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Abstract: We define the cohomology of a tiling as the cocycle cohomology of its asso-
ciated groupoid and consider this cohomology for the class of tilings which are obtained
from a higher dimensional lattice by the canonical projection method in Schlottmann’s
formulation. We prove the cohomology to be equivalent to a certain cohomology of the
lattice.We discuss one of its qualitative features, namely that it provides a topological ob-
struction for a generic tiling to be substitutional. We develop and demonstrate techniques
for the computation of cohomology for tilings of codimension smaller than or equal to
2, presenting explicit formulae. These in turn give computations for theK-theory of
certain associated non-commutativeC∗ algebras.

Introduction

Quasiperiodic tilings have become an active area of research in solid state physics due
to their role in modeling quasicrystals [1–4], and the projection method in its various
formulations [5–8] is one of the most common techniques to construct candidates for
such tilings. This raises the question of characterization and even classification of such
tilings. For that to be investigated one must first decide which properties of a tiling are
essential for the physical properties of the solid. We take the point of view here that it
is only the local structure of the tiling that matters, and even more, only its topological
content, as captured, for example, by the continuous hull [22,23] or the tiling groupoid
[15,10].According to this point of view the tight binding model for particle motion in the
tiling is not uniquely determined by the tiling but its form is constrained by the topology
of the tiling, i.e. the Hamiltonian reflects the long range order of the tiling (though
additional information is required to specify the interaction strengths, etc.). Our interest
is thus in the topological invariants of tilings, in particular here with the cohomology
andK-theory of the tiling groupoid.

Without additional mathematical structure of the tiling it is not clear how to obtain
explicit results for its cohomology. Substitution tilings provide a class of tilings where
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such results can be obtained [9,10] since they possess a symmetry which relates differ-
ent scales. The present article is part of a programme to compute the tiling cohomology
of projection tilings, those which may be obtained by projection from higher dimen-
sional lattices. We consider here projection tilings defined by Laguerre complexes after
Schlottmann [20]; see Definition 20 and the notation at the start of Sect. 3.1 for a precise
description of the class of tilings considered. We present both qualitative and quantitative
results.

Our qualitative results centre around giving sufficient conditions under which a ra-
tional version of the cohomology is infinitely generated. These conditions are in some
sense almost always met and since the rational cohomology of substitution tilings is
finitely generated we can conclude, Corollary 55, that canonical projection tilings are
rarely substitutional. We cannot as yet offer an interpretation of the fact that some tilings
produce finitely generated cohomology whereas others do not, but, if understood, it
could well lead to a criterion to single out a subset of tilings relevant for quasicrystal
physics from the vast set of tilings which may be obtained from the canonical projection
method. In this context we point out that no canonical projection tiling is known to us
which has infinitely generated cohomology but allows for local matching rules, cf. [11].

Our quantitative results are restricted to canonical projection tilings with small codi-
mension ( i.e. small difference between the rank of the projected lattice and the dimension
of the tiling). We give closed formulæ, Theorems 63, 64 for the cohomology of such
tilings in terms of the defining projection data. Formulæ for tilings of higher codimen-
sion can in principle be derived using more sophisticated tools from algebraic topology,
along the lines of the methods employed at the end of [19].As tilings obtained by the pro-
jection method belong to a large class of tilings whose cohomology is isomorphic to the
(unordered)K-theory of the associated groupoid-C∗ algebra [12], we also have explicit
calculations for theK-theory of these algebras, Corollary 66. This (non-commutative)
aspect of the topology of tilings has a direct interpretation in physics. TheC∗ algebra
is the algebra of observables for particles moving in the tiling and its orderedK0-group
(or its image on a tracial state) may serve to “count” (or label) the possible gaps in the
spectrum of the Hamilton operator which describes its motion [13–15]. In this context
it is even more challenging to find an interpretation of the generators of theK0-group
when there are infinitely many. At first sight, all but finitely many of them appear to be
infinitesimal.

This article has some parallels with the series [16–18] (see also [19]). Here however
we study tilings as defined by Schlottmann’s variant of the projection method [20]; the
calculations we present are consequently applicable to a wider class of tilings than those
considered in [18] or at the end of [19].

The article is organized as follows. We describe the continuous dynamical system
which can be assigned to any reasonable tiling in Sect. 1. Its associated transformation
groupoid has orbits homeomorphic to the space in which the tiling is embedded. We
derive the tiling groupoid as a reduction of this groupoid in Sect. 2; it is anr-discrete
groupoid and we define tiling cohomology to be the cohomology of this groupoid.
Again, this can be done for arbitrary tilings but one of the main features of the particular
canonical projection tilings we consider, which make a computation of the cohomology
feasible, is that one can find aZd Cantor dynamical system whose associated transfor-
mation groupoid is continuously similar to the tiling groupoid. This material is covered
in Sect. 3 where we define precisely the class of tilings for which we obtain our results.
This observation allows the tiling cohomology to be formulated in terms of group coho-
mology. In this part our work parallels that of Bellissard et al. [21] on theK-theoretic
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level. After two illustrative examples in Sect. 4 we discuss our qualitative results in
Sect. 5 and the quantitative results in Sect. 6. In Sect. 7 we present the connection with
K-theory and the non-commutative topological approach.

1. Continuous Tiling Dynamical Systems

In this section we set up some preliminary notions and definitions with the main aim
being to introduce and begin to describe thecontinuous hull MT , Definition 2, of a
tiling T .

In fact, this idea is not particular to the projection method tilings considered in the
main work of this paper and in this section our definitions and results apply to a wide
class of patterns. We specialise to the canonical projection tilings in Sect. 3.1 where we
formally define this class.

In general, ad-dimensional tiling is a covering ofRd by closed subsets, called its
tiles, which overlap at most at their boundaries and are usually subject to various other
constraints, as for example being connected, uniformly bounded in size and the closures
of their interiors; they may also be decorated. For this article though we shall assume that
the tiles are (possibly decorated) polytopes with non-empty interiors and which touch
face to face. Moreover, we require that the tilings are offinite type, see Definition 3.

Given a tilingT of Rd , thenRd acts naturally on it by translation. Denote the tiling
translated byx asT − x. The closure of the orbitT − Rd of T with respect to an
appropriate metric gives rise to a dynamical system [22] whose underlying space is the
continuous hull ofT . Thus our precise definition of the continuous hull will follow when
we have chosen our metric.

There are several proposals for the metric used which are all based on comparing
patches around the origin ofRd . The basic idea is as follows. Represent a tilingT
as a closed subset ofRd by the boundaries of its tiles and its decorations (if any)
by small compact sets. LetBr be the open ball of radiusr around 0∈ Rd and let
Br(T ) := (Br ∩ T ) ∪ ∂Br , a closed set. Two tilings,T andT ′, should be close to each
other ifBr(T ) andBr(T ′) coincide, possibly up to a small discrepancy, for larger. The
different ways to quantify the allowed discrepancy lead to the different spaces which
may be found in the literature.

Definition 1. For tilings T and T ′ as above, define metrics D0 and D by

D0(T , T ′) = inf
{

1
r+1 | Br(T ) = Br(T ′)

}
,

D(T , T ′) = inf
{

1
r+1 | dr(Br(T ), Br(T ′)) < 1

r

}
,

where dr is the Hausdorff metric defined among closed subsets of the closed r-ball.

The first metric,D0, allows no discrepancy; the completion of theRd orbit of T under
this metric would be non-compact. However, completion with respect to the metricD

yields a compact space under very general conditions [22,23]. Note also thatD is not
invariant under the action ofRd by translation, but this action is nevertheless uniformly
continuous and can thus be extended to the completion.

Definition 2. The continuous dynamical system associated to T is the pair (MT ,Rd),
the closure MT of the orbit of T with respect to the metric D, and with the action of
Rd induced by translation. Call MT the continuous hull of T .
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LetMr(T ) be the subset of (whole) tiles ofT contained inBr . As forT , think ofMr(T )
as the closed subset defined by the boundaries and decorations of its tiles.

Definition 3. A tiling T is called of finite type (or of finite pattern type, or of finite
local complexity) if for all r the set of translational congruence classes of setsMr(T −
x), x ∈ Rd , is finite.

The elements of the spaceMT may again be interpreted as tilings. While we continue to
write T for the original tiling, we writeT for a general element ofMT . If T is of finite
type the elementsT ∈ MT are those tilings in which each finite part can be identified
with a finite part of a translate ofT . Thus, for eachT ∈ MT and for eachr, there exists
anx ∈ Rd such thatBr(T ) = Br(T − x).
Definition 4. Two tilings T , T ′ are called locally isomorphic if for every r there exist
x, x′ ∈ Rd such that Br(T ) = Br(T ′ − x′) and Br(T ′) = Br(T − x). If every element
of MT is locally isomorphic to T then T is called minimal .

The tilings we are interested in here are all minimal. Note that a tiling being minimal
directly implies that each orbit of the associated dynamical system is dense.

Finally, we have a third option for a metric on the orbit ofT , linking the spaces
considered here with the work of [9]. The following metric defines the same topology
as the metric considered there.

Definition 5. Define the metric Dt by

Dt(T , T ′) := inf { 1
r+1 | ∃x, x′ ∈ B 1

2r
: Br(T − x) = Br(T ′ − x′)}.

In this metric discrepancy is allowed only for small translations. As soon as two tilings
differ by a rotation, however small, they will have a certain minimal non-zero distance.
Thus closure with respect toDt leads, for instance for the Pinwheel tilings [24], to a
non-compact space, whereas closure with respect toD would still lead to a compact
space.

Which kind of metric is to be used has, of course, to be adapted to the problem, but
for our purposes the following result shows that the distinction betweenD andDt is
inessential.

Theorem 6. Let T be a finite type tiling. ThenMT is compact and equal to the comple-
tion of T − Rd with respect to Dt .

Proof. We start by showing that the two metricsD andDt yield the same completion for
finite type tilings. ClearlyD(T , T ′) ≤ Dt(T , T ′) so we have to show that anyD-Cauchy
sequence is also aDt -Cauchy sequence.

Suppose that(Ti)i is aD-Cauchy sequence converging toT ∈ MT . Then for any

r, dr(Mr(Ti),Mr(T ))
i→∞−→ 0. As T is a finite type tiling, we can find for alli which

are larger than somei0 anεi such thatMr(Ti) = Mr(T ) − εi andεi
i→∞−→ 0. But then

Br−c(Ti) = Br−c(T − εi), wherec is an upper bound on the diameter of the tiles.
Now chooseir such thatεir ≤ 1/r. Then, for anyr, Dt(T , Tir ) ≤ 1/(r + 1). Thus a
D-Cauchy sequence will also be aDt -Cauchy sequence. In particularMT is equal to
the completion ofT − Rd with respect toDt . Its compactness for finite type tilings is
well known, see, for example, [23].��

This result allows us to identify the open sets inMT .
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Definition 7. Say that a finite subset P of tiles of a tiling T is a patch (or pattern, or
cluster) of it and write P ⊂ T . Define

UP := {T ∈ MT |P ⊂ T },
subsets of the continuous hull.

Theorem 8. The collection of sets {Bε + x + UP }, ε > 0, x ∈ Rd , P a patch of T , is a
base for the topology of MT .

Proof. The previous result allows us to work with the metricDt . Let r(ε) := 1−ε
ε

and
Vr (T ) = {T ′ ∈ MT |Br(T ) = Br(T ′)}. Then we can describe theε-neighbourhoods of
T with respect toDt as follows.

Dt(T , T
′) < ε iff ∃r > r(ε) ∃x, x′ ∈ B 1

2r
: Br(T − x) = Br(T ′ − x′)

iff T ′ ∈
⋃
r>r(ε)

⋃
x∈B 1

2r

(
B 1

2r
+ Vr (T − x)

)
. (1)

The tiling being of finite type implies that, for everyr > 0 and everyT ∈ MT , there
exists a finite set of pairs(xi, Pi), xi ∈ Rd , Pi a patch ofT , such thatBr(T ′) = Br(T )
whenever there is ani such thatPi + xi is a patch ofT ′. In other words,Vr (T ) =⋃
i UPi+xi . This shows that (1) is a union of sets of the above collection.
To show thatBε + UP is open in the metric topology (which by continuity of the

action implies that alsoBε + x + UP is open forx ∈ Rd ) we take a pointT in it and
show that a whole neighbourhood (with respect toDt ) of it lies in Bε + UP . LetR be
large enough so that1

R
< ε andP is a patch ofBR− 1

2R
(T )(we view hereP as a closed

subset much like a tiling). Then, for allx ∈ B 1
2R

, P ⊂ BR(T − x) + x and hence

VR(T − x) ⊂ UP − x. This implies that the 1
R+1-neighbourhood ofT lies inBε + UP .

