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Abstract: The boundary map in K-theory arising from the Wiener-Hopf extension of
a crossed product algebra with R is the Connes-Thom isomorphism. In this article the
Wiener Hopf extension is combined with the Heisenberg group algebra to provide an
elementary construction of a corresponding map on higher traces (and cyclic cohomol-
ogy). It then follows directly from a non-commutative Stokes theorem that this map is
dual w.r.t. Connes’ pairing of cyclic cohomology with K-theory. As an application, we
prove equality of quantized bulk and edge conductivities for the integer quantum Hall
effect described by continuous magnetic Schrödinger operators.

1. Motivation and Main Result

In a commonly used approach to study aperiodic solids, particles in the bulk of the
medium are described by covariant families of one-particle Schrödinger operators
{Hω}ω∈�, where � is the probability space of configurations furnished with an ergodic
action of space translations. Crossed product algebras provide a natural framework for
such families [Be86]. In particular their bounded functions are represented by elements
of a C∗-crossed product, the so-called bulk algebra. The non-commutative topology of
theC∗-algebra is a useful tool to construct topological invariants resulting from pairings
between K-group elements and higher traces. Some of these invariants may be physi-
cally interpreted as topologically quantised quantities; the quantised Hall conductivity is
such an example. The physics near a boundary of the solid can also be described by aC∗-
algebra, the so-called edge algebra. The bulk algebra being essentially a crossed product
of the edge algebra with R (or with Z in the tight binding approximation [KRS02]), both
algebras are tied together in the Wiener-Hopf extension (or respectively the Toeplitz
extension). This extension gives rise to boundary maps between the K-groups and the
higher traces of the bulk and edge algebra which allow one to equate bulk and edge in-
variants. This topological relation and its physical interpretations is our main objective.
We discuss one prominent physical example of this, the quantum Hall effect, where the
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Hall conductivity may either be expressed as the Chern number of a spectral projection
associated with a gap in the bulk spectrum [Be86, AS85, K87, ASS94, Be88, BES94] or
as the non-commutative winding number of the unitary of time translation of the edge
states corresponding to the gap by a characteristic time (the inverse of the gap width)
[KRS02, KS03]. The mathematical background for this equality between bulk and edge
invariants for continuous Schrödinger operators is the subject of the present article.

The mathematical framework is as follows. Consider an R-action α on a C∗-algebra
B. Denote by τ the translation action of R on the half open space R ∪ {+∞} (with
fixed point +∞). This defines a crossed product C∗-algebra B �α R and an extension
of this C∗-algebra by another crossed product, C0(R∪{+∞},B)�τ⊗α R, the so-called
Wiener-Hopf extension. They form an exact sequence

0 −→ K ⊗ B −→ C0(R ∪ {+∞},B)�τ⊗α R
ev∞−→ B �α R −→ 0, (1)

where ev∞ is induced from the surjective homomorphismC0(R∪{+∞},B) → B given
by evaluating f ∈ C0(R∪{+∞},B) at +∞ and K are the compact operators onL2(R).
Rieffel has shown [R82] that the boundary maps ∂i : Ki(B�αR) → Ki+1(B) in the cor-
responding six-term exact sequence are the inverses of the Connes-Thom isomorphism
[C81]. In the physical context described above, the boundary maps relate the K-groups
of the bulk algebra with the K-groups of the edge algebra.

In the context of smooth crossed products, where B is a Fréchet algebra with smooth
action α so that one obtains a smooth version of (1), Elliott, Natsume and Nest [ENN88]
have given dual boundary maps for cyclic cohomology groups, namely isomorphisms
#α : HCn(B) → HCn+1(B �α R) which satisfy

〈#αη, x〉 = − 1

2π
〈η, ∂ix〉 , η ∈ HCi−1+2n(B) , x ∈ Ki(B �α R) , (2)

where 〈·, ·〉 denotes Connes’ pairing between cyclic cocycles and K-group elements.
Our aim here is to obtain the same kind of result for α-invariant higher traces on C∗-

algebras. One reason for doing this is that, whereas our estimates from [KS03] show that
the operators relevant in the physical context described above lie in C∗-crossed prod-
ucts it is not clear whether they belong to the smooth sub-algebras used in [ENN88].
Another reason is to present a different proof with, as we believe, considerably simpler
algebraic constructions so that it should henceforth be more easily accessible also to
the non-expert. In fact, for the phsyical interpretation of Eq. (2) it is indispensible that
all isomorphisms involved can be made explicit. In particular, it is essential that we can
compute the boundary map ∂0 on (classes of) spectral projections of the Schrödinger
operator on gaps. Our proof establishes (2) directly for i = 0, the case needed for the
application to the quantum Hall effect, whereas the equality is proven in [ENN88] first
for i = 1 and then extended to i = 0 using the Takai duality and Connes’ Thom isomor-
phism. Hence the non-expert reader can understand our result without prior knowledge,
for instance, of Connes’Thom isomorphism. The proof we present uses continuous fields
of C∗-algebras and is inspired by another article of Elliott, Natsume and Nest [ENN93].

More precisely, the result can be described as follows.An n-trace on a Banach algebra
B is the character of an (unbounded) n-cycle (�,

∫
, d) over B having further continuity

properties (cf. Def. 2). It is called α-invariant if α extends to an action of R on the
graded differential algebra (�, d) by isomorphisms of degree 0 and

∫ ◦α = ∫ (and the
above-mentioned continuity properties are α-invariant, cf. Def. 3). Let η be an n-trace
which is the character of an α-invariant cycle (�,

∫
, d) over B. We prove that
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#αη(f0, . . . , fn+1) =
n+1∑

k=1

(−1)k
∫
(f0df1 · · · ∇fk · · · dfn+1) (0),

∇f (x) = ıxf (x) ,

is an n+1-trace on theL1-crossed productL1(R,B, α). Furthermore, if B is aC∗-alge-
bra then the pairing with #αη extends to theK-group of the C∗-crossed product B �α R

and satisfies the duality equation (2).
Sections 2 to 5 are devoted to explain the mathematical context and to prove the

above result (Theorem 2 and Theorem 6). Theorem 6 follows from two main arguments,
a homotopy argument (Theorem 5) and periodicity in cyclic cohomology. Although the
latter is well-known we have added a detailed proof of its version adapted to our con-
text (Theorem 4) in the appendix, hence making this work self-contained. In Sect. 6 we
discuss the application of this result to the quantum Hall effect.

2. C∗-Algebraic Preliminaries

2.1. Crossed products by R. Letα : R → Aut(B) be an action of R on aC∗-algebra B. It
is required to be continuous in the sense that for allA ∈ B, the function x ∈ R �→ αx(A)

is continuous. The crossed product algebra B �α R of B with respect to the action α
of R is defined as follows [P79]. The linear space Cc(R,B) of compactly supported
continuous functions with values in B is endowed with the ∗-algebra structure

(fg)(x) =
∫

R

dy f (y) αy(g(x − y)) , f ∗(x) = αx(f (−x))∗ . (3)

TheL1-completion ofCc(R,B), i.e. completion w.r.t. the norm‖f ‖1 := ∫
R
dx ‖f (x)‖B,

is a Banach algebra, the L1-crossed product denoted L1(R,B, α). The crossed product
algebraB�αR is the completion ofL1(R,B, α)w.r.t. theC∗-norm‖f ‖ := supρ ‖ρ(f )‖,
where the supremum is taken over all bounded ∗-representations. It is not necessary to
perform the middle step via the L1-crossed product, but it is sometimes convenient
to work with it when verifying that the integral kernel of a given operator belongs to
B �α R. In this spirit, we can benefit in Sect. 6.2 from our results in [KS03]. By a
continuity argument, one can simply work with functions f : R → B when performing
calculations with elements of B �α R.

Let (ρ,H) be a representation of B. It induces a representation (π, L2(R,H)) of
B �α R:

(π(f )ψ)(x) =
∫

R

dy ρ(α−x(f (x − y)))ψ(y) . (4)

2.2. C∗-fields. We follow the exposition of [L98] in defining a continuous field of C∗-
algebras (or simply aC∗-field) (C, {C�, ϕ�}�∈I ) over a locally compact Hausdorff space
I . This consists of a C∗-algebra C (also called the total algebra of the field), a collec-
tion of C∗-algebras {C�}�∈I , one for each point of the space I , with surjective algebra
homomorphisms ϕ� : C → C� such that,

1. for a ∈ C, ‖a‖ = sup�∈I ‖ϕ�(a)‖,
2. for all a ∈ C, � �→ ‖ϕ�(a)‖ is a function in C0(I ),
3. C is a left C0(I ) module and, for f ∈ C0(I ), a ∈ C we have ϕ�(f a) = f (�)ϕ�(a).
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The construction is reminiscent of a fibre bundle, except there is no typical fibre, the
algebras C� need not to be isomorphic even if I is connected, and so one cannot define
how the C� are topologically glued together using local trivializations. This information
is contained in the algebra C, the totalC∗-algebra of the field. In fact, continuous sections
of the field are collections {a�}�∈I for which a ∈ C exist such that ϕ�(a) = a�. C can
therefore be seen as the algebra of continuous sections with pointwise (in �) multipli-
cation. A C∗-field is called trivial if C = C0(I,B) for some C∗-algebra B, C� = B and
ϕ� the evaluation at �.

All we are interested in here concerns the more special set up in which I ⊂ R

and we have a collection of continuous R-actions {α�}�∈I on a single C∗-algebra B,
α� : R → Aut(B). Collecting these together we get an R action α̃ : R → Aut(C0(I,B))
by

α̃t (f )(�) = α�
t (f (�)) ,

which is continuous provided the above expression is continuous in � for all t and f
which we hereby assume. Then (C0(I,B) �α̃ R, {B �α� R, ev�}�∈I ) is a continuous
field of C∗-algebras [R89].

Example 1 (Heisenberg group algebra). The (polarized) Heisenberg group H3 is R
3 as

topological space, but with (non-abelian) multiplication

(a1, a2, a3)(b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3 + a1b2) .

