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Abstract: We define the cohomology of a tiling as the cocycle cohomology of its asso-
ciated groupoid and consider this cohomology for the class of tilings which are obtained
from a higher dimensional lattice by the canonical projection method in Schlottmann’s
formulation. We prove the cohomology to be equivalent to a certain cohomology of the
lattice. We discuss one of its qualitative features, namely that it provides a topological ob-
struction for a generic tiling to be substitutional. We develop and demonstrate techniques
for the computation of cohomology for tilings of codimension smaller than or equal to
2, presenting explicit formulae. These in turn give computations forktkitbeory of
certain associated non-commutatéé algebras.

Introduction

Quasiperiodic tilings have become an active area of research in solid state physics due
to their role in modeling quasicrystals [1-4], and the projection method in its various
formulations [5-8] is one of the most common techniques to construct candidates for
such tilings. This raises the question of characterization and even classification of such
tilings. For that to be investigated one must first decide which properties of a tiling are
essential for the physical properties of the solid. We take the point of view here that it
is only the local structure of the tiling that matters, and even more, only its topological
content, as captured, for example, by the continuous hull [22, 23] or the tiling groupoid
[15,10]. According to this point of view the tight binding model for particle motion in the
tiling is not uniquely determined by the tiling but its form is constrained by the topology
of the tiling, i.e. the Hamiltonian reflects the long range order of the tiling (though
additional information is required to specify the interaction strengths, etc.). Our interest
is thus in the topological invariants of tilings, in particular here with the cohomology
and K -theory of the tiling groupoid.

Without additional mathematical structure of the tiling it is not clear how to obtain
explicit results for its cohomology. Substitution tilings provide a class of tilings where
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such results can be obtained [9, 10] since they possess a symmetry which relates differ-
ent scales. The present article is part of a programme to compute the tiling cohomology
of projection tilings, those which may be obtained by projection from higher dimen-
sional lattices. We consider here projection tilings defined by Laguerre complexes after
Schlottmann [20]; see Definition 20 and the notation at the start of Sect. 3.1 for a precise
description of the class of tilings considered. We present both qualitative and quantitative
results.

Our qualitative results centre around giving sufficient conditions under which a ra-
tional version of the cohomology is infinitely generated. These conditions are in some
sense almost always met and since the rational cohomology of substitution tilings is
finitely generated we can conclude, Corollary 55, that canonical projection tilings are
rarely substitutional. We cannot as yet offer an interpretation of the fact that some tilings
produce finitely generated cohomology whereas others do not, but, if understood, it
could well lead to a criterion to single out a subset of tilings relevant for quasicrystal
physics from the vast set of tilings which may be obtained from the canonical projection
method. In this context we point out that no canonical projection tiling is known to us
which has infinitely generated cohomology but allows for local matching rules, cf. [11].

Our quantitative results are restricted to canonical projection tilings with small codi-
mension (i.e. small difference between the rank of the projected lattice and the dimension
of the tiling). We give closed formulee, Theorems 63, 64 for the cohomology of such
tilings in terms of the defining projection data. Formulae for tilings of higher codimen-
sion can in principle be derived using more sophisticated tools from algebraic topology,
along the lines of the methods employed at the end of [19]. As tilings obtained by the pro-
jection method belong to a large class of tilings whose cohomology is isomorphic to the
(unorderedX -theory of the associated groupaiti-algebra [12], we also have explicit
calculations for thek -theory of these algebras, Corollary 66. This (non-commutative)
aspect of the topology of tilings has a direct interpretation in physics.Cthalgebra
is the algebra of observables for particles moving in the tiling and its ordésegtoup
(or its image on a tracial state) may serve to “count” (or label) the possible gaps in the
spectrum of the Hamilton operator which describes its motion [13—15]. In this context
it is even more challenging to find an interpretation of the generators df ghgroup
when there are infinitely many. At first sight, all but finitely many of them appear to be
infinitesimal.

This article has some parallels with the series [16—18] (see also [19]). Here however
we study tilings as defined by Schlottmann’s variant of the projection method [20]; the
calculations we present are consequently applicable to a wider class of tilings than those
considered in [18] or at the end of [19].

The article is organized as follows. We describe the continuous dynamical system
which can be assigned to any reasonable tiling in Sect. 1. Its associated transformation
groupoid has orbits homeomorphic to the space in which the tiling is embedded. We
derive the tiling groupoid as a reduction of this groupoid in Sect. 2; it is-discrete
groupoid and we define tiling cohomology to be the cohomology of this groupoid.
Again, this can be done for arbitrary tilings but one of the main features of the particular
canonical projection tilings we consider, which make a computation of the cohomology
feasible, is that one can findZ{ Cantor dynamical system whose associated transfor-
mation groupoid is continuously similar to the tiling groupoid. This material is covered
in Sect. 3 where we define precisely the class of tilings for which we obtain our results.
This observation allows the tiling cohomology to be formulated in terms of group coho-
mology. In this part our work parallels that of Bellissard et al. [21] onkhtheoretic
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level. After two illustrative examples in Sect. 4 we discuss our qualitative results in
Sect. 5 and the quantitative results in Sect. 6. In Sect. 7 we present the connection with
K -theory and the non-commutative topological approach.

1. Continuous Tiling Dynamical Systems

In this section we set up some preliminary notions and definitions with the main aim
being to introduce and begin to describe tlatinuous hull M7, Definition 2, of a
tiling 7.

In fact, this idea is not particular to the projection method tilings considered in the
main work of this paper and in this section our definitions and results apply to a wide
class of patterns. We specialise to the canonical projection tilings in Sect. 3.1 where we
formally define this class.

In general, al-dimensional tiling is a covering dk? by closed subsets, called its
tiles, which overlap at most at their boundaries and are usually subject to various other
constraints, as for example being connected, uniformly bounded in size and the closures
of their interiors; they may also be decorated. For this article though we shall assume that
the tiles are (possibly decorated) polytopes with non-empty interiors and which touch
face to face. Moreover, we require that the tilings arérife type, see Definition 3.

Given a tiling7 of R?, thenR? acts naturally on it by translation. Denote the tiling
translated byx as7 — x. The closure of the orbif” — R? of 7 with respect to an
appropriate metric gives rise to a dynamical system [22] whose underlying space is the
continuous hull of7". Thus our precise definition of the continuous hull will follow when
we have chosen our metric.

There are several proposals for the metric used which are all based on comparing
patches around the origin @“. The basic idea is as follows. Represent a tilifig
as a closed subset @“ by the boundaries of its tiles and its decorations (if any)
by small compact sets. L&, be the open ball of radius around 0 R? and let
B.(T) := (B, NT)UdB,, aclosed set. Two tilingg, and7”, should be close to each
other if B, (T) andB, (T") coincide, possibly up to a small discrepancy, for larg€he
different ways to quantify the allowed discrepancy lead to the different spaces which
may be found in the literature.

Definition 1. For tilings 7 and 7’ as above, define metrics Do and D by
Do(T, T') = inf { 21 | B,(T) = B.(TH}.
DT, Ty = inf {1 1d, (B, (D), BT < 2.

where d, isthe Hausdorff metric defined among closed subsets of the closed r-ball.

The first metric,Do, allows no discrepancy; the completion of tRé orbit of 7~ under
this metric would be non-compact. However, completion with respect to the nigtric
yields a compact space under very general conditions [22,23]. Note alsb ikatot
invariant under the action @& by translation, but this action is nevertheless uniformly
continuous and can thus be extended to the completion.

Definition 2. Thecontinuousdynamical system associated to 7 isthepair (M7, RY),
the closure M7 of the orbit of 7~ with respect to the metric D, and with the action of
R¢ induced by translation. Call M7 the continuous hull of 7.
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Let M, (T) be the subset of (whole) tiles @f contained inB,.. As for T, think of M, (T)
as the closed subset defined by the boundaries and decorations of its tiles.

Definition 3. Atiling 7 is called of finite type (or of finite pattern type, or of finite
local complexity) if for all r the set of translational congruence classes of sets M, (T —
x), x € R4, isfinite,

The elements of the spad€7T may again be interpreted as tilings. While we continue to
write 7 for the original tiling, we writeT for a general element @i 7. If T is of finite
type the element® € M7 are those tilings in which each finite part can be identified
with a finite part of a translate gf. Thus, for eacll” € M7 and for eaclr, there exists
anx € R? such thatB,(T) = B, (T — x).

Definition 4. Two tilings 7, 7~ are called locally isomor phic if for every r there exist
x,x" € R suchthat B, (T) = B, (T’ —x') and B, (T") = B.(T — x). If every element
of MT islocally isomorphicto 7 then 7 is called minimal .

The tilings we are interested in here are all minimal. Note that a tiling being minimal
directly implies that each orbit of the associated dynamical system is dense.

Finally, we have a third option for a metric on the orbitBf linking the spaces
considered here with the work of [9]. The following metric defines the same topology
as the metric considered there.

Definition 5. Define the metric D, by
Di(T. T =inf(37 | 3x.x" € By : BT —x) = B{(T' = x")).

In this metric discrepancy is allowed only for small translations. As soon as two tilings
differ by a rotation, however small, they will have a certain minimal non-zero distance.
Thus closure with respect tb, leads, for instance for the Pinwheel tilings [24], to a
non-compact space, whereas closure with respegt would still lead to a compact
space.

Which kind of metric is to be used has, of course, to be adapted to the problem, but
for our purposes the following result shows that the distinction betw2emd D; is
inessential.

Theorem 6. Let 7 beafinitetypetiling. Then M7 is compact and equal to the comple-
tion of 7 — R with respect to D;.

Proof. We start by showing that the two metribsand D, yield the same completion for
finite type tilings. ClearlyD(T, T") < D,(T, T') so we have to show that afiyCauchy
sequence is also&,;-Cauchy sequence.

Suppose thatT;); is a D-Cauchy sequence convergingToe M7 . Then for any
r, dr(M,(T;), M,(T)) == 0. AsT is a finite type tiling, we can find for ail which
are larger than somig ane; such thatM, (T;) = M,(T) — ¢; ande; —> 0. But then
B,_(T;) = B,_.(T — ¢;), wherec is an upper bound on the diameter of the tiles.
Now choose, such thak;, < 1/r. Then, for any-, D;(T, T;,) < 1/(r + 1). Thus a
D-Cauchy sequence will also bera-Cauchy sequence. In particulsf7 is equal to
the completion off — R? with respect taD;. Its compactness for finite type tilings is
well known, see, for example, [23].0

This result allows us to identify the open setsWirv .
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Definition 7. Say that a finite subset P of tiles of a tiling T is a patch (or pattern, or
cluster) of it and write P C T. Define

Up ={T e MT|P C T},
subsets of the continuous hull.

Theorem 8. The collection of sets {B. + x +Up}, € > 0,x € R¢, P apatchof T, isa
base for the topology of M7

Proof. The previous result allows us to work with the metblg. Letr(¢) := % and
V,(T) ={T' € MT|B,(T) = B.(T")}. Then we can describe tlkeneighbourhoods of
T with respect taD, as follows.

DT, T <e€iff Ir > r(e) Ix, x" € B% :B(T —x) = B.(T' —x")

it 77 | U (BZ% +v,(T—x)). )

r>r(e)xeB 1
2r

The tiling being of finite type implies that, for every> 0 and everyI' € M T, there
exists a finite set of pairs;;, P;), x; € R¢, P; a patch ofT, such thatB,(T’) = B,(T)
whenever there is ansuch thatP; + x; is a patch ofT’. In other words,)V,(T) =
\U; Up,+x;- This shows that (1) is a union of sets of the above collection.