��
The following observation will be useful in Sect. 3.2

Lemma 9. Let P be a patch in a finite type tiling T . Then UP is compact.

Proof. If D(T , T ′) is small enough, andT , T ′ ∈ UP , then it is equal toD0(T , T
′). That

UP is complete and precompact with respect to theD0-metric is proven in [15]. ��

2. The Groupoid Approach to Tilings

To a given tiling one may associate anr-discrete groupoid called thetiling groupoid. This
groupoid is special among other groupoids which may be assigned to the tiling in that its
C∗ algebra plays the role of the algebra of observables for particles moving in the tiling
[15,10]. It also determines the tiling up to topological equivalence [25]. TheK-theory of
theC∗ algebra and the cohomology of the groupoid are – at least for canonical projection
tilings – closely related, and may be considered as (non-commutative) invariants of the
tiling. It is these invariants we discuss in this paper. We define the tiling groupoid in
Sect. 2.2, but first we need to briefly recall some facts about groupoids.
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2.1. Generalities. For a traditional definition of a topological groupoid, and as a general
reference for most of the concepts introduced below like that of reduction, continuous
similarity and continuous cocycle cohomology, we refer the reader to [26].

In a slightly different but equivalent way one may say that a groupoidG is a set
with partially defined associative, cancellative multiplication and with unique inverses.
Partially defined refers to the fact that multiplication is not defined for all elements, but
only for a subset ofG × G, thecomposable elements. Aninverse of x is a solutiony of
the equationsxyx = x andyxy = y, and for a groupoid this solution is required to be
unique. Hence we may denote the inverse ofx by x−1. The inverse mapx �→ x−1 is
an involution. Multiplication iscancellative if, provided it is defined,xy = xz implies
y = z, and this is the case whenever the composable elements are the pairs(x, y) for
whichx−1x = yy−1.

The setG0 = {xx−1|x ∈ G} is called the set ofunits; it is the image of the map
r : G → G0 given byr(x) = xx−1, which is called therange map. The maps : G → G0

given bys(x) = x−1x = r(x−1) is called thesource map. Writingu ∼ v for u, v ∈ G0

wheneverr−1(u) ∩ s−1(v) �= ∅ defines an equivalence relation; its equivalence classes
are called theorbits of G.

A topological groupoid is a groupoid with a topology with respect to which multi-
plication and inversion are continuous maps. Such a groupoid is calledr-discrete if G0

is an open subset. This condition implies thatr−1(u) is a discrete set for any unitu.
A groupoid is calledprincipal if its elements are uniquely determined by their range

and source, i.e. if the mapG → G0× G0 given byx �→ (r(x), s(x)) is injective.

2.1.1. Transformation groupoids. LetM be a topological space with a right action of a
topological groupG by homeomorphisms, denoted here(x, g) �→ x · g. Thetransfor-
mation groupoid1 G(M,G) is the topological spaceM ×G with product topology; two
elements(x, g) and(x′, g′) are composable provided thatx′ = x ·g, and their product is
then(x, g)(x′, g′) = (x, gg′). Inversion is then given by(x, g)−1 = (x ·g, g−1). Hence,
r(x, g) = (x,0) and we see thatG(M,G) is r-discrete ifG is discrete. Furthermore,
G(M,G) is principal precisely whenG acts fixed point freely. One of the examples we
have in mind here isG(MT ,Rd) which, however, is notr-discrete.

2.1.2. Reductions.

Definition 10. Let G be a groupoid, G0 its unit space and L a closed subset of G0. Then
LGL := s−1(L) ∩ r−1(L) is a closed subgroupoid of G called the reduction of G to L.

Two further conditions onL will play a major role here.

• A reduction is calledregular if every orbit ofG has a non-empty intersection withL.
• Say thatL is range-open [16] if the setr(s−1(L) ∩ U) is open wheneverU ⊂ G is

open.

A regular reduction of a groupoidG to a range-open subsetL is for many purposes
as good as the groupoid itself. Muhly et al. have established a notion of equivalence
between groupoids which captures this phenomenon in greater generality [27]. We will
not discuss this notion of equivalence here, we merely record its main consequence
of interest to us: TheK-groups of theC∗ algebras associated to a groupoidG and its
reductionLGL to a range open subsetL which intersects each orbit are isomorphic as
ordered groups.

1 or transformation group as in [26]
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2.1.3. Continuous similarity. As just noted, the concept of reduction is particularly well
adapted to yield an equivalence relation on groupoids which carries over to an equiva-
lence relation on theC∗ algebras they define. It turns out that for canonical projection
tilings theK-groups of theC∗ algebras are related to the cohomology of the groupoids,
as discussed further in Sect. 7, but this relation is not clear on the level of arbitrary tiling-
groupoids. On the other hand there is a natural equivalence relation on groupoids, that
of continuous similarity, which immediately gives rise to an equality on cohomology as
well as implying equivalence in the sense of Muhly et al. [28].

Definition 11. Two homomorphismsφ andψ : G → R between (topological) groupoids
are (continuously) similar if there exists a function # : G0 → R such that

#(r(x))φ(x) = ψ(x)#(s(x)). (2)

Two (topological) groupoids, G and R, are called (continuously) similar if there exist
homomorphisms φ : G → R, φ′ : R → G such that $G = φ′ ◦ φ is (continuously)
similar to idG and $R = φ ◦ φ′ is (continuously) similar to idR.

We are mainly interested in establishing continuous similarity of certain principal trans-
formation groupoids. A useful lemma to test this is proved in [17, (3.3, 3.4)].

Proposition 12. Let G = G(X,G) be a principal transformation groupoid (so G acts
freely on X) and L and L′ closed subsets of X ∼= G0. Suppose that γ : L′ → G and
γ ′ : L→ G are two continuous functions which define continuous functions L→ L′:
x �→ x · γ ′(x) and L′ → L: x �→ x · γ (x). Then the reductions of G to L and to L′ are
continuously similar.

Remark 13. If L′ = X then one can takeγ ′(x) to be the identity in the group for all
x ∈ L and the condition comes down to finding a continuous functionγ : X→ G such
thatx · γ (x) ∈ L for all x ∈ L.

2.1.4. Continuous cocycle cohomology. Given a dynamical system(M,G)with discrete
groupG one standard topological invariant associated with it is the cohomology of
G with coefficients in theG-moduleC(M,Z) of integer-valued continuous functions
with G action given by(g · f )(m) = f (m · g). This cohomology may be interpreted
as a groupoid cohomology of the groupoidG(M,G). This is thecontinuous cocycle
cohomology for r-discrete groupoids and we will recall its definition here for constant
coefficients following [26].

LetA be an abelian group andG be a groupoid. ThenG acts on the trivialA-bundle

G0 × A ρ→ G0 (with product topology) partially, namelyx ∈ G can act on the element
(s(x), a) mapping it to(r(x), a). We denote this action by$, writing the partial map
given byx ∈ G as$(x). The action is continuous in the sense that whenf ∈ C(G0, A) is
a continuous section of the bundle then the functionx �→ (r(x), f (s(x))) is continuous
too.

LetG(0) = G0, and, forn > 0, letG(n) be the subset of then-fold Cartesian product of
G (with relative topology) consisting of composable elements(x1, . . . , xn), that is, with
r(xi) = s(xi−1). Then-cochains are the continuous functionsf : G(n)→ G0×A such
thatρ(f (x1, . . . , xn)) = r(x1) and, forn > 0, f (x1, . . . , xn) = (r(x1),0) provided
one of thexi is a unit. Then-cochains form an abelian group under pointwise addition.
The coboundary operatorδn is defined as

δ0(f )(x) = $(x)f (s(x))− f (r(x)),
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and, forn > 0,

δn(f )(x0, . . . , xn) = $(x0)(f (x1, . . . , xn))

+
n∑
i=1

(−1)if (x0, . . . , xi−1xi, · · · , xn)

+(−1)n+1f (x0, . . . , xn−1).

ThenHn(G, A), the continuous cocycle cohomology ofG in dimensionnwith (constant)
coefficientsA, is defined as kerδn/imδn−1. The following result is proved in [26].

Theorem 14. Continuously similar groupoids have isomorphic cohomology with con-
stant coefficients.

Let us consider a transformation groupoidG(M,G) as an example (G discrete). In that
case then-cochains are mapsf : M ×Gn→ M × A of the form

f (m, g1, . . . , gn) = (m, f̃ (g1, . . . , gn)(m)),

where f̃ : Gn → C(M,A) is a continuous map which, forn > 0, is the zero map
when applied to(g1, . . . , gn) with any onegi = e, the identity element inG. These
are precisely then-cochains of the groupG with coefficients inC(M,A), aG module
with respect to the action(g · f )(m) = f (m · g) [29]. Hence everyn-cochain of the
groupoid with coefficients inA determines ann-cochain of the groupGwith coefficients
in C(M,A), and vice versa. Moreover, under this identificationδn becomes the usual
coboundary operator in group cohomology, since the groupoid action is nothing other
than the shift of base point given by the action ofG.

Corollary 15. There is a natural isomorphism between the continuous cocycle coho-
mology of the transformation groupoid G(M,G) with constant coefficients A and the
group cohomology of G with coefficients in C(M,A),

Hn(G(M,G),A) ∼= Hn(G,C(M,A)).

In the main results of this paper we shall be interested in the casesA = Z andA = Q.

2.2. The tiling groupoid. The tiling groupoid may be defined without referring to con-
tinuous tiling dynamical systems, as for example in [15,10], but for the purpose of the
present work it is important to draw the connection [13,9]. Starting with the groupoid
of the continuous tiling dynamical systemG(MT ,Rd) we construct the tiling groupoid
as a reduction of it.

We first construct a closed, range-open subset0T of MT . Choose a point in the
interior of each tile ofT – called itspuncture – in such a way that translationally
congruent tiles have their puncture at the same position. Let0T be the subset of tilings
of MT for which a puncture of one of its tiles coincides with the origin 0∈ Rd . Note
that0T intersects each orbit ofRd .

Definition 16. The tiling groupoid of T , denoted by GT , is the reduction of G(MT ,Rd)
to 0T . Note that, by construction, GT is r-discrete.

Proposition 17. Suppose 0T contains only non-periodic, finite type tilings. Then 0T
is closed and range-open and GT coincides with the groupoid R defined in [15].
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Proof. We refer to [10] for the groupoidR and its properties. Under the hypothesisRd

acts fixed point freely onMT and henceGT is principal. Therefore the map between
GT andR is given by(T , x) �→ (T , T − x), which certainly preserves multiplication
and inversion, is an isomorphism provided it preserves the topology. The tiling being of
finite type implies that punctures of two different tiles have a minimal distance,δ say.
Thus there exists anε (which is roughly as large asδ) such that ifD(T −x, T −x′) < ε
andT − x, T − x′ ∈ 0T , thenD(T − x, T − x′) = D0(T − x, T − x′). It follows
that0T is the metric completion with respect toD0 of the set of allT ′ ∈ 0T which
are translates ofT . In particular, it is closed and the existence of a minimal distanceδ

between punctures directly implies range-openness, cf. [16]. Furthermore, the metric
D0 and the metric used in [15] to define the hull lead to the same completions. This
shows that the above map(T , x) �→ (T , T − x) restricts to a homeomorphism of the
spaces of units ofGT and ofR. As noted,GT is r-discrete and its topology is generated
by the setsU × {x},U open in0T . Images of those sets under the above map generate
the topology ofR. ��

We conclude this section with our basic definition of thecohomology of a tiling.

Definition 18. The cohomology of the tiling T , denoted by H ∗(T ), is the continuous
cocycle cohomology H ∗(GT ,Z) of GT with constant coefficients Z.

We shall see later on that for canonical projection tilings,H(GT ,Z) is isomorphic
to the Czech cohomology ofMT . It seems to be an interesting question whether this is
true in general.

3. Quasiperiodic Tilings Obtained by Cut and Projection

Theprojection method (or cut and projection method) is a well known way of producing
quasiperiodic point sets or tilings by projection of a certain subset of a periodic set in a
higher dimensional space. In earlier versions, for example [5], the favorite set was the
integer latticeZN but a price has to be paid for the simplicity of this choice if the kernel
of the projection contains non-zero lattice points. An elegant way around this difficulty,
which is applicable to almost all interesting examples, is to use root lattices instead of
ZN [30] and the construction we use here is related to that.

However, rather than looking at arbitrary point sets obtained by the projection method
(for example with fractal acceptance domain) we want to focus in this article on tilings
where the acceptance domain is canonical – after all these include the main candidates
for the description of quasicrystals – and for these tilings there is another approach which
is a bit more elaborate to start with but easier to handle when it comes to the later steps
in the construction of the cohomology groups. The approach we are about to describe is
based on polyhedral complexes and their dualization, it is therefore sometimes called the
dualization method, but in the present context where we start with a higher-dimensional
periodic set it can be simply considered as a variant of the projection method such as
used in [16,17]. We follow its description as in the article by Schlottmann [20] and refer
the reader also to the examples discussed in [31].