It contains the subgroup R
2 = {(a1, a2, a3) ∈ H3|a1 = 0} so that H3 can be iden-

tified with the semi-direct product R
2

�τ̃ R, where τ̃a1(a2, a3) = (a2, a3 + a1a2).
The Heisenberg group algebra (i.e. the crossed product C �id H3 defined in a simi-
lar way as for R) can therefore be identified with the C∗-algebra C0(R

2) �τ̃ R with
τ̃a1(f )(a2, a3) = f (a2, a3 − a1a2). Let ϕa2 : C0(R

2)�τ̃ R → C0(R)�τa2 R be evalu-
ation of the 2-component at a2, i.e. ϕa2(f )(a1)(a3) = f (a1)(a2, a3). Then im (ϕa2)

∼=
C0(R) �τa2 R, where τa2

a1 (g)(a3) = g(a3 − a2a1) for g : R → C0(R). Furthermore
(C0(R

2)�τ̃ R, {C0(R)�τa2 R, ϕa2}a2∈R) is a C∗-field. Therefore a2 plays the role of �.

Example 2. If we have an R-action α on aC∗-algebra B we can extend the above field of
the Heisenberg group algebra in the following way: With the above R-action τ̃ onC0(R

2)

define τ̃ ⊗ α : R → AutC0(R
2,B) by (τ̃ ⊗ α)a1(f )(a2, a3) = αa1(f (a2, a3 − a2a1)).

Settinga2 = � as above, this then yields aC∗-field (C0(R
2,B)�τ̃⊗αR, {C0(R,B)�τ�⊗α

R, ϕ�}�∈R) which will be of crucial importance later on. This C∗-field is trivial away
from � = 0, i.e., for � �= 0, C0(R,B) �τ 1⊗α R ∼= C0(R,B) �τ�⊗α R and ker(ϕ0) ∼=
C0(R\{0}, C0(R,B)�τ 1⊗α R). However, C0(R,B)�τ 0⊗α R ∼= C0(R,B �α R) is not
isomorphic to C0(R,B)�τ 1⊗α R.

2.3. Extensions. Suppose that we have a surjective morphism between C∗-algebras q :
C→B. One then says that C is an extension of B by the ideal J := ker(q).1

Example 3 (Cone of an algebra). The suspension of the algebra B is SB := C0(R,B).
Its cone is given by CB := C0(R ∪ {+∞},B). The cone is an extension of B by the
ideal SB, the morphism being q = ev∞, the evaluation at +∞.

1 Some authors call C an extension of J by B.
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Example 4 (Wiener-Hopf extension). Let α be an R-action on B. We extend the R-actions
τ�⊗α on the suspension SB of Example 2 to the coneCB by setting (τ�⊗α)tf (+∞) =
αt (f (+∞)). Hence evaluation at +∞ yields a surjective algebra-homomorphism

ev∞ : CB �τ�⊗α R −→ B �α R . (5)

For � = 1 the corresponding extension is called the Wiener-Hopf extension for an R-
actionα on B [R89]. The ideal is ker(ev∞) = SB�τ 1⊗αR which appeared in Example 2,
it is isomorphic to K ⊗ B [R82] (see also the Appendix). These form the ingredients of
the exact sequence (1).

Example 5 (Extension of Heisenberg group algebra). By repeating the constructions of
Example 2 but with R

2 replaced by R × (R ∪ {+∞}) and actions extended as above,
one obtains the C∗-field (C0(R, CB)�τ̃⊗α R, {CB �τ�⊗α R, ϕ�}�∈R). The map in (5)
now extends to a surjection which we also denote by ev∞,

ev∞ : C0(R, CB)�τ̃⊗α R → C0(R,B)�α R , (6)

whose kernel is C0(R, SB) �τ̃⊗α R. Each algebra is the total algebra of a C∗-field so
that one actually has a field of extensions, the fibre at � = 1 being the Wiener-Hopf
extension.

3. K-Theoretic Preliminaries

This introduction is mainly meant to fix notations. For a complete definition of the K-
groups for a Banach algebra B, cf. [Bl86]. We denote by [B]0 the homotopy classes
of projections of B and by B+ the unitalisation, B+ = B × C with (A, λ)(A′, λ′) =
(AA′ + λA′ + Aλ′, λλ′). The C∗-inductive limit of the matrix algebras Mn(B+) is
denoted by M∞(B+). [M∞(B+)]0 is a monoid under addition of homotopy classes of
projections, [p]0 +[q]0 = [diag(p, q)]0. TheK0-groupK0(B) of B is obtained from the
monoid [M∞(B+)]0 by Grothendieck’s construction and then factorizing out the added
unit.

Let U(B) be the group of unitaries u ∈ B+ such that u − 1 ∈ B (the 1 is here the
unit in B+). We denote by [B]1 the homotopy classes of U(B). The algebraic limit of
the groups U(Mn(B)) is denoted by U(M∞(B)) and then K1(B) = [M∞(B)]1. The
(non-abelian) product in U(Mn(B)) induces a product in [M∞(B)]1 which is abelian
and therefore denoted additively.

3.1. Elliott-Natsume-Nest map. Suppose we have a continuous field of C∗-algebras
(C, {C�, ϕ�}�∈I ) over I = [0, 1] which is trivial away from � = 0. This means that there
are isomorphisms φ� : C1 → C� for � > 0 such that φ : C0((0, 1], C1) → ker(ϕ0):
ϕ�(φ(f )) = φ�(f (�)) is an isomorphism. The following theorem shows that in this
situation one obtains maps [C0]i → [C1]i which induce homomorphisms Ki(C0) →
Ki(C1). We call these maps ENN-maps.

Theorem 1 [ENN93]. Consider a continuous field ofC∗-algebras (C, {C�, ϕ�}�∈I ) over
I = [0, 1] which is trivial away from � = 0. For any projection p ∈ C0 there is a pro-
jection valued section p̃ ∈ C such that ϕ0(p̃) = p. For any u ∈ U(C0) there is a section
ũ ∈ U(C) such that ϕ0(ũ) = u. The maps µi : [C0]i → [C1]i: µ0([p]0) = [ϕ1(p̃)]0,
µ1([u]1) = [ϕ1(ũ)]1 are well-defined and induce homomorphisms µi : Ki(C0) →
Ki(C1).
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Proof. (We only recall how these maps are constructed, for the rest, see [ENN93].) Let
p be a projection in C0. Since ϕ0 is surjective, there exists a selfadjoint section x ∈ C
with ϕ0(x) = p. By Property 2 of C∗-fields, we find for any δ > 0 an ε such that
‖ϕ�(x

2 −x)‖ < δ for � < ε. For small δ the spectrum of ϕ�(x) is close to {0, 1} and we
can find a continuous function f : R → R, vanishing for t < a and being 1 for t > b

where 0 < a < b < 1 and (a, b) does not intersect the spectra of ϕ�(x), � ≤ ε. Then
f (x) is another section with ϕ0(f (x)) = p, but such that ϕ�(f (x)) are projections for
� ≤ ε. Now the section can be extended by the constant section since the field is trivial
away from � = 0. The resulting section is p̃ where ϕ�(p̃) = ϕε(f (x)) if � ≥ ε.

The choice of x is not canonical, but it is not difficult to see that the homotopy class
of p̃ is uniquely determined since any other choice p̃′ needs to be close to p̃ at small �.
The case of unitaries works in a similar way.

With canonically extended ϕ�, the field (Mn(C+), {Mn(C�+
), ϕ�}�∈I ) is a continu-

ous field of C∗-algebras which is trivial away from 0. The above construction applies
therefore also to elements in [Mn(C0+

)]0 and [Mn(C0)]1 and induces homomorphisms
between the corresponding K-groups. ��

3.2. Boundary maps inK-theory. Suppose given an extension C q→ B by J := ker(q).
What interests us here are two maps, the boundary maps in K-theory, which measure
the extent to which the map induced by q on homotopy classes is not surjective. The
first of these maps is the exponential map

exp : K0(B) → K1(J )

which is induced from the map exp : [B]0 → [J ]1 defined as follows: Let p be a
projection in B. Since q is surjective, there exists an x ∈ C such that q(x) = p . Since
p is selfadjoint we can choose x selfadjoint and define

exp[p]0 := [u]1 , u = e2πıx .

If we apply the above to the cone (Example 3) given by CB ev∞→ B, then ker(ev∞) is the
suspension of B and the exponential map is the so-called Bott map exp = β : K0(B) →
K1(SB),

β[p]0 = [e2πıχp]1,

where χ : R → [0, 1] is a continuous function with limt→−∞ χ(t) = 0 and limt→∞
χ(t) = 1.

The second map of interest is the index map ind : K1(B) → K0(J ) defined as
follows: Given V ∈ U(Mn(B)) defining a class in K1(B), let W ∈ U(M2n(B)) be a lift

of

(
V 0
0 V ∗

)

. Then

ind([V ]1) =
[

W

(
1 0
0 0

)

W ∗
]

0
−
[(

1 0
0 0

)]

0
.

The index map of the extension defined by CB ev∞→ B is denoted by �. The fact [Bl86]
that the compositions �β : K0(B) → K0(SSB) and β� : K1(B) → K1(SSB) are
isomorphisms is called Bott periodicity.
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3.3. Boundary maps of Wiener-Hopf extension. We want to express the exponential and
the index map of the Wiener-Hopf extension ev∞ : CB�τ 1⊗αR −→ B�αR (discussed
in Example 4) using an ENN-map. Herefore we use theC∗-fields of Example 5 restricted
to [0, 1] ∈ R. They form the extension

ev∞ : C([0, 1], CB)�τ̃⊗α R → C([0, 1],B)�α R . (7)

The C∗-field corresponding to C([0, 1],B) �α R is trivial and that corresponding to
the ideal C([0, 1], SB) �τ̃⊗α R satisfies the conditions of Theorem 1 to give rise to
ENN-maps

µi : [SB �id⊗α R]i → [SB �τ⊗α R]i . (8)

Proposition 1. Let exp and ind be exponential and index maps of the Wiener-Hopf exten-
sion (5). Then µ1β = exp and µ0� = ind. Here we have used the identification
CB �id⊗α R ∼= C(B �α R).

