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Abstract
For quantum systems described by Schrödinger operators on the half-space
R

d−1 × R
�0 the boundary force per unit area and unit energy is topologically

quantized provided the Fermi energy lies in a gap of the bulk spectrum. Under
this condition it is also equal to the integrated density of states at the Fermi
energy.

PACS numbers: 02.40.−k, 61.44.−n, 73.43.−f

1. Introduction

Consider a quantum system on the half-space R
d−1 × R

�0. One distinguishes between its
behaviour for xd � 0 and xd near 0 considering the bulk behaviour in the first, and the edge
(or boundary) behaviour of the system in the second case. Bulk and edge behaviour are not
independent but topologically quantized observables in the bulk are related to topologically
quantized observables at the edge. A famous example of this type is the quantum Hall effect
in which the Hall conductivity can either be related to a current–current correlation in the bulk
or is simply the conductance of the edge current [Pr90, F94, SKR00, KRS02, EG02, KS03b].
In this letter, we present another example relating the value of the integrated density of states
on a gap (i.e. at energies lying in the gap) of the bulk spectrum to a force the boundary exhibits
on the edge states.

We discuss in the next section the underlying model and provide a proof of our claims in
the case of one-dimensional periodic systems. The proof for the general case will be given
elsewhere.

2. The model

In line with recent descriptions of aperiodic systems [Pa80, B86, B93, KS03a] we describe
the bulk behaviour of the system in the one-particle approximation by a covariant family of
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Schrödinger operators {Hω}ω∈�,

Hω = − h̄2

2m

d∑
j=1

∂2
j + Vω

all acting on L2(Rd), where � is a space of disorder configurations or of configurations which
cannot be macroscopically distinguished. The second case is interesting for ordered systems,
such as quasi-crystals, in which � can be the hull of a single point pattern describing the
set of average positions of the atoms and possibly decorated with information to distinguish
between the kinds of atoms. � carries three structures. First, a metric topology in which it is
compact, namely two configurations are deemed ε-close if they agree up to an error of order
ε on a 1

ε
-neighbourhood around the origin 0 ∈ R

d (see [FHK02] for a precise formulation).
Second, an action of the group of translations which we denote by ω �→ x · ω where x · ω

is the translate of the configuration ω ∈ � by 0 to x. Then a family of potentials {Vω}ω∈�

is called covariant if Vω(x − y) = Vy·ω(x) which implies the required covariance of the
corresponding family of Schrödinger operators {Hω}ω∈�. Third, � comes with a translation
invariant Borel-probability measure P and all measurable quantities are averaged over � with
respect to this measure. This average has the meaning of a disorder average but should also be
carried out if the configurations in � describe ordered systems, because they are supposed to
be macroscopically indistinguishable. The union

⋃
ω∈� σ(Hω) of all spectra σ(Hω) is called

the bulk spectrum.

2.1. Integrated density of states on gaps

The integrated density of states at energy E of a single operator Hω from the family can be
defined as the trace per unit volume τ of the spectral projection PE(Hω) of Hω onto the states
up to energy E. If the probability measure P is ergodic then the trace per unit volume of
PE(Hω) is P-a.s. constant over � and

IDS(E) =
∫

�

dP(ω)τ(PE(Hω)). (1)

Thus the integrated density of states should be thought of as an expectation value of the whole
family of operators. The integrated density of states is constant on gaps in the bulk spectrum.
It has been shown that equation (1) has a C∗-algebraic interpretation if E lies outside the bulk
spectrum. In particular, the family {PE(Hω)}ω∈� can be viewed as a projection in the natural
C∗-algebra associated with the configuration space � and the lhs of (1) depends only on the
homotopy class of PE in this C∗-algebra [B93]. This formulation makes clear that the value
of the integrated density of states on a gap is topologically quantized, namely, first, it is stable
under perturbations of the Schrödinger operator by covariant operators which do not lead to a
closing of the gap, and second, it lies in a countable subgroup of R, the gap-labelling group,
which depends only on the topology of �, its measure P and the translation action, but not
on the specific form of the potentials. In specific cases this group can be determined, e.g. for
hulls of Delone sets of finite local complexity this group is the sub-group generated by the
relative frequencies of the patterns appearing in the Delone set [BBG, BO, KP].

2.2. Boundary force per unit area and unit energy in gaps

To describe the behaviour near the edge we consider the same family of operators but restrict
them to L2(Rd−1×R

�s) demanding Dirichlet boundary conditions at the boundary R
d−1×{s}.

