(
3ν

3 − j

)
+ L2

2∑

j=0

(−1)j

(
2ν

2 − j

)

+L̃1

1∑

j=0

(−1)j

(
ν

1 − j

)
+ e − R1

where L̃1 = −L1 +
∑

α∈I2
Lα

1 ,

Rp = rk 〈Λp+2Γ
α:α ∈ I2〉 − rk 〈Λp+1Γ

Θ: Θ ∈ I1〉

+
∑

α∈I2

rk 〈Λp+1Γ
Θ: Θ ∈ Iα

1 〉 ,

and the Euler characteristic is

e :=
∑

p

(−1)pDp = L0 −
∑

α∈I2

Lα
0 +

∑

α∈I2

∑

Θ∈Iα
1

LΘ
0 −

∑

Θ∈I1

LΘ
0 .

The last two theorems make combinatorial patterns for higher codi-
mensional tilings apparent. We are able to present one such for the
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Euler characteristic of the general case. To set this up define a sin-
gular sequence to be a (finite) sequence c = Θ1,Θ2, ...,Θk of Γ-orbits

of singular spaces strictly ascending in the sense that Θj ∈ I
Θj+1

dim Θj
,

dim Θj < dimΘj+1, and dimΘ1 = 0. An example of such a sequence
is the Γ-orbit of a singular flag, but the dimension in the sequence can
also jump by more than one. The length of the chain c is k, written
|c| = k.

Theorem 2.8 Given data (V,Γ,W) with L0 finite. Then the Euler
Characteristic equals

e :=
∑

p

(−1)pDp =
∑

(−1)|c|+dim V

where the sum is over all singular chains c.

3 Complexes defined by the singular spaces

Let C′ be an arbitrary countable collection of affine hyperplanes of V ′,
a linear space, and define C′-topes as in IV.3.2: compact polytopes
which are the closure of their interior and whose boundary faces be-
long to hyperplanes from C′.

Definition 3.1 For n at most the dimension of V ′ let Cn
C′ be the

Z-module generated by the n-dimensional faces of convex C′-topes
satisfying the relations

[U1] + [U2] = [U1 ∪ U2]

for any two n-dimensional faces U1, U2, for which U1 ∪ U2 is as well
a face and U1 ∩ U2 has no interior (i.e. nonzero codimension in U1).
(The above relations then imply [U1] + [U2] = [U1 ∪U2] + [U1 ∩U2] if
U1 ∩ U2 has interior.)

If we take C′ = C := {W + x : W ∈ W, x ∈ Γ}, our collection of
singular planes, then Cn := Cn

C carries an obvious Γ-action, namely
x · [U ] = [U +x]. It is therefore an Γ-module. Recall Definition IV.3.2
in which we defined VC by identifying CVC with Cdim V as Γ-module.
An isomorphism between Cdim V and CVC is given by assigning to [U ]
the indicator function on the connected component containing U\S
(which is a clopen set). Moreover, C0 is a free Z-module, its generators
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are in one to one correspondence to the elements of P. The following
proposition is from [FHK].

Proposition 3.2 There exist Γ-equivariant module maps δ and ε such
that

0 → Cdim V δ
−→ Cdim V −1 δ

−→ · · ·C0 ε
−→ Z → 0

is an exact sequence of Γ-modules and ε[U ] = 1 for all vertices U of
C-topes.

Proof For a subset R of Γ let CR := {W + r : W ∈ W, r ∈ R}
and SR = {x ∈ W : W ∈ CR}. Let R be the set of subsets R ⊂ Γ
such that all connected components of V \SR are bounded and have
interior. R is closed under union and hence forms an upper directed
system under inclusion. Let VR be the disjoint union of the closures
of the connected components of V \SR. R ⊂ R′ gives rise to a natural
surjection VR′ → VR which is the continuous extension of the inclusion
V \SR′ ⊂ V \SR and VC is the projective limit of the VR. For any
R ∈ R, the CR-topes define a regular polytopal CW-complex

0 → Cdim V
CR

δR−→ Cdim V −1
CR

δR−→ · · ·C0
CR

→ 0, (3.1)

with boundary operators δR depending on the choices of orientations
for the n-cells (n > 0) [Mas]. Moreover, this complex is acyclic (V is

contractible), i.e. upon replacing C0
CR

→ 0 by C0
CR

εR−→ Z → 0 where
εR[U ] = 1, (3.1) becomes an exact sequence. Let us constrain the
orientation of the n-cells in the following way: Each n-cell belongs to
a unique singular n-space WΘ̂, Θ̂ ∈ Pn. We choose its orientation

such that it depends only on the class of Θ̂ in Il (i.e. we choose an ori-
entation for all parallel WΘ̂ and then the cell inherits it as a subset).
By the same principle, all cells of maximal dimensions are supposed
to have the same orientation. Then the cochains and boundary oper-
ators δR share two crucial properties: first, if R ⊂ R′ for R,R′ ∈ R,
then we may identify Cn