Proof. A projection p ∈ B �α R defines a constant section in C([0, 1],B) �α R. If
x ∈ C([0, 1], CB) �τ̃⊗α R is a selfadjoint lift of the constant section under (7) then,
by definition, µ1[e2πiϕ0(x)]1 = [e2πıϕ1(x)]1. Furthermore exp[p]0 = [e2πıϕ1(x)]1 since
ϕ1(x) is a lift of p in (5). The claim follows since ϕ0(x) is a lift of p in the extension

CB �id⊗α R
ϕ∞→ B �α R, and χp a lift of p in the extension C(B �α R)

ϕ∞→ B �α R.
Under the identification stated in the lemma, e2πıχp is therefore homotopic to e2πıϕ0(x).
The argument involving the index map is similar. ��

4. Higher Traces on Banach Algebras

For background information on cyclic cohomology and higher traces (or n-traces) see
[C94]. Given an associative algebra B let Cnλ(B) be the set of n + 1-linear functionals
on B which are cyclic in the sense that η(A1, · · · , An,A0) = (−1)nη(A0, · · · , An).
Define the boundary operator b : Cnλ(B) → Cn+1

λ (B):

bη(A0, · · · , An+1) =
n∑

j=0

(−1)j η(A0, · · · , AjAj+1, · · · , An+1)

+(−1)n+1η(An+1A0, · · · , An) .
An element η ∈ Cnλ(B) satisfying bη = 0 is called a cyclic n-cocycle and the cyclic
cohomology HC(B) of B is the cohomology of the complex 0 → C0

λ(B) → · · · →
Cnλ(B)

b→ Cn+1
λ (B) → · · · .

4.1. Cycles. A very convenient way of looking at cyclic cocycles is in terms of char-
acters of graded differential algebras with graded closed traces (�, d,

∫
) over B. Here

� = ⊕
n∈N0

�n is a graded algebra (we denote by deg(a) the degree of a homoge-
neous element a) and d is a graded differential on � of degree 1. A graded trace on
the subspace �n is a linear functional

∫
: �n → C which is cyclic in the sense that∫

w1w2 = (−1)deg(w1) deg(w2)
∫
w2w1. It is closed if it vanishes on d(�n−1). In the sit-

uation below there is a largest number n for which�n is non-trivial. This n is called the
top degree of�. The graded trace will be a graded trace on the sub-space of top degree.
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Definition 1. An n-dimensional cycle is a graded differential algebra (�, d) of top
degree n together with a closed graded trace

∫
on �n. A cycle (�, d,

∫
) is called a

cycle over B if there is an algebra homomorphism B → �0.

We will assume here that the homomorphism B → �0 is injective and hence iden-
tify B with a sub-algebra of �0. The connection with cyclic cocycles is given by the
following proposition [C94].

Proposition 2. Any cycle of dimension n over B defines a cyclic n-cocycle through what
is called its character:

η(A0, . . . , An) =
∫
A0dA1 · · · dAn .

Conversely, any cyclic n-cocycle arises as the character of an n-cycle.

A (bounded) trace over B is an example of a cyclic 0-cocycle. Taking� = B, d = 0,∫
to be that trace, we have a realization of the trace as character of a 0-cycle.
For our purposes, the cyclic cohomology of C∗-algebras is too small, because we

need multilinear functionals which are unbounded. A particular class of unbounded
cyclic cocycles suitable for our purposes is given by the higher traces [C94, C86]. These
are characters of cycles over dense sub-algebras B′ of B satisfying a continuity condition.
It will be useful to relax the requirement of B being a C∗-algebra and rather consider
Banach algebras.

Definition 2. An n-trace on a Banach algebra B is the character of an n-cycle (�′, d,
∫
)

over a dense sub-algebra B′ of B such that for allA1, . . . , An ∈ B′ there exists a constant
C = C(A1, . . . , An) such that

∣
∣
∣
∣

∫
(X1dA1) · · · (XndAn)

∣
∣
∣
∣ ≤ C‖X1‖ · · · ‖Xn‖ , (9)

for all Xj ∈ B′+.

Condition (9) may be rephrased by saying that for all A1, . . . , An ∈ B′ the apriori
densely defined multi-linear functional

B×n → C : (X1, . . . , Xn) �→
∫
(X1dA1) · · · (XndAn)

extends to a bounded multi-linear functional. Denoting by p(A1, . . . , An) the norm
of that functional, i.e. the best possible constant C in (9), we have a family of maps
B×n → R satisfying

p(A1, . . . , λAj + λ′A′
j , . . . , An) ≤ |λ|p(A1, . . . , Aj , . . . , An)

+|λ′|p(A1, . . . , A
′
j , . . . , An) .

But since d is a derivation, it also satisfies

p(A1, . . . , AjA
′
j , . . . , An) ≤ ‖A′

j‖p(A1, . . . , Aj , . . . , An)

+‖Aj‖p(A1, . . . , A
′
j , . . . , An) .
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For simplicity, rather than considering cycles (�′, d,
∫
) over a dense sub-algebra B′,

we shall consider triples (�, d,
∫
) as in Definition 1 with � being a Banach algebra,

B ⊂ �0, but allowing for the possibility that d and
∫

are only densely defined. If the
character is densely defined and satisfies (9), we call the triple (�, d,

∫
) an unbounded

n-cycle. The role of (9) is to insure the existence of a third algebra B′′, B′ ⊂ B′′ ⊂ B,
to which the character can be extended (by continuity) and such that the inclusion
i : B′′ ↪→ B induces an isomorphism between K(B′′) and K(B) [C86].

An example of a cycle for the commutative algebra B = C(M) of continuous func-
tions over a compact manifold without boundary is given by the algebra of exterior
forms with its usual differential (�(M), d) and graded trace equal to integration of
n-forms, n = dim(M). This is an unbounded cycle. One may take B′ = C∞(M)
and p(A1, . . . , An) = ∫ |dA1 · · · dAn|, where (locally) |dA1 · · · dAn| = |f |d vol if
dA1 · · · dAn = f d vol. Note that p(A1, . . . , An) is not continuous in Aj w.r.t. the
supremum norm, which is the C∗-norm of B.

A 0-trace is a (possibly unbounded) linear functional tr which is cyclic and satis-
fies (9). A positive trace is a positive linear functional tr which is cyclic. It might be
unbounded (with dense domain), but it always satisfies |tr(AX)| ≤ tr(|A|)‖X‖ if A is
trace class and hence (9) holds with B′ being the ideal of trace class elements.

Here we need to construct higher traces on a Banach algebra B on which is given
a differentiable action of R

n leaving a (possibly unbounded) trace invariant. This is
essentially Ex. 12, p. 254 of [C94].

Proposition 3. Let B be a Banach algebra with a differentiable action of R
n and T be an

invariant positive trace onB. Denote by∇j , j = 1, · · · , n, commuting closed derivations
defined by the action and suppose that B′ = {A ∈⋂n

j=1 dom(∇j )| ∃j : ∇jA traceclass}
is dense in B. Then (�, d,

∫
) is an unbounded n-cycle over B, where

� := B ⊗�C
n ,

the tensor product of B with the Grassmann algebra �C
n with generators ej , j =

1, . . . , n,

d(A⊗ v) =
n∑

j=1

∇jA⊗ ej v ,

and
∫ = T ⊗ ı with ı(e1 · · · en) = 1, explicitly

∫
A0dA1 · · · dAn =

∑

σ∈Sn
sgn(σ ) T (A0∇σ(1)A1 · · · ∇σ(n)An) .

Proof. The algebraic aspects of this proposition are straightforward to show, see e.g.
[KRS02]. Since trace class operators form an ideal, B′ is a sub-algebra. Then (9) follows
from

|T ((X1∇1A1) · · · (Xn∇nAn))| ≤ ‖X1‖ · · · ‖Xn‖ ‖∇1A1‖ · · · ‖∇n−1An−1‖ T (|∇nAn|) ,
and the cyclicity of T . ��

The following is an extension of the above construction; it corresponds to an iteration
of Lemma 16, p. 258 of [C94].
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Proposition 4. Let (�, d,
∫
) be a (possibly unbounded) k-cycle over the Banach alge-

bra B which is invariant under a differentiable action of R
n in the sense that this action

commutes with d and leaves
∫

invariant. Denote by ∇j , j = 1, · · · , n, commuting
closed derivations defined by the action and suppose that

⋂n
j=1 dom(∇j ) ∩ B′ is a

dense sub-algebra of B such that on B′ ⊂ B the character of (�, d,
∫
) is fully defined.

Taking �′ = �⊗̂�C
n, the graded tensor product, d ′ = d⊗̂1 + δ with δ(w⊗̂v) =

(−1)∂w
∑
j ∇jw⊗̂ej v and

∫ ′ = ∫ ⊗̂ ı, one obtains a k + n-cycle (�′, d ′,
∫ ′
) over B.

Proof. The algebraic aspects are straightforward and again given in [KRS02]. The only
point to settle is condition (9). It follows iteratively from the case n = 1. For n = 1,
using cyclicity,

∣
∣
∣
∣

∫ ′
(X1d

′A1) . . . (Xk+1d
′Ak+1)

∣
∣
∣
∣ ≤

k+1∑

j=1

∣
∣
∣
∣

∫
(Xj∇1Aj)(Xj+1δAj+1) · · · (Xj−1δAj−1)

∣
∣
∣
∣

≤
k+1∑

j=1

‖X1‖ · · · ‖Xk+1‖
∥
∥∇1Aj

∥
∥Cj ,

where Cj depends only on A1, . . . , Aj−1, Aj+1, . . . , Ak+1. This inequality shows also
that the character of the cycle is defined on

⋂n
j=1 dom(∇j ) ∩ B′. ��

4.2. Cyclic cocycles for crossed products with R. An action of R on a graded differential
algebra (�, d) is a homomorphism α : R → Aut(�) such that ∀ t ∈ R, αt has degree
0 and commutes with d . If � is a Banach algebra or even a C∗-algebra, we require in
addition that for all A ∈ B, t �→ αt (A) is continuous and ‖αt‖ = 1. Therefore we can
form L1(�,R, α) as well as the crossed product ��αR.