The organisation of this section is as follows. We formally define the construction
considered in 3.1 and discuss some basic properties and examples. The remaining sub-
sections form a sequence of descriptions of the associated hull for such tilings; the final
description is the one which allows us to describe the tiling cohomology in the remainder
of the paper.
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3.1. Projection tilings after Schlottmann. We must first recall and set up some notation
to discussLaguerre complexes. Consider a point setW of a euclidean spaceE together
with a weight functionw : W → R on it; write# for the pair(W,w). Forq ∈ W , the
set

L#(q) := {x ∈ E |∀q ′ ∈ W : |x − q|2− w(q) ≤ |x − q ′|2− w(q ′)} (3)

is called theLaguerre domain of q. It is convex and under rather weak conditions [20]
on# all Laguerre domains are actually compact polytopes (of dimension smaller or
equal to that ofE or even empty sets) and the set of all Laguerre domains with non-
empty interior provides the tiles of a tilingT# which is of finite type and face to face.
Laguerre domains generalise the notion ofVoronoi domains and specialise to them when
the weight function is constant. The concept ofVoronoi domains is a familiar one in solid
state physics where they arise (under the name Brouillon zone or Wigner-Seitz cell) if
one takes asW the dual of the crystal lattice. A non-constant weight function gives the
means to enlarge certain Laguerre domains at the cost of others or even to surpress some
altogether.

The faces of the Laguerre domains define a cell complex structure: this is the so-
called Laguerre complex. We denote it byL# and the (closed) cells of dimensionk
by L(k)# . The data# specify another complex which is dual toL#: the dualξ∗ of a
k-cell ξ is the convex hull of the set ofq ∈ W whose corresponding Laguerre domains
containξ as a face. Note thatξ∗ depends onξ and# and not only onξ andL#. It
has codimensionk. This dual complex is again a Laguerre complex, denotedL#∗ for
#∗ = (W ∗, w∗), whereW ∗ is the set of vertices (0-cells) ofL# andw∗ : W ∗ → R is
given byw∗(q∗) = |q∗ − q|2 − w(q) for someq such thatq∗ is a vertex ofL#(q). In
particular,#∗ also defines a tiling with the above properties.

We can now describe the projection method construction we shall study. Let7 ∈ E be
a lattice whose generators form a base forE , letW be a finite union of7-orbits of points
in E , and letw : W → R be a7-periodic function. Now letE ⊂ E be a linear affine
subspace and letπ : E → E be the orthogonal projection. Writed for the dimension of
E, d⊥ for that of its orthocomplementE⊥, andπ⊥ for 1− π . We shall also writex⊥

as shorthand forπ⊥(x). An elementu ∈ E is calledsingular if there is aβ ∈ L(d⊥−1)
#

such thatπ⊥(u) ∈ π⊥(β). Hence the set of singular points isS = S⊥ + E where

S⊥ :=
⋃

β∈L(d⊥−1)
#

π⊥(β).

The set of non-singular points is denoted byNS.We can write it asNS =⋂
β∈L(d⊥−1)

#

E+
E⊥\β⊥ which shows that it is aGδ set (a countable intersection of open sets). Sinceβ⊥
has codimension 1 inE⊥,NS is dense.

It is convenient to writeWu = W + u andwu(q + u) = w(q) and define#u as
(Wu,wu).

Definition 19. For data W,w and E as above, each u ∈ NS defines a tiling Tu whose
tiles are the elements of the set

{π(ξ∗)|ξ ∈ L(d⊥)#u
, ξ ∩ E �= ∅}.

The dimension of E⊥ is called the codimension of Tu.
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That this is a tiling by Laguerre domains has been shown by Schlottmann [20]. In fact,
Tu is the tilingT (W̃ ∗

u , w̃
∗
u) defined by the Laguerre-complex dual toL

(W̃u,w̃u)
, where

W̃u = π(Wu)andw̃u(π(q+u)) = max{w(q ′)−|π⊥(q ′+u)|2|π(q ′) = π(q)} (assuming
it exists). Using this description one can see that one loses no generality in restricting to
the cases in whichπ⊥(7) is dense inE⊥ [20].

Definition 20. A canonical projection tiling is a tiling Tu associated to data W , w, E
and u as before that satisfies also the conditions

(a) that π⊥(7) lies dense in E⊥;
(b) that E ∩ 7 = 0;
(c) that up to translation, any ξ∗ ∈ L(d)#∗ is uniquely determined by its projection π(ξ∗);
(d) that for ξ∗, η∗ ∈ L(d)#∗ , ξ∗ = η∗ + x implies x ∈ 7.

(e) that for all β ∈ L(d⊥−1)
# , the (affine) hyperplane Hβ which is tangent to β⊥ is a

subset of S⊥.

Remark 21. Conditions (b),(c),(d) in this definition are not strictly necessary but will
considerably simplify the exposition. (b) implies that the tilings are completely non-
periodic. (c) and (d) can be made obsolete with the help of decorations, see Sect. 3.2.1.
Condition (e) will not be relevant until Subsect. 3.3 and we shall ignore it for the re-
mainder of this and the next subsection.

Example 22. Consider the exampleW = ZN , the integer lattice inRN , with standard
basis{ei, i = 1, . . . , N} and vanishing weight functionw. In this highly symmetric
case, the dual complex toLZN ,w differs only by a shift aboutδ = 1

2

∑
i ei from the

original one. Writingγ = {∑N
i=1 ciei |0 ≤ ci ≤ 1} for the unit cube, its translates by

δ + z, z ∈ ZN , are its Laguerre domains and it is not difficult to see that, whenE is
chosen such thatE ∩ZN = {0} the vertices of the tilingTu defined in Definition 19 are
the points

{π(z)| z ∈ (ZN + u+ δ) ∩ (E + γ )}. (4)

This set we referred to in [16] as the canonical projection pattern defined by the data
(ZN,E, u′) with u′ = u+ δ.
π⊥(ZN) lies dense inE⊥ if and only ifE⊥∩ZN = {0}. In this case one sees quickly

that all further conditions of Definition 20 are met.
But E⊥ ∩ ZN is not always trivial, important examples where it is non-trivial are

the Penrose tilings. This is the reason why we consider the apparently more elaborate
construction with Laguerre complexes. It allows us to focus our attention to input data
which satisfy (a) of Definition 20.

Let D be the real span ofE⊥ ∩ ZN (assuming it is not trivial) and letV be the
orthocomplement ofD in E⊥. Following [20] we factor the projectionπ : RN → E as
π = π2 ◦ π1, whereπ1 : E → E ⊕ V is the orthogonal projection with kernelD and
π2 : E⊕V → E has kernelV . We may then perform the construction of the projection
method in two steps. First we produce the (periodic) tiling defined by the dataW = ZN ,
w = 0, the subspaceE⊕V and non-singular pointu and using projectionπ1. As noted,
this tiling can be understood as a Laguerre complex, namely the one defined by the
latticeπ1(Z

N) and weight functionw given byw(π1(z)) = max{w(z′) − |π⊥1 (z′ +
u)|2|π1(z

′) = π1(z)}. In the second step we now use this new Laguerre complex and
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the projectionπ2: to be precise, we use the dataπ1(Z
N),w,E, π1(u). Note thatw

remains zero after the first step ifπ⊥1 (u) ∈ ZN , but, if π⊥1 (u) /∈ ZN , we have to expect
that the maximal periodicity lattice of the Laguerre complex defined by(π1(Z

N),w)

is a sublattice ofπ1(Z
N) containing the latticeZN ∩ (E ⊕ V ). To summarize, even

if E⊥ ∩ ZN �= {0} we may construct tilings whose vertices are the points of (4) by
Schlottmann’s method from data which satisfy conditions (a) and (b) of Definition 20.
The further conditions, in particular (e), have to be carefully verified.

The most famous class of tilings which may be constructed by the above method
are the Penrose tilings. HereN = 5, E is a two dimensional invariant subspace of
the rotationei �→ ei+1 (i mod 5) andD is the span ofδ. If π⊥1 (u) = −δ then the new
Laguerre complexLπ1(Z5),w becomes the dual of theVoronoi complex ( i.e. the Delaunay
complex) of the root latticeA4 [30]. The resulting tilings are the usual Penrose tilings.
Other choices forπ⊥1 (u) lead to the so-called generalized Penrose tilings.

We conclude this section by establishing some important properties of canonical
projection tilings which will be of use later. First, for non-singularu andv, Tu is locally
isomorphic toTv and to any other element of its hull [20]; in fact,MTu = MTv and the
dynamical system(MTu,E) is minimal (any orbit lies dense). We may therefore drop
the indexu to writeMT for the continuous hull.

Givenu ∈ E (not necessarily non-singular) we define

P̃u := {ξ ∈ L(d⊥)#u
|0 ∈ π⊥(ξ)}.

Lemma 23. Let ξ ∈ P̃u, u ∈ NS and P = π(ξ∗).
1. If s ∈ −ξ⊥ + 7 such that u+ s ∈ NS then P is a tile of Tu+s .
2. If s ∈ E + 7 then the converse holds: P being a tile of Tu+s implies s ∈ −ξ⊥ + 7.

Proof. First, lets ∈ −ξ⊥ such thatu + s ∈ NS andξ ∈ P̃u. Thenξ + s ∈ L(d⊥)#u+s and

0 ∈ ξ⊥ + s. Henceξ + s ∈ P̃u+s so that the dual ofξ + s with respect to the data#u+s
projects (underπ ) onto a tile ofTu+s . This dual isξ∗ + s (whereξ∗ is the dual ofξ with
respect to#u) and hence projects ontoP .

For the second statement split the givens = s′+γ with s′ ∈ E, γ ∈ 7. Thenπ(ξ∗) ∈
Tu+s wheneverπ(ξ∗)− s′ ∈ Tu. Hence there is aη ∈ P̃u such thatπ(ξ∗)− s′ = π(η∗).
By condition (c) this implies∃v ∈ E⊥ : ξ∗ + v − s′ = η∗. By condition (d) we must
havev − s′ ∈ 7. But thenξ + v − s′ = η ∈ P̃u. The latter impliesv ∈ −ξ⊥. The
statement follows sincev + 7 = s′ + 7 = s + 7. ��
Lemma 24. u ∈ NS whenever ∀ξ ∈ P̃u : 0 ∈ Int ξ⊥.

Proof. u is singular whenever there is aξ ∈ L(d⊥)#u
such that 0∈ ∂ξ⊥. This ξ then

belongs toP̃u. ��
For regularu and a patchP of Tu let

Au(P ) =
⋂

ξ∈P̃u|π(ξ∗)∈P
−ξ⊥.

For technical reasons we setAu(∅) = E⊥. Au(P ) is called the acceptance domain for
P , for reasons which become clear in Corollary 26.
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Lemma 25. With the notation above

1. For all u ∈ NS and all r > 0 there is a δ > 0 such that t ∈ E⊥, u+ t ∈ NS, |t | < δ
implies Mr(Tu) = Mr(Tu+t ).

2. For all u ∈ NS and all ε > 0 there is a δ > 0 such that |u− v| < δ, v ∈ NS, implies
D(Tu, Tv) < ε.

Proof. If r is large enoughAu(Mr(Tu)) is a finite intersection of convex polytopes. Since
u is regular, 0 is an interior point of these polytopes and henceAu(Mr(Tu))) contains an
openδ-neighbourhood of 0∈ E⊥. By Lemma 23.1|t | < δ implies thatMr(Tu) ⊂ Tu+t .
HenceMr(Tu+t ) = Mr(Tu) which proves the first statement.

As for the second, givenu andε let r > 1
ε
− c, wherec−1 is an upper bound for the

diameter of the tiles. The first statement of the lemma insures the existance of aδ′ε such
that t ∈ E⊥, u + t ∈ NS, |t | < δ′ε impliesD(Tu, Tu+t ) < ε. Hence if|u − v| < δ′ε ,
v ∈ NS, thenD(Tu, Tv) ≤ D(Tu, Tu+π⊥(v−u))+D(Tu+π⊥(v−u), Tv) < ε + δ′ε . Taking
δ = min{δ′ε

2
, ε2} then impliesD(Tv, Tw) < ε. ��

Corollary 26. Let P be a patch of Tu, u ∈ NS. Then P ⊂ Tv , for v ∈ NS whenever
v − u ∈ Au(P )+ 7.