CR
with a submodule of Cn

CR′
and under this

identification δR(x) = δR′(x) for all x ∈ Cn
CR

, and second, if U and
U + x are CR-topes then δR[U + x] = δR[U ] + x. The first property
implies that the directed system R gives rise to a directed system
of acyclic cochain complexes, and hence its direct limit is an acyclic
complex, and the second implies, together with the fact that for all
x ∈ Γ and R ∈ R also R + x ∈ R, that this complex becomes a com-
plex of Γ-modules. The statement now follows since Cn

C is the direct
limit of the Cn

CR
, R ∈ R. ¤
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Let Cl
[~x,A] be the restriction of Cl to polytopes which belong to W[~x,A].

We can naturally identify Cl
[~x,A] with Cl

[~x′,A′] if y · [~x,A] = [~x′, A′]
for some y ∈ Γ. Moreover, in this case the complexes obtained by
restriction of δ,

0 → Cl
[~x,A]

δ[~x,A]

−→ Cl−1
[~x,A] · · ·C

0
[~x,A] → 0,

are isomorphic for all [~x,A] of the same orbit class in Il. With this in
mind we define ((Cl

Θ)l∈Z, δΘ) as a complex isomorphic to the above
complex where Θ ∈ Il is the class of [~x,A]. Thus every Θ ∈ Il defines
a new acyclic complex.

Lemma 3.3
Cl ∼=

⊕

Θ∈Il

Cl
Θ ⊗ Z[Γ/ΓΘ]

and if Θ ∈ Il+k, l + k < dim V , then

Cl
Θ
∼=

⊕

Ψ∈IΘ
l

Cl
Ψ ⊗ Z[ΓΘ/ΓΨ].

Proof First observe that

Cl ∼=
⊕

[~x,A]∈Pl

Cl
[~x,A],

because an l-face of a C-tope belongs a unique singular l-space. From
the definition of CΘ and the observation that y · [~x,A] = [~x,A] when-
ever y leaves WA invariant the first statement of the lemma follows.
The proof for the second is similar. ¤

4 Group homology

Recall that the homology of a discrete group Γ′ with coefficients in
a Γ′-module M is defined as the homology of a complex which is
obtained from a resolution of Z by (projective) Γ′-modules upon ap-
plication of the functor ⊗Γ′M . We use here a free and finite resolution
of Γ′ = Γ ∼= ZN by its exterior module so that the complex looks like

0 → ΛNΓ ⊗ M
∂

−→ · · ·Λ0Γ ⊗ M → 0
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with boundary operator ∂ given by

∂(ei1 · · · eik
⊗ m) =

k∑

j=1

ei1 · · · êij
· · · eik

(eij
· m − m)

denoting by êij
that it has to be left out and by g· the action of g ∈ Γ

on M . In particular, Hk(Γ, ZΓ) is trivial for all k > 0 and isomorphic
to Z for k = 0.

Suppose that we can split Γ = Γ′ ⊕ Γ′′ and let us compute
Hk(Γ, ZΓ′′) where ZΓ′′ is the free Z-module generated by Γ′′ which be-
comes an Γ-module under the action of Γ given by (g⊕h) ·h′ = h+h′.
Then we can identify

ΛkΓ ⊗ ZΓ′′ ∼=
⊕

i+j=k

ΛiΓ
′ ⊗ ΛjΓ

′′ ⊗ ZΓ′′ (4.1)

and under this identification ∂ ⊗ 1 becomes (−1)deg ⊗ ∂′ where ∂′ is
the boundary operator for the homology of Γ′′. It follows that

Hk(Γ, ZΓ′′) ∼=
⊕

i+j=k

ΛiΓ
′ ⊗ Hj(Γ

′′, ZΓ′′) ∼= ΛkΓ′.

As a special case, Hk(Γ, Z) ∼= ΛkΓ ∼= Z(N
k ). Now let ε : ZΓ′′ → Z be

the sum of the coefficients, i.e. ε[h] = 1 for all h ∈ Γ′′. We shall later
need the following lemma:

Lemma 4.1With the identifications H(Γ, ZΓ′′) ∼= ΛΓ′ and H(Γ, Z) ∼=
ΛΓ the induced map εk : Hk(Γ, ZΓ′′) → Hk(Γ, Z) becomes the inclu-
sion ΛkΓ′ ↪→ ΛkΓ.