To show thatB, + Up is open in the metric topology (which by continuity of the
action implies that als®. + x + Up is open forx € R¢) we take a poinf” in it and
show that a whole neighbourhood (with respecDy) of it lies in B + Up. Let R be
large enough so th% < e andP is a patch ofBR_%(T)(We view hereP as a closed

subset much like a tiling). Then, for all € B%, P C Bgr(T — x) + x and hence

Vr(T — x) C Up — x. This implies that theRi—l—neighbourhood of liesin B, + Up.
O

The following observation will be useful in Sect. 3.2

Lemma9. Let P beapatchin afinitetypetiling 7. Then U/p is compact.

Proof. If D(T, T’) is small enough, and, T’ € Up, then itis equal tdo(T, T'). That
Up is complete and precompact with respect to Byemetric is proven in [15]. O

2. The Groupoid Approach to Tilings

To agiventiling one may associatesadiscrete groupoid called thiging groupoid. This
groupoid is special among other groupoids which may be assigned to the tiling in that its
C* algebra plays the role of the algebra of observables for particles moving in the tiling
[15,10]. It also determines the tiling up to topological equivalence [25].A Hbeory of

theC* algebra and the cohomology of the groupoid are — at least for canonical projection
tilings — closely related, and may be considered as (non-commutative) invariants of the
tiling. It is these invariants we discuss in this paper. We define the tiling groupoid in
Sect. 2.2, but first we need to briefly recall some facts about groupoids.
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2.1. Generalities. For atraditional definition of a topological groupoid, and as a general
reference for most of the concepts introduced below like that of reduction, continuous
similarity and continuous cocycle cohomology, we refer the reader to [26].

In a slightly different but equivalent way one may say that a grougbid a set
with partially defined associative, cancellative multiplication and with unique inverses.
Partially defined refers to the fact that multiplication is not defined for all elements, but
only for a subset off x G, thecomposable elements. Annverse of x is a solutiony of
the equationsyx = x andyxy = y, and for a groupoid this solution is required to be
unique. Hence we may denote the inverse dfy x 1. The inverse map — x1is
an involution. Multiplication iscancellative if, provided it is definedxy = xz implies
y = z, and this is the case whenever the composable elements are théxpairgor
whichx~1x = yy~L.

The setg® = {xx~1|x € G} is called the set ofinits; it is the image of the map
r: G — GO given byr(x) = xx~1, which is called theangemap. The map: G — G°
given bys(x) = x~tx = r(x 1) is called thesource map. Writingu ~ v for u, v € G°
whenever—1(u) N s~1(v) # ¥ defines an equivalence relation; its equivalence classes
are called therbits of G.

A topological groupoid is a groupoid with a topology with respect to which multi-
plication and inversion are continuous maps. Such a groupoid is catlegrete if GO
is an open subset. This condition implies that(x) is a discrete set for any unit

A groupoid is callegrincipal if its elements are uniquely determined by their range
and source, i.e. if the map — G° x GO given byx — (r(x), s(x)) is injective.

2.1.1. Transformation groupoids. Let M be a topological space with a right action of a
topological groupG by homeomorphisms, denoted héke g) — x - g. Thetransfor-
mation groupoid! G(M, G) is the topological spack x G with product topology; two
elementsx, g) and(x’, g’) are composable provided thét= x - g, and their product is
then(x, g)(x', g) = (x, gg’). Inversionis then given bix, g)~1 = (x-g, ¢~ 1). Hence,
r(x, g) = (x,0) and we see thaf(M, G) is r-discrete ifG is discrete. Furthermore,
G(M, G) is principal precisely whe acts fixed point freely. One of the examples we
have in mind here i§(M T, R?) which, however, is not-discrete.

2.1.2. Reductions.

Definition 10. Let G be a groupoid, GO its unit space and L a closed subset of GO, Then
1Gr ==s"Y(L)Nnr~1(L) isaclosed subgroupoid of G called the reduction of G to L.

Two further conditions orL will play a major role here.

e Areduction is calleaegular if every orbit ofG has a non-empty intersection with
e Say thatL is range-open [16] if the setr(s~1(L) N U) is open whenevet/ c G is
open.

A regular reduction of a groupoid to a range-open subsétis for many purposes

as good as the groupoid itself. Muhly et al. have established a notion of equivalence
between groupoids which captures this phenomenon in greater generality [27]. We will
not discuss this notion of equivalence here, we merely record its main consequence
of interest to us: Th& -groups of theC* algebras associated to a groupgicénd its
reduction; G; to a range open subsgtwhich intersects each orbit are isomorphic as
ordered groups.

1 or transformation group as in [26]
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2.1.3. Continuoussimilarity. As just noted, the concept of reduction is particularly well
adapted to yield an equivalence relation on groupoids which carries over to an equiva-
lence relation on th€* algebras they define. It turns out that for canonical projection
tilings the K -groups of theC* algebras are related to the cohomology of the groupoids,
as discussed further in Sect. 7, but this relation is not clear on the level of arbitrary tiling-
groupoids. On the other hand there is a natural equivalence relation on groupoids, that
of continuous similarity, which immediately gives rise to an equality on cohomology as
well as implying equivalence in the sense of Muhly et al. [28].

Definition 11. Two homomorphisms¢ and v : G — R between (topol ogical) groupoids
are (continuously) similar if there exists a function ®: G0 — R such that

O@r(x)¢(x) = ¥ (x)O(s(x)). (@)

Two (topological) groupoids, G and R, are called (continuously) similar if there exist
homomorphisms ¢: G — R, ¢': R — G such that &g = ¢’ o ¢ is (continuously)
similar toidg and &R = ¢ o ¢’ is(continuously) similar to idx.

We are mainly interested in establishing continuous similarity of certain principal trans-
formation groupoids. A useful lemma to test this is proved in [17, (3.3, 3.4)].

Proposition 12. Let G = G(X, G) be a principal transformation groupoid (so G acts
freely on X) and L and L’ closed subsets of X = G°. Supposethat y : L’ — G and
y’ . L — G aretwo continuous functions which define continuous functions L — L’:
x> x-y'(x)andL' — L: x = x - y(x). Thenthereductionsof G to L andto L’ are
continuously similar.

Remark 13. If L’ = X then one can take'(x) to be the identity in the group for all
x € L and the condition comes down to finding a continuous fungtiorX — G such
thatx - y(x) e Lforallx € L.

2.1.4. Continuouscocyclecohomology. Givenadynamical systetM, G) withdiscrete
group G one standard topological invariant associated with it is the cohomology of
G with coefficients in theG-moduleC (M, Z) of integer-valued continuous functions
with G action given by(g - f)(m) = f(m - g). This cohomology may be interpreted
as a groupoid cohomology of the group@idM, G). This is thecontinuous cocycle
cohomology for r-discrete groupoids and we will recall its definition here for constant
coefficients following [26].

Let A be an abelian group aréglbe a groupoid. Theg acts on the triviald-bundle

GOx AL g0 (with product topology) partially, namely € G can act on the element
(s(x), @) mapping it to(r(x), a). We denote this action b, writing the partial map
given byx € G as®(x). The action is continuous in the sense that wien C(G°, A) is
a continuous section of the bundle then the functier (r(x), f(s(x))) is continuous
too.

LetG© = GO, and, fom > 0, letG™ be the subset of thefold Cartesian product of
G (with relative topology) consisting of composable eleménts. . . , x,), thatis, with
r(x;) = s(x;_1). Then-cochains are the continuous functionsG™ — G% x A such
thatp(f(x1,...,x,)) = r(x1) and, forn > 0, f(x1,...,x,) = (r(x1), 0) provided
one of they; is a unit. Thez-cochains form an abelian group under pointwise addition.
The coboundary operatéf is defined as

%)) = ) f(s(x) — fr(x)),
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and, forn > 0,

8"(f)(xo, ..., xn) = Pxo)(f(x1, ..., Xn))
+ D (=D f (0, X2 Xn)

i=1
+(=D)" f(xo, ..., xn_1).

ThenH" (G, A), the continuous cocycle cohomology®in dimensiom with (constant)
coefficientsA, is defined as ket /ims” 1. The following result is proved in [26].

Theorem 14. Continuously similar groupoids have isomorphic cohomology with con-
stant coefficients.

Let us consider a transformation groupgidV/, G) as an example{ discrete). In that
case thei-cochains are maps: M x G" — M x A of the form

flm, g1, ..., gn) = (m, f(g1, ..., gn)(m)),

where f: G* — C(M, A) is a continuous map which, for > 0, is the zero map
when applied tags, ..., g») with any oneg; = e, the identity element irG. These

are precisely the-cochains of the group' with coefficients inC(M, A), aG module

with respect to the actiotg - /)(m) = f(m - g) [29]. Hence everyi-cochain of the
groupoid with coefficients itk determines an-cochain of the groug with coefficients

in C(M, A), and vice versa. Moreover, under this identificatdérbecomes the usual
coboundary operator in group cohomology, since the groupoid action is nothing other
than the shift of base point given by the actiontaf

Corollary 15. There is a natural isomorphism between the continuous cocycle coho-
mology of the transformation groupoid G(M, G) with constant coefficients A and the
group cohomology of G with coefficientsin C(M, A),

H'(GM,G),A) = H'(G,C(M, A)).

In the main results of this paper we shall be interested in the ecaseZ andA = Q.

2.2. Thetiling groupoid. Thetiling groupoid may be defined without referring to con-
tinuous tiling dynamical systems, as for example in [15,10], but for the purpose of the
present work it is important to draw the connection [13,9]. Starting with the groupoid
of the continuous tiling dynamical systegiM 7, R?) we construct the tiling groupoid

as a reduction of it.

We first construct a closed, range-open sulssgtof M7. Choose a point in the
interior of each tile of7 — called itspuncture — in such a way that translationally
congruent tiles have their puncture at the same positionQiebe the subset of tilings
of MT for which a puncture of one of its tiles coincides with the origie ®?. Note
that Q7 intersects each orbit @&,

Definition 16. Thetiling groupoid of 7, denoted by G-, isthereduction of G(M T, R?)
to Q7. Note that, by construction, G isr-discrete.

Proposition 17. Suppose Q27 contains only non-periodic, finite type tilings. Then Q1
is closed and range-open and G coincides with the groupoid R defined in [15].
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Proof. We refer to [10] for the groupoi® and its properties. Under the hypotheRis

acts fixed point freely od47 and hencejs is principal. Therefore the map between
Gr andR is given by(T, x) — (T, T — x), which certainly preserves multiplication
and inversion, is an isomorphism provided it preserves the topology. The tiling being of
finite type implies that punctures of two different tiles have a minimal distahsay.

Thus there exists an(which is roughly as large &) such that ifD(7 —x, T —x') < €

and7 —x, T —x' € Qy,thenD(T — x, T —x') = Do(T — x, T — x'). It follows

that Q7 is the metric completion with respect foy of the set of all7” € Q7 which

are translates df . In particular, it is closed and the existence of a minimal dista@nce
between punctures directly implies range-openness, cf. [16]. Furthermore, the metric
Do and the metric used in [15] to define the hull lead to the same completions. This
shows that the above mdf, x) — (T, T — x) restricts to a homeomorphism of the
spaces of units af7 and of R. As noted G is r-discrete and its topology is generated

by the setd/ x {x}, U open inQ7. Images of those sets under the above map generate
the topology ofR. O

We conclude this section with our basic definition of doaomology of a tiling.