Definition 3. A n-cycle (�, d,
∫
) over B is called invariant under an action α of R on

� if the graded trace
∫

is invariant under it. If (�, d,
∫
) is unbounded, we require in

addition that the norms p(A1, . . . , An) (cf. Definition 2) satisfy that

Q(A1, . . . , An) := sup
ti∈R

p(αt1(A1), . . . , αtn(An)) (10)

is finite for all Aj ∈ B′ ⊂ B, where B′ is a dense sub-algebra on which the character
of the n-cycle is fully defined. An n-trace of B is invariant under an action α of R if it is
the character of an α-invariant cycle (�, d,

∫
).

We note that, by cyclicity of the graded trace, the above additional condition is
equivalent to demanding that supt1∈R p(αt1(A1), A2, . . . , An) exists for all Aj ∈ B′.
Furthermore, Q inherits the properties of p, i.e.

Q(A1, . . . , λAj + λ′A′
j , . . . , An) ≤ |λ|Q(A1, . . . , Aj , . . . , An)

+|λ′|Q(A1, . . . , A
′
j , . . . , An) , (11)

Q(A1, . . . , AjA
′
j , . . . , An) ≤ ‖A′

j‖Q(A1, . . . , Aj , . . . , An)

+‖Aj‖Q(A1, . . . , A
′
j , . . . , An) . (12)
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Theorem 2. Let (�, d,
∫
) be an α-invariant (possibly unbounded) n-cycle over the

Banach algebra B and ∇ : L1(R,B, α) → L1(R,B, α) be the derivation ∇f (x) =
ıxf (x). Then (�α, dα,

∫
α
) is an unbounded n+ 1-cycle over L1(R,B, α) where

�α = L1(R, �, α) ⊗̂�C,

dα(ω⊗̂v) = d ′ω⊗̂v + (−1)deg(ω) ∇ω⊗̂ e1v , d ′ω(x) = d(ω(x)) ,

∇ω(x) = ıxω(x) ,

and
∫
α

= ∫ ev0⊗̂ ı, i.e.

∫

α

f0dαf1 · · · dαfn+1 =
n+1∑

j=1

(−1)j
∫
(
f0df1 · · · dfj−1(∇fj )dfj+1 · · · dfn+1

)
(0).

Proof. We first show that the triple (L1(R, �, α), d ′,
∫

ev0) defines an unbounded n-
cycle overL1(R,B, α). The required algebraic properties are straightforwardly checked
(cf. [KRS02]) and we focus here on the continuity aspects (9). Let B′ ⊂ B be a dense
sub-algebra on which the character of (�, d,

∫
) is fully defined and

Vfin :=
⋃

V⊂B′, dim V<∞
Cc(R, V ) ,

the union being over all finite dimensional linear sub-spaces of B′ andV :=⋃t∈R
αt (V ),

the orbit of V under the action. The space Vfin is linear and sinceQ(A1, . . . , An) is finite
for all Aj ∈ B′, we obtain from (11) that

Q(f1, . . . , fn) := sup
tj∈R

Q(f1(t1), . . . , fn(tn))

is finite for all fj ∈ Vfin. Furthermore, Vfin is clearly dense in Cc(R,B′) in the L1-norm.
Now let Afin be the sub-algebra of L1(R,B, α) generated algebraically by Vfin, i.e. it
consists of finite twisted convolution products of elements of Vfin. Since, by (12),

Q(f1g1(t), f2(t) . . . ) ≤
∫
ds (‖f1(s)‖Q(g1(t − s), f2(t) . . . )

+‖g1(t − s)‖Q(f1(s), f2(t) . . . )) ,

we obtain

Q(f1g1, f2 . . . , fn) ≤ ‖f1‖L1 Q(g1, f2 . . . )+ ‖g1‖L1 Q(f1, f2 . . . ) .

Therefore Q(f1, . . . , fn) is finite for all fj ∈ Afin. The character of
(L1(R, �, α), d ′,

∫
ev0) is now restricted to the dense sub-algebra Afin. Then we obtain

∣
∣
∣
∣

∫
ev0(X1d

′f1) . . . (Xnd
′fn)

∣
∣
∣
∣ ≤ ‖X1‖L1 · · · ‖Xn‖L1 |

supp(f1)| · · · |supp(fn)| Q(f1, . . . , fn) . (13)

Here |supp(f )| is the (finite) length of the support of f . This shows that there ex-
ists a dense sub-algebra of the Banach algebra L1(R,B, α) on which the character of
(L1(R, �, α), d ′,

∫
ev0) satisfies (9).
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Now on L1(R,B, α) and L1(R, �, α) we have the dual action of R (identified here
with the dual group of R) and its corresponding derivation is ∇. It is densely defined
and satisfies the conditions of Proposition 4. Applying that proposition, one obtains
(L1(R, �, α), dα,

∫
α
), which is an unbounded n+ 1-cycle. ��

Definition 4. If η is the character of an α-invariant n-cycle (�, d,
∫
) over B, we

define #αη to be the character of (�α, dα,
∫
α
) constructed in Theorem 2, i.e. for fj ∈

L1(R,B, α),

#αη(f0, . . . , fn+1) =
n+1∑

k=1

(−1)k
∫

ev0 (f0df1 · · · ∇fk · · · dfn+1) ,

∇f (x) = ıxf (x) .

Restricted to the context of smooth R-actions on smooth sub-algebras of C∗-alge-
bras, Theorem 2 can be compared with a result in [ENN88]. In fact, it coincides with a
construction given in that article for general n-cycles over a smooth sub-algebra of B in
the case that these n-cycles are α-invariant in our sense.

Whenever we have several commuting R actions leaving a cycle invariant, we can
iterate this construction, since we can extend a second action β in � to an action on �α
commuting with the differential dα and leaving

∫
α

invariant by evaluating it pointwise
on functions f : R → � and keeping the new Grassmann generator of �α fixed.

Example 6 (Suspension of n-traces). The suspension SB of aC∗-algebra B is via Fourier
transform isomorphic to the crossed product B �id R. For a given n-trace η over B, the
above construction yields an n+ 1-trace #idη over L1(R,B, id). When intertwined with
the Fourier transform one obtains a n + 1-trace which we denote by ηs over a dense
Banach sub-algebra of SB. However, since the conditions of Definition 3 are trivially
satisfied in that case and the linear space Vfin used in the proof of Theorem 2 is a dense
sub-algebra of C0(R,B) under pointwise multiplication we can simplify the arguments
of Theorem 2 thereby improving (13), namely, for fi ∈ Vfin,
∣
∣
∣
∣

∫

R

ds

∫
(X1d

′f1)(s) . . . (Xnd
′fn)(s)

∣
∣
∣
∣ ≤ ‖X1‖ · · · ‖Xn‖ Q̃(f1, . . . , fn), (14)

where Q̃(f1, . . . , fn) = |supp(f1)| · · · |supp(fn)| suptj∈R p(f1(t1), . . . , fn(tn)) and
the norm is here the C∗-norm on SB.

As a result, if (�, d,
∫
) is an n-cycle over a Banach algebra B whose character is

η and ∂s : SB → SB the derivative w.r.t. the suspension variable, then ηs is the char-
acter of the unbounded n + 1-cycle (�s, ds,

∫ s
) over SB, where �s := S�⊗̂�C and

(ω ∈ S�)

ds(ω⊗̂v) = d ′ω⊗̂ v + (−1)deg(ω) ∂sω⊗̂ e1v ,

where d ′ω(s) = d(ω(s)) and
∫ s = ∫

R
ds
∫ ⊗̂ ı.

Example 7 (Canonical 3-trace for the Heisenberg group algebra). We first construct the
canonical 2-trace of the group algebra of R

2 which is equal to C�id R�id R ∼= SSC. On
C we consider the trace Tr, a 0-cocycle which is the character of the 0-cycle (C, 0, id).
Then we apply the construction of Example 6 twice to obtain the double suspension of Tr
for the algebra SSC ∼= C�id R�id R, namely (Css , dss,Trss), where C

ss = SSC⊗̂�C
2,
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dss = ∂a3⊗̂e1 + ∂a2⊗̂e2 and Trss = ∫
R2 da2da3Tr ⊗ ı (we use the notation of Exam-

ple 1). If restricted to the smooth group algebra of R
2 this 2-trace becomes a genuine

cocycle referred to as the canonical cocycle of the group algebra of R
2. Its character is

the well-known Chern character.
Recall that the Heisenberg group algebra is isomorphic to SSC �τ̃ R and so we seek

to apply Theorem 2 to the action τ̃ on the above double suspension. Since this action
does not commute with ∂a3 , we cannot extend it trivially to the Grassmann generators.
Instead we set

(τ̃a1(f ⊗̂1))(a2)(a3) = f (a2)(a3 − a2a1)⊗̂1 ,

τ̃a1(1⊗̂e1) = 1⊗̂e1 ,

τ̃a1(1⊗̂e2) = 1⊗̂e2 − a1(1⊗̂e1) .

We claim that τ̃a1 commutes with dss : it suffices to check this for elements of degree 0
in e1 and e2 where we get

τ̃a1d
ss(f ⊗̂1)(a2)(a3) = ∂1f (a2)(a3 − a2a1)⊗̂e1 + ∂2f (a2)(a3 − a2a1)⊗̂(e2 − a1e1) ,

dss τ̃a1(f ⊗̂1)(a2)(a3) = (∂1f (a2)(a3 − a2a1)− a1∂2f (a2)(a3 − a2a1)) ⊗̂ e1

+ ∂2f (a2)(a3 − a2a1)⊗̂e2 .

Furthermore, τ̃ leaves the graded trace Trss invariant, because of τ̃a1(1⊗̂e1e2) = 1⊗̂e1e2

and the translation invariance of the Lebesgue measure on R
2. In order to apply Theo-

rem 2, we show that the 2-cycle (Css , dss,Trss) satisfies the uniform bound (10) w.r.t.
the dense sub-algebra C1

c (R
2,C) ⊂ SSC given by continuously differentiable func-

tions with compact support. One finds for the norms p(f1, f2) (cf. Definition 2), using
∂a2 τ̃t (f1) = τ̃t (∂1f1)− t τ̃t (∂2f1) and ∂a3 τ̃t (f1) = τ̃t (∂2f1),

p(τ̃t (f1), f2) ≤ (‖τ̃t (∂1f1)‖ ‖∂2f2‖ + ‖τ̃t (∂2f1)‖ ‖∂1f2‖) |supp(f2)|
+ ‖τ̃t (∂2f1)‖ ‖∂2f2‖ |t | |supp(τ̃t f1) ∩ supp(f2)| .