Proof Using the decomposition (4.1) it is not difficult to see that
the induced map εk :

⊕
i+j=k ΛiΓ

′ ⊗ Hj(Γ
′′, ZΓ′′) →

⊕
i+j=k ΛiΓ

′ ⊗
Hj(Γ

′′, Z) preserves the bidegree and must be the identity on the first
factors of the tensor product. Since Hk(Γ′′, ZΓ′′) is trivial whenever
k 6= 0 and one dimensional for k = 0, εk can be determined by evalu-
ating ε0 on the generator of H0(Γ

′′, ZΓ′′) and one readily checks that
this gives a generator of H0(Γ

′′, Z) as well. ¤

Finally, we note two immediate corollaries of Lemma 3.3.

Corollary 4.2

H(Γ, Cl) ∼=
⊕

Θ∈Il

H(ΓΘ, Cl
Θ). ¤
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Corollary 4.3 If Θ ∈ Il+k, l + k < dimV , then

H(ΓΘ, Cl
Θ) ∼=

⊕

Ψ∈IΘ
l

H(ΓΨ, Cl
Ψ). ¤

5 The spectral sequences

In the last two sections we described two complexes. They can be
combined to yield a double complex and then spectral sequence tech-
niques can be applied to obtain the information we want. We do not
explain these techniques in detail but only set up the notation, see,
for example, [Br] for an introduction. Consider a double complex
(E0, ∂, δ) which is a bigraded module E0 = (E0

pq)p,q∈Z with two com-
muting differential operators ∂ and δ of bidegree (−1, 0) and (0,−1),
respectively. The associated total complex is TE0 = ((TE0)k)k∈Z

with (TE0)k =
⊕

p+q=k E0
pq and differential δ + ∂. Furthermore one

can form two spectral sequences of bigraded modules [Br]. The first
one, (Ek)k∈N0 , is equipped with differential operators dk of bidegree
(k − 1,−k), i.e.

dk
pq : Ek

pq −→ Ek
p+k−1 q−k, (5.1)

such that Ek+1 = Hdk(Ek). (Here and below we use also the notation
Zd(C

k) and Hd(C
k) for the degree k cycles and homology resp. of a

complex (C, d).) E0 is the original module, d0 = ∂, d1 = δ∗ and
the higher differentials become more and more subtle. The second
sequence, (Ẽk)k∈N0 , is obtained in the same way except that one
interchanges the role of the two differentials, i.e. Ẽ0 = E0, d̃0 = δ,
d̃1 = ∂∗. The two spectral sequences may look rather different but
their ”limits” are related to the homology of the total complex. This
relation may be quite subtle but in our case we need only the following.
Suppose that E0

pq is non-trivial only for finitely many p, q. Then the
higher differentials vanish for both sequences from some k on so that
the modules stabilize and we have well defined limit modules E∞,
Ẽ∞. If the modules are moreover vector spaces then

⊕

p+q=k

E∞
pq

∼=
⊕

p+q=k

Ẽ∞
pq

∼= H∂+δ((TE0)k).
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If the modules are only over some ring such as the integer numbers
we may at least conclude that finitely generated E∞ implies that Ẽ∞

and H∂+δ(TE0) are finitely generated as well.
Inserting the complex from Proposition 3.1 for M in the last

section we get the double complex (ΛpΓ ⊗ Cq, ∂pq, δpq) where ∂pq =
∂p ⊗ 1 and δpq = (−1)p ⊗ δq.

Proposition 5.1 Consider the spectral sequence Ẽk derived from the
double complex (E0

0 = ΛpΓ⊗Cq, ∂pq, δpq) when starting with homology
in δ. It satisfies ⊕

p+q=k

Ẽ∞
pq

∼= ΛkΓ.

In particular, rk
(
Hδ+∂(

⊕
p+q=k ΛpΓ ⊗ Cq) ⊗ Q

)
=

(
rk Γ
k

)
.

Proof The first page of that spectral sequence is

Ẽ1
pq = Hδ(ΛpΓ ⊗ Cq) ∼=

{
ΛpΓ for q = 0,

0 for q > 0.

Under the isomorphism Ẽ1
p0

∼= ΛpΓ, d̃1 becomes trivial and all other

differentials d̃k vanish because they have bidegree (−k, k − 1). Hence
Ẽ∞ = Ẽ1 from which the first statement follows. The second state-
ment is then clear. ¤

The more difficult spectral sequence will occupy us for the rest of this
chapter. Its first page is obtained when starting with homology in ∂,
i.e.

E1
pq = H∂(E0

pq) = Hp(Γ, Cq),

and the first differential is d1 = δ∗. We realize that E1
p dim V is what

we want to compute. For that to carry out we have to determine the
ranks of the higher differentials which is quite involved. On the other
hand the proofs of Theorems 2.4, 2.5, and 2.8 involve only the general
fact that the higher differentials dk have bidegree (k − 1,−k) and
begin with that. All three proofs are by induction on the dimension
of V the one-dimensional case following from Eqs. (2.1),(2.2).