Definition 18. The cohomology of the tiling 7, denoted by H*(7), is the continuous
cocycle cohomology H* (G, Z) of G with constant coefficients Z.

We shall see later on that for canonical projection tilinggG 7, Z) is isomorphic
to the Czech cohomology @ 7. It seems to be an interesting question whether this is
true in general.

3. Quasiperiodic Tilings Obtained by Cut and Projection

Theprojection method (or cut and projection method) is a well known way of producing
guasiperiodic point sets or tilings by projection of a certain subset of a periodic setin a
higher dimensional space. In earlier versions, for example [5], the favorite set was the
integer latticeZ" but a price has to be paid for the simplicity of this choice if the kernel

of the projection contains non-zero lattice points. An elegant way around this difficulty,
which is applicable to almost all interesting examples, is to use root lattices instead of
ZN [30] and the construction we use here is related to that.

However, rather than looking at arbitrary point sets obtained by the projection method
(for example with fractal acceptance domain) we want to focus in this article on tilings
where the acceptance domain is canonical — after all these include the main candidates
for the description of quasicrystals — and for these tilings there is another approach which
is a bit more elaborate to start with but easier to handle when it comes to the later steps
in the construction of the cohomology groups. The approach we are about to describe is
based on polyhedral complexes and their dualization, it is therefore sometimes called the
dualization method, but in the present context where we start with a higher-dimensional
periodic set it can be simply considered as a variant of the projection method such as
used in [16,17]. We follow its description as in the article by Schlottmann [20] and refer
the reader also to the examples discussed in [31].

The organisation of this section is as follows. We formally define the construction
considered in 3.1 and discuss some basic properties and examples. The remaining sub-
sections form a sequence of descriptions of the associated hull for such tilings; the final
description is the one which allows us to describe the tiling conomology in the remainder
of the paper.
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3.1. Projection tilings after Schlottmann. We must first recall and set up some notation
to discusd.aguerre complexes. Consider a point sé¥ of a euclidean spacgtogether
with a weight functionw: W — R on it; write © for the pair(W, w). Forq € W, the
set

Lo(q) :={x €EVg e W:|x —ql? —w(q) < Ix —¢'1? — w(g)} @)

is called theLaguerre domain of g. It is convex and under rather weak conditions [20]
on © all Laguerre domains are actually compact polytopes (of dimension smaller or
equal to that of or even empty sets) and the set of all Laguerre domains with non-
empty interior provides the tiles of a tiling® which is of finite type and face to face.
Laguerre domains generalise the notion of Voronoi domains and specialise to them when
the weight function is constant. The concept of Voronoi domains is a familiar one in solid
state physics where they arise (under the name Brouillon zone or Wigner-Seitz cell) if
one takes a® the dual of the crystal lattice. A non-constant weight function gives the
means to enlarge certain Laguerre domains at the cost of others or even to surpress some
altogether.

The faces of the Laguerre domains define a cell complex structure: this is the so-
called Laguerre complex. We denote it byLg and the (closed) cells of dimensidn
by Eg). The data® specify another complex which is dual fy: the dualé* of a
k-cell & is the convex hull of the set gf € W whose corresponding Laguerre domains
containé as a face. Note thdt* depends orf and® and not only or¢ and Lg. It
has codimensio&. This dual complex is again a Laguerre complex, dendtgd for
O* = (W*, w*), whereW* is the set of vertices (0-cells) dfg andw* : W* — R is
given byw*(¢*) = |¢* — ¢|% — w(q) for someg such thay* is a vertex ofLg(g). In
particular,©* also defines a tiling with the above properties.

We can now describe the projection method construction we shall study.&&tbe
a lattice whose generators form a baseffdet W be a finite union of"-orbits of points
in £, and letw : W — R be al'-periodic function. Now lett C £ be a linear affine
subspace and let: £ — E be the orthogonal projection. Writefor the dimension of
E, d* for that of its orthocomplemerfi+, andz+ for 1 — . We shall also writer*

as shorthand far+(x). An element: € £ is calledsingular if there is ag < Lg’i’l)
such thatr - (u) € 7 (8). Hence the set of singular points§s= S+ + E where

st=|J ='®.
pery P
The set of non-singular points is denoted¥y. We can writeitagv S = m,ged‘”*l) E+
(C]

E+\p+ which shows that it is & 5 set (a countable intersection of open sets). Sihte
has codimension 1 i+, NS is dense.

It is convenient to writeW, = W + u andw, (¢ + u) = w(g) and define®, as
Wy, wy).

Definition 19. For data W, w and E as above, each u € NS defines a tiling 7,, whose
tiles are the elements of the set

(r(€"IE € L4 ENE #0).

The dimension of E- is called the codimension of 7.
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That this is a tiling by Laguerre domains has been shown by Schlottmann [20]. In fact,
T, is the tiling T (W, w;}) defined by the Laguerre-complex dual%mwu), where

W, = 7 (W,) andib, ( (g+u)) = max{w(q") =+ (¢'+u)[?|7(¢") = m(¢)} (@ssuming
it exists). Using this description one can see that one loses no generality in restricting to
the cases in which-(I") is dense inE* [20].

Definition 20. A canonical projection tiling isatiling 7,, associated to data W, w, E
and u as before that satisfies also the conditions

(a) that 7 +(I") liesdensein E+;

(b)that ENT = 0;

(c) that up to trandation, any £* € L(gz isuniquely determined by its projection r (§*);

(d) that for £*, n* € £LY), £* = y* + x impliesx e T.

(e) that for all B € E(@‘fL_l), the (affine) hyperplane Hg which is tangent to Btisa
subset of S+

Remark 21. Conditions (b),(c),(d) in this definition are not strictly necessary but will
considerably simplify the exposition. (b) implies that the tilings are completely non-
periodic. (c) and (d) can be made obsolete with the help of decorations, see Sect. 3.2.1.
Condition (e) will not be relevant until Subsect. 3.3 and we shall ignore it for the re-
mainder of this and the next subsection.

Example 22. Consider the exampl& = Z", the integer lattice ifR", with standard
basis{e;,i = 1,..., N} and vanishing weight functiow. In this highly symmetric
case, the dual complex 6,y ,, differs only by a shift abous = %Zi e; from the
original one. Writingy = {Z,N:l ciei|0 < ¢; < 1} for the unit cube, its translates by
8§ +2z,z € ZN, are its Laguerre domains and it is not difficult to see that, whds
chosen such tha N ZN = {0} the vertices of the tiling;,, defined in Definition 19 are
the points

(r@)|ze @Y +u+8NE+y). (4)

This set we referred to in [16] as the canonical projection pattern defined by the data
(ZN, E,u")y withu' = u + 6.

7+(ZN) lies dense irE+ ifand only if EL N ZYN = {0}. In this case one sees quickly
that all further conditions of Definition 20 are met.

But E+ N ZV is not always trivial, important examples where it is non-trivial are
the Penrose tilings. This is the reason why we consider the apparently more elaborate
construction with Laguerre complexes. It allows us to focus our attention to input data
which satisfy (a) of Definition 20.

Let D be the real span of+ N Z" (assuming it is not trivial) and leV be the
orthocomplement ob in E-+. Following [20] we factor the projection: RN — E as
7 = mp o m, Wherenry: £ — E @ V is the orthogonal projection with kernél and
m2: E®V — E has kerneV. We may then perform the construction of the projection
method in two steps. First we produce the (periodic) tiling defined by thedataz"

w = 0, the subspacE & V and non-singular point and using projectiomn. As noted,

this tiling can be understood as a Laguerre complex, hamely the one defined by the
lattice r1(Z") and weight functionw given by w(r1(z)) = maxw(z’) — |n1l(z’ +
u)|2|m1(z)) = m1(z)}. In the second step we now use this new Laguerre complex and
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the projectionr,: to be precise, we use the data(ZN) w, E, m1(u). Note thatw
remains zero after the first stepif-(u) € ZV, but, if 77" (u) ¢ ZN we have to expect
that the maximal periodicity lattice of the Laguerre complex definedayZ"), w)

is a sublattice ofry(Z") containing the latticZ" N (E @ V). To summarize, even

if EXNnzZN # {0} we may construct tilings whose vertices are the points of (4) by
Schlottmann’s method from data which satisfy conditions (a) and (b) of Definition 20.
The further conditions, in particular (e), have to be carefully verified.

The most famous class of tilings which may be constructed by the above method
are the Penrose tilings. Heré = 5, E is a two dimensional invariant subspace of
the rotatione; — ¢; 1 (i mod 5) andD is the span o08. If 7] L (u) = —& then the new
Laguerre compleX, s, ,, becomes the dual of the Voronoi complex (i.e. the Delaunay
complex) of the root Iatt|cel4 [30]. The resulting tilings are the usual Penrose tilings.
Other choices forr1 (u) lead to the so-called generalized Penrose tilings.

We conclude this section by establishing some important properties of canonical
projection tilings which will be of use later. First, for non-singulaaindv, T, is locally
isomorphic toT, and to any other element of its hull [20]; in fadt,7,, = M T, and the
dynamical systeniM 7,, E) is minimal (any orbit lies dense). We may therefore drop
the indexu to write MT for the continuous hull.

Givenu € £ (not necessarily non-singular) we define

Poi={t e L810ent@)

Lemma23. Leté € P,,u € NSand P = w(£%).

1. Ifs € —&+ 4+ T suchthat u + s € NS then P isatileof T,.
2. 1fs € E 4 I then the converse holds: P being atile of 7, impliess € —£+ + T

~ 1
Proof. First, lets € —&+ suchthatt +s € NS andé € P,. Thené +s € E(@‘fujs and

0 e &1 +5. Hencet +5 € P,y So that the dual of + s with respect to the dat@,,
projects (underr) onto atile of7,4. This dual iss* 4 s (whereg* is the dual of with
respect td®,) and hence projects ont®.

For the second statement split the givea s’ +y withs” € E,y € I'. Thenr (§*) €
T,.s Wheneverr (£*) — s’ € T,. Hence there isa € P, such thatr (§*) — s’ = 7 (n*).
By condition (c) this implieslv € E+ : £&* + v — s’ = n*. By condition (d) we must
havev — s’ € I'. But thené + v — s’ = 5 € P,. The latter impliesy € —£1. The
statement follows since+ ' =s"+ T =s+T. O

Lemma24. u € NS whenever V& € P, : 0 € IntéL.
Proof. u is singular whenever there iséae cg{f) such that Oc 3&+. This £ then
belongs toP,. O
For regulam and a patchP of 7, let
AdPy= [ —&-
fePy|n(E9)eP

For technical reasons we sé} (%) = E+. A,(P) is called the acceptance domain for
P, for reasons which become clear in Corollary 26.
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Lemma 25. With the notation above

1.Forallu e NSandall r > Othereisad > Osuchthatz € EX,u+t e NS, |t] <$
implieSMr(Tu) = Mr(Tu+t)-

2.Foralu e NSandall ¢ > Othereisas > Osuchthat ju —v| < 8, v € NS, implies
D(T,,T,) <e.

Proof. If rislarge enough, (M, (T,)) is afinite intersection of convex polytopes. Since
u is regular, 0 is an interior point of these polytopes and heng@/, (7,,))) contains an
opens-neighbourhood of & E+. By Lemma 23.1¢| < § implies thatM,(T,) C T, 4.
HenceM, (T,+;) = M,(T,) which proves the first statement.