Here ‖.‖ is the supremum norm on SSC. Since |t | |supp(τ̃t f1)∩ supp(f2)| is bounded in
t for any two compactly supported functions f1, f2, we obtain the desired result, namely
that p(τ̃t (f1), f2) is bounded in t . Hence we are in a position to apply Theorem 2 from
which we then infer a 3-cycle over L1(R, SSC, τ̃ ) given by

(

L1(R, SSC⊗̂�C
2, τ̃ )⊗̂�C, dssτ̃ ,

∫

R2
da2da3 Tr ev0 ⊗ ı

)

.

Its character is the canonical 3-trace of the L1-crossed product L1(R, SSC, τ̃ ). The
latter is dense in the Heisenberg group algebra and closed under holomorphic functional
calculus.

Example 8. If (�, d,
∫
) is an α-invariant n-cycle over B, then the above construction

straightforwardly generalizes to theC∗-field SSB�τ̃⊗αR from Example 2 and we obtain
the n+ 3-cycle

(

L1(R, SS�⊗̂�C
2, τ̃ ⊗ α)⊗̂�C, dssτ̃⊗α,

∫

R2
da2da3

∫
ev0 ⊗ ı

)
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whose character is an n+3-trace on the Banach algebraL1(R, SSB, τ̃ ⊗α). The details
of the proof that the intermediate n+ 2-cycle is τ̃ ⊗α-invariant are worked out as above
and we only indicate how to show the bound (10) for the n+ 2-cycle,

(

SS�⊗̂�C
2, dss,

∫

R2
da2da3

∫
⊗ ı

)

.

For that consider the dense sub-algebra Vfin =⋃V∪B′, dim V<∞ C1
c (R

2, V ) of SSB. Then

Q̃(f1, . . . , fn) := |supp(f1)| . . . |supp(fn)| sup
sj ,tj∈R2

p(αs1(f1(t1)), . . . , αsn(fn(tn)))

is finite for all fj ∈ Vfin, and we get the desired bound (10) from

p(τ̃ ⊗ αt (f1), f2, . . . , fn+2) ≤
∑

k �=j
‖∂1fk‖ ‖∂2fj‖Q̃(. . . no fk & fj . . . )

+
∑

j �=1

‖∂2f1‖ ‖∂2fj‖Q̃(. . . no f1 & fj . . . )

|t ||supp(τ̃t f1) ∩ supp(fj )| .

4.3. Chains and boundaries. The interest in the following definition is that the graded
traces are not supposed to be closed.

Definition 5. An n-dimensional chain (�, d,
∫
, ∂�, r) is a graded differential algebra

(�, d) of top degree n together with a graded trace
∫

on �n and a surjective homo-
morphism of graded algebras of degree zero r : � → ∂� onto a graded algebra of top
degree n− 1 such that d ker(r) ⊂ ker(r) and

∫
dω = 0 if r(ω) = 0. The chain is called

a chain over B if there exists an algebra homomorphism B → �0.
For a chain (�, d,

∫
, ∂�, r) over a Banach algebra we require r : � → ∂� to be a

continuous map between Banach algebras. Such a chain is called unbounded if d and
∫

and the character of the chain, (A0, · · · , An) �→ ∫
A0dA1 · · · dAn, are densely defined

but satisfy condition (9).

As for cycles, we consider here only the case that B ⊂ �0.
An example of an unbounded chain for a commutative algebra C(M) of functions

over a compact manifold is obtained when one looks at the algebra of exterior forms with
its usual differential and integration structure, but M has a boundary ∂M . The map r is
then simply the restriction to the boundary and ∂� = �(∂M). In this context, Stokes’
Theorem relates integration of exact dim(M)-forms overM to the integration of a form
over the boundary ∂M . The following definition is motivated so that such a theorem
holds automatically in the non-commutative setting.

Definition 6. The boundary of an n-dimensional chain (�, d,
∫
, ∂�, r) is the n − 1-

dimensional cycle (∂�, d ′,
∫ ′
) where

d ′ω′ = rdω ,

∫ ′
ω′ =

∫
dω ,

for some ω ∈ r−1(ω′).



Boundary Maps for C∗-Crossed Products 625

The following example is important for the construction of the dual of the ENN-map
in (8).

Example 9. Consider the continuous C∗-field SSB �τ̃⊗α R from Example 2 together
with an α invariant n-cycle (�, d,

∫
) over B. In Example 8 we have constructed an

n + 3-cycle for a dense Banach sub-algebra of the field. Now restrict this C∗-field to
the interval [�0, �1] ⊂ R, i.e. consider C0([�0, �1] × R,B) �τ̃⊗α R. If we repeat the
construction of the n+3-cycle, we end up with a graded differential algebra with graded
trace
(

L1(R, C0([�0, �1] × R, �)⊗̂�C
2, τ̃ ⊗ α)⊗̂�C , dssτ̃⊗α,

∫

[�0,�1]×R

d� ds

∫
ev0 ⊗ ı

)

which is not closed. This is a chain if we set

∂
(
L1(R, C0([�0, �1] × R, �)⊗̂�C

2, τ̃ ⊗ α)⊗̂�C

)

=
⊕

j=0,1

L1(R, C0(R, �)⊗̂�C, τ�j ⊗ α)⊗̂�C,

the first Grassmann part �C being the sub-algebra of �C
2 of elements not containing

e1, and

r(ω) =





ω|�=�0 ⊕ ω|�=�1 if ωe1 �= 0

0 otherwise.

To verify this let us split dss
τ̃⊗α = δ1 + δ2, where δ1(F ⊗̂1) = ∂�F ⊗̂e1. Then

dssτ̃⊗αF1 · · · dssτ̃⊗αFn+3 =δ1(F1d
ss
τ̃⊗αF2 · · · dssτ̃⊗αFn+3)+δ2(F1d

ss
τ̃⊗αF2 · · · dssτ̃⊗αFn+3) .

(15)

The graded trace
∫

[�0,�1]×R

∫
ev0 applied to the second term vanishes, because

∫
R

∫
ev0

is closed w.r.t. δ2. The graded trace applied to the first term yields, when first integrated
over [�0, �1], the boundary term,
∫

[�0,�1]×R

∫
ev0
(
dssτ̃⊗αF1 · · · dssτ̃⊗αFn+3

) =
∫

R

∫
ev0 (F1δ2F2 · · · δ2Fn+3)

∣
∣
∣
∣

�1

�0

.

The integrand vanishes ifF1d
ss
τ̃⊗αF2 · · · dss

τ̃⊗αFn+3 lies in the kernel of r . This proves that
the above is indeed a chain, namely it shows that Stokes’Theorem holds. Since this chain
is essentially the restriction of the cycle of Example 8 to a closed interval, its character
satisfies (9) w.r.t. to the Banach sub-algebra L1(R, C0([�0, �1] × R,B), τ̃ ⊗ α).

5. Pairings Between K-Theory and Higher Traces

A cyclic n-cocycle η over B extends to one over B+ = B × C via η((A0, λ0), . . . ,

(An, λn)) = η(A0, . . . , An). Moreover, Tr ⊗ η is a cyclic cocycle over Mm(B) ∼=
Mm(C)⊗B, where Tr is the standard matrix trace. Define, for a projection p ∈ Mm(B+)
or a u ∈ U(Mm(B)), respectively,

〈η, p〉 = cn Tr ⊗ η(p, . . . , p) , n even, (16)

〈η, u〉 = cn Tr ⊗ η(u∗ − 1, u− 1, . . . ) , n odd , (17)

the last formula with alternating entries. The normalization constants are (chosen as in
[P83], but not as in [C94]):
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c2k = 1

(2πı)k
1

k!
, c2k+1 = 1

(2πı)k+1

1

22k+1

1

(k + 1
2 )(k − 1

2 ) · · · 1
2

.

5.1. General properties of pairings. The map 〈., .〉 defined in (16) and (17) is referred
to as Connes’ pairing between theK-theory and cyclic cohomology of B because of the
following property:

Theorem 3 [C86, C94]. Let B be a Banach algebra. The map 〈., .〉 induces bi-additive
maps Kn(B) ×⊕m≥0HC

2m+n(B) → C. In particular, if η a cyclic n-cocycle and x
a projection in Mm(B+) if n is even, or a unitary of U(Mm(B)) if n is odd, then 〈η, x〉
depends only on the homotopy class of x.

Another point of view of this theorem is that an even (odd) cyclic cocycle defines
a functional Kn(B0) → C, n = 0 (n = 1). In Sect. 4.1 we mentioned that there are
not enough (bounded) cyclic cocycles on a C∗-algebra and therefore discussed n-traces
on Banach algebras. These do equally well in this context as the following proposition
shows.

Proposition 5 [C86]. Any n-trace on a Banach algebra B defines by extension of the
formulas (16) and (17) a functional on Kn(B).

The reason for this is that the algebra B′′ mentionned in Sect. 4.1 to which the n-trace
can be extended by continuity is closed under holomorphic functional calculus. This
implies that Kn(B′′) ∼= Kn(B) with isomorphisms induced by B′′ ⊂ B and therefore
any class in Kn(B) contains a representative descending from B′′ which can be used to
determine the pairing. By [B85], the n+ 1-trace #αη constructed in Theorem 2 yields a
well-defined functional on the K-groups of the C∗-crossed products.

Furthermore, Connes analysis of [C86] in which he shows that the character of a
higher trace on B can be extended by continuity to a dense sub-algebra B′′ which is
closed under holomorphic functional calculus does not require

∫
to be closed and there-

fore extends to the case of chains. This implies that the character of the boundary of an
unbounded chain (�, d,

∫
, ∂�, r) over B = �0 is fully defined on r(B′′). By continu-

ity of the surjection r , r(B′′) is dense in ∂�0 and closed under holomorphic functional
calculus. HenceKn(r(B′′)) ∼= Kn(∂�

0)with isomorphism induced by inclusion. There-
fore, the character η of the boundary of the unbounded chain defines by extension of the
formulas (16) and (17) a functional on Kn(∂�0).