Proof of Theorem 2.4 Theorem 2.4 is a rational result. So we work
with a rationalized version of the above. Corollary 4.2 yields

E1
pq

∼=
⊕

Θ∈Iq

Hp(Γ
Θ, Cq

Θ).
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Hence by Lemma 2 and induction on the dimension of V we find that
E1

pq ⊗ Q is a finite dimensional vector space, provided q < dimV .

This implies that Ek
pq ⊗ Q is finite dimensional, provided q < dimV ,

for arbitrary k, and is trivial for q > dimV or p > rk Γ. On the other
hand by Proposition 5.1 E∞

pq ⊗ Q has to be finite dimensional for all
p, q. By construction E∞

p dim V is obtained upon taking successively

the kernels of the higher differentials. So if E1
p dim V ⊗ Q was infinite,

one of the ranks of the higher differentials would have to be infinite.
But this would contradict the finite dimensionality of Ek

pq ⊗ Q for
q < dimV . ¤

Proof of Theorem 2.5 It is a result of [FH] that Hp(Γ, CVC) is
torsion free. Therefore Theorem 2.5 follows if we can show that
Hp(Γ, CVC) is finitely generated. Now we use Lemma 2.2 and Corol-
lary 4.2 to see inductively that E1

pq is finitely generated, provided

q < dim V . This implies that Ek
pq is finitely generated, provided

q < dimV , for arbitrary k. By Eq. (5.1) we get sequences

Ek+1
p dim V ↪→ Ek

p dim V
dk

−→ Ek
p+k−1 dim V −k

which are exact at Ek
p dim V and whose right hand side modules are

finitely generated if k ≥ 1. Hence Ek
p dim V is finitely generated if

Ek+1
p dim V is finitely generated. But E∞

p dim V is finitely generated by

Proposition 5.1. Again inductively we conclude therefore that E1
p dim V

is finitely generated. ¤

Proof of Theorem 2.8 By Theorem 2.4 the dimensions of the ra-
tional vector spaces Ek

pq ⊗ Q are finite. From Eq. (5.1) it follows

therefore that
∑

p,q(−1)p+q dimEk
pq ⊗ Q is independent of k. Choos-

ing k = ∞ we see from Proposition 5.1 that this sum vanishes. With
eq =

∑
p(−1)p dimHp(Γ, Cq) ⊗ Q we thus get

e = edim V = −
dim V −1∑

q=0

(−1)q+dim V eq.

But dim Hp(Γ, Cq) ⊗ Q =
∑

Θ∈Iq
dimHp(Γ

Θ, Cq
Θ) ⊗ Q by Corol-

lary 4.2 and we can use induction on dimV to see that eq =∑
Θ∈Iq

∑
(−1)q+|c|−1 where the second sum is over all singular se-

quences c whose last element is Θ. Inserting this into the above for-
mula for e gives directly the result. ¤
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The strategy to prove the remaining Theorems 2.6 and 2.7 is as fol-
lows. Suppose that we know dpq = dim E1

pq ⊗ Q for q < dimV . Then
we can determine dp dim V from these data, the dimensions of the ra-
tionalized total homology groups (Proposition 5.1), and the ranks of
the differentials. To carry that out we have to consider only mod-
ules over Q. We will therefore simplify our notation by suppressing
⊗Q and e.g. write Ek

pq instead of Ek
pq ⊗ Q. We consider first a more

abstract situation.

Definition 5.2 Consider a double complex (E0
pq, δpq, ∂pq) of finitely

generated Q-modules with its spectral sequence (Ek)k∈N0 , i.e. E1
pq :=

H∂(E0
pq) and d1 = δ∗. We write dpq = dim E1

pq. Assume that
E1 There exist finite M,N such that E0

pq is non-trivial only for 0 ≤
q ≤ M and 0 ≤ p ≤ N ,

E2 dp0 = 0 for p ≥ 1.
This is sufficient to ensure that the spectral sequence converges and
we can define Nk :=

∑
p+q=k dimE∞

pq .

For M = 1, 2, 3, we now determine the ranks dpM in terms of dpq,
q < M , and Nk and the ranks of the higher differentials dk.

Lemma 5.3 If M = 1 then, with the notation of Definition 5.2,

dp1 = Np+1 +

{
d00 − N0 for p = 0,

0 for p > 0.

Proof If M = 1 then (5.1) implies that dk = 0 for k ≥ 2 and hence
E∞ = E2. With the notation

apq := rk d1
p q+1 : E1

p q+1 → E1
pq (5.2)

we get

dimE∞
pq =





d00 − a00 for p = q = 0,

d01 − a00 for p = 0, q = 1,

dp1 for N ≥ p ≥ 1, q = 1,

0 otherwise,

which when a00 is eliminated for N0 yields the statement. ¤
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Let
bpq := rk δ̃p q+1 ∗ : E1

p q+1 → H∂(Zδ(E
0
pq)), (5.3)

where δ̃p q+1 ∗ is the map induced from δ̃p q+1 which in turn is obtained
from δp q+1 by restricting its target space, namely it forms the exact

sequence 0 → E0
p q+2

δp q+2
−→ E0

p q+1

δ̃p q+1
−→ Zδ(E

0
pq) → 0.