As for the second, givem ande letr > % — ¢, wherec — 1 is an upper bound for the
diameter of the tiles. The first statement of the lemma insures the existandg siieh
thatt € EX, u +t € NS, |t| < 8. implies D(T,, T,+,) < €. Hence iflu — v| < &,
ve NS, thenD(T,, T) < D(Tu, Ty ntouy) + DTy ntunys To) < € +8,. Taking
§ = min{(S%, 5} thenimpliesD(T,, T,) <e. O

Corollary 26. Let P beapatch of T,, u € NS. Then P C T, for v € NS whenever
v—uecA,P)+T.

Proof. FirstletP = 7(¢*), & € P,. Then we only have to improve the second part of
Lemma 23. Let > O such tha C B,. Then we find from Lemma 25.155depending
onv) such thatt € E+, u +¢t € NS, |t| < § implies M,(T,)) = M,(T,.;). Since
E + T lies dense we can find arbitrarily smalle E* so thatv +¢ —u € E +T.
If |z| < 8§ we can combine the above with Lemma 23.2 to obtain that 7, implies
v € —&L+T+ By, Since we can choosarbitrarily small the statement of the corollary
follows for P = m (§%).

Now the case of a general patéhis a simple consequence of the fact tifat- T,
whenever all tiles of? belong toT,. O

Lemma?27. Letu € NS. Then A(T,) =, Au(M,(T,)) = {O}.

Clearly A(T,) is convex and closed. If & s € A(T,) then A(T,) must contain the
interval [0, s]. Suppose that this is the case. Since the singular points-ambits of

boundaries of compact polytopes and sificeis densey + Int[0, s] must contain a
singular point. By convexity of the, u + [0, s] € IntsL for all £ € P,. In particular,

u+1t,0<1t <s,is an interior point of ale for which& e P,,,. This shows by
Lemma 24 that all points in + Int[0, s] must be regular. This is a contradictionz

Proposition 28. Letu, v € NS.Then T, = T,, whenever u — v € I'.

Proof. If T, = T, thenM,(T,) C T, for all r. Hence, by Corollary 26 and Lemma 27
v—ue (N AuM(T))+T=T. O

3.2. The topology of MT". For canonical projection tilings we have a much better de-
scription of the topology of the continuous hull; this is one of the crucial reasons why
we can so successfully compute their cohomology.

First we use the tiling metric to define a metric on the sp¥de

D, w) := D(Ty, Ty) + [v — wl,
and letIT be theD-completion ofN S.
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Lemma 29. The action of E + I" on N § (by trandation), the map ng: NS — M7T by
x — Ty,andtheinclusion ug : NS — £ all extend to continuous maps on the comple-
tion IT. Furthermore, the extension of ng, to n: I1 — M7 isalocal homeomorphism
and the extension of ug isa surjection u : IT — £ that is one to one on non-singular
points.

Proof. D is invariant under th@" action and for smalk € E we have thatD(u +

s, v + s) differs very little from D (u, v); this implies that the action of + I' extends
to one by homeomorphisms éh Uniform continuity ofpg andug is clear, as one can
bound theD-metric and the euclidian metric by ti&-metric. Hence both maps extend
continuously.

To show thaty is open recall from Proposition 28 thagl(Tu) = u + I'. Hence,
different preimages undep of one single point have a minimal distance. In particular,
any restriction ofyg to some small open ball, smaller than that minimal distance, will
be injective and we claim that a Cauchy-sequence in the image of such a restriction has
a Cauchy sequence as preimage. This then shows that the restrictions extend to injective
maps implying thaf is a local homeomorphism. To prove our clain((&f, ), , u, € NS,
be aD-Cauchy sequence wiilx, ), belonging to a small ball (with respect min the
relative topology). Observe that i (u, v) is small ¢, v € NS) then|z(u) — 7 (v)| is
small as well and bounded byRT,, T,,). Hence we can choose the ball small enough
so that convergence df,, implies that of|z(u,)| and hence aIscT”VL is a Cauchy
sequence. But the latter is even a Cauchy sequence with respect to thePgetiiow
DO(TMLJJ_, ’Tu‘J)_JrM) — 0 implies thatR, = supR|Vu : Br(Ty,) = Br(T4,,,)} diverges
and hence diameter of, (Mg, (T,,)) shrinks to zero (Lemma 27) which implies, by
Lemma 23’|u1J)_+M - uvl| — 0. This shows thatu,,), converges in the euclidian metric
and therefore also in thB-metric.

To show thaiu is almost one to one on non-singular points observethedn also
be viewed as the extension of the identity map: idv S, D) — (NS, | - |)) to the
completions (heréN S, D) and(N S, || - ||) is the standard notation for the incomplete
metric spaces|| - || standing for the euclidean metric). Above we showed that id is
uniformly continuous and Lemma 25.2 shows that its inverse is pointwise continuous.
So ifu € NS and(x,), is a D-Cauchy sequence iN S converging tox € II, then
u(m) = n(x) implies that(x,), must be g| - ||-Cauchy sequence convergingi@& N S.

The pointwise continuity of the identity magvs, || - ) — (NS, D) implies therefore
thatx =u. O

Coroallary 30. The map n induces an E-equivariant homeomor phism between the orbit
space I/ T and MT.

Proof. Proposition 28 and Lemma 29 imply thatnapsI™-orbits onto single tilings. To
show thaty(x) = n(y) impliesy € x + I' (we denote the extended actiomof I" on

IT also simply additively) we first recall from the last lemma thé&f as a subset dfl

is the preimage oNS C £ underu, a continuous map. Thereforés is also a dense
G subset of1.

_ Letn(x1) = n(x2) butxy # x2. Fix § > 0, by the Hausdorff property we may find
D-openU; such thaty; € U;, U; is contained in thé-neighbourhood (with respect to
D) of x;, andn(U) = n(Uy). Sincey is continuous and open(U; NN S) is aGs-dense
subset ofy(U). Therefore;(U1NNS)Nn(U2 NN S) isnotempty. Sotake; € U, NN S
such thaty(z1) = n(u2). By Proposition 28 we find & € I' such thatu; — up = y.
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ThereforeD(x1, xo + y) < D(x1, u1) + D(uz + y, x2 + y) which tends to 0 i — 0.
Hencex; = x 4+ y. E-equivariance is clear.o

We have thus another dynamical systéi E + I') which plays the role of a “uni-
versal covering” (not in its strict sense) of the continuous tiling dynamical system.

Remark 31. We can compare this construction with the so-called torus parametrisation
of projection tilings [32]; this also parallels a discussion which was carried out for tilings
related taZ" (not necessarily canonical) in [16]. There is a surjectionM7T — £/ T
which makes commutative the diagram

ns ¢
ny / Lo (5)
MT 5 ¢/r

Allmaps areE-equivariantang is E+T equivarianty’ is one to one on (classes of) non-
singular points. The dense 9é5/ I' of the torus£/ I" therefore yields a parametrization

of a dense set of tilings. In fact it can be shown tBAT parametrizes the remaining
set of tilings up to changes on sets of tiles having zero density in the tiling. This torus
parametrization is very useful for analyzing symmetry properties of the tilings [32].

We need now to describe the topologyldf Recall from Sect. 1 that a base of the
topology of MT is generated by se®. + x +Up, e > 0,x € E, P a patch inT. For
u € ET N NS Lemma 23 can be reformulated to say tiat- 7, forx € u + E + T
whenever € A, (P)+u +T.Foru e E-NNS we let

Ay ={(Au(P)NTH) +u 4yt P C T, y eT}U{#}.

Then, by the interpretation of, (P) we see that, is closed under intersection. In fact,
if y € I'thenA, (P)N(AL(P)+y1) = A, (PU(P'+7(y))) providedPU(P'+7(y)) C
T,, and@ otherwise.

It is also useful to have another description4f which shows that the collection

B := {A|A € A,} of closed subsets ifll does not depend an. For X C L‘gl), let
A(X) :=eex —€+ and

A= {ACO N T +w)|X ¢ £ finite} U {#).

ThenA,(P) +u = A(X), whereX = {§ € P,|7(¢*) € P} + u which shows that
A, € A,.On the other hand lat e A(X) N (I + u). Thenvé € X: n(¢*) € T, and
v —u = y* for somey e I'. It follows that{z (£*)|€ € X} + n(y) is a patch inT},.
HenceA, = A),. But from the form ofA}, it is clear that5 does not depend an

Theorem 32. The collection {B + x + U|U € B,e > 0,x € E} is a base of the
topology of IT. In particular, IT ishomeomorphicto E- x E (with the product topol ogy)

where EX = E+ N NS (the D-closure of E+ N NS in T0).

Proof. Let P be a patch off,,, u € £- N NS. From Lemma 23 follows that fat €
u+E+T,P CT,whenever € A,(P)+u+T.LetX(P)=(A,(P)+u)NNS.
Sinceldp is closedn=1(Up) = X (P) + I'. Furthermore, ify e I is not trivial then
D(X(P),X(P) + y) > ¢, forsomes > 0 (here we mean the obvious extensionof
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to subsets). Hence, foralle E + T, B + x + X (P) is an open set. We conclude that
the above collection consists indeed of open sets and its imagenigicollection of
sets of which forms a base of the topologyiéf/.

Now let V' C II be open and of diameter smaller thémThenn(V) is open and
hence of the formy(V) = U(G)X,P)e, B: + x + Up, wherel is an index set containing
triples withe > 0,x € E+ T, P C T,. If we choose: small enough and the patches
P large enough we can make sure tiat+ x + X (P) has D-distance at least to
B. + x + y + X(P) providedy € T is non-trivial. ThenV is the union of those
B: + x + X(P), (¢, x, P) € I which contain one of its points.

ThatIT has the above form of a product space is now clear.

Corollary 33. The collection B is a base of compact open neighbourhoods for E-. In
particular, E- is a totally disconnected set without isolated points.

Proof. ThatB is a base of the topology follows directly from the last theorem. That its
sets are compact follows from compactness, Lemma 9, of thé/set8 C 7,. O

3.2.1. Decorated tilings. Sometimes it is useful to decorate the tiles of a tiling, usually
with small compact sets like arrows. One reason for introducing decorations in the
present framework is to get around the hypotheses (c) and (d) made in Definition 20. If

it happens that two translationally non-congruent face&ﬁﬁfproject onto the same tile

we can distinguish them by means of a decoration: the projection images of faces are
decorated by arrows which have equal shape for equal translational congruence class but
different shape for different classes. Decorating has to be taken into accountin the general
framework in the way that tiles, patches, and tilings are decorated objects. This means for
Lemma 23, for instance, that the tikeis no longer just the set(£*) but this set together

with the decoration. Likewise we have to understand patches in Corollary 26 as subsets
of decorated tiles. The description of the hull and notably Theorem 32 remain as stated if
one takes into account that the tiling is the decorated one. It is important to note that we
need only finitely many different decorations for that so that the decorated tiling remains
finite type. In the same way we can handle the case in which the translation subgroup
of Lgﬁ is larger than™ or a fundamental domain for it contains several translationally
congruent faces. We can distinguish them again by decorations of which we need only
finitely many.