Proposition 6. Let (�, d,
∫
, ∂�, r) be an n-dimensional (possibly unbounded) chain

over a Banach algebra�0 and consider x′ ∈ ∂�0, a projection if n−1 is even (a unitary
if n− 1 is odd). If there exists a projection x ∈ �0 if n− 1 is even (a unitary if n− 1 is
odd) such that x′ is homotopic to r(x) then x′ pairs trivially with the character η of the
boundary of the chain.

Proof. Consider first the case in which n − 1 = 2k and x′ is homotopic to r(p) for a
projection p ∈ �0. Since the chain is unbounded p can be found in a sub-algebra of�0

which is closed under holomorphic functional calculus and to which the character of the
chain extends by continuity. Then the pairing reads

1

c2k
〈η, x′〉 =

∫ ′
r(p)(d ′r(p))2k =

∫
(dp)2k+1 .
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As
∫

is a graded trace, this vanishes because

(dp)2k+1 = p(dp)2k+1(1 − p)+ (1 − p)(dp)2k+1p .

If the degree is n−1 = 2k+1 we let u be a unitary in the above dense sub-algebra such
that x′ is homotopic to r(u). Then

1

c2k+1
〈η, x′〉 =

∫
(du∗du)k+1 = −

∫
(dudu∗)k+1 .

The last equality follows because
∫

is a graded trace and the degree ofdu and (du∗du)kdu∗
are both odd. On the other hand, recall du∗ = −u∗duu∗ so that, using cyclicity again

∫
(du∗du)k+1 =

∫
(−u∗duu∗du)k+1 =

∫
(−duu∗duu∗)k+1 =

∫
(dudu∗)k+1 ,

which shows that 〈η, x′〉 has to vanish. ��
Under pairing with K-theory, cyclic cohomology behaves like a periodic cohomol-

ogy theory. This means, in particular, that there exists a map (denoted S in [C94]) that
assigns to each cyclic n-cocycle a cyclic n+2-cocycle which pairs in the same way with
K-theory. In our context this reads as follows.

Recall that an n-trace η on B extends to an n-trace on the matrix algebras over B or
to K ⊗ B by the operator trace on the left factor, Tr ⊗ η. Furthermore, following [R82]
we construct in the appendix an isomorphism SB �τ⊗α R ∼= K ⊗ B for any R-action
α on B. If η is α-invariant then under this isomorphism Tr ⊗ η gets identified with the
character ηe of the n-cycle (S��τ⊗α R, de,

∫ e
),

(def )(x)(s) = d(f (x)(s)) ,
∫ e

ω =
∫
ds

∫
ω(0)(s) .

Although the following result is known, we provide a proof of it in the appendix, filling
in some details left to reader in [C94].

Theorem 4. Let η be an α-invariant n-trace on B and x be a representative for an
element in Ki(SB �τ⊗α R). Then

〈#τ⊗αηs, x〉 = − 1

2π
〈ηe, x〉 . (18)

5.2. The duality equation. In the following proposition we construct the dual to the
ENN-maps (8).

Proposition 7. Let η be an α-invariant n-trace on B and SSB �τ̃⊗α R the C∗-field from
Example 2 with fibre map ϕ�. Furthermore, x ∈ Mm((SSB �τ̃⊗α R)+) is a projection
if n is even, or x ∈ U(Mm(SSB �τ̃⊗α R) if η is odd. Denote x� = ϕ�(x). Then the
pairings

〈#τ�⊗αη
s, x�〉

(for a given � over the algebra SB �τ�⊗α R) are independent of �. In other words, the
map

#τ 1⊗αηs �→ #τ 0⊗αηs

is the dual to the ENN-map (8).
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Proof. We apply Proposition 6 to the chain constructed in Example 9. The boundary
of this chain is a cycle for SB �τ�0 ⊗α R ⊕ SB �τ�1⊗α R and its character is given
by #τ�1⊗αη

s ⊕ −#τ�0 ⊗αη
s , cf. Eq. (15). Furthermore r(x) = (x�0 , x�1) is a projection

(unitary) in that algebra. By Proposition 6 (x�0 , x�1) therefore pairs trivially with the
character of the boundary of the chain, i.e. 0 = 〈#τ�1⊗αη

s, x�1〉−〈#τ�0 ⊗αη
s, x�0〉 . ��

Theorem 5. Let x be a representative for an element in Ki(B �α R) and η be an α-
invariant n-trace over B. Then

〈#αη, x〉 = −〈#τ⊗αηs, ∂i(x)〉 , (19)

where ∂0 = exp : K0(B �α R) → K1(SB �τ⊗α R) and ∂1 = ind : K1(B �α R) →
K0(SB �τ⊗α R).

Proof. Applying Proposition 7 to the points � = 0 and � = 1 and Proposition 1, it
suffices to show that 〈#αη, x〉 = −〈#id⊗α ηs, ∂i(x)〉, where now ∂0 = β and ∂1 = �.

Let us look here at the case i = 0 in which x is represented by a projection p.
Then β[p] is represented by the unitary Gp + 1, where G(s) = e2πıχ(s) − 1. Since
G commutes with p, the calculation is simple. If η is the character of the 2k + 1
cycle (�, d,

∫
), then #id⊗α ηs is the character of (�sα, d

s
α,
∫
R

∫
ev0) and we write again

dsα = δ1 + dα , where δ1(f ⊗̂1) = ∂sf ⊗̂e2. Then dsα(Gp) = (∂sG)p⊗̂e2 + Gdαp so
that, using p(dαp)mp = p(dαp)

m for even m and p(dαp)mp = 0 for odd m, one gets

〈#id⊗αηs,Gp + 1〉 = c2k+3

∫

R

∫
ev0

(
Ḡp dsα(Gp)

(
dsα(Ḡp)d

s
α(Gp)

)k+1
)

= − (k + 2)c2k+3

∫

R

G′Gk+1Ḡk+2
∫

ev0

(
p(dαp)

2k+2
)

= − 〈#αη, p〉,
since

∫
R
G′Gk+1Ḡk+2 = 2πı (2k+3)!

(k+1)!(k+2)! .
As the case i = 1 is not needed for our application to the quantum Hall effect, we

refer the reader to [P83] for the corresponding calculation. ��
Theorem 6. Consider an R-action α on a C∗-algebra B together with an α invariant
n-trace η on B. Then #αη satisfies the duality equation

〈#αη, x〉 = − 1

2π
〈η, ∂ix〉 , x ∈ Ki(B �α R) ,

where ∂i are the boundary maps of K-theory associated to (1).

Proof. Combine Theorem 5 and Theorem 4. ��

6. Topology of the Integer Quantum Hall Effect

In quantum Hall samples, there are two current carrying mechanisms: edge currents flow
along the boundaries due to intercepted cyclotron orbits and bulk currents result from
the Lorentz drift in presence of an exterior electric field. Important in the present context
is that both these currents are topologically quantized by a Fredholm index resulting
from a pairing of adequate elements of K-groups and higher traces (unbounded cyclic
cocyles). While for bulk currents, this was known for a long time [Be86, AS85, K87,
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Be88, ASS94, BES94], quantisation of edge currents was only proven more recently
and under a gap condition on the bulk Hamiltonian, namely, in a tight binding context in
[SKR00, KRS02, EG02], and for continuous magnetic (differential) operators in [KS03].
In the continuous case, the two pairings turn out to be over two of the algebras in the
Wiener-Hopf extension (1) and Theorem 6 then implies equality of bulk and edge Hall
conductivities. To explain this result and the quantities involved in more detail is the
subject of this section.

Within the tight-binding approximation an analogous result was proven in [KRS02]
and re-derived by ad-hoc methods by Elbau and Graf [EG02]. Equality of bulk and
edge conductivities appeared already in various other guises, for instance, in the frame-
work of scaling theory [P85] and that of classical mechanics as resulting from a simple
conservation law [F94].

6.1. Bulk and edge-Hall conductivity. Here we summarize the framework and the results
of [KS03] and then state the main theorem for quantum Hall systems. We described a
quantum Hall system with disorder and a boundary by means of covariant families of
integral operators on L2(R2). For this we combined a Borel probability space (�,P)
whose elements describe disorder configurations2 in R

2 with the space R̂ = R ∪ {+∞}
(topologically a half open interval). Points s ∈ R̂ describe the position of the boundary
of the half-space3

R × R
≤s , where R

≤s = {x ∈ R|x ≤ s}. The space � carries an
R

2-action which is reminiscent of the translation of a disorder configuration. We denote
this action by ω �→ x · ω. For concreteness we may think of x · ω as the configuration
ω being shifted by x, i.e. x · ω looks at y + x like ω at y. The probability measure P is
required to be invariant and ergodic under this action. Furthermore,� carries a compact
metric topology w.r.t. which the action is continuous. The R

2-action is extended to an
action on �̂ = �× (R∪{+∞}) by (ω, s) �→ (x ·ω, s+ x2), that is the extended action
shifts the boundary in the same direction as the configuration. A family A = (Aω̂)ω̂∈�̂
of integral operators on L2(R2) is called covariant if

U(ξ )Aω̂U(ξ )
∗ = Aξ ·ω̂ , ξ ∈ R

2 ,

whereU(ξ ) are the magnetic translation operators defined in Sect. 6.2 below. The quan-
tum Hall system is described by a random family H = (Hω̂)ω̂∈�̂ of Hamiltonians,

Hω̂ = �
2

2m
((ı∂1 − γX2)

2 + ı∂2
2 )+ Vω

acting on L2(R×R
≤s)with Dirichlet boundary conditions at s. Here Vω is the potential

depending on the random variable ω ∈ � and γ is the strength of the magnetic field.
It is shown in [KS03] that sufficiently regular bounded and compactly supported func-
tions of H yield covariant families of integral operators. Moreover, if we push the
boundary to +∞, then we describe a disordered system without boundary by a family
of Hamiltonians denoted H∞ = (H(ω,∞))ω∈�. In this framework [BES94, ASS94],
the bulk Hall conductivity of a gas of independent electrons described by the planar
Hamiltonian at zero-temperature and with chemical potential µ belonging to a mobility
gap in the spectrum of the Hamiltonian is given by

2 We use here the customory notation � for the space of disorder configurations. It should not be
confused with the notation for graded algebras used earlier.