Lemma 5.4 If M = 2 then, with the notation of Definition 5.2,

dp2 = Np+2 + dp1 − bp+1 0 − bp0, p > 0

d02 = N2 + d01 − b10 − N1 + N0 − d00.

Proof If M = 2 then (5.1) still implies that dk = 0 for k ≥ 2, because
of E2. But now, with the notation (5.2),

dim E∞
pq =





d00 − a00 for p = q = 0,

d01 − a00 − a01 for p = 0, q = 1,

dp1 − ap1 for N ≥ p ≥ 1, q = 1,

dp2 − ap1 for N ≥ p ≥ 0, q = 2,

0 otherwise.

Recall that d1
p q+1 : E1

p q+1 → E1
pq is the map induced on the homology

groups from δp q+1. From the exact sequence 0 → E0
p2

δp2
−→ E0

p1

δ̃p1
−→

Zδ(E
0
p0) → 0 we conclude

ap1 = dimker δ̃p1 ∗ = dp1 − bp0

which now implies the statement. ¤

Lemma 5.5 If M = 3 then, with the notation of Definition 5.2 and
(5.3)

dp3 = Np+3 + dp2 + dp+1 1 − bp1 − bp+1 1 − bp+1 0 − bp+2 0, p > 0,

d03 = N3 − N2 + N1 − N0 + d02 + d11 − d01 + d00 − b11 − b20.
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Proof Now (5.1) implies that dk = 0 only for k > 2 so that E3 = E∞.
With the notation

µpq := rk d2
p−1 q+2 : E2

p−1 q+2 → E2
pq

and (5.2) we get

dim E∞
pq =





d00 − a00 for p = q = 0,

d01 − a00 − a01 for p = 0, q = 1,

dp1 − ap1 − µp1 for N ≥ p ≥ 1, q = 1,

dp2 − ap1 − ap2 for N ≥ p ≥ 0, q = 2,

dp3 − ap2 − µp+1 1 for N > p ≥ 0, q = 3,

dN3 − aN2 for p = N, q = 3,

0 otherwise.

Let us recall the definition of d2. Look at the commuting diagram

0 → E0
p3

δp3
−→ E0

p2

δp2
−→ E0

p1

δp1
−→ · · ·

↓δ̃p2

ıp0

↗ ↓δ̃p1

ıp0

↗
Zδ(E

0
p1) Zδ(E

0
p0)

.

Let θ : H∂(Zδ(E
0
p1)) → H∂(E0

p−1 3) = E1
p−1 3 be the connecting map

of the exact sequence 0 → E0
p3

δp3
−→ E0

p2

δ̃p2
−→ Zδ(E

0
p1) → 0. Then

d2
p−1 3 : E2

p−1 3 → E2
p1 is the map induced by ıp1 ∗ ◦ θ−1 : E1

p−1 3 → E1
p1.

Since θ−1 identifies E2
p−1 3 = Zd1(E1

p−1 3)
θ−1

∼= H∂(Zδ(E
0
p1))/Imδ̃p2 ∗ we

get

µp1 = rk ıp1 ∗ − rk δp2 ∗ = dimker δ̃p1 ∗ − rk δp2 ∗ = (dp1 − bp0) − ap1.

Furthermore, using ap2 = dimker δ̃p2 ∗ = dp2 − bp1 one obtains the
statement. ¤

Definition 5.6 We now specify to double complexes of the form
E0

pq = ΛpΓ ⊗ Cq, ∂pq = ∂p ⊗ 1 and δpq = (−1)p ⊗ δq as they arise in
our application however tacitly changing the ring to be Q. Below, dpq

shall always denote the dimension of E1
pq := Hδ(ΛpΓ ⊗ Cq).

Clearly, E0
pq is non-trivial only for 0 ≤ p ≤ rk Γ and 0 ≤ q ≤ dimV .

Furthermore, E1
p0 = Hδ(ΛpΓ ⊗ C0) = Hp(Γ, C0). Since C0 is always
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a free Γ-module one has Hp(Γ, C0) = 0 for p > 0 and the dimension
of H0(Γ, C0) is simply |I0|, the number of orbits of in P:

d00 = L0.

In particular E1 and E2 are satisfied. Furthermore, Nk =
(
rk Γ
k

)
.

The case dim V = 1 (2.1,2.2) can now be immediately obtained
using Lemma 5.3 and Proposition 5.1.

Proof of Theorem 2.5 A proof can also be found in [FHK] but
we repeat it here using the framework of spectral sequences. So let
dim V = 2. We seek to apply Lemma 5.4. For that we need to
determine dp1 and bp0.