Proof. First letP = π(ξ∗), ξ ∈ P̃u. Then we only have to improve the second part of
Lemma 23. Letr > 0 such thatP ⊂ Br . Then we find from Lemma 25.1 aδ (depending
on v) such thatt ∈ E⊥, u + t ∈ NS, |t | < δ impliesMr(Tv) = Mr(Tv+t ). Since
E + 7 lies dense we can find arbitrarily smallt ∈ E⊥ so thatv + t − u ∈ E + 7.
If |t | < δ we can combine the above with Lemma 23.2 to obtain thatP ⊂ Tv implies
v ∈ −ξ⊥+7+B|t |. Since we can chooset arbitrarily small the statement of the corollary
follows for P = π(ξ∗).

Now the case of a general patchP is a simple consequence of the fact thatP ⊂ Tv
whenever all tiles ofP belong toTv. ��
Lemma 27. Let u ∈ NS. Then A(Tu) :=⋂

r Au(Mr(Tu)) = {0}.
ClearlyA(Tu) is convex and closed. If 0�= s ∈ A(Tu) thenA(Tu) must contain the
interval [0, s]. Suppose that this is the case. Since the singular points are7⊥ orbits of
boundaries of compact polytopes and since7⊥ is dense,u + Int[0, s] must contain a
singular point. By convexity of theξ , u + [0, s] ∈ Intξ⊥ for all ξ ∈ P̃u. In particular,
u + t , 0 < t < s, is an interior point of allξ⊥ for which ξ ∈ P̃u+t . This shows by
Lemma 24 that all points inu+ Int[0, s] must be regular. This is a contradiction.��
Proposition 28. Let u, v ∈ NS. Then Tu = Tv whenever u− v ∈ 7.

Proof. If Tu = Tv thenMr(Tu) ⊂ Tv for all r. Hence, by Corollary 26 and Lemma 27
v − u ∈ (⋂

r Au(Mr(Tu))
)+ 7 = 7. ��

3.2. The topology of MT . For canonical projection tilings we have a much better de-
scription of the topology of the continuous hull; this is one of the crucial reasons why
we can so successfully compute their cohomology.

First we use the tiling metric to define a metric on the spaceNS,

D̄(v,w) := D(Tu, Tv)+ |v − w|,
and let> be theD̄-completion ofNS.
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Lemma 29. The action of E + 7 on NS (by translation), the map η0 : NS → MT by
x �→ Tx , and the inclusion µ0 : NS ↪→ E all extend to continuous maps on the comple-
tion >. Furthermore, the extension of η0, to η : > → MT is a local homeomorphism
and the extension of µ0 is a surjection µ : > → E that is one to one on non-singular
points.

Proof. D̄ is invariant under the7 action and for smalls ∈ E we have thatD̄(u +
s, v + s) differs very little fromD̄(u, v); this implies that the action ofE + 7 extends
to one by homeomorphisms on>. Uniform continuity ofη0 andµ0 is clear, as one can
bound theD-metric and the euclidian metric by thēD-metric. Hence both maps extend
continuously.

To show thatη is open recall from Proposition 28 thatη−1
0 (Tu) = u + 7. Hence,

different preimages underη0 of one single point have a minimal distance. In particular,
any restriction ofη0 to some small open ball, smaller than that minimal distance, will
be injective and we claim that a Cauchy-sequence in the image of such a restriction has
a Cauchy sequence as preimage. This then shows that the restrictions extend to injective
maps implying thatη is a local homeomorphism. To prove our claim let(Tuν )ν ,uν ∈ NS,
be aD-Cauchy sequence with(uν)ν belonging to a small ball (with respect tōD in the
relative topology). Observe that if̄D(u, v) is small (u, v ∈ NS) then|π(u) − π(v)| is
small as well and bounded by 2D(Tu, Tv). Hence we can choose the ball small enough
so that convergence ofTuν implies that of|π(uν)| and hence alsoTu⊥ν is a Cauchy
sequence. But the latter is even a Cauchy sequence with respect to the metricD0. Now
D0(Tu⊥ν , Tu⊥ν+µ) → 0 implies thatRν = sup{R|∀µ : BR(Tuν ) = BR(Tuν+µ)} diverges

and hence diameter ofAuν (MRν (Tuν )) shrinks to zero (Lemma 27) which implies, by
Lemma 23,|u⊥ν+µ − u⊥ν | → 0. This shows that(uν)ν converges in the euclidian metric
and therefore also in thēD-metric.

To show thatµ is almost one to one on non-singular points observe thatµ can also
be viewed as the extension of the identity map id: (NS, D̄) → (NS, ‖ · ‖) to the
completions (here(NS, D̄) and(NS, ‖ · ‖) is the standard notation for the incomplete
metric spaces,‖ · ‖ standing for the euclidean metric). Above we showed that id is
uniformly continuous and Lemma 25.2 shows that its inverse is pointwise continuous.
So if u ∈ NS and(xν)ν is a D̄-Cauchy sequence inNS converging tox ∈ >, then
µ(u) = µ(x) implies that(xν)ν must be a‖ ·‖-Cauchy sequence converging tou ∈ NS.
The pointwise continuity of the identity map(NS, ‖ · ‖)→ (NS, D̄) implies therefore
thatx = u. ��
Corollary 30. The map η induces an E-equivariant homeomorphism between the orbit
space >/7 and MT .

Proof. Proposition 28 and Lemma 29 imply thatηmaps7-orbits onto single tilings. To
show thatη(x) = η(y) impliesy ∈ x + 7 (we denote the extended action ofγ ∈ 7 on
> also simply additively) we first recall from the last lemma thatNS as a subset of>
is the preimage ofNS ⊂ E underµ, a continuous map. ThereforeNS is also a dense
Gδ subset of>.

Let η(x1) = η(x2) but x1 �= x2. Fix δ > 0, by the Hausdorff property we may find
D̄-openUi such thatxi ∈ Ui , Ui is contained in theδ-neighbourhood (with respect to
D̄) of xi , andη(U1) = η(U2). Sinceη is continuous and open,η(Ui∩NS) is aGδ-dense
subset ofη(U). Thereforeη(U1∩NS)∩η(U2∩NS) is not empty. So takeui ∈ Ui∩NS
such thatη(u1) = η(u2). By Proposition 28 we find aγ ∈ 7 such thatu1 − u2 = γ .



Cohomology of Canonical Projection Tilings 303

ThereforeD̄(x1, x2+ γ ) ≤ D̄(x1, u1)+ D̄(u2+ γ, x2+ γ ) which tends to 0 ifδ→ 0.
Hencex1 = x2+ γ . E-equivariance is clear.��

We have thus another dynamical system(>,E + 7) which plays the role of a “uni-
versal covering” (not in its strict sense) of the continuous tiling dynamical system.

Remark 31. We can compare this construction with the so-called torus parametrisation
of projection tilings [32]; this also parallels a discussion which was carried out for tilings
related toZN (not necessarily canonical) in [16]. There is a surjectionµ′ : MT → E/7
which makes commutative the diagram

>
µ→ E

η ↓ ↓
MT µ′→ E/7

. (5)

All maps areE-equivariant andµ isE+7 equivariant;µ′ is one to one on (classes of) non-
singular points. The dense setNS/7 of the torusE/7 therefore yields a parametrization
of a dense set of tilings. In fact it can be shown thatE/7 parametrizes the remaining
set of tilings up to changes on sets of tiles having zero density in the tiling. This torus
parametrization is very useful for analyzing symmetry properties of the tilings [32].

We need now to describe the topology of>. Recall from Sect. 1 that a base of the
topology ofMT is generated by setsBε + x + UP , ε > 0, x ∈ E, P a patch inT . For
u ∈ E⊥ ∩ NS Lemma 23 can be reformulated to say thatP ⊂ Tx for x ∈ u + E + 7
wheneverx ∈ Au(P )+ u+ 7. Foru ∈ E⊥ ∩NS we let

Au = {(Au(P ) ∩ 7⊥)+ u+ y⊥|P ⊂ Tu, y ∈ 7} ∪ {∅}.
Then, by the interpretation ofAu(P )we see thatAu is closed under intersection. In fact,
if y ∈ 7 thenAu(P )∩(Au(P ′)+y⊥) = Au(P∪(P ′+π(y)))providedP∪(P ′+π(y)) ⊂
Tu and∅ otherwise.

It is also useful to have another description ofAu which shows that the collection

B := {A|A ∈ Au} of closed subsets in> does not depend onu. ForX ⊂ L(d⊥)# , let

A(X) :=⋂
ξ∈X −ξ⊥ and

A′u := {A(X) ∩ (7⊥ + u)|X ⊂ L(d⊥)# finite} ∪ {∅}.

ThenAu(P ) + u = A(X), whereX = {ξ ∈ P̃u|π(ξ∗) ∈ P } + u which shows that
Au ⊂ A′u. On the other hand letv ∈ A(X) ∩ (7⊥ + u). Then∀ξ ∈ X: π(ξ∗) ∈ Tv and
v − u = γ⊥ for someγ ∈ 7. It follows that{π(ξ∗)|ξ ∈ X} + π(γ ) is a patch inTu.
HenceAu = A′u. But from the form ofA′u it is clear thatB does not depend onu.

Theorem 32. The collection {Bε + x + U |U ∈ B, ε > 0, x ∈ E} is a base of the
topology of>. In particular,> is homeomorphic toE⊥c ×E (with the product topology)

where E⊥c = E⊥ ∩NS (the D̄-closure of E⊥ ∩NS in >).

Proof. Let P be a patch ofTu, u ∈ E⊥ ∩ NS. From Lemma 23 follows that forx ∈
u+ E + 7, P ⊂ Tx wheneverx ∈ Au(P )+ u+ 7. LetX(P ) = (Au(P )+ u) ∩ NS.
SinceUP is closedη−1(UP ) = X(P ) + 7. Furthermore, ifγ ∈ 7 is not trivial then
D̄(X(P ),X(P ) + γ ) > δ, for someδ > 0 (here we mean the obvious extension ofD̄
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to subsets). Hence, for allx ∈ E + 7, Bε + x +X(P ) is an open set. We conclude that
the above collection consists indeed of open sets and its image underη is a collection of
sets of which forms a base of the topology ofMT .

Now let V ⊂ > be open and of diameter smaller thanδ2. Thenη(V ) is open and
hence of the formη(V ) =⋃

(ε,x,P )∈I Bε + x + UP , whereI is an index set containing
triples withε > 0, x ∈ E + 7, P ⊂ Tu. If we chooseε small enough and the patches
P large enough we can make sure thatBε + x + X(P ) hasD̄-distance at leastδ to
Bε + x + γ + X(P ) providedγ ∈ 7 is non-trivial. ThenV is the union of those
Bε + x +X(P ), (ε, x, P ) ∈ I which contain one of its points.

That> has the above form of a product space is now clear.��
Corollary 33. The collection B is a base of compact open neighbourhoods for E⊥c . In
particular, E⊥c is a totally disconnected set without isolated points.

Proof. ThatB is a base of the topology follows directly from the last theorem. That its
sets are compact follows from compactness, Lemma 9, of the setsUP , P ⊂ Tu. ��

3.2.1. Decorated tilings. Sometimes it is useful to decorate the tiles of a tiling, usually
with small compact sets like arrows. One reason for introducing decorations in the
present framework is to get around the hypotheses (c) and (d) made in Definition 20. If
it happens that two translationally non-congruent faces ofL(d)#∗ project onto the same tile
we can distinguish them by means of a decoration: the projection images of faces are
decorated by arrows which have equal shape for equal translational congruence class but
different shape for different classes. Decorating has to be taken into account in the general
framework in the way that tiles, patches, and tilings are decorated objects. This means for
Lemma 23, for instance, that the tileP is no longer just the setπ(ξ∗) but this set together
with the decoration. Likewise we have to understand patches in Corollary 26 as subsets
of decorated tiles. The description of the hull and notably Theorem 32 remain as stated if
one takes into account that the tiling is the decorated one. It is important to note that we
need only finitely many different decorations for that so that the decorated tiling remains
finite type. In the same way we can handle the case in which the translation subgroup
of L(d)#∗ is larger than7 or a fundamental domain for it contains several translationally
congruent faces. We can distinguish them again by decorations of which we need only
finitely many.

A different reason for introducing decorations is to introduce matching conditions or
break the symmetry of the tiles. For instance, the octagonal and decagonal tilings are
canonical projection tilings which have matching rules only after (a symmetry breaking)
decoration.We now indicate how certain (quasiperiodic) decorations can be incorporated
in the projection method. This situation is in so far different from the above in that we
suppose to start with a canonical projection tiling which we want to decorate and ask
how this modifies the topology of the hull.