A different reason for introducing decorations is to introduce matching conditions or
break the symmetry of the tiles. For instance, the octagonal and decagonal tilings are
canonical projection tilings which have matching rules only after (a symmetry breaking)
decoration. We now indicate how certain (quasiperiodic) decorations can be incorporated
in the projection method. This situation is in so far different from the above in that we
suppose to start with a canonical projection tiling which we want to decorate and ask
how this modifies the topology of the hull.

We saw that the sets @& have the interpretation of acceptance domains. If a nonsin-
gular pointu belongs to such a set then this can be interpreted by saying that a certain
patch occurs af,. If we introduce by hand additional faces in the Laguerre-complex
Lo, we started with we divide d*-cell £+ into several components. Each component
may serve as acceptance domain for a decorated tile, the barestiig*isand for its
decoration we can take a label or a small compact set like an arrow. We need to make sure
that there are as many different decorations as there are new components and we need to
require that the additional faces foilfrorbits so that the new Laguerre complex remains
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[-invariant. This also insures that the decorated tiling remains minimal. If we now take
the new faces into account by taking as a base for the topology the sets corresponding to
the above components then we end up with a similar description of the continuous hull
in the decorated case as in the undecorated one. Certainly arbitrary decorations could
not be handled like this, but those which define matching rules for the (then decorated)
octagonal and decagonal tilings do.

3.3. A description of the topology by singular planes. We now bring into play the final
hypothesis of the main Definition 20 of canonical projection tilings,

(e) Forallg e /:gl’l), the (affine) hyperplan&s which is tangent tg- is a subset
of §+.

What we require here is that for &l the stabilizer offg with respect to the action of
I" given by — 1+ y* has rank at least™ and that its lattice spacing is small enough
compared with the inner diameter pf- to insure thaig intersects each of its orbits.
This is certainly the case fov = Z", w = 0, but holds in many other interesting cases.
We call the hyperplaneH singular planes. Using hypothesis (e) we get a further

description of the topology oE.. It allows us to write the singular points A+

as st = Uﬁec(,“*l) Hpg which is clearly invariant under the action of given by
(C]

A +— A+ yL. The sefC of all singular planes is invariant undgras well and, since

1
Eg ~b contains only a finitely maniy-orbits,C consists of a finite number &f-orbits,
too.

Definition 34. A compact polytope in E* is called a C-tope if it is the closure of its
interior and if all its boundary faces are subsets of singular planes. A subset of E- is
called a C-topeif it isthe D-closure of the set of non-singular points of a C-topein E-+.

Theorem 35. The characteristic functions on C-topes generate CC(ECL, Z), the com-
pactly supported continuous, integer valued functionson E-.

Proof. C-topes form the set of finite unions of sets/®f The latter being clopen and
forming a base of the topology, their corresponding characteristic functions generate
C.(E}, 7). Since YLuy + luny = 1y + 1y the statement follows. O

Remark 36. ForT" = Z4+4" Le [11] gave a description of the topology Bf- which we
relate to the above. Fare E+ letc, be a connected componentiot\ |, ycc H,an
open subsetaf* called acorner. Note that = EL if x € NS.LetE; = {(x, cx)|x €
E-} with topology generated by the sets

u(x,cx) = {(y, Cy)|y € Cx,cx N Cy # 0}.

Clearly, the projection onto the first factor is a continuous surjective E’iap» EL.
This is Le’s description of a transversal for the continuous hull. lLdie aC-tope in
EL.Then

Up = {(x,cy)|lx € U, c,y NINtU # 0}

is a preimage ot/ in Ei which is a finite union ol{;’s and hence open. L&; be the
collection of all sets obtained in this way. Then the topologﬁéfis generated by,
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since we can realize the séig ) as (infinite) unions. We leave it to the reader to verify
that the map5 — B given byU — u(U) is a bijection preserving the operations
intersection, union, and symmetric difference. TthQECL) is isomorphic toCo(Ei)

andEZ is homeomorphic t&; .

3.4. A variant of the tiling groupoid for canonical projection tilings. For canonical
projection tilings itis convenient to use a slightly different groupoid which is isomorphic
to a reduction of the tiling groupoid. It is also continuously similar to it. In [17] it is
called thepattern groupoid.

Lete be a small vector i which is not parallel to any of the faces of tiles. To a vertex
v, associate the tile which contains in its interiot ¢; this defines an injection between
the vertices of a projection tiling and its tiles. We assumedlgsmall enough so that the
associated tile contains this vertex. K& be the subset a¥/7T given by those tilings
which have a vertex on @ E. As for Q27 one shows thaR7 is a closed range-open
subset which intersects each orbithfM 7, E)). Thus we define the reduction

GT == rG(MT, E))oT

of G(MT, E)). Now consider a new set of punctures fbr a subset of the old one,
namely give only those tiles a puncture which are associated to vertices as described
above. This choice can be made locally since we only have to test the vertices of the tile
itself to decide whether we select its puncture to become a new one2Cdle subset
of tilings of M7 for which a new puncture lies on 0. By letting the new punctures tend to
the corresponding vertices one immediately sees that the redw:Tt@WT, E))QfT is
isomorphic taG 7. Furthermore@ng(MT, E)ar is the reduction t&’- of G- which,
as noted in [10] is continuously similar to it. A similar argument can also be found in
[17].

Without loss of generality we may assume that OV, our I'-invariant set we start
with, and that the Laguerre domain of O has interior and therefore O is a vertex of the
dual complex. Let: € E+ N NS be such that 0 is a vertex @f,. All vertices of 7, are
contained inr (W,) which can be written in the form(W,) = |J,.x x + =(T") for a
finite subsetX e E of points which are all in different (I") orbits, 0 being one of them.
Therefore, ifs € E and 0 is a vertex of;,_; thens € x + 7 (T") for somex € X. Using
Proposition 28 we find that~1(7,,_,) N E} x {x} is not empty provided O is a vertex
of T,_s. By continuity and closedness cﬁfcL this extends to arbitrar§ € Q7. So if
we letLT := n~H(QT)N EL x X theny X (QT) = LT +T.

Lemma 37. GT isisomorphic to the reduction ;7G(I1, E + I') 7, where LT is as
above.

Proof. The map,7G(I1,E + D)y — o7G(MT, E)or given by (y,s + y) —
(n(y), s) isagroupoid homomorphism. Itis injective, because no two pointsti#long
to the samer (I') orbit, and surjective, becaug€L7) = Q7. Continuity follows from
the continuity properties of. O

3.5. Discretetiling dynamical systemsfor canonical projectiontilings. We now bring to
fruition the work of the preceding subsections and prove that the groupoids constructed
so far from a canonical projection tiling are continuously similar to that arising from
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a minimal action ofZ¢ on a Cantor-set. This gives us the key, in Sects. 4, 5 and 6, to
qualitatively and quantitatively describing the cohomology of these tilings.

Let F be a subspace which is complementar§tdhusF NE =0andF + E = &.
We denote byr’ the projection ontd? with kernel E (so it is not orthogonal except if
F = E™1). The restriction ofr’ tou + 't (u € E- N NS) extends to a homeomorphism
betweenEcl andF, = F N N (its closure inT) and we can writél = F, x E with the
product topology. Sinc& NT" = {0}, =/(T") is isomorphic td" so that we have a natural
minimal action ofl on F, x - y = x — 7/(y), without fixed points. The extension of
this action toF,. defines a minimal dynamical systdif,, I') also without fixed points.

Proposition 38. G(F,, I') iscontinuously similar to G(I1, E + T').

Proof. We apply Proposition 12 taking = F, (which is closed) angt: 11 - E +T
to be the extensionof: £ - E. O

Now we decompos€ = Z4+4" into complementary subgroupg, = Go @ G1,
whereGo = 74" andGy := ' (Go) spansF. Define

X :=F./Go
so that we obtaifiX, G1), a minimal dynamical system without fixed points.
Proposition 39. G(F,, I') is continuously similar to G(X, G1).

Proof. We claim thatF, has a clopen fundamental domairfor Go. The proposition
follows then from Proposition 12 upon usidg= Y andy: F. — I, y(x) being the
unique element ofip such thate - y (x) € Y. The latter is indeed continuous since the
preimage of a lattice point is a translate of the fundamental domain and therefore open.

1
To prove the claim pick ang € ﬁ(@‘f ) such thatt - has interior. Since&(, spans

F it has a compact fundamental domaif. By density of "+ there is a finite subset
OeJcTsuchthatr* =, (=& +y") coversy?. It follows that

rhi= (5N NS) + )
yelJ

is a compact open subset 6f and YC1 + Gy = F.. Now let Ga“ be a positive cone

of G which satisfiesG, = Gg U (—Gg) thus implying a total order. We claim that

Y = Y}\(YCl + GE{\{O}) N v} is a clopen fundamental domain. Clopenness is easy to
see. So let € F,. Clearly, the set of al§ € G suchthat + g € v} is non-empty and

finite. The unique minimal elemegt of this set is the only one satisfying+ go € Y.
o

Proposition 40. GT is continuously similar to G(E-, T).

Proof. From Lemma 37 we know th&t7 is isomorphic to the reductionyG(I1, E +
D)7 Let(LT), := LTNE}F x {x},x € X.Ifu € E- N NS suchthat 0is a vertex of
T,andv e u + EN(LT), thenv = u — s with s € x + 7 (I'). Hence there is a unique
g € I'suchthaw +x — g € E+. Nown(v+ x — g) = n(u) contains 0 as a vertex and
hencev + x — g € (LT)o. We defineamap’ : (LT), — E + T first on the dense
setu + EN(LT), by y’'(v) = x — g, with g as above, and then extend it by continuity.
Applying Proposition 12 with. = LT, L' = (LT)o,y : L' > E+T,y(x) =0, and
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y' : LT — E + T as above, we find that;G(I1, E + ') .7 is continuously similar
to ./G(I1, E + I');,. The latter is equal to the reduction@(EcL, )toL'. L'is clopen
(in the topology ofE-) and hencew(L’) contains an open set.

We claim that there exists a choice of decompositica Go+ G1 with the properties
stated before Proposition 39 and such thatontains a clopen fundamental domain
for Go. It then follows again from Proposition 12 upon using the same mag in
Proposition 39 Y is a subset of.’) that ;- G(T1, E + I'); is continuously similar to
G(EZX, T). This then proves the proposition.

It remains to prove the claim. Sindg- is dense inE+- we can choosé- elements

of I which generate a groud isomorphic toz4", such thatd spansE', and has a
fundamental domaili’ in E-+ contained inu(L’). Let Go be the group generated Iy
and representatives for the torsion elements off. It is a free abelian group of rank
d*+ which contains? andGg cannot be dense ifi+. By the same construction as in
the proof of the last proposition we obtain frarfa fundamental domaibi for Gg in
ECl which is contained i sincen(Y) C Y. O

Corollary 41. H*(T) = H*(T', C(F., Z)) = H*(G1, C(X, Z)).

A direct consequence of the above corollary is #&¢7) is trivial if k exceeds the rank of
G1, whichisd, the dimension of the tiling. Furthermore, using th(G1, C(X, Z)) =
{f € C(X,Z)IVg € G1: g- f = f}[29], minimality of the G, action implies that
HO(T) = Z. Finally, if M is aG1-module thenH?(G1, M) = Coinv(G1, M) is the
group of coinvariants [29]

Coinv(G1, M) :=M/{{m — g -mlm € M, g € G1}).

By the corollaryH4(T) is thus equal t& (X, Z)/ E(G1) whereE(G1) is subgroup of
C(X, Z) generated by the elemenfs— g - fforg e Giand g - /)(x) = f(x - g).