3 It is easier in the present context to work with the left half space instead of the right half space we
used in [KS03].
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σ⊥
b (µ) = q2

h
ch(Pµ, Pµ, Pµ) , ch(A,B,C)

= −2πı T (A([X1, B][X2, C] − [X2, B][X1, C])) . (20)

HerePµ = χ(−∞,µ](H∞) is the covariant family of associated Fermi projections,Xj the
j -component of the position operator and T the trace per unit volume (precise definition
given in Eq. (23) below).

The main result of [KS03] is that the edge Hall conductivity of a gas of independent
electrons described by the Hamiltonian H with Dirichlet boundary conditions at the
edge at zero-temperature and with chemical potential µ belonging to a gap � in the
spectrum of the planar Hamiltonian H∞ is given by

σ⊥
e (µ) = − q2

h
ξ(U∗(�)− 1,U(�)− 1) , ξ(A,B) = T̂ (A[X1, B]) . (21)

Here U(�) is constructed from the half-planar Hamiltonian via functional calculus

U(�) = exp(−2πı G(H)) (22)

for a monotonously decreasing smooth function G : R → R with G(−∞) = 1,
G(∞) = 0, and supp(G′) ⊂ �\G−1( 1

2 ), and T̂ is the trace per unit length along the
boundary combined with the operator trace perpendicular to the boundary (its precise
definition is given in Eq. (24) below). The corollary of Theorem 6 is then:

Theorem 7. Suppose that E is in a gap of H∞, the Hamiltonian on the plane without
boundary. Then

σ⊥
e (E) = σ⊥

b (E) .

In the Landau model and its restriction to the half-space, a proof can be given by explic-
itly calculating both pairings and then seeing that both numbers are the same [SKR00].
This calculation makes use of the translation invariance in the direction along the bound-
ary. Not only does it exclude any type of disorder which breaks that invariance, it is also
not very satisfactory in that it does not show directly that both pairings are the same.
Moreover, the explicit calculation of both sides becomes already very complicated if a
periodic potential is added.

To prove the theorem we need to describe how to view covariant families of operators
as elements of C∗-algebras and how (20) and (21) can be interpreted as pairings.

6.2. Observable algebra with disorder and boundary. The first component of the action
ω �→ x · ω of R

2 on � corresponds to translating the disorder configuration along the
boundary and yields an R-action on C(�) given by

β‖
x1
(f )(ω) = f ((x1, 0) · ω) .

The second component of the action ω �→ x · ω yields for given γ ∈ R an R-action on
the crossed product C(�)�β‖ R by (f : R → C(�))

β⊥
x2
(f )(x1)(ω) = eıγ x1x2f (x1)((0, x2) · ω) .

This corresponds to translating the disorder configuration perpendicular to the boundary
together with a phase shift depending on γ . We can interpret γ as the strength of the mag-
netic field and A∞ = C(�)�β‖ R�β⊥ R as the observable algebra for the planar model.



Boundary Maps for C∗-Crossed Products 631

Following the philosophy in [KS03], we can view A∞ as being obtained from a larger
algebra A = C0(�̂)�β‖ R �τ⊗β⊥ R, where we extend β‖ trivially to the second factor

of �̂ and
(τ ⊗ β⊥)x2(f )(x1)(ω̂) = eıγ x1x2f (x1)((0, x2) · ω̂) .

A can be interpreted as the observable algebra for the system with boundary. Its relation
with the covariant operator families of [KS03] is as follows.

A point ω̂ ∈ �̂ defines a one-dimensional representation ofC0(�̂), ρω̂ : C0(�̂) → C:
ρω̂(f ) = f (ω̂). Applying (4) twice, we get a representation πω̂ of A on L2(R2). If
F : R → (R → C0(�̂)), then the integral kernel of πω̂(F ) is

〈x |πω̂(F )|y 〉 = ρω̂β
‖
−x1

(
(τ ⊗ β⊥)−x2 (F (x2 − y2)) (x1 − y1)

)

= e−ıγ (x1−y1)x2F(x2 − y2)(x1 − y1)(−x · ω̂) .
It follows that 〈x − ξ |πω̂(F )|y − ξ 〉 = eıγ (x1−y1)ξ2〈x |πξ ·ω̂(F )|y 〉 and hence

U(ξ )πω̂(F )U(ξ )
∗ = πξ ·ω̂(F ) ,

where the magnetic translation operators U(ξ ) are defined by

(U(ξ )ψ)(x ) = �̂(ξ , x − ξ ) ψ(x − ξ ) , �̂(ξ , x ) = e−ıγ ξ2x1 .

The collection π(F ) = (πω̂(F ))ω̂∈�̂ forms therefore a covariant family of bounded inte-
gral operators. By construction the operators are weakly continuous in ω̂ and the norm
‖π(F )‖∞ which we defined in [KS03] to be the essential supremum over ‖πω̂(F )‖ is
bounded by the C∗-norm ‖F‖. If we apply the above construction to each summand in
the direct sum representation ρ = ⊕

ω̂∈�̂ ρω̂ we obtain a representation π which also
decomposes into a direct sum representation, namely on

⊕
ω̂∈�̂ L

2(R2), and we can
interpret the covariant family (πω̂(F ))ω̂∈�̂ as the representative π(F ) of F . Since the
direct sum representation ρ is faithful, also π is faithful and so, first, identifies A with a
sub-algebra of the completion of the algebra of weakly continuous covariant families of
bounded integral operators denoted A in [KS03], and second, implies ‖π(F )‖∞ = ‖F‖.
The estimates established in [KS03] now show that for potentials Vω(x) := V (−x · ω)
with V ∈ C(�) and differentiable along the flow of the R

2 action and F ∈ Ckc (R)

with k > 6, the covariant families F(H) and DjF(H) can be viewed as elements of
L1(R, L1(R, C0(�̂), β

‖), τ ⊗ β⊥) and hence of A.

6.3. Pushing the boundary to infinity. The second component in (ω, s) ∈ �̂ describes
the position of the boundary and is allowed to take the value +∞. The evaluation
ev∞(F )(x2)(x1)(ω) = F(x2)(x1)(ω,+∞) has the effect of pushing the boundary to
+∞. The algebra A∞ = C(�)�β‖ R �β⊥ R is therefore the observable algebra of the
model with disorder, but without a boundary (planar model). Now the crucial observation
is that the pushing of the boundary to infinity defines a surjective algebra morphism

ev∞ : A → A∞ .

Therefore A is an extension of A∞ by the edge algebra E := ker(ev∞) which can be
understood as the algebra of observables which are located at the boundary. This gives
an exact sequence precisely of the form (1).
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6.4. Chern class and non-commutative winding number. The Chern class ch of (20) and
the 1-trace ξ of (21) can be obtained by application of Proposition 3. In the first case the
algebra is A∞ = C(�)�β‖ R �β⊥ R, with trace T : A∞ → C:

T (F ) =
∫

�

dP(ω) F (0)(0)(ω) (23)

and derivations

∇j (F )(x2)(x1) = ıxjF (x2)(x1) .

Then ch is then −2πı times the character of the 2-cycle constructed from these data
using Proposition 3. Its domain includes the dense sub-algebra Cc(R, Cc(R, C(�))).

In the second case, the algebra is the ideal E = ker(ev∞) ⊂ A = C0(�̂) �β‖

R �τ⊗β⊥ R with trace T̂ : A → C:

T̂ (F ) =
∫

�̂

dP(ω)ds F (0)(0)(ω, s) (24)

and derivation

∇1(F )(x2)(x1) = ıx1F(x2)(x1).

The character of the 1-trace constructed from these data using Proposition 3 is ξ and its
domain contains Cc(R, Cc(R, C(�̂))) ∩ E .

6.5. Proof of Theorem 7. Theorem 7 is obtained by application of Theorem 6 to the
algebras and actions involved in Sect. 6.2 and the higher traces from Sect. 6.4. Spe-
cifically, we take B = C(�) �β‖ R with action α = β⊥ and 1-trace η on B given by
η(f, g) = ∫

�
dP(ω) (f∇1g)(0)(ω). Then ξ from (21) is given by ξ = ıηe and ch from

(20) by ch = −2πı #αη. Now let Pµ ∈ A∞ = B �α R be the element corresponding
to the Fermi projection. The exponential map associated with the extension defined by
A ev∞−→ A∞ yields [U(�)]1 = exp[Pµ]0. Thus

1

2πı
〈ch, Pµ〉 = 〈#τ⊗αηs,U(�)〉 = − 1

2πı
〈ξ,U(�)〉 ,

the first equality following from Theorem 5 and the second from Theorem 4. Since
c1 = c2 we have

ch(Pµ, Pµ, Pµ) = − ξ(U(�)∗ − 1,U(�)− 1) ,

which proves Theorem 7. ��

A. Periodicity in Cyclic Cohomology

For the convenience of the reader we present a detailed proof of Theorem 4. The following
two isomorphisms [R82] allow to reduce this proof to a calculation for compact operators:
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� : SB �τ⊗α R → SB �τ⊗id R , �(f )(x)(s) = αs(f (x)(s)) , (25)

and (identifying SB �τ⊗id R with SC �τ R ⊗ B)

� : SB �τ⊗id R → K(L2(R))⊗ B , � = ρ ⊗ id , (26)

where ρ is the representation of SC �τ R on L2(R) given by

(ρ(f )ψ)(x) =
∫
dy f (y)(x)ψ(x − y) =

∫
dy f (x − y)(x)ψ(y) .

Hence the integral kernel of ρ(f ) is 〈x|ρ(f )|y〉 = f (x − y)(x) so that Tr(ρ(f )) =∫
R
dxf (0)(x).