We saw that the sets ofB have the interpretation of acceptance domains. If a nonsin-
gular pointu belongs to such a set then this can be interpreted by saying that a certain
patch occurs atTu. If we introduce by hand additional faces in the Laguerre-complex
L#u we started with we divide ad⊥-cell ξ⊥ into several components. Each component
may serve as acceptance domain for a decorated tile, the bare tile isπ(ξ∗) and for its
decoration we can take a label or a small compact set like an arrow. We need to make sure
that there are as many different decorations as there are new components and we need to
require that the additional faces form7-orbits so that the new Laguerre complex remains
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7-invariant. This also insures that the decorated tiling remains minimal. If we now take
the new faces into account by taking as a base for the topology the sets corresponding to
the above components then we end up with a similar description of the continuous hull
in the decorated case as in the undecorated one. Certainly arbitrary decorations could
not be handled like this, but those which define matching rules for the (then decorated)
octagonal and decagonal tilings do.

3.3. A description of the topology by singular planes. We now bring into play the final
hypothesis of the main Definition 20 of canonical projection tilings,

(e) For allβ ∈ L(d⊥−1)
# , the (affine) hyperplaneHβ which is tangent toβ⊥ is a subset

of S⊥.

What we require here is that for allβ, the stabilizer ofHβ with respect to the action of
7 given byλ �→ λ+ γ⊥ has rank at leastd⊥ and that its lattice spacing is small enough
compared with the inner diameter ofβ⊥ to insure thatβ⊥ intersects each of its orbits.
This is certainly the case forW = ZN ,w = 0, but holds in many other interesting cases.

We call the hyperplanesHβ singular planes. Using hypothesis (e) we get a further
description of the topology ofE⊥c . It allows us to write the singular points inE⊥
as S⊥ = ⋃

β∈L(d⊥−1)
#

Hβ which is clearly invariant under the action of7 given by

λ �→ λ + γ⊥. The setC of all singular planes is invariant under7 as well and, since

L(d⊥−1)
# contains only a finitely many7-orbits,C consists of a finite number of7-orbits,

too.

Definition 34. A compact polytope in E⊥ is called a C-tope if it is the closure of its
interior and if all its boundary faces are subsets of singular planes. A subset of E⊥c is
called a C-tope if it is the D̄-closure of the set of non-singular points of a C-tope in E⊥.

Theorem 35. The characteristic functions on C-topes generate Cc(E⊥c ,Z), the com-
pactly supported continuous, integer valued functions on E⊥c .

Proof. C-topes form the set of finite unions of sets ofB. The latter being clopen and
forming a base of the topology, their corresponding characteristic functions generate
Cc(E

⊥
c ,Z). Since 1U∪V + 1U∩V = 1U + 1V the statement follows. ��

Remark 36. For7 = Zd+d⊥ Le [11] gave a description of the topology ofE⊥c which we
relate to the above. Forx ∈ E⊥ let cx be a connected component ofE⊥\⋃

x∈H∈C H , an
open subset ofE⊥ called a corner. Note thatcx = E⊥ if x ∈ NS. LetE⊥L = {(x, cx)|x ∈
E⊥} with topology generated by the sets

U(x,cx) = {(y, cy)|y ∈ cx, cx ∩ cy �= ∅}.
Clearly, the projection onto the first factor is a continuous surjective mapE⊥L → E⊥.
This is Le’s description of a transversal for the continuous hull. LetU be aC-tope in
E⊥. Then

UL := {(x, cx)|x ∈ U, cx ∩ IntU �= ∅}
is a preimage ofU in E⊥L which is a finite union ofUL’s and hence open. LetBL be the
collection of all sets obtained in this way. Then the topology ofE⊥L is generated byBL
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since we can realize the setsU(x,cx) as (infinite) unions. We leave it to the reader to verify
that the mapB → BL given byU �→ µ(U)L is a bijection preserving the operations
intersection, union, and symmetric difference. ThenC0(E

⊥
c ) is isomorphic toC0(E

⊥
L )

andE⊥c is homeomorphic toE⊥L .

3.4. A variant of the tiling groupoid for canonical projection tilings. For canonical
projection tilings it is convenient to use a slightly different groupoid which is isomorphic
to a reduction of the tiling groupoid. It is also continuously similar to it. In [17] it is
called thepattern groupoid.

Letε be a small vector inE which is not parallel to any of the faces of tiles. To a vertex
v, associate the tile which contains in its interiorv+ ε; this defines an injection between
the vertices of a projection tiling and its tiles.We assume thatε is small enough so that the
associated tile contains this vertex. Let0T be the subset ofMT given by those tilings
which have a vertex on 0∈ E. As for0T one shows that0T is a closed range-open
subset which intersects each orbit ofG(MT , E)). Thus we define the reduction

GT := 0T G(MT , E))0T

of G(MT , E)). Now consider a new set of punctures forT , a subset of the old one,
namely give only those tiles a puncture which are associated to vertices as described
above. This choice can be made locally since we only have to test the vertices of the tile
itself to decide whether we select its puncture to become a new one. Call0′T the subset
of tilings ofMT for which a new puncture lies on 0. By letting the new punctures tend to
the corresponding vertices one immediately sees that the reduction0′T G(MT , E))0′T is
isomorphic toGT . Furthermore,0′T G(MT , E))0′T is the reduction to0′T of GT which,
as noted in [10] is continuously similar to it. A similar argument can also be found in
[17].

Without loss of generality we may assume that 0∈ W , our7-invariant set we start
with, and that the Laguerre domain of 0 has interior and therefore 0 is a vertex of the
dual complex. Letu ∈ E⊥ ∩ NS be such that 0 is a vertex ofTu. All vertices ofTu are
contained inπ(Wu) which can be written in the formπ(Wu) = ⋃

x∈X x + π(7) for a
finite subsetX ∈ E of points which are all in differentπ(7) orbits, 0 being one of them.
Therefore, ifs ∈ E and 0 is a vertex ofTu−s thens ∈ x + π(7) for somex ∈ X. Using
Proposition 28 we find thatη−1(Tu−s) ∩ E⊥c × {x} is not empty provided 0 is a vertex
of Tu−s . By continuity and closedness ofE⊥c this extends to arbitraryT ∈ 0T . So if
we letLT := η−1(0T ) ∩ E⊥c ×X thenη−1(0T ) = LT + 7.

Lemma 37. GT is isomorphic to the reduction LT G(>,E + 7)LT , where LT is as
above.

Proof. The mapLT G(>,E + 7)LT → 0T G(MT , E)0T given by (y, s + γ ) �→
(η(y), s) is a groupoid homomorphism. It is injective, because no two points ofX belong
to the sameπ(7) orbit, and surjective, becauseη(LT ) = 0T . Continuity follows from
the continuity properties ofη. ��

3.5. Discrete tiling dynamical systems for canonical projection tilings. We now bring to
fruition the work of the preceding subsections and prove that the groupoids constructed
so far from a canonical projection tiling are continuously similar to that arising from
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a minimal action ofZd on a Cantor-set. This gives us the key, in Sects. 4, 5 and 6, to
qualitatively and quantitatively describing the cohomology of these tilings.

LetF be a subspace which is complementary toE, thusF ∩E = 0 andF +E = E .
We denote byπ ′ the projection ontoF with kernelE (so it is not orthogonal except if
F = E⊥). The restriction ofπ ′ tou+7⊥ (u ∈ E⊥∩NS) extends to a homeomorphism
betweenE⊥c andFc = F ∩NS (its closure in>) and we can write> = Fc×E with the
product topology. SinceE∩7 = {0},π ′(7) is isomorphic to7 so that we have a natural
minimal action of7 onF , x · γ = x − π ′(γ ), without fixed points. The extension of
this action toFc defines a minimal dynamical system(Fc, 7) also without fixed points.

Proposition 38. G(Fc, 7) is continuously similar to G(>,E + 7).
Proof. We apply Proposition 12 takingL = Fc (which is closed) andγ : >→ E + 7
to be the extension ofπ : E → E. ��

Now we decompose7 ∼= Zd+d⊥ into complementary subgroups,7 = G0 ⊕ G1,
whereG0 ∼= Zd

⊥
andG′0 := π ′(G0) spansF . Define

X := Fc/G0

so that we obtain(X,G1), a minimal dynamical system without fixed points.

Proposition 39. G(Fc, 7) is continuously similar to G(X,G1).

Proof. We claim thatFc has a clopen fundamental domainY for G0. The proposition
follows then from Proposition 12 upon usingL = Y andγ : Fc → 7, γ (x) being the
unique element ofG0 such thatx · γ (x) ∈ Y . The latter is indeed continuous since the
preimage of a lattice point is a translate of the fundamental domain and therefore open.

To prove the claim pick anyξ ∈ L(d⊥)# such thatξ⊥ has interior. SinceG′0 spans

F it has a compact fundamental domainY 0. By density of7⊥ there is a finite subset
0 ∈ J ⊂ 7 such thatY 1 =⋃

γ∈J (−ξ⊥ + γ⊥) coversY 0. It follows that

Y 1
c :=

⋃
γ∈J

((−ξ⊥ ∩NS)+ γ⊥)

is a compact open subset ofFc andY 1
c + G′0 = Fc. Now letG+0 be a positive cone

of G′0 which satisfiesG′0 = G+0 ∪ (−G+0 ) thus implying a total order. We claim that
Y := Y 1

c \(Y 1
c +G+0 \{0}) ∩ Y 1

c is a clopen fundamental domain. Clopenness is easy to
see. So letx ∈ Fc. Clearly, the set of allg ∈ G′0 such thatx + g ∈ Y 1

c is non-empty and
finite. The unique minimal elementg0 of this set is the only one satisfyingx + g0 ∈ Y .
��
Proposition 40. GT is continuously similar to G(E⊥c , 7).
Proof. From Lemma 37 we know thatGT is isomorphic to the reductionLT G(>,E +
7)LT . Let (LT )x := LT ∩E⊥c ×{x}, x ∈ X. If u ∈ E⊥ ∩NS such that 0 is a vertex of
Tu andv ∈ u+E ∩ (LT )x thenv = u− s with s ∈ x + π(7). Hence there is a unique
g ∈ 7 such thatv + x − g ∈ E⊥. Nowη(v + x − g) = η(u) contains 0 as a vertex and
hencev + x − g ∈ (LT )0. We define a mapγ ′ : (LT )x → E + 7 first on the dense
setu+E ∩ (LT )x by γ ′(v) = x − g, with g as above, and then extend it by continuity.
Applying Proposition 12 withL = LT , L′ = (LT )0, γ : L′ → E + 7, γ (x) = 0, and
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γ ′ : LT → E + 7 as above, we find thatLT G(>,E + 7)LT is continuously similar
to L′G(>,E+7)L′ . The latter is equal to the reduction ofG(E⊥c , 7) toL′.L′ is clopen
(in the topology ofE⊥c ) and henceµ(L′) contains an open set.

We claim that there exists a choice of decomposition7 = G0+G1 with the properties
stated before Proposition 39 and such thatL′ contains a clopen fundamental domainY
for G0. It then follows again from Proposition 12 upon using the same mapγ as in
Proposition 39 (Y is a subset ofL′) that L′G(>,E + 7)L′ is continuously similar to
G(E⊥c , 7). This then proves the proposition.

It remains to prove the claim. Since7⊥ is dense inE⊥ we can choosed⊥ elements
of 7 which generate a groupH isomorphic toZd

⊥
, such thatH⊥ spansE⊥, and has a

fundamental domainY ′ in E⊥ contained inµ(L′). LetG0 be the group generated byH
and representatives for the torsion elements of7/H . It is a free abelian group of rank
d⊥ which containsH andG⊥0 cannot be dense inE⊥. By the same construction as in
the proof of the last proposition we obtain fromY ′ a fundamental domainY for G0 in
E⊥c which is contained inL sinceµ(Y ) ⊂ Y ′. ��
Corollary 41. H ∗(T ) ∼= H ∗(7, C(Fc,Z)) ∼= H ∗(G1, C(X,Z)).

A direct consequence of the above corollary is thatHk(T ) is trivial if k exceeds the rank of
G1, which isd, the dimension of the tiling. Furthermore, using thatH 0(G1, C(X,Z)) =
{f ∈ C(X,Z)|∀g ∈ G1 : g · f = f } [29], minimality of theG1 action implies that
H 0(T ) = Z. Finally, if M is aG1-module thenHd(G1,M) = Coinv(G1,M) is the
group of coinvariants [29]

Coinv(G1,M) := M/〈{m− g ·m|m ∈ M,g ∈ G1}〉.
By the corollaryHd(T ) is thus equal toC(X,Z)/E(G1) whereE(G1) is subgroup of
C(X,Z) generated by the elementsf − g · f for g ∈ G1 and (g · f )(x) = f (x · g).
Remark 42. The dynamical systems of the form(X,G1) defined abovea priori depend
on the position ofF and on the choice ofG0. However, in a certain sense they are all
equivalent, namely their groupoids are all continuously similar and they are all reductions
of one big groupoid. They are not all isomorphic, as an investigation of the order unit of
theK0-group of theC∗ algebra they define shows.