Remark 42. The dynamical systems of the fort, G1) defined abova priori depend

on the position off and on the choice ofig. However, in a certain sense they are all
equivalent, namely their groupoids are all continuously similar and they are all reductions
of one big groupoid. They are not all isomorphic, as an investigation of the order unit of
the Kp-group of theC* algebra they define shows.

The dependence oA is inessential. The map’ induces al" equivariant homeo-
morphism betweeiE;- and F,. Different F's therefore lead to isomorphic dynamical
systemg F,, I'). Taking F as the span afg one verifies directly thatZ 7 is the mapping
torus of (X, G1) [16]. One consequence of this (though not one we make use of below)
is the following.

Corollary 43. The tiling cohomology of non-periodic canonical projection tilings is
isomor phic to the Czech cohomology of their continuous hull.

We do not know whether this result is true for general tilings.

Remark 44. Consider the case = 74 +¢, F = EX andGo generated by, say, the first
d* basis elements. Then the dynamical system is the rope dynamical system of [10].

Remark 45. We conclude Sect. 3 by summarizing the structureXafG;) in a commu-
tative diagram which is the discrete analogue of (5); see [16] for the neccessary proofs.

F.5 F

nil / |
X 5 F/Go.
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The maps ar€ (respectivelyG1) equivariant where th€'1-action on the/--torusF / Go

is by rotations (constant shiftsX. is a Cantor set and the surjectiph: X — F/Go is

one to one for nonsingular points &fwhich form a densé& s subset. ThusX, G1) is

an almost one to one extension of a relatively simple system, that of rotations on a torus.
The crucial topological information is encoded in the set on whitls not injective.

4. Examples

Before we proceed to give a qualitative picture of tiling cohomology and to describe
methods for calculation, we discuss the two simplest examples which we believe show
typical features. Both are one-dimensional tilings obtained from an integer lattice, so by
Corollary 41 onlyH%(7) andH1(T") are non-zero. As noted, by minimalif°(7) = Z
andH(T) is identified in the last section as a group of coinvariants.

Example 46. In our firstexample we tak# = 72, w = 0 andd = 1. HereE is specified

by avector(1, v) andv has to be irrational to meet the requiremg&ntZ2 = {0}. Clearly,

E' is generated by—v, 1) and the singular planes are simply points, namely the points
of 71 (Z?) (we ignore the shift by). Identifying E- with R we haver - (Z2) = Z+vZ
(after a suitable rescaling). HenCg(E, Z) is generated by indicator functiong, %,

(on the D-closure of{a, b] N NS) with a,b € Z + vZ, a < b. How many of them
are cohomologous? Clearly,}) ~ 1j0,,—s and there are unique m € Z such that

b —a =n+vm. Defining %, 5 = —1pp.4) in the case ofi > b, we get

Y0,6—a1 = Li0,n] + Yn,ntvm) ~ 00,1 + mljo,)

which shows that the coinvariants &®provided the two generators given by the classes
of 1j0,1) and of %g,,) are independent. This will be shown in Sect. 7. Let us mention in
this context that the above tilings are very close to being substitutional [33] (they are
strictly substitutional only fop a quadratic irrationality).

The above result shows that whatever the irrational H(Z?, C.(E}, 7)) = 72
This demonstrates that cohomology is not a very fine invariant to distinguish tilings, at
least in these low dimensions. We shall see in Sect. 7 how further structure can be added.

Example 47. In our second example we také = Z3, w = 0 andd = 1. Here we
consider only the case whefet N Z3 = {0} because the other leads essentially to the
previous example. In this case, the singular planes are lines whiah"&%?)-translates
of Hy, = (e}), @ = 1,2, 3 (again up to the shift b§). Any two H,, spanE=L.

We claim that the result for the cohomology differs drastically from the previous
example in that the coinvariants are infinitely generatedglrix, € 7+ (Z%) and letU
be the rhombus (we assume it has interior) whose boundary faceg#ieinH; + g1) U
HyU (H>+ g2). Clearly, 1y, the indicator function on thB-closure ofU NN S, belongs
to CC(E}, 7). Let, fora = 1, 2,71 (7r2) be the projection ontél; (H2) which has kernel
Hy (Hy) and letl, = 7, (7 (Z%)). Then for allx, € Ty also Jy1s,14, € Co(EL, 7).
How many of them are cohomologous? Let us try to repeat the construction of the first
example. Clearly

LWiantio ~ Lugagga, I A+ha =2 =2y e m (2.

But since the rank af, is at least 2 (because it is denseHR) we see that the number
of 71 (Z3) orbits of points in'1 + I'> (which is the number of elements iy +
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I'o) /7L (Z3)) is infinite. Therefore the construction used in the first example cannot be
used here to reduce the generators to a finite set. This does not prove our claim but it
does indicate a crucial point, namely that there are infinitely many orbits of points which
are intersections of singular planes. From this we will conclude in the next section that
the tilings of the second example cannot be substitutional.

5. Conditionsfor Infinitely Generated Cohomology

The cohomology groups of a canonical projection tiling, as defined in Sect. 2.2, contain
rich information about the tiling. With the analysis of Sect. 3 we shall see in Sect. 6 that
they are completely computable, at least for projections of small codimension. In this sec-
tion we examine instead the qualitative behaviour for generic projection tilings of the ra-
tionalisations of these cohomology groups. Although rational cohomoldtyig -, Q),
is a somewhat cruder invariant, it still proves useful. In the following subsection it will
allow us to comment on the relationship between canonical projection tilings and tilings
defined by a substitution system.

Recall the set of singular poings- in E+, defined in Sect. 3.1, and the assumption
(e) of our Definition 20 of a canonical projection tiling.

Definition 48. We call a point x € S+ an intersection point if there are d- singular
planes which intersect uniquely at x.

Let P be the set of intersection points. ClearR,is invariant under the action df.
Let Q(P) = P/ T be the orbit space. One of the main results of [19] is the following
theorem (see also [17]).

Theorem 49 ([17,19]). Q(P) is an infinite set if and only if H*(GT, Q) is infinitely
generated.

We do not repeat its proof here, but rather explain how to obtain criteria under which
Q(P) is infinite.

Choosed~ singular planesHs, indexed now simply byx = 1,...,d", which
intersectin exactly one point. L&t := |, (Ho+I') andletP’ = PNS’, asubsetwhich
is clearlyI'-invariant. WriteL,, for ﬂa/#a H,,aline,andletr, : E- — L, bethe (not
necessarily orthogonal) projection with kerg]. ThenI'® :={y € I'|Ly +y = Ly},
the stabilizer oL, can be naturally identified with a subgroupltf = 7 (I').

Lemma50. If rank'® < rankl", then Q (P) isan infinite set.

Proof. Letx € L, N P’. Then, by constructiony + I, € P’, too. The latter set may
be decomposed in it8¥-orbits and if rank'® < rankl', there are infinitely many. On
the other hand, intersection pointsiaf N P’ which lie in differentr"*-orbits lie also in
differentI"-orbits. O

This gives the following easily checked criterion; it also shows fhéP) being an
infinite set is a generic feature.

Coroallary 51. If rank'® < 2 then Q(P) isaninfinite set.
Proof. Density of 'L implies that ofl',. Hence rank, > 2. o0

Corollary 52. If d*+ > d then Q(P) isan infinite set.
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Proof. We showed above raik, > 2. In particular,)_,, rankl’y > 2d1. The statement
of the lemma follows therefore from the observation tkatP) is an infinite set if
@B, T/ 't is infinite and the latter is the case wheneyéy rankly > d + dt. o

The claim of our second example in Sect. 4 follows from this last result and the
discussion of the next subsection.

With a little more thorough analysis [17] one can show th&e {fP) is a finite set
then-% must be an integer. A further result, accessible with the algebraic-topological
methods of [19], is the following.

Theorem 53. [19] If Q(P) isa finite set then each H" (GT, Z) is a finitely generated
free abeliangroup for r = 0, ... , d and iszero for other r.

5.1. Comparison with substitution tilings. In addition to those tilings which arise from
the canonical projection method there is another very important class for which coho-
mology can be computed. These are the finite type tilings which allow for a locally
invertible (primitive) substitution. We briefly discuss these tilings and show, with the aid
of the results of the previous section, that tiling cohomology gives effective criteria for
distinguishing whether a tiling can come from one or the other of these two classes. In
particular, we shall see that generically canonical projection tilings do not allow for a
locally invertible substitution.

A substitution of a tilingT (the terms inflation and deflation are also used in this
context) is roughly speaking a rule according to which each til& gets substituted
by a collection of tiles (a patch) such that these patches fit together to form a new tiling
which is locally isomorphic t@'. Furthermore, the translational congruence class of the
patch which substitutes a tile depends only on the translational congruence class of that
tile and the relative position between two patches only on the relative position between
the two tiles which they substitute. Therefore, the rule is specified when it is given for
any translational congruence class of tiles (of which there are only finitely many) and for
all possible relative positions two neighbouring tiles can have (of which there are also
only finitely many). One of the major examples is totagonal tiling whose substitution
rule is shown in Fig. 1. The octagonal tiling is also an example of a tiling that can be
obtained as a canonical projection tiling and the question naturally arises of obtaining
criteria for deciding the possible origins, whether as substitutions, projections or both,
of any given tiling.

There are additional conditions which turn out to be useful to assume a substitu-
tion satisfies, such as local invertibility; we refer the reader to [9] and [10] for details.

N
S e SN

AN ANR

Fig. 1. Substitution of the octagonal tiling (triangle version)
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Under such suitable conditions, [9] and [10] develop methods for the computation of
substitution tilings.

Of the two approaches to compute the cohomology of substitution tilings that of [9]
is based on the continuous dynamical systa#V, R?) whereas that of [10] is based
on the tiling groupoidj;. We sketch here the latter. The essential observation of this
approach is that a primitive invertible substitution gives rise to a homeomorpBism
(the Robinson map) betweé&h and the space of patha; on a certain oriented graph
¥. In the case where the substitution forces its border (see [15]) the connectivity matrix
o of X is a power of the substitution matrix. A natural principal topological groupoid
Gy is associated with the path space, namely the one given by tail equivalence: two
paths are tail equivalent if they agree up to finitely many edges. The tiling groupoid
G7, which is always principal for such substitution tilings, is identified @iavith a
subset ofPy x Py and hence can be compared wity3. In fact, Gy, is a subset of;
(but not a closed one). This construction allows for a description of CGiayZ), the
group of coinvariants ofj7 with integer coefficients, a group which coincides with the
cohomology groug“ (7)) of Sect. 2.2 wherT™ arises also from the projection method
(or, in the language of [10], when the tiling reduces @®‘adecoration).

Theorem 54 ([10]). For substitution tilings as discussed, the group of coinvariants
Coinv(GT; Z) isaquotient of the group of coinvariants of Gs,. Moreover, Coinv(Gs; Z)
isthe direct limit of the system

A L

where N isthe number of vertices of X (which in the border forcing case coincides with
the trandlational tile-classes).

Coroallary 55. Anecessary condition for acanonical projectiontiling to besubstitutional
is that Q(P) is a finite set. Consequently, canonical projection tilings are generically
non-substitutional and in particular no canonical projection tiling with @+ not dividing
d issubstitutional.