Lemma 1. Let η be a α-invariant cyclic cocycle over B. Then

#τ⊗α ηs = �∗#τ⊗id η
s , (27)

ηe = �∗�∗Tr ⊗ η . (28)

Proof. Let η be the character of (�, d,
∫
). One has

#τ⊗α ηs(f0, . . . , fn) =
∫

R

ds

∫
(
f0d

s
τ⊗αf1 · · · dsτ⊗αfn

)
(0)(s) ,

where the product is that in S��τ⊗α R. On the other hand

(�∗#τ⊗id η
s)(f0, . . . , fn) =

∫

R

ds

∫
(
�(f0)d

s
τ⊗id�(f1) · · · dsτ⊗id�(fn)

)
(0)(s),

with product in S��τ⊗id R. Now (27) follows from dsτ⊗id�(f ) = �(dsτ⊗αf ) and

(
�(f0)d

s
τ⊗id�(f1) · · · dsτ⊗id�(fn)

)
(0)(s) = αs

(
f0d

s
τ⊗αf1 · · · dsτ⊗αfn

)
(0)(s)

and the α-invariance of η.
For (28), let fj = �−1(gj ⊗ bj ), where gj ⊗ bj ∈ SC �τ R ⊗ B ∼= SB �τ⊗id R.

Then

�∗�∗ Tr ⊗ η(f0, . . . , fn) = Tr ⊗ η(ρ(g0)⊗ b0, . . . , ρ(gn)⊗ bn)

= Tr(ρ(g0 · · · gn))
∫
b0db1 · · · dbn ,

ηe(f0, . . . , fn) =
∫

R

ds

∫
ev0 �

−1(g0 ⊗ b0)d�
−1

(g1 ⊗ b1) · · · d�−1(gn ⊗ bn)

=
∫

R

ds ev0(g0 · · · gn)
∫
b0db1 · · · bn ,

and the lemma follows from the fact that Tr(ρ(g)) = ∫
R
ds g(0)(s) for g ∈ SC�τR. ��
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Lemma 2. Let η be an α-invariant cyclic cocycle over B. Then for a projection X ∈
K ⊗ B or a unitary X ∈ U(K ⊗ B) one has

〈Tr ⊗ η,X〉 = − 2π 〈#τ⊗idη
s,�−1(X)〉 .

Proof. We start with the case B = C and η = Tr which is the character of (C, 0,Tr).
Then Tr ⊗ η = Tr and #τ⊗idη

s = #τTrs is the character of (SC �τ R ⊗ �C
2, δ,

∫ s
τ
)

where, for f : R → SC, δ = δ1 + δ2 with δ1(f ) = ∂sf ⊗ e1, δ2(f ) = ∇xf ⊗ e2,
∇xf (x) = ıxf (x), and

∫ s
τ
f ⊗ e1e2 = ∫

R
dsf (0)(s) = Tr(ρ(f )). Let M and D be

operators given by Mψ(x) = ıxψ(x) and Dψ(x) = ψ ′(x) with the usual common
domain C1

c (R). They satisfy [D,M] = ı. Then, for differentiable f ,

〈x|[M,ρ(f )]|y〉 = ı(x − y)f (x − y)(x) = 〈x|ρ(∇xf )|y〉 ,
〈x|[D, ρ(f )]|y〉 = (∂x + ∂y)f (x − y)(x) = 〈x|ρ(∂sf )|y〉 ,

and therefore, if p ∈ SC �τ R is a differentiable projection,

〈#τTrs , p〉 = 1

2πı
Tr (ρ(p)[[D, ρ(p)], [M,ρ(p)]]) = − 1

2π
Tr(ρ(p)) . (29)

In the last equation, we used P [[D,P ], [M,P ]]P = −P [D,M]P + [PDP,PMP ],
P = ρ(p) = P 2. This proves the statement for B = C and η = Tr.

In the general case, η is the character of some n-cycle (�, d,
∫
) over B. Then dsτ⊗id =

d ′ + δ, where δ, is as above and d ′(f )(x)(s) = d(f (x)(s)).
We apply this first to a projection of the form X = ρ(p) ⊗ x ∈ K ⊗ B+, where x

and p are projections. Then dsτ⊗id(�
−1(X)) = p ⊗ dx + δp ⊗ x. Let n = 2k, k ≥ 0.

Using p(δp)pj = 0 if j > 0, x(dx)l−1x = 0 for l > 1 and
∫
R
ds ev0(p(δp)

2) =
2πı 〈#τTrs , p〉 = − ı Tr(ρ(p)), we get

〈#τ⊗id η
s,�−1(X)〉 = c2k+2

∫ s

τ⊗id

�−1(X(dsτ⊗idX)
2k+2)

= c2k+2

∑

0<l<j≤2k+2

∫

R

ds ev0

(
p(δp)pj−l−1(δp)

)

∫
x(dx)l−1x(dx)j−i−1x(dx)2k+2−j

= − ı (k + 1)c2k+2

c2k
Tr(ρ(p)) 〈η, x〉

= − 1

2π
〈Tr ⊗ η,X〉 .

Next we apply this to a unitary X = ρ(p) ⊗ x + ρ(p)⊥ ⊗ 1 for x ∈ U(B) and a
projection p. Then dsτ⊗id(�

−1(X)) = p ⊗ dx + δp ⊗ (x − 1). If n = 2k + 1, k > 0,
one obtains, taking into account that p(δp)pk = 0 for k > 0,

〈#τ⊗id η
s,�−1(X)〉 = c2k+3

∫ s

τ⊗id

�−1((X∗ − 1)dsτ⊗idX(d
s
τ⊗idX

∗dsτ⊗idX)
k+1)

= c2k+3

∫

R

ds ev0

(
p(δp)2

) ∑

0<j<2k+3
∫
(x∗ − 1)dx(1) · · · dx(j−1)(x∗ − 1)(x − 1)dx(j+2) · · · dx(2k+3),
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where x(j) = x if j is odd and x(j) = x∗ if j is even. We claim that

2k+2∑

j=1

∫
(x∗ − 1)dx(1) · · · dx(j−1)(x∗ − 1)(x − 1)dx(j+2) · · · dx(2k+3)

= 2(2k + 3)
∫
(x∗ − 1)dx(dx∗dx)k, (30)

which then implies

〈#τ⊗id η
s,�−1(X)〉 = − ı 2(2k + 3)c2k+3

c2k+1
Tr(ρ(p))〈η, x〉 = − 1

2π
〈Tr ⊗ η,X〉 .

Since (x∗ − 1)(x − 1) = 2 − x − x∗, Eq. (30) is equivalent to

∫ k∑

l=0

(x∗ − 1)(dxdx∗)l
(
(x + x∗)dx + dx(x + x∗)

)
(dx∗dx)k−l

= −2
∫
(x∗ − 1)(dxdx∗)kdx . (31)

Now use dx∗x = −x∗dx and dxx∗ = −xdx∗ to pull x and x∗ of (x + x∗) either to the
right or to the left and then use cyclicity in order to obtain

l.h.s. of (31) =
k∑

l=0

∫
x(x∗ − 1)

(
(dx∗dx)ldx(dx∗dx)k−l − (dxdx∗)ldx∗(dxdx∗)k−l

−(dx∗dx)ldx∗(dx∗dx)k−l + (dxdx∗)ldx(dxdx∗)k−l
)

=
k∑

l=0




− η(x, x∗, x, . . .︸ ︷︷ ︸

2l

, x, x∗, x, . . .︸ ︷︷ ︸
2(k−l)

) + η(x, x, x∗, . . .︸ ︷︷ ︸
2l

, x∗, x, x∗, . . .︸ ︷︷ ︸
2(k−l)

)

+ η(x, x∗, x, . . .︸ ︷︷ ︸
2l

, x∗, x∗, x, . . .︸ ︷︷ ︸
2(k−l)

) − η(x, x, x∗, . . .︸ ︷︷ ︸
2l

, x, x, x∗, . . .︸ ︷︷ ︸
2(k−l)

)




 .

Here the entries under-braced are alternating. For fixed l the first and the fourth term in
each summand cancel by cyclic symmetry. The remaining terms are

l.h.s. of (31) =
k∑

l=0




− η(x, x∗, . . .︸ ︷︷ ︸

2l

, x∗, x, . . .︸ ︷︷ ︸
2(k−l+1)

) + η(x, x∗, . . .︸ ︷︷ ︸
2(l+1)

, x∗, x, . . .︸ ︷︷ ︸
2(k−l)

)






= − η(x∗, x . . .︸ ︷︷ ︸
2(k+1)

) + η(x, x∗, . . .︸ ︷︷ ︸
2(k+1)

)

= −
∫

2(x∗ − 1)dx(dx∗dx)k .

It remains to compute the pairings for unitariesX of the formX−1 =∑j aj ⊗bj ∈
K ⊗ B, where the sum is finite and the aj have finite rank (for projections of the form
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∑
j aj ⊗ bj ∈ K ⊗ B+ the argument is similar). In that case X − 1 ∈ Mn ⊗ B

(Mn = Mn(C) is the associated sub algebra of K for some finite n). Let e ∈ Mn be an
arbitrary rank one projection, e⊥ its ortho complement in Mn. Then, by the above,

〈Tr ⊗ η,X〉 = 〈Tr ⊗ Tr ⊗ η, e ⊗X + e⊥ ⊗ 1〉
= − 2π 〈#τ⊗id(Tr ⊗ η)s, ρ−1(e)⊗X + ρ−1(e⊥)⊗ 1〉 .

Further let U ∈ U(Mn ⊗Mn) be a unitary such that AdU ∈ Aut(Mn ⊗Mn) is the flip,
Ua1 ⊗ a2U

∗ = a2 ⊗ a1. Since U(Mn ⊗Mn) is connected, a path connecting U to the
identity gives rise to a homotopy in Mn ⊗ Mn ⊗ B+ between e ⊗ X + e⊥ ⊗ 1 and
AdU ⊗ id(e ⊗ X + e⊥ ⊗ 1). Since AdU ⊗ id(e ⊗ X) = ∑

j aj ⊗ e ⊗ bj , we have by
homotopy invariance of the pairings

〈#τ⊗id(Tr ⊗ η)s, ρ−1(e)⊗X + ρ−1(e⊥)⊗ 1〉
= 〈#τ⊗id(Tr ⊗ η)s,

∑

j

aj ⊗ ρ−1(e)⊗ bj + AdU ⊗ id(e⊥ ⊗ 1)〉

= 〈#τ⊗idη
s,
∑

j

aj ⊗ bj + 1〉 .

This proves the statement. ��
Proof of Theorem 4. Combine the last two lemmas with X = ��(x). ��
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