The dependence onF is inessential. The mapπ ′ induces a7 equivariant homeo-
morphism betweenE⊥u andFc. DifferentF ’s therefore lead to isomorphic dynamical
systems(Fc, 7). TakingF as the span ofG0 one verifies directly thatMT is the mapping
torus of(X,G1) [16]. One consequence of this (though not one we make use of below)
is the following.

Corollary 43. The tiling cohomology of non-periodic canonical projection tilings is
isomorphic to the Czech cohomology of their continuous hull.

We do not know whether this result is true for general tilings.

Remark 44. Consider the case7 = Zd
⊥+d , F = E⊥ andG0 generated by, say, the first

d⊥ basis elementsei . Then the dynamical system is the rope dynamical system of [10].

Remark 45. We conclude Sect. 3 by summarizing the structure of(X,G1) in a commu-
tative diagram which is the discrete analogue of (5); see [16] for the neccessary proofs.

Fc
µ→ F

η ↓ ↓
X

µ′→ F/G0 .
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The maps are7 (respectivelyG1) equivariant where theG1-action on thed⊥-torusF/G0
is by rotations (constant shifts).X is a Cantor set and the surjectionµ′ : X→ F/G0 is
one to one for nonsingular points ofX which form a denseGδ subset. Thus(X,G1) is
an almost one to one extension of a relatively simple system, that of rotations on a torus.
The crucial topological information is encoded in the set on whichµ′ is not injective.

4. Examples

Before we proceed to give a qualitative picture of tiling cohomology and to describe
methods for calculation, we discuss the two simplest examples which we believe show
typical features. Both are one-dimensional tilings obtained from an integer lattice, so by
Corollary 41 onlyH 0(T ) andH 1(T ) are non-zero.As noted, by minimalityH 0(T ) = Z

andH 1(T ) is identified in the last section as a group of coinvariants.

Example 46. In our first example we takeW = Z2,w = 0 andd = 1. HereE is specified
by a vector(1, ν)andν has to be irrational to meet the requirementE∩Z2 = {0}. Clearly,
E⊥ is generated by(−ν,1) and the singular planes are simply points, namely the points
of π⊥(Z2) (we ignore the shift byδ). IdentifyingE⊥ with R we haveπ⊥(Z2) = Z+νZ
(after a suitable rescaling). HenceCc(E⊥c ,Z) is generated by indicator functions 1[a,b]
(on theD̄-closure of[a, b] ∩ NS) with a, b ∈ Z + νZ, a < b. How many of them
are cohomologous? Clearly, 1[a,b] ∼ 1[0,b−a] and there are uniquen,m ∈ Z such that
b − a = n+ νm. Defining 1[a,b] = −1[b,a] in the case ofa > b, we get

1[0,b−a] = 1[0,n] + 1[n,n+νm] ∼ n1[0,1] +m1[0,ν]

which shows that the coinvariants areZ2 provided the two generators given by the classes
of 1[0,1] and of 1[0,ν] are independent. This will be shown in Sect. 7. Let us mention in
this context that the above tilings are very close to being substitutional [33] (they are
strictly substitutional only forν a quadratic irrationality).

The above result shows that whatever the irrationalν isH 1(Z2, Cc(E
⊥
c ,Z)) = Z2.

This demonstrates that cohomology is not a very fine invariant to distinguish tilings, at
least in these low dimensions. We shall see in Sect. 7 how further structure can be added.

Example 47. In our second example we takeW = Z3, w = 0 andd = 1. Here we
consider only the case whereE⊥ ∩ Z3 = {0} because the other leads essentially to the
previous example. In this case, the singular planes are lines which areπ⊥(Z3)-translates
of Hα = 〈e⊥α 〉, α = 1,2,3 (again up to the shift byδ). Any twoHα spanE⊥.

We claim that the result for the cohomology differs drastically from the previous
example in that the coinvariants are infinitely generated. Fixg1, g2 ∈ π⊥(Z3) and letU
be the rhombus (we assume it has interior) whose boundary faces lie inH1∪(H1+g1)∪
H2∪(H2+g2). Clearly, 1U , the indicator function on thēD-closure ofU ∩NS, belongs
toCc(E⊥c ,Z). Let, forα = 1,2,π1 (π2) be the projection ontoH1 (H2) which has kernel
H2 (H1) and let7α = πα(π⊥(Z3)). Then for allλα ∈ 7α also 1U+λ1+λ2 ∈ Cc(E⊥c ,Z).
How many of them are cohomologous? Let us try to repeat the construction of the first
example. Clearly

1U+λ1+λ2 ∼ 1U+λ′1+λ′2 if λ1+ λ2− λ′1− λ′2 ∈ π⊥(Z3).

But since the rank of7α is at least 2 (because it is dense inHα) we see that the number
of π⊥(Z3) orbits of points in71 + 72 (which is the number of elements in(71 +
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72)/π
⊥(Z3)) is infinite. Therefore the construction used in the first example cannot be

used here to reduce the generators to a finite set. This does not prove our claim but it
does indicate a crucial point, namely that there are infinitely many orbits of points which
are intersections of singular planes. From this we will conclude in the next section that
the tilings of the second example cannot be substitutional.

5. Conditions for Infinitely Generated Cohomology

The cohomology groups of a canonical projection tiling, as defined in Sect. 2.2, contain
rich information about the tiling. With the analysis of Sect. 3 we shall see in Sect. 6 that
they are completely computable, at least for projections of small codimension. In this sec-
tion we examine instead the qualitative behaviour for generic projection tilings of the ra-
tionalisations of these cohomology groups. Although rational cohomology,H ∗(GT ,Q),
is a somewhat cruder invariant, it still proves useful. In the following subsection it will
allow us to comment on the relationship between canonical projection tilings and tilings
defined by a substitution system.

Recall the set of singular pointsS⊥ in E⊥, defined in Sect. 3.1, and the assumption
(e) of our Definition 20 of a canonical projection tiling.

Definition 48. We call a point x ∈ S⊥ an intersection point if there are d⊥ singular
planes which intersect uniquely at x.

Let P be the set of intersection points. Clearly,P is invariant under the action of7.
Let0(P) = P/7 be the orbit space. One of the main results of [19] is the following
theorem (see also [17]).

Theorem 49 ([17,19]). 0(P) is an infinite set if and only if H ∗(GT ,Q) is infinitely
generated.

We do not repeat its proof here, but rather explain how to obtain criteria under which
0(P) is infinite.

Choosed⊥ singular planesHβ , indexed now simply byα = 1, . . . , d⊥, which
intersect in exactly one point. LetS′ :=⋃

α(Hα+7⊥)and letP ′ = P∩S′, a subset which
is clearly7-invariant. WriteLα for

⋂
α′ �=α Hα′ , a line, and letπα : E⊥ → Lα be the (not

necessarily orthogonal) projection with kernelHα. Then7α := {γ ∈ 7|Lα + γ = Lα},
the stabilizer ofLα, can be naturally identified with a subgroup of7α = πα(7⊥).
Lemma 50. If rank7α < rank7α then 0(P) is an infinite set.

Proof. Let x ∈ Lα ∩ P ′. Then, by construction,x + 7α ∈ P ′, too. The latter set may
be decomposed in its7α-orbits and if rank7α < rank7α there are infinitely many. On
the other hand, intersection points ofLα ∩P ′ which lie in different7α-orbits lie also in
different7-orbits. ��

This gives the following easily checked criterion; it also shows that0(P) being an
infinite set is a generic feature.

Corollary 51. If rank7α < 2 then 0(P) is an infinite set.

Proof. Density of7⊥ implies that of7α. Hence rank7α ≥ 2. ��
Corollary 52. If d⊥ > d then 0(P) is an infinite set.
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Proof. We showed above rank7α ≥ 2. In particular,
∑
α rank7α ≥ 2d⊥. The statement

of the lemma follows therefore from the observation that0(P) is an infinite set if
(
⊕

α 7α)/7
⊥ is infinite and the latter is the case whenever

∑
α rank7α > d + d⊥. ��

The claim of our second example in Sect. 4 follows from this last result and the
discussion of the next subsection.

With a little more thorough analysis [17] one can show that if0(P) is a finite set
then d

d⊥ must be an integer. A further result, accessible with the algebraic-topological
methods of [19], is the following.

Theorem 53. [19] If 0(P) is a finite set then each Hr(GT ,Z) is a finitely generated
free abelian group for r = 0, . . . , d and is zero for other r .

5.1. Comparison with substitution tilings. In addition to those tilings which arise from
the canonical projection method there is another very important class for which coho-
mology can be computed. These are the finite type tilings which allow for a locally
invertible (primitive) substitution. We briefly discuss these tilings and show, with the aid
of the results of the previous section, that tiling cohomology gives effective criteria for
distinguishing whether a tiling can come from one or the other of these two classes. In
particular, we shall see that generically canonical projection tilings do not allow for a
locally invertible substitution.

A substitution of a tilingT (the terms inflation and deflation are also used in this
context) is roughly speaking a rule according to which each tile ofT gets substituted
by a collection of tiles (a patch) such that these patches fit together to form a new tiling
which is locally isomorphic toT . Furthermore, the translational congruence class of the
patch which substitutes a tile depends only on the translational congruence class of that
tile and the relative position between two patches only on the relative position between
the two tiles which they substitute. Therefore, the rule is specified when it is given for
any translational congruence class of tiles (of which there are only finitely many) and for
all possible relative positions two neighbouring tiles can have (of which there are also
only finitely many). One of the major examples is theoctagonal tiling whose substitution
rule is shown in Fig. 1. The octagonal tiling is also an example of a tiling that can be
obtained as a canonical projection tiling and the question naturally arises of obtaining
criteria for deciding the possible origins, whether as substitutions, projections or both,
of any given tiling.

There are additional conditions which turn out to be useful to assume a substitu-
tion satisfies, such as local invertibility; we refer the reader to [9] and [10] for details.

Fig. 1. Substitution of the octagonal tiling (triangle version)
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Under such suitable conditions, [9] and [10] develop methods for the computation of
substitution tilings.

Of the two approaches to compute the cohomology of substitution tilings that of [9]
is based on the continuous dynamical system(MT ,Rd) whereas that of [10] is based
on the tiling groupoidGT . We sketch here the latter. The essential observation of this
approach is that a primitive invertible substitution gives rise to a homeomorphism#

(the Robinson map) between0T and the space of pathsPI on a certain oriented graph
I. In the case where the substitution forces its border (see [15]) the connectivity matrix
σ of I is a power of the substitution matrix. A natural principal topological groupoid
GI is associated with the path space, namely the one given by tail equivalence: two
paths are tail equivalent if they agree up to finitely many edges. The tiling groupoid
GT , which is always principal for such substitution tilings, is identified via# with a
subset ofPI × PI and hence can be compared withGI . In fact,GI is a subset ofGT
(but not a closed one). This construction allows for a description of Coinv(GT ;Z), the
group of coinvariants ofGT with integer coefficients, a group which coincides with the
cohomology groupHd(T ) of Sect. 2.2 whenT arises also from the projection method
(or, in the language of [10], when the tiling reduces to aZd -decoration).

Theorem 54 ([10]). For substitution tilings as discussed, the group of coinvariants
Coinv(GT ;Z) is a quotient of the group of coinvariants of GI . Moreover, Coinv(GI;Z)
is the direct limit of the system

ZN
σ→ ZN

σ→ · · · ,
whereN is the number of vertices ofI (which in the border forcing case coincides with
the translational tile-classes).

Corollary 55. A necessary condition for a canonical projection tiling to be substitutional
is that 0(P) is a finite set. Consequently, canonical projection tilings are generically
non-substitutional and in particular no canonical projection tiling with d⊥ not dividing
d is substitutional.

Proof. Suppose a canonical projection tilingT is substitutional. Then Theorem 54 tells
us thatHd(T ) can be expressed as a direct limit of finitely generated free abelian groups.
Such a limit need not to be finitely generated itself but when rational coefficients are
considered instead of integer ones then the direct limit becomes that of the system

QN σ→ QN σ→ · · · ,
namelyQR whereR is the rank ofσn for largen. The first part of the corollary now
follows from Theorem 49; the remainder follows from the results and comments of the
preceding section. ��
Remark 56. It is worth comparing the above result with a similar one due to Pleasants
who uses the theory of algebraic number fields [34]. In the context of tilings obtained by
the projection method there is an approach to the construction of substitutions which is
based on the torus-parametrization. It is most powerful not when tilings are considered
but when projection point patterns are looked at (though these are closely related to
tilings, see [16]). For a lattice7 ⊂ E , a subspaceE, and an acceptance domainA ⊂ E⊥
(satisfying certain rather weak conditions) the projection point pattern given by the triple
(7,E,A) is the point setPA := π((E+A)∩7). The canonical choice forA corresponds
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to one wherePA = {π(ξ)|ξ ∈ P̃ 0} with P̃ 0 the set of vertices (0-cells) of the lift of
a canonical projection tilingT (constructed from the same data with constant weight
function). In that case,A is a polytope, but in [34]A is allowed to be more general.