Proof. Suppose a canonical projection tiliffigis substitutional. Then Theorem 54 tells
us thatH? (T") can be expressed as a direct limit of finitely generated free abelian groups.
Such a limit need not to be finitely generated itself but when rational coefficients are
considered instead of integer ones then the direct limit becomes that of the system

o o
QN%QN%“'5

namelyQR whereR is the rank ofo" for largen. The first part of the corollary now
follows from Theorem 49; the remainder follows from the results and comments of the
preceding section. O

Remark 56. It is worth comparing the above result with a similar one due to Pleasants
who uses the theory of algebraic number fields [34]. In the context of tilings obtained by
the projection method there is an approach to the construction of substitutions which is
based on the torus-parametrization. It is most powerful not when tilings are considered
but when projection point patterns are looked at (though these are closely related to
tilings, see [16]). For a latticE C &, a subspacé, and an acceptance domainc E+
(satisfying certain rather weak conditions) the projection point pattern given by the triple
(T, E, A)isthe pointseP, := 7 ((E+A)NT). The canonical choice fof corresponds
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to one whereP, = {r(£)|€ € P9} with PO the set of vertices (0-cells) of the lift of
a canonical projection tiling" (constructed from the same data with constant weight
function). In that cased is a polytope, but in [34} is allowed to be more general.

For the more general acceptance domains, the notion of substitution generalises to
that of aninflation, a linear maph [34] (or even affine linear [32]) which haB as
one of its eigenspaces, with eigenvalue of modulus greater than 1, preEeived is
contracting in a spac& complementary taE. For A to be a local inflation, i.e. an
inflation which can be defined as a map on translational congruence classes, leads to a
criterion on the acceptance domain

The method of Pleasants [34] is designed to construct projection point patterns with a
given (finite) symmetry group of isometries. It is based on the result that every represen-
tation of a finite isometry group acting @&f can be written as a matrix representation
where the matrices take their entries in a real algebraic numbexkfiefdfinite) degree
p. This number fieldC is then used to construct a decomposit®f? = E @ E*L,
where dimE = d, and a latticd™ so that the point pattern with the desired symmetry
is the projection point pattern constructed from d@taE) and a general acceptance
domain inEL. In [34] Pleasants comes to the conclusion that local inflations always
exist but, forp > 2, never for polytopal acceptance domains (so in particular not for the
canonical one) whereas this obstruction is abseng fer2. Note that dimE+ > dim E
in his construction, with equality holding only fgr = 2, a result in agreement and
comparable to our Corollary 52.

The direct limit of rational vector spaces in the proof of Corollary 55 is finitely
generated, but the corresponding limit of underlying free abelian groups need not be
finitely generated; indeed limits with divisibility can easily occur. Corollary 55 and
Theorem 53 now imply the following.

Corollary 57. A necessary condition for a substitution tiling 7 to arise also asa canon-
ical projection tiling isthat Coinv(G7; Z) is afinitely generated free abelian group.

6. Explicit Formulae for Codimension d+ < 2

We turn now to methods of computation and present quantitative results for the coho-
mology of canonical projection tilings of codimension smaller than or equal to 2. The
restriction to small codimension is a matter of simplification: in principle, the calcula-
tions can be carried out for any codimension, but in practice become quite complicated.
Algebraic topology provides sophisticated tools to organize such calculations, namely
spectral sequences, and we exploit their full power elsewhere [18, 19]. However, they are
not really necessary for codimensions strictly less than 3 and we present here alternative,
elementary methods of computation for these codimensions.

Throughout this section we assume tdP) is finite, which we saw in Theorems 49
and 53 was necessary and sufficient to ensure that the cohomology is finitely generated
and free abelian. In fact, the results below are independent of these theorems and show
directly that ifd- < 2 thenH*(T) is finitely generated and free abelian.

The calculations rely on the description of the topologyFgf by singular planes
developed in Sect. 3. Recall thats a countable collection of singular planes with only
finitely manyI"-orbits; we index the orbits b§. We know that the normals of the singular
planes spatE - and thatl"- lies dense in it. We now simplify the notation in writirigy
in place ofl"+.
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By Corollary 41 the task is to compute the cohomology of the giouwgith values
in C(EX, Z) and the strategy is as follows. We recogn@gE., Z), the compactly
supported functions, as dxrmodule in a (finite) exact sequenceldimodules and use
the functorial properties of cohomology, in particular that it turns short exact sequences
into long exact ones. As the other modules in the exact sequence are effectively lower
dimensional we can proceed recursively.

In practice it turns out to be more convenient to use homology in place of cohomology.
This makes no essential difference: the fact thathasd- non-compact independent
directions together with Poincaré duality [29] gives an isomorphism [17]

Lemma58. HX(I', C(E}, Z)) = Hy—(T, Cc(EL, 7).

6.1. Group homology. As a general reference to group homology we refer to [29].
Homology of a groug™ is defined using any projective resolutionby ZI" modules

of the group; her&I" denotes the fre& module on the basis elementsltfwe write

[y] for the basis element corresponding/te I.

We choose here the following free resolution. (4t . . . , ey} be abasis of = ZV.
ThenAT, the exterior algebra ovét, is the free graded-module AT = EB,]{V:O AiT,
where AT has basidej; A--- Aej |1 <i; <ijt1 < N} with antisymmetric multi-
plication (denoted by.), i.e. the only relations arg A e; = —e; A e;. Our resolution
is

0— ANT®ZI 5 Ay 1T ®ZF 5 ... 5 A @ ZI 3 Z — 0,
where tensor products are oveand theZI action onA, I’ ® ZT' is trivial on A, T" and
is the permutation representation @iv. The maps are defined as follows. We may
regardZI' as Laurent polynomials iV variables|s, . .. , ¢y} with integer coefficients.
Additionin ZT then corresponds to multiplication of Laurent-polynomials. Thesthe
unigueZrI'-linear derivation of degree 1 determineddiy;) = (t; — 1), andZ(t;) = 1.

Given aI'’-moduleM, thenH, (T", M), the homology of the group with coefficients
in M, is defined as the homology of the complex

0— ANF(X)ZF@I‘M{j(—@)l---@)lA()F@ZF@]“M—)0

where, for twol'-modulesM1, M>, M1 ®r M> is the quotient of the algebraic tensor
product (ovelZ) M1 ® M2 by the relations’ - m1 @ mo = m1 ® y - mo.

Remark 59. An easy exercise in the definitions shows tlg{(T", ZI') is trivial for all
k > 0 and is equal t& for k = 0. More generally, suppose tht= G & H and let
us computeH, (I, ZH), whereZH is the freeZ-module generated bl made into a
I'-module by the actiolig @ h) - #’ = h + h’. Then we can identify

AT QZI @rZH = P AG®AjHQLH (6)
it+j=k

and under this identificatiod ® 1 becomeg—1)7¢¢ ® §’, whered’ is the boundary
operator for the homology dfl . It follows that

H (T, ZH) = @ AiG ® H;(H,ZH) = AG.
i+j=k

N
As a special casd/;(I', Z) = AT’ = Z( k).
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Now let £: ZH — Z be theZI’ module homomorphism given by the sum of the
coefficients, i.eX[h] = 1 forallh € H. We shall need the following lemma later.

Lemma 60. Under the identifications H.(I', ZH) = A,.G and H.(I', Z) = A,T the
induced map X : Hy (', ZH) — H; (", Z) becomesthe embedding Ay G < AxTI.

Proof. Using the decomposition (6) the induced map

S (D AGOH;(H.ZH) —~ (D AiG®Hj(H. L)
i+j=k i+j=k

preserves the bidegree and must be the identity on the first factors in the tensor products.
SinceHy(H, ZH) is trivial whenevek # 0 and one dimensional fér= 0, X; can be
determined by evaluatingg on the generator afig(H, ZH); the result follows. O

The basic tool in the calculations below is the following. Whenever we have a short

exact sequence @I'-modules 0— A £ B L4 C — 0 we get a long exact sequence
of homology groups

P a0 ™ B A S B B) S H( )

The mapsp, and; are the induced homomorphisms and theare the connecting
homomorphisms. For details see [29].

6.2. ACW-likecomplex. LetC’ be an arbitrary countable collection of affine hyperplanes
of F’, a linear space, and defidé-topes as before: compact polytopes which are the
closures of their interiors and whose boundary faces belong to hyperplanes'fiéon

n at most the dimension df’ let C7, be theZ-module generated by thedimensional
faces of convex’-topes satisfying the relations

[U1]l + [U2] = [U1 U U3]

for any two faced/;, Uy, for which U1 U U is as well a convex face arldy N Uz has
no interior (i.e. nonzero codimensionin). These relations then imp[y/1] + [U2] =
[U1UU2]1+[U1NU2if UiNU7 has interior. If we tak€’ = C, our collection of singular
planes from Sect. 3, thef¥" := C is aZI' module under the actiop- [U] = [U +y].

As Zl“—modules,CdL =~ C.(E+, Z), the isomorphism being given by assigning ]
the indicator function on the closure 6fN NS (which is clopen). Moreove(? is a
freeZI'-module with basis in one to one correspondence with the intersection @oints

Proposition 61. There exist I'-equivariant module maps § and X such that
0 ct S cit15 . ..c"3 750, )

isan exact sequence of I'-modulesand X[U] = 1 for all vertices U of C-topes.
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Proof. Let I be the indexing set foF orbit classes of singular planes. For a subset
R of I' (which we identified withlC+ ¢ EL) letCg := {H; + r|r € R,i € I} and

Sg = {x € H|H € Cg}. Let R be the set of subset® c I' such that all connected
components of -\ S are bounded and have interi®& s closed under union and hence
forms an upper directed system under inclusion. ForRry R, theCr-topes define a
regular polytopal CW-complex

0-cd Bcdt%...cQ —o, ®)

with boundary operatorgg depending on the choices of orientations for theells
(n > 0) [35]. Moreover, this complex is acycli&(- is contractible), i.e. upon replacing

CgR -0 bych 7 0, whereXg[U] = 1, (8) becomes an exact sequence. Let us

constrain the orientation of thecells in the following way: for each < d- there are
finitely many subsetg C 7 such that dinf);.; H; = n andJ is maximal. Eactu-cell
belongs to a subspace parallel to one offthe ; H; and we choose its orientation such
that it depends only on the correspondin@.e. we choose an orientation o3, ., H,

and then the cell inherits it as a subset). By the same principlé-atells are supposed
to have the same orientation. Then the cochains and boundary opératirare two
crucial properties: first, iiR c R’ for R, R’ € R, then we may identif)CgR with a
submodule OCSR/ and under this identificatiobiz (x) = §x/(x) for all x € Cg,R, and
second, ifU andU + x areCg-topes therdg[U + x] = 8x[U] + x. The first property
implies that the directed systef gives rise to a directed system of acyclic cochain
complexes, and hence its direct limit is an acyclic complex, and the second implies,
together with the fact that for ajt € I' andR € R alsoR + y € R, that this complex
becomes a complex df-modules. The statement now follows sinCg is the direct
limit of Cg,R foralln. O

6.3. Solutions for d+ = 1, 2. Based on the results of the last two sections we now
calculate the homology groug, (T, Cdl) fordt =1,2.

Lemma 62. Given a CW-like complex asin Sect. 6.2,

0 for k>0

0 _ k)

Hk(r, C ) - {ZL for k = 0, (9)
where L isthe number of I"-orbits of vertices of C-topes, i.e. L = |Q(P)]|.