To determine dp1 we use Corollary 4.2. H(Γα, C1
α) can be com-

puted using the double complex (ΛpΓ
α ⊗ Cq

α, ∂α
pq, δ

α
pq). So let us con-

sider the spectral sequence which arises when starting with homology
in ∂α. As for the case dim V = 1 one concludes that E1

p0 is non-trivial
only for p = 0 and the dimension of E1

p0 equal to Lα
0 , the number of

orbits of points in P ∩ Wα. Since rk Γα = ν we get

dp1 = L1

(
ν

p + 1

)
, p > 0,

d01 = L1(ν − 1) +
∑

α∈I1

Lα
0 .

It remains to compute bp0 = rk δ̃p1 ∗ : Hp(Γ, C1) → Hp(Γ, Zδ(C
0)).

For that look at the following commuting diagram of exact sequences

0 → C1
α ⊗ Z[Γ/Γα]

δα
1 ⊗1
−→ C0

α ⊗ Z[Γ/Γα] → Z[Γ/Γα] → 0
↓ δ̃α

1 ⊗ 1 ↓ ↓ εα

0 → Zδ(C
0) ↪→ C0 ε

−→ Z → 0

where the middle verticle arrow is the inclusion, the right vertical
arrow the sum of the coefficients, εα[γ] = 1, and the direct sum
over all α ∈ I1 of the left vertical arrows is δ̃p1. The above com-
mutative diagram gives rise to two long exact sequences of homol-
ogy groups together with vertical maps, all commuting, (δ̃α

p1 ⊗ 1)∗ :
Hp(Γ, C1

α ⊗ Z[Γ/Γα]) → Hp(Γ, Zδ(C
0)) being one of them. Now we

use that for p > 0, Hp(Γ, C0
α⊗Z[Γ/Γα]) = 0 and Hp(Γ, C0) = 0 which

implies Hp(Γ, C1
α ⊗Z[Γ/Γα]) ∼= Hp+1(Γ, Z[Γ/Γα]) ∼= Hp+1(Γ

α, Z) and
Hp(Γ, Zδ(C

0)) ∼= Hp+1(Γ, Z) and

(δ̃α
p1 ⊗ 1)∗ = εα

p+1.
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By Lemma 4.1 the map εα
p can be identified with the inclusion

ΛpΓ
α ↪→ ΛpΓ. For p > 0 therefore,

bp0 = rk 〈Im(δ̃α
p1 ⊗ 1)∗ : α ∈ I1〉 = rk 〈Λp+1Γ

α : α ∈ I1〉. (5.4)

Direct application of Lemma 5.4 yields now the formulas for the di-
mensions stated in Theorem 2.2. ¤

Proof of Theorem 2.6 Let dimV = 3. To apply Lemma 5.5 we need
to determine dp1, dp2, bp0, bp1. To calculate dp1 we use Corollary 4.2
and Lemma 5.3 to obtain, for Θ ∈ I1,

dimHp(Γ
Θ, C1

Θ) =

(
ν

p + 1

)
+

{
LΘ

0 − 1 for p = 0,

0 for p > 0.

Hence

dp1 = L1

(
ν

p + 1

)
+





−L1 +
∑

Θ∈I1

LΘ
0 for p = 0,

0 for p > 0.

To calculate dp2 we consider the complexes, α ∈ I2,

0 → C2
α

δα

−→ C1
α

δα

−→ C0
α → 0.

The appropriate double complex to consider is therefore (ΛpΓ
α ⊗

Cq
α, ∂α

pq, δ
α
pq). Repeating the arguments of the proof of Theorem 2.2

(but now using Corollary 4.3 in place of 4.2) we get

dimHp(Γ
α, C2

α) =

(
2ν

p + 2

)
+ Lα

1

(
ν

p + 1

)
− rα

p − rα
p+1 p > 0,

dimH0(Γ
α, C2

α) =

(
2ν

2

)
− 2ν + 1 + Lα

1 (ν − 1) − rα
1 − Lα

0 +
∑

Θ∈Iα
1

LΘ
0

where
rα
p = rk 〈Λp+1Γ

Θ : Θ ∈ Iα
1 〉.

Writing F =
∑

α∈I2
Lα

1 we thus get

dp2 = L2

(
2ν

p + 2

)
+ F

(
ν

p + 1

)
−

∑

α∈I2

(rα
p + rα

p+1), p > 0,
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d02 = L2

((
2ν

p + 2

)
− 2ν + 1

)
+F (ν − 1)

+
∑

α∈I2




∑

Θ∈Iα
1

LΘ
0 − Lα

0 − rα
1


 .