For the more general acceptance domains, the notion of substitution generalises to
that of aninflation, a linear mapλ [34] (or even affine linear [32]) which hasE as
one of its eigenspaces, with eigenvalue of modulus greater than 1, preserves7, and is
contracting in a spaceF complementary toE. For λ to be a local inflation, i.e. an
inflation which can be defined as a map on translational congruence classes, leads to a
criterion on the acceptance domainA.

The method of Pleasants [34] is designed to construct projection point patterns with a
given (finite) symmetry group of isometries. It is based on the result that every represen-
tation of a finite isometry group acting onRd can be written as a matrix representation
where the matrices take their entries in a real algebraic number fieldK of (finite) degree
p. This number fieldK is then used to construct a decompositionRdp = E ⊕ E⊥,
where dimE = d, and a lattice7 so that the point pattern with the desired symmetry
is the projection point pattern constructed from data(7,E) and a general acceptance
domain inE⊥. In [34] Pleasants comes to the conclusion that local inflations always
exist but, forp > 2, never for polytopal acceptance domains (so in particular not for the
canonical one) whereas this obstruction is absent forp = 2. Note that dimE⊥ ≥ dimE

in his construction, with equality holding only forp = 2, a result in agreement and
comparable to our Corollary 52.

The direct limit of rational vector spaces in the proof of Corollary 55 is finitely
generated, but the corresponding limit of underlying free abelian groups need not be
finitely generated; indeed limits with divisibility can easily occur. Corollary 55 and
Theorem 53 now imply the following.

Corollary 57. A necessary condition for a substitution tiling T to arise also as a canon-
ical projection tiling is that Coinv(GT ;Z) is a finitely generated free abelian group.

6. Explicit Formulae for Codimension d⊥ ≤ 2

We turn now to methods of computation and present quantitative results for the coho-
mology of canonical projection tilings of codimension smaller than or equal to 2. The
restriction to small codimension is a matter of simplification: in principle, the calcula-
tions can be carried out for any codimension, but in practice become quite complicated.
Algebraic topology provides sophisticated tools to organize such calculations, namely
spectral sequences, and we exploit their full power elsewhere [18,19]. However, they are
not really necessary for codimensions strictly less than 3 and we present here alternative,
elementary methods of computation for these codimensions.

Throughout this section we assume that0(P) is finite, which we saw in Theorems 49
and 53 was necessary and sufficient to ensure that the cohomology is finitely generated
and free abelian. In fact, the results below are independent of these theorems and show
directly that ifd⊥ ≤ 2 thenH ∗(T ) is finitely generated and free abelian.

The calculations rely on the description of the topology ofE⊥c by singular planes
developed in Sect. 3. Recall thatC is a countable collection of singular planes with only
finitely many7-orbits; we index the orbits byI . We know that the normals of the singular
planes spanE⊥ and that7⊥ lies dense in it. We now simplify the notation in writing7
in place of7⊥.
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By Corollary 41 the task is to compute the cohomology of the group7 with values
in C(E⊥c ,Z) and the strategy is as follows. We recognizeCc(E⊥c ,Z), the compactly
supported functions, as an7-module in a (finite) exact sequence of7-modules and use
the functorial properties of cohomology, in particular that it turns short exact sequences
into long exact ones. As the other modules in the exact sequence are effectively lower
dimensional we can proceed recursively.

In practice it turns out to be more convenient to use homology in place of cohomology.
This makes no essential difference: the fact thatE⊥ hasd⊥ non-compact independent
directions together with Poincaré duality [29] gives an isomorphism [17]

Lemma 58. Hk(7,C(E⊥c ,Z)) ∼= Hd−k(7, Cc(E⊥c ,Z)).

6.1. Group homology. As a general reference to group homology we refer to [29].
Homology of a group7 is defined using any projective resolution ofZ by Z7 modules
of the group; hereZ7 denotes the freeZ module on the basis elements of7; we write
[γ ] for the basis element corresponding toγ ∈ 7.

We choose here the following free resolution. Let{e1, . . . , eN } be a basis of7 ∼= ZN .
ThenM7, the exterior algebra over7, is the free gradedZ-moduleM7 = ⊕N

k=0Mk7,
whereMk7 has basis{ei1 ∧ · · · ∧ eik |1 ≤ ij < ij+1 ≤ N} with antisymmetric multi-
plication (denoted by∧), i.e. the only relations areei ∧ ej = −ej ∧ ei . Our resolution
is

0→ MN7 ⊗ Z7
∂→ MN−17 ⊗ Z7

∂→ · · · ∂→ M07 ⊗ Z7
I→ Z → 0,

where tensor products are overZ and theZ7 action onMr7⊗Z7 is trivial onMr7 and
is the permutation representation onZ7. The maps∂ are defined as follows. We may
regardZ7 as Laurent polynomials inN variables{t1, . . . , tN } with integer coefficients.
Addition inZ7 then corresponds to multiplication of Laurent-polynomials. Then∂ is the
uniqueZ7-linear derivation of degree 1 determined by∂(ei) = (ti − 1), andI(ti) = 1.

Given a7-moduleM, thenH∗(7,M), the homology of the group7 with coefficients
in M, is defined as the homology of the complex

0→ MN7 ⊗ Z7 ⊗7 M ∂⊗1→ · · · ∂⊗1→ M07 ⊗ Z7 ⊗7 M → 0

where, for two7-modulesM1, M2, M1 ⊗7 M2 is the quotient of the algebraic tensor
product (overZ) M1⊗M2 by the relationsγ ·m1⊗m2 = m1⊗ γ ·m2.

Remark 59. An easy exercise in the definitions shows thatHk(7,Z7) is trivial for all
k > 0 and is equal toZ for k = 0. More generally, suppose that7 = G ⊕ H and let
us computeH∗(7,ZH), whereZH is the freeZ-module generated byH made into a
7-module by the action(g ⊕ h) · h′ = h+ h′. Then we can identify

Mk7 ⊗ Z7 ⊗7 ZH ∼=
⊕
i+j=k

MiG⊗MjH ⊗ ZH (6)

and under this identification∂ ⊗ 1 becomes(−1)deg ⊗ ∂ ′, where∂ ′ is the boundary
operator for the homology ofH . It follows that

Hk(7,ZH) ∼=
⊕
i+j=k

MiG⊗Hj(H,ZH) = MkG.

As a special case,Hk(7,Z) = Mk7 ∼= Z

(
N
k

)
.
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Now let I : ZH → Z be theZ7 module homomorphism given by the sum of the
coefficients, i.e.I[h] = 1 for all h ∈ H . We shall need the following lemma later.

Lemma 60. Under the identifications H∗(7,ZH) ∼= M∗G and H∗(7,Z) ∼= M∗7 the
induced map Ik : Hk(7,ZH)→ Hk(7,Z) becomes the embedding MkG ↪→ Mk7.

Proof. Using the decomposition (6) the induced map

Ik :
⊕
i+j=k

MiG⊗Hj(H,ZH)→
⊕
i+j=k

MiG⊗Hj(H,Z)

preserves the bidegree and must be the identity on the first factors in the tensor products.
SinceHk(H,ZH) is trivial wheneverk �= 0 and one dimensional fork = 0,Ik can be
determined by evaluatingI0 on the generator ofH0(H,ZH); the result follows. ��

The basic tool in the calculations below is the following. Whenever we have a short

exact sequence ofZ7-modules 0→ A
ϕ→ B

ψ→ C → 0 we get a long exact sequence
of homology groups

· · · ψk+1→ Hk+1(7, C)
γk+1→ Hk(7,A)

ϕk→ Hk(7,B)
ψk→ Hk(7,C) · · · .

The mapsϕk andψk are the induced homomorphisms and theγk are the connecting
homomorphisms. For details see [29].

6.2. A CW-like complex. LetC′ be an arbitrary countable collection of affine hyperplanes
of F ′, a linear space, and defineC′-topes as before: compact polytopes which are the
closures of their interiors and whose boundary faces belong to hyperplanes fromC′. For
n at most the dimension ofF ′ letCnC′ be theZ-module generated by then-dimensional
faces of convexC′-topes satisfying the relations

[U1] + [U2] = [U1 ∪ U2]

for any two facesU1, U2, for whichU1 ∪ U2 is as well a convex face andU1 ∩ U2 has
no interior ( i.e. nonzero codimension inU1). These relations then imply[U1] + [U2] =
[U1∪U2]+[U1∩U2] if U1∩U2 has interior. If we takeC′ = C, our collection of singular
planes from Sect. 3, thenCn := CnC is aZ7 module under the actionγ · [U ] = [U +γ ].
As Z7-modules,Cd

⊥ ∼= Cc(E⊥c ,Z), the isomorphism being given by assigning to[U ]
the indicator function on the closure ofU ∩ NS (which is clopen). Moreover,C0 is a
freeZ7-module with basis in one to one correspondence with the intersection pointsP.

Proposition 61. There exist 7-equivariant module maps δ and I such that

0→ Cd
⊥ δ→ Cd

⊥−1 δ→ · · ·C0 I→ Z → 0, (7)

is an exact sequence of 7-modules and I[U ] = 1 for all vertices U of C-topes.
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Proof. Let I be the indexing set for7 orbit classes of singular planes. For a subset
R of 7 (which we identified with7⊥ ⊂ E⊥) let CR := {Hi + r|r ∈ R, i ∈ I } and
SR = {x ∈ H |H ∈ CR}. Let R be the set of subsetsR ⊂ 7 such that all connected
components ofE⊥\SR are bounded and have interior.R is closed under union and hence
forms an upper directed system under inclusion. For anyR ∈ R, theCR-topes define a
regular polytopal CW-complex

0→ Cd
⊥

CR
δR→ Cd

⊥−1
CR

δR→ · · ·C0
CR → 0, (8)

with boundary operatorsδR depending on the choices of orientations for then-cells
(n > 0) [35]. Moreover, this complex is acyclic (E⊥ is contractible), i.e. upon replacing

C0
CR → 0 byC0

CR
IR→ Z → 0, whereIR[U ] = 1, (8) becomes an exact sequence. Let us

constrain the orientation of then-cells in the following way: for eachn < d⊥ there are
finitely many subsetsJ ⊂ I such that dim

⋂
i∈J Hi = n andJ is maximal. Eachn-cell

belongs to a subspace parallel to one of the
⋂
i∈J Hi and we choose its orientation such

that it depends only on the correspondingJ (i.e. we choose an orientation for
⋂
i∈J Hi

and then the cell inherits it as a subset). By the same principle, alld⊥-cells are supposed
to have the same orientation. Then the cochains and boundary operatorsδR share two
crucial properties: first, ifR ⊂ R′ for R,R′ ∈ R, then we may identifyCnCR with a
submodule ofCnCR′ and under this identificationδR(x) = δR′(x) for all x ∈ CnCR , and
second, ifU andU + x areCR-topes thenδR[U + x] = δR[U ] + x. The first property
implies that the directed systemR gives rise to a directed system of acyclic cochain
complexes, and hence its direct limit is an acyclic complex, and the second implies,
together with the fact that for allγ ∈ 7 andR ∈ R alsoR + γ ∈ R, that this complex
becomes a complex of7-modules. The statement now follows sinceCnC is the direct
limit of CnCR for all n. ��

6.3. Solutions for d⊥ = 1,2. Based on the results of the last two sections we now
calculate the homology groupsHk(7,Cd

⊥
) for d⊥ = 1,2.

Lemma 62. Given a CW-like complex as in Sect. 6.2,

Hk(7,C
0) =

{
0 for k > 0,
ZL for k = 0,

(9)

where L is the number of 7-orbits of vertices of C-topes, i.e. L = |0(P)|.
Proof. Since7 acts fixpoint-freely we haveM7⊗Z7⊗7 C0 ∼= M7⊗Z7⊗ZL which
directly implies the result. ��
Theorem 63. Let T be a d-dimensional canonical projection tiling of codimension 1.

Hd−k(T ) ∼=
{

Z

(
d+1
k+1

)
for k > 0,

Zd+L for k = 0.