Proof. Sincerl acts fixpoint-freely we haval’ ® ZI' @ €% = AT ® ZI' ® ZL which
directly implies the result. o

Theorem 63. Let 7 be a d-dimensional canonical projection tiling of codimension 1.

(d+1)

HI(T) = 1) for k > 0,
7+l for k=0.

Proof. Inthe casel- = 1, (7) is the short exact sequence

0-ctA 03750 (20)
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and we use the resulting long exact sequence of homology groups for the computation.
By the last lemma, apart from the lowest degree every third homology group in that
sequence is trivial so thai (I", C1) = Hy,1(T', Z) for k > 0. The remaining part of

the sequence has the form-8 z4t! — Hy(T,CcY) — zZ¢ — Z — 0 and hence
Ho(T', ¢y = 74tL as claimed. O

Note that at this stage (for very low codimension) we did not need to know explicitly
the morphisms involved.

Recall the description of the topology @& for canonical projection tilings by
singular planes. These planes were organizddarbits, indexed by a finite sét and
we choose representativél,, for eacho € 1.

Theorem 64. Let 7 be a d-dimensional canonical projection tiling of codimension 2,

Z(Zig)—fk—"k+l+2ael(klf1) for k>0,

HTN T =07 0
Z( $2)=d=L-1-11+ s (Vatla—D) for k=0,

(11

wherev, istherankof I'* (thestabilizer of H,), I, thenumber of I'“-orbitsof intersection
pointsin H,, and r; the rank of the module generated by the submodules A, 1'% C
Agypal forall o € 1.

Proof. InsertingCy := §(C?t) we break the exact sequence (7) into two short exact ones

0->c2 % ¢t 5 v E 70

0 — C§ — C° — Z — 0 can be treated as in the codimension 1 case. Taking into
account that the rank df isd 4+ 2 one gets
(d+2)
H, (T, CJ) = Z\MY) for k>0, (12)
74t for k=0,

Let us have a closer look &t. Forn at most 1 leC” be the sub-module @ generated
by then-dimensional faces which belong #,, o € 1. As before we denote by* the

stabilizer ofH, and we lefi"® be a complementary subgroup, ie=I'* @ ['* (recall
thatI'/ I'* has no torsion). Then

ct=Pc; ez, (13)
ael
because any 1-dimensional face belongs to a translate of Hgnidoreover the action
of I'* @ I'* on €1 is such that the first summand acts non-trivially only on the first
factors,CO%, and the second only on the second factéis®. In particularZI' @ C* =
@B ,c; ZT* ®r« C} ® ZI'* asI'-modules which implies

H.(I, Y = P H.(T®, CY). (14)

ael
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Restricting the boundary mapsandX to C; we get a short exact sequence

0>ct¥% 027 o0, (15)

As in Theorem 63 and combined with Eq. (14) we obtain

Hk(F, Cl) ~ ZZO{EI(]{UJ(:]') for k> O, (16)
ZYaciWotla=D) for k=0,

wherev, andl, are as defined in the statement of the theorem. Note tha{ tue all
finite since we required to be finite. Equations (12, 16) give us part of the information
needed to determind,. (I, C2) from the exact sequence

02313 8o, (17)
but we have to determine explicitly one further morphism since we have no longer enough
trivial groups in the resulting long exact sequence. We shall determine the induced
morphism
Bi := 8, : Ho(I', CY) = H. (T, CD). (18)

Consider the following commutative diagram:

0 clezie "8 c0gzie *$* zfe 0
lé®1 A L2
0> @ < ¢ 3 z >0

where the middle vertical arrow is the inclusion, the right vertical arrow the sum of the
coefficients,>%[y] = 1, and the left vertical arrow the map of interest. In fg@gtis the
direct sumover alk of (8, 1) : Hy (T, Cé ® Z1'%) — Hy (T, C8). This diagram gives

rise to two long exact sequences of homology groups together with vertical maps, all
commuting,(§, ® 1), being one of them. Now use that for> 0, Hi (T, Cg QZ[*) =

H; (T, €% = 0sothatwe can express, ®1). throughXy. In fact, the triviality of these
groups imply that (T, C2 ® ZI'%) = Hi1 (T, ZI'®) and Hi (T, C9) = Hy41(T, 2),

for k > 0, and with these identifications

(6 ® Dk = ¢,

By Lemma 60 the majry becomes the embeddingI'* — AT under the above
identifications. Fok > 0O therefore, the rank ¢d; is equal to the rank of the span of the
submodules\ 1'%, @ € I,in Ax1T, the number defined ag in the statement of the
theorem. The long exact sequence corresponding to (17) implies

H(T, C?) = H1(T, CQ)/im By & Hi(T', CT) Nker By,
Since, fork > 0, dimH (T, CY) N kerp; = dim Hy (T, C1) — rx we get the desired

result (the casé = 0 is similar), provided the homology groups are torsion free. That
this is the case we know from [12].0
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6.4. Example: octagonal tilings. We provide here one example, the octagonal tilings. A
whole list of results for codimension 2 tilings could be obtained by evaluating (11) with
a computer [36].

The (undecorated) octagonal tilings are two dimensional tilings which may be con-
structed from the datéZ*, 0, E), the four dimensional integer latti&" (with standard
basis{e; }i=1, .. 4) and the two dimensional invariant subspace of the eightfold symmetry
Cg.ei > eiy1fori = 1,2, 3 andeq — —e (the groupCs acts as rotation by;) [37,

38]. It consists of squares and4Bhombi all edges having equal lengfir- is, of course,

also an invariant subspace of the eightfold symmetry and the singular planes (which are
lines) are well known, they are the tangents to the boundary faces of the projection of the
unit cube intoE+ which is a regular octagon. They are translates undetZ?) of the

four lines spanned byli which form an orbit unde€sg (we may ignore the shift by).

From these lines we get all our information, the numbers;, I;, I = {1, ..., 4}, and

r1, r2, r3 (higherr, are unecessary sinde= 2). Usually it is not so easy to determine

L but in our case it is easy to see that apart from the orbit of the intersection point at

0 there are only two other ones: the orbit-%(ef + e3) and that of% (e3 + e7).

HenceL = 3. Clearly,I'! is spanned by; andey — e and hence; = 2 andl; = 2
which carries over to all by symmetry. Finallyr; = 3 andry = 0 fork > 2 asy; = 2.
Inserting the numbers yields

H°(T) =7, HYT)=7° H*T)=17"°

This result is in agreement with a calculation we made using Anderson and Putnam'’s
method [9] for substitution tilings: the octagonal tiling is also substitutional, its substi-
tution is given in Fig. 1 of Sect. 5.1.

7. The Non-Commutative Approach

We conclude by connecting the cohomology of a tiling, as we have been discussing, with
its non-commutative topological invariants. The starting point of the non-commutative
approach is the observation thatthe orbit spaces of the dynamical systems arising from the
tiling are non-Hausdorff. In fact, for a (completely) non-periodic titihgno two pointsin
MT /R4 can be separated by open neighbourhoods. Connes’non-commutative geometry
was motivated by the desire to analyse such spaces. In the non-commutative topological
approach [39] one studies the properties of the (non-commutativalgebra associated
with the dynamical systeraM 7, R%). This algebra is the crossed product algebra of
C(MT), the algebra of continuous functions ovéf7, with the groupR?. We denote
itby C(MT) x R?. Topologically, this algebra may be described byAtgheory [40,
41]. It turns out that th& -groups are closely related to the Czech-cohomology @f.
The K-groups, however, contain additional information in the form of a natural order
structure on the&p-group and this is the advantage of the non-commutative approach.
We have seen in Example 46 that cohomology without extra structure is not a very fine
invariant.

Equally well mathematically, but from a more physically motivated point of view,
we can work with the formulation of the quotieM 7 /R¢ as the space of orbits of
the tiling groupoidGs (or of GT). The C* algebra whos& -theory provides the non-
commutative topological invariant is then the corresponding groupéidigebra [26,
15]. The importance of this groupoi@* algebra for physical systems lies in the fact
that it provides an abstract definition of the algebra of observables [15, 10] for particles
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moving in the tiling; the scaled orderddy-group and its image under a tracial state
governs the gap labelling.

If 7 is a canonical projection tiling7 andG; are equivalent in the sense of Muhly
et al. to the transformation groupdid X, G1). This is proven directly in [16] but it also
follows from our analysis of Sect. 3.5 where similarity of the two groupoids has been
shown. By application of the theory of Muhly et al. [27] we obtain

Theorem 65. The K -groups of C(MT) x R? and of the groupoid-C* algebras of G
and of G(X, G1) areisomor phic, theisomor phism preserving the order onthe Ko-group.

The isomorphism between the first tio-groups was already observed in [9]. Of par-
ticular importance for the present case is the following relationship betketreory
and cohomology proved in [12]: X, Z%) is a minimalZ?-dynamical system whetg

is homeomorphic to the Cantor set then

Ki(C(X) x 2y = @ H" "+ (24, C(X, 7))

J
as unordered groups. Thus, in view of Corollary 41,

Corollary 66. For a canonical projection tiling 7,

K{(C*@GT) = P HH2(T)
J
as unordered groups.

Itis an interesting question whether this result is true for finite type tilings in general. As
already mentioned, the isomorphism of the corollary neglects the information contained
in the order structure on thigg-group. One can cure for this at least partly by looking at
the order or#¢(T), the group of coinvariants, which is induced by the unique invariant
probability measure of27 (the dynamical systert 7, R?) is uniquely ergodic). That
measure defines a group homomorphGniEL, Z) — R which by invariance induces
a homomorphism : H4(T) — R. The subset ~1(R>9) is closed under addition and
defines a positive cone @f?(7) which sits inside the positive cone &k (C*(GT))
and contains already a good portion of the information, including that needed for the
standard gap-labelling. In fact, far= 1, whereH(T) = Ko(C*(GT)), this order is
precisely the order defined on tik&-group in the standard way [40].

With this information at hand let us come back to Example 46, the canonical projection
tiling with dataW = Z2, w = 0,d = 1, andE specified by an irrational number To
keep track of this dependence we writ&” for a canonical projection tiling obtained
from such data. The unique invariant probabibity measur@@n” is the pull back
underu of the Lebesgue measure @h- normalized in such a way that*(y) (the
projection of the unit cell) has measure 1. From this we see that[iti;] denoting
the coinvariant class ofid;,

b—a
1 = .
7:([ [a,b]]) 1+

In particular, the rank of (H(7")) is 2 and hencél *(T) = Z2. Now, t (n[1j0,1)]+
m[1jo,v;]) > 0O, forn, m € Z, whenevefn, m) has positive scalar product wigh, v) and
hence belongs to the upper right half space defindttbin R2. It follows thatKo(GT ™)
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is order isomorphic t&o(G7 ") whenever there exists a mati& € GL(2, Z) such

thaty' = J224M12 Note that in the above casesis injective. We remark without
21V+M22

further explanation that the order unitimproves the invariant even ke 7 ) and
Ko(GT ™) are order isomorphic with isomorphism preserving the order unit if and only
if v = 4.

Returning to Example 47, the canonical projection tiling with déita= Z3, w = 0,
d = 1, the unique invariant probability measure @ff is again the pull back under
of the Lebesgue measure @t normalized in such a way that-(y) has measure 1.
Thus all the elemen{dy 45, +1,]1 —[1y] are mapped to O by. In fact, one can show that
the image ofr is finitely generated so that in this case all but finitely many generators
of the Kp-group are neither positive nor negative, i.e. that almost all are infinitesimal.
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