We now compute bp0 and bp1. For the first we can again repeat the
arguments which yield (5.4) to obtain

bp0 = rk 〈Λp+1Γ
Θ : Θ ∈ I1〉.

bp1 is the rank of δ̃p2 ∗, i.e. the rank of the map induced from δ̃2 :
C2 → Zδ(C

1). To determine it we consider the commutative diagram
with exact rows

0 → C2
α ⊗ Z[Γ/Γα]

δα
2 ⊗1
−→ C1

α ⊗ Z[Γ/Γα]
δ̃α
1 ⊗1
−→ Zδ(C

0
α) ⊗ Z[Γ/Γα]→ 0yδ̃α

2 ⊗ 1

y
y

0 → Zδ(C
1) ↪→ C1 δ1−→ Zδ(C

0) → 0.

The middle and right vertical maps are the obvious inclusions. By
Corollary 4.2 the direct sum of the left vertical arrows of the diagrams
which arise if α ∈ I2 is δ̃2. The diagram gives rise to a commutative
diagram of which the following is one degree

Hp(Γ, C2
α ⊗ Z[Γ/Γα]) → Hp(Γ, C1

α ⊗ Z[Γ/Γα]) −→y(δ̃α
p2 ⊗ 1)∗

y
Hp(Γ, Zδ(C

1)) → Hp(Γ, C1) −→

(δ̃α
p1⊗1)∗
−→ Hp(Γ, Zδ(C

0
α) ⊗ Z[Γ/Γα])y

δp1 ∗

−→ Hp(Γ, Zδ(C
0))

(5.5)

also with exact sequences. In particular,

bp1 = rk 〈Im(δ̃α
p2 ⊗ 1)∗ : α ∈ I2〉.
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Now we can follow the same analysis as in the proof of Theorem 2.2
to see that, for p > 0, (5.5) is isomorphic to

→ Hp(Γ, C2
α ⊗ Z[Γ/Γα]) →

⊕
Θ∈Iα

1
Λp+1Γ

Θ
βα

p
−→ Λp+1Γ

α →y(δ̃α
p2 ⊗ 1)∗

yjα
p

yıαp

→ Hp(Γ, Zδ(C
1)) →

⊕
Θ∈I1

Λp+1Γ
Θ γp

−→ Λp+1Γ →
(5.6)

where βα
p is the direct sum over Θ ∈ Iα

1 of the inclusions Λp+1Γ
Θ ↪→

Λp+1Γ
α, γp is the direct sum over Θ ∈ I1 of the inclusions Λp+1Γ

Θ ↪→
Λp+1Γ, and jα

p and ıαp are the obvious inclusions. As we are working
with finitely generated Q-modules we obtain from (5.6)

Im(δ̃α
p2 ⊗ 1)∗ ∼= Imıαp+1/(Imıαp+1 ∩ Imγp+1) ⊕ jα

p (ker βα
p ).

Since I1 =
⋃

α∈I2
Iα
1 the direct sum over α ∈ Iα

1 of jα
p is surjective.

Hence Imγp ⊂ 〈Imıαp : α ∈ I2〉 and therefore

〈Imıαp /(Imıαp ∩ Imγp) : α ∈ I2〉 = 〈Imıαp : α ∈ I2〉/Imγp.

Furthermore, using also that ıαp is injective, we get jα
p (ker βα

p ) =
Imjα

p ∩ ker γp and

〈Imjα
p ∩ ker γp : α ∈ I2〉 = ker γp.

Thus we have

〈Im(δ̃α
p2 ⊗ 1)∗ : α ∈ I2〉 ∼= 〈Imıαp+1 : α ∈ I2〉/Imγp+1 ⊕ ker γp

which, since rk γp = bp0, implies

bp1 = rk 〈Λp+2Γ
α : α ∈ I2〉 − bp+1 0 + L1

(
ν

p + 1

)
− bp0.

With these results we obtain from Lemma 5.5 the ranks stated in
Theorem 2.3. ¤

6 Example: Ammann-Kramer tilings

In Chapter IV we showed that generically, canonical projection tilings
have infinitely generated cohomology. Nevertheless, all tilings known
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to us which are used to describe quasicrystals have finitely generated
cohomology. In [GK] a list of results for the known 2-dimensional
tilings used by quasicrystallographers was presented. Here we present
the first result for a 3-dimensional projection tiling with finitely gener-
ated cohomology. It is the Ammann-Kramer tiling. The tiling was in-
vented before the discovery of quasicrystals [KrNe] and rediscovered
in [DK] [Els]. It has been used to describe icosahedral quasicrys-
tals in [EH] [HE]. It is sometimes also called 3-dimensional Penrose
tiling because it generalizes in a way Penrose’s 2-dimensional tilings.
A short description of this tiling and further 3-dimensional tilings re-
lated icosahedral symmetry is given in [KrPa]. The tiling is obtained
by the canonical projection method from the data (Z6, E), Z6 being
the lattice generated by an orthonormal basis of R6, and E being
obtained from symmetry considerations involving the representation
theory of the icosahedral group. Projecting Z6 orthogonally onto the
orthocomplement V of E one obtaines the (dense) lattice Γ generated
by the six vectors