Proof. In the cased⊥ = 1, (7) is the short exact sequence

0→ C1 δ→ C0 I→ Z → 0 (10)
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and we use the resulting long exact sequence of homology groups for the computation.
By the last lemma, apart from the lowest degree every third homology group in that
sequence is trivial so thatHk(7,C1) ∼= Hk+1(7,Z) for k > 0. The remaining part of
the sequence has the form 0→ Zd+1 → H0(7, C

1) → ZL → Z → 0 and hence
H0(7, C

1) = Zd+L as claimed. ��
Note that at this stage (for very low codimension) we did not need to know explicitly

the morphisms involved.
Recall the description of the topology ofE⊥ for canonical projection tilings by

singular planes. These planes were organized in7-orbits, indexed by a finite setI , and
we choose representativesHα, for eachα ∈ I .

Theorem 64. Let T be a d-dimensional canonical projection tiling of codimension 2,

Hd−k(T ) ∼=

Z

(
d+2
k+2

)
−rk−rk+1+∑

α∈I
(
να
k+1

)
for k > 0,

Z

(
d+2

2

)
−d−L−1−r1+∑

α∈I (να+lα−1)
for k = 0,

(11)

where να is the rank of7α (the stabilizer ofHα), lα the number of7α-orbits of intersection
points in Hα , and rk the rank of the module generated by the submodules Mk+17

α ⊂
Mk+17 for all α ∈ I .

Proof. InsertingC0
0 := δ(C1)we break the exact sequence (7) into two short exact ones

0→ C2 δ−→ C1 δ−→ C0 I−→ Z → 0.
↘ ↗

C0
0↗ ↘

0 0

0 → C0
0 → C0 → Z → 0 can be treated as in the codimension 1 case. Taking into

account that the rank of7 is d + 2 one gets

Hk(7,C
0
0)
∼=

{
Z

(
d+2
k+1

)
for k > 0,

Zd+L+1 for k = 0.
(12)

Let us have a closer look atC1. Forn at most 1 letCnα be the sub-module ofCn generated
by then-dimensional faces which belong toHα, α ∈ I . As before we denote by7α the
stabilizer ofHα and we let7̂α be a complementary subgroup, i.e.7 = 7α ⊕ 7̂α (recall
that7/7α has no torsion). Then

C1 ∼=
⊕
α∈I

C1
α ⊗ Z7̂α, (13)

because any 1-dimensional face belongs to a translate of someHα. Moreover the action
of 7α ⊕ 7̂α on C1 is such that the first summand acts non-trivially only on the first
factors,C1

α, and the second only on the second factors,Z7̂α. In particular,Z7⊗7 C1 ∼=⊕
α∈I Z7α ⊗7α C1

α ⊗ Z7̂α as7-modules which implies

H∗(7, C1) ∼=
⊕
α∈I

H∗(7α, C1
α). (14)
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Restricting the boundary mapsδ andI toCnα we get a short exact sequence

0→ C1
α

δα→ C0
α

Iα→ Z → 0. (15)

As in Theorem 63 and combined with Eq. (14) we obtain

Hk(7,C
1) ∼=

{
Z

∑
α∈I

(
να
k+1

)
for k > 0,

Z
∑
α∈I (να+lα−1) for k = 0,

(16)

whereνα andlα are as defined in the statement of the theorem. Note that thelα are all
finite since we requiredL to be finite. Equations (12, 16) give us part of the information
needed to determineH∗(7, C2) from the exact sequence

0→ C2 δ→ C1 δ→ C0
0 → 0, (17)

but we have to determine explicitly one further morphism since we have no longer enough
trivial groups in the resulting long exact sequence. We shall determine the induced
morphism

β∗ := δ∗ : H∗(7, C1)→ H∗(7, C0
0). (18)

Consider the following commutative diagram:

0→ C1
α ⊗ Z7̂α

δα⊗1→ C0
α ⊗ Z7̂α

Iα⊗1→ Z7̂α → 0
↓ δα ⊗ 1 ↓ ↓ Iα

0→ C0
0 ↪→ C0 I→ Z → 0

where the middle vertical arrow is the inclusion, the right vertical arrow the sum of the
coefficients,Iα[γ ] = 1, and the left vertical arrow the map of interest. In fact,βk is the
direct sum over allα of (δα⊗1)k : Hk(7,C1

α ⊗ Z7̂α)→ Hk(7,C
0
0). This diagram gives

rise to two long exact sequences of homology groups together with vertical maps, all
commuting,(δα ⊗ 1)∗ being one of them. Now use that fork > 0,Hk(7,C0

α ⊗Z7̂α) =
Hk(7,C

0) = 0 so that we can express(δα⊗1)∗ throughIα∗ . In fact, the triviality of these
groups imply thatHk(7,C0

α ⊗ Z7̂α) ∼= Hk+1(7,Z7̂
α) andHk(7,C0

0)
∼= Hk+1(7,Z),

for k > 0, and with these identifications

(δα ⊗ 1)k = Iαk+1.

By Lemma 60 the mapIαk becomes the embeddingMk7α ↪→ Mk7 under the above
identifications. Fork > 0 therefore, the rank ofβk is equal to the rank of the span of the
submodulesMk+17

α, α ∈ I , inMk+17, the number defined asrk in the statement of the
theorem. The long exact sequence corresponding to (17) implies

Hk(7,C
2) ∼= Hk+1(7, C

0
0)/imβk+1⊕Hk(7,C1) ∩ kerβk.

Since, fork > 0, dimHk(7,C1) ∩ kerβk = dimHk(7,C
1) − rk we get the desired

result (the casek = 0 is similar), provided the homology groups are torsion free. That
this is the case we know from [12].��
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6.4. Example: octagonal tilings. We provide here one example, the octagonal tilings. A
whole list of results for codimension 2 tilings could be obtained by evaluating (11) with
a computer [36].

The (undecorated) octagonal tilings are two dimensional tilings which may be con-
structed from the data(Z4,0, E), the four dimensional integer latticeZ4 (with standard
basis{ei}i=1,...,4) and the two dimensional invariant subspace of the eightfold symmetry
C8: ei �→ ei+1 for i = 1,2,3 ande4 �→ −e1 (the groupC8 acts as rotation byπ4 ) [37,
38]. It consists of squares and 450-rhombi all edges having equal length.E⊥ is, of course,
also an invariant subspace of the eightfold symmetry and the singular planes (which are
lines) are well known, they are the tangents to the boundary faces of the projection of the
unit cube intoE⊥ which is a regular octagon. They are translates underπ⊥(Z4) of the
four lines spanned bye⊥i which form an orbit underC8 (we may ignore the shift byδ).
From these lines we get all our information, the numbersL, νi , li , I = {1, . . . ,4}, and
r1, r2, r3 (higherrk are unecessary sinced = 2). Usually it is not so easy to determine
L but in our case it is easy to see that apart from the orbit of the intersection point at
0 there are only two other ones: the orbit of1√

2
(e⊥1 + e⊥3 ) and that of 1√

2
(e⊥2 + e⊥4 ).

HenceL = 3. Clearly,71 is spanned bye⊥1 ande⊥2 − e⊥4 and henceν1 = 2 andl1 = 2
which carries over to alli by symmetry. Finally,r1 = 3 andrk = 0 for k ≥ 2 asνi = 2.
Inserting the numbers yields

H 0(T ) = Z, H 1(T ) = Z5, H 2(T ) = Z9.

This result is in agreement with a calculation we made using Anderson and Putnam’s
method [9] for substitution tilings: the octagonal tiling is also substitutional, its substi-
tution is given in Fig. 1 of Sect. 5.1.

7. The Non-Commutative Approach

We conclude by connecting the cohomology of a tiling, as we have been discussing, with
its non-commutative topological invariants. The starting point of the non-commutative
approach is the observation that the orbit spaces of the dynamical systems arising from the
tiling are non-Hausdorff. In fact, for a (completely) non-periodic tilingT , no two points in
MT /Rd can be separated by open neighbourhoods. Connes’non-commutative geometry
was motivated by the desire to analyse such spaces. In the non-commutative topological
approach [39] one studies the properties of the (non-commutative)C∗ algebra associated
with the dynamical system(MT ,Rd). This algebra is the crossed product algebra of
C(MT ), the algebra of continuous functions overMT , with the groupRd . We denote
it by C(MT ) × Rd . Topologically, this algebra may be described by itsK-theory [40,
41]. It turns out that theK-groups are closely related to the Czech-cohomology ofMT .
TheK-groups, however, contain additional information in the form of a natural order
structure on theK0-group and this is the advantage of the non-commutative approach.
We have seen in Example 46 that cohomology without extra structure is not a very fine
invariant.

Equally well mathematically, but from a more physically motivated point of view,
we can work with the formulation of the quotientMT /Rd as the space of orbits of
the tiling groupoidGT (or of GT ). TheC∗ algebra whoseK-theory provides the non-
commutative topological invariant is then the corresponding groupoid-C∗ algebra [26,
15]. The importance of this groupoidC∗ algebra for physical systems lies in the fact
that it provides an abstract definition of the algebra of observables [15,10] for particles
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moving in the tiling; the scaled orderedK0-group and its image under a tracial state
governs the gap labelling.

If T is a canonical projection tilingGT andGT are equivalent in the sense of Muhly
et al. to the transformation groupoidG(X,G1). This is proven directly in [16] but it also
follows from our analysis of Sect. 3.5 where similarity of the two groupoids has been
shown. By application of the theory of Muhly et al. [27] we obtain

Theorem 65. The K-groups of C(MT ) × Rd and of the groupoid-C∗ algebras of GT
and of G(X,G1) are isomorphic, the isomorphism preserving the order on theK0-group.

The isomorphism between the first twoK-groups was already observed in [9]. Of par-
ticular importance for the present case is the following relationship betweenK-theory
and cohomology proved in [12]: if(X,Zd) is a minimalZd -dynamical system whereX
is homeomorphic to the Cantor set then

Ki(C(X)× Zd) ∼=
⊕
j

Hd−i+2j (Zd , C(X,Z))

as unordered groups. Thus, in view of Corollary 41,

Corollary 66. For a canonical projection tiling T ,

Ki(C
∗(GT )) ∼=

⊕
j

Hd−i+2j (T )

as unordered groups.

It is an interesting question whether this result is true for finite type tilings in general. As
already mentioned, the isomorphism of the corollary neglects the information contained
in the order structure on theK0-group. One can cure for this at least partly by looking at
the order onHd(T ), the group of coinvariants, which is induced by the unique invariant
probability measure on0T (the dynamical system(MT ,Rd) is uniquely ergodic). That
measure defines a group homomorphismCc(E⊥c ,Z)→ R which by invariance induces
a homomorphismτ : Hd(T )→ R. The subsetτ−1(R>0) is closed under addition and
defines a positive cone ofHd(T ) which sits inside the positive cone ofK0(C

∗(GT ))
and contains already a good portion of the information, including that needed for the
standard gap-labelling. In fact, ford = 1, whereH 1(T ) = K0(C

∗(GT )), this order is
precisely the order defined on theK0-group in the standard way [40].

With this information at hand let us come back to Example 46, the canonical projection
tiling with dataW = Z2, w = 0, d = 1, andE specified by an irrational numberν. To
keep track of this dependence we writeT (ν) for a canonical projection tiling obtained
from such data. The unique invariant probabibity measure on0T (ν) is the pull back
underµ of the Lebesgue measure onE⊥ normalized in such a way thatπ⊥(γ ) (the
projection of the unit cell) has measure 1. From this we see that with[1[a,b]] denoting
the coinvariant class of 1[a,b],

τ([1[a,b]]) = b − a
1+ ν .

In particular, the rank ofτ(H 1(T (ν))) is 2 and henceH 1(T (ν)) ∼= Z2. Now,τ(n[1[0,1]]+
m[1[0,ν]]) > 0, forn,m ∈ Z, whenever(n,m) has positive scalar product with(1, ν) and
hence belongs to the upper right half space defined byE⊥ inR2. It follows thatK0(GT (ν))
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is order isomorphic toK0(GT (ν′)) whenever there exists a matrixM ∈ GL(2,Z) such
that ν′ = M11ν+M12

M21ν+M22
. Note that in the above casesτ is injective. We remark without

further explanation that the order unit improves the invariant even more.K0(GT (ν)) and
K0(GT (ν′)) are order isomorphic with isomorphism preserving the order unit if and only
if ν′ = ±ν.

Returning to Example 47, the canonical projection tiling with dataW = Z3,w = 0,
d = 1, the unique invariant probability measure on0T is again the pull back underµ
of the Lebesgue measure onE⊥ normalized in such a way thatπ⊥(γ ) has measure 1.
Thus all the elements[1U+λ1+λ2]−[1U ] are mapped to 0 byτ . In fact, one can show that
the image ofτ is finitely generated so that in this case all but finitely many generators
of theK0-group are neither positive nor negative, i.e. that almost all are infinitesimal.
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