τ
1
0


 ,




−τ
1
0


 ,




0
τ
−1


 ,




0
τ
1


 ,




1
0
−τ


 ,




1
0
τ


 .

with respect to an orthonormal basis of V . Here τ =
√

5−1
2 and we

have the usual relation τ2 + τ − 1 = 0. The acceptance domain is
the orthogonal projection of the 6-dimensional unit cube into V and
forms the triacontrahedron whose vertices are the linear combinations
with coefficients 0, 1 of the above vectors. It has 30 faces which are
all triangles and the affine hyperplanes W are the planes spanned by
these triangles. Although we have an action of the icosahedral group
(which even permutes the faces) the geometry of their intersections is
quite complex, but can be summarized as follows.
Singular subspaces in V : The two triangles which are in opposite
position of the triacontrahedron belong to the same orbit (under the
action of Γ) and representatives of the 15 orbits of singular planes are
given by the spans of all possible pairs of vectors from our list of 6
vectors above. Thus I2 has L2 = 15 elements. The 15 planes can be
gathered into five orthogonal triples. Pairs of these planes intersect
in singular lines and triples intersect in singular points. Singular lines
occur in three classes: Intersections of 5 planes simultaneously at a line
(class I - 6 possible orientations): Intersections of 3 planes only (class
II - 15 possible orientations): Intersections of 2 planes only (class III
- 10 possible orientations). Each of the class I and III orientations
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is a single orbit, but each of the class II orientations splits into two
orbits. Thus if we write I1 = II

1 ∪ III
1 ∪ IIII

1 , a disjoint union according
to the class, we have |II

1| = 6, |III
1 | = 2 × 15, and |IIII

1 | = 10. In
particular, we have L1 = 46 orbits of singular lines, arranged in 31
possible orientations. A similar calculation finds L0 = 32 orbits of
singular points formed at the intersection of three or more singular
planes: Briefly, every singular point lies at the intersection of some
orthogonal triple of planes. Given a particular othogonal triple, those
points which are at the intersection of three planes in this orientation
split into 8 orbits (because intersections of orthogonal planes give class
II lines). However, two of those orbits are found at intersections of
planes parallel to every other orientation (e.g. the orbit of the origin),
and the remaining 6 are unique to the particular orthogonal triple
chosen. This adds up to 6 × 5 + 2 = 32 orbits therefore.
Singular subspaces in Wi, i ∈ P2: Since all Wi lie in one orbit
of the semidirect product of π⊥(Z6) with the icosahedral group it
doesn’t matter which i to take. Within a singular plane Wi there are
2 directions of each class of lines, but each of the class II lines is in
two orbits. Thus if we denote the class of i in I2 by α and decompose
Iα
1 = Iα I

1 ∪Iα II
1 ∪Iα III

1 disjointly according to the classes of its singular
lines we have |Iα I

1 | = 2, |Iα II
1 | = 2 × 2, and |Iα III

1 | = 2, giving a total
of Lα

1 = 8 orbits of singular lines in 6 possible directions. In particular
L̃1 = 15× 8− 46 = 74. A careful calculation finds the singular points
arranged into Lα

0 = 8 orbits.
Singular subspaces in WΘ̂, Θ̂ ∈ P1: In each class I and class III
line we have exactly two orbits of singular points. In each class II
line we have exactly 4 orbits. Hence LΘ

0 = 2 if Θ, the class of Θ̂
in I1, is a class I or class III line whereas otherwise LΘ

0 = 4. This
gives

∑
Θ∈I1

LΘ
0 = 2 × 6 + 4 × 30 + 2 × 10 = 152 and

∑
Θ∈Iα

1
LΘ

0 =

2 × 2 + 4 × 4 + 2 × 2 = 24. Altogether e = 120.
To find the ranks R1, R2, a more detailed analysis of the genera-

tors of the stabilizers and their inner products must be made. Since
this involves finding the rank of matrices of up to 15× 15 in size, it is
best checked by computer: R1 = 69 and R2 = 9.

Specializing Theorem 2.3 to dimV = 3 and rkΓ = 6 we obtain
as the only nonzero ranks

D3 = 1

D2 = 6 + L2 − R2

D1 = 15 + 4L2 + L̃1 − R1 − R2

D0 = 10 + 3L2 + L̃1 + e − R1.
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This yields the following numbers for the ranks of the homology
groups:

D0 = 180, D1 = 71, D2 = 12, D3 = 1.

So to conclude we have:

K0(C
∗(GT )) ∼= Z192 K1(C

∗(GT )) ∼= Z72

for the Ammann-Kramer tiling T . We are grateful to Franz Gähler
for assistence in completing the last step on the computer and for
verifying these results generally.
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