We define the total boundary force to be minus the variation of the energy under a variation
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of the position s of the boundary. To describe this in one and the same Hilbert space, say the
one corresponding to s = 0, we vary instead the position of the configuration in the opposite
direction. The boundary force exhibited per unit area on the states in some energy interval �

is therefore ∫
�

dP(ω)τ̂ (P�(Ĥω)δ(Ĥ ω)) δ(Ĥ ω) := lim
xd→0

Ĥ xded ·ω
xd

= ∂Vω

∂xd

where τ̂ is the trace per unit area parallel to the boundary and we have for clarity denoted the
restriction of Hω to L2(Rd−1 × R

�0) with Dirichlet boundary conditions with a hat. Note that
we include the P-average directly into the definition of the boundary force. This is crucial for
its topological quantization and it is not true that τ̂ (P�(Ĥω)δ(Ĥ ω)) is P-a.s. constant over �

for ergodic measures. The boundary force per unit area and energy at energy E is then

Fb(E) = lim
�→{E}

1

|�|
∫

�

dP(ω)τ̂

(
P�(Ĥω)

∂Vω

∂xd

)
. (2)

|�| is the length of the interval which tends to 0 in that limit. The limit exists if E lies in a
gap of the bulk spectrum. Moreover, if E lies in a gap then Fb(E) is a topological quantity. In
fact, it can be shown that

1

|�|
∫

�

dP(ω)τ̂ (P�(Ĥω)δ(Ĥ ω)) = 2πτ̂ ((U∗
ω(�) − 1)δ(Uω(�))) (3)

where

Uω(�) − 1 = (e2π it (Ĥ ω−E0) − 1)P�(Ĥω) t = 1

|�| E0 = min �.

Thus Uω(�) is essentially the time evolution of the states of energy in � by the time which
is the inverse of the width of �. Equation (3) can be interpreted in a C∗-algebraic context
and shown to depend only on the homotopy class of the unitary Uω(�). Therefore, Fb(E) is
topologically quantized in the same way as the integrated density of states. In fact, we can
show using the tools of non-commutative topology of C∗-algebras developed in [KS03b] that,
for energies E in gaps and ergodic P,

|Fb(E)| = IDS(E). (4)

The proof of this result in the general case will be given in a separate publication. In the
next section we give an elementary proof of the above equality for periodic one-dimensional
systems.

3. One-dimensional periodic systems

We consider in this section probably the simplest case, in which we have a one-dimensional
periodic configuration ω0, of period L, and � is the set of its translates. Then � = {x · ω0|x ∈
R} ∼= R/LZ with standard action of R by translation and Lebesgue measure. If we choose
a differentiable periodic potential V then Vξ ·ω0(x) = V (x + ξ) defines a covariant family of
potentials. For simplicity we write Vξ in place of Vξ ·ω0 . We need to combine results about the

spectral theory of the family Hξ := − h̄2

2m
∂2 + Vξ , ξ ∈ [0, L), on three different spaces, see e.g.

[DS88, B93] for background information.

(1) On L2(R). Fixing E ∈ R and ξ ∈ [0, L) one finds for each a, b ∈ C a unique solution
of (Hξ − E)� = 0 with initial condition �(0) = a,� ′(0) = b. � is a function
over R which is not normalizable. Since Hξ is a linear operator these unique solutions

define a linear map C
2 → C

2:
(

�(0)

� ′(0)

) �→ (
�(L)

� ′(L)

)
whose associated matrix is called the
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monodromy matrix, we denote it by M(E, ξ). The spectrum of Hξ on L2(R) is the set
{E ∈ R| − 2 � M11(E, ξ) + M22(E, ξ) � 2}. It is independent of ξ and hence equal to
the bulk spectrum. It is convenient to call the closures of the connected components of
the open set {E ∈ R| − 2 < M11(E, ξ) + M22(E, ξ) < 2} the bands. Then bands may
touch.

(2) On L2([0, L]) with Dirichlet boundary conditions at the boundary points. On that space the
spectrum of Hξ is a discrete countably infinite set {µ1(ξ), µ2(ξ), . . .} (µj (ξ) < µj+1(ξ)).
We call these spectral values Dirichlet eigenvalues of Hξ . They are determined by the
equation M12(E, ξ) = 0. Between µj(ξ) and µj+1(ξ) lies the (j + 1)th band of the bulk
spectrum (counted from the lowest band). We call a Dirichlet eigenvalue µn(ξ) a left or
right eigenvalue if its corresponding eigenfunction ψn,ξ satisfies |ψ ′

n,ξ (L)| < |ψ ′
n,ξ (0)|

or |ψ ′
n,ξ (L)| > |ψ ′

n,ξ (0)|, respectively. The terminology comes from the exponential
increase if the functions are considered over many periods which physically means that
eigenfunctions of right eigenvalues are localized at the right edge. If two bands touch
they touch at a Dirichlet eigenvalue which is neither a left nor a right eigenvalue.

Sturm–Liouville theory gives us the important information that a real eigenfunction
ψn,ξ of Hξ to µn(ξ) has exactly n zeroes on the half open interval [0, L) (so the zero at L
is not counted).

(3) On L2(R�0) with Dirichlet boundary condition at the boundary 0. The spectrum of Hξ

on that space is the union of the bulk spectrum with the right Dirichlet eigenvalues. In

fact, E belongs to that spectrum iff the eigenvalues of M(E, ξ) have modulus 1 or
(0

1

)
is

an eigenvector of M(E, ξ) to an eigenvalue ρ of modulus strictly larger than 1. In the
first case E belongs to a band and in the second the corresponding eigenfunction satisfies
|ψ ′

n,ξ (L)| = |ρψ ′
n,ξ (0)| > |ψ ′

n,ξ (0)|.
We give an alternative description of left or right Dirichlet eigenvalues, namely µn(ξ)

is a left or right eigenvalue iff µ′
n(ξ) > 0 or µ′

n(ξ) < 0, respectively. In fact, we calculate
µ′

n(ξ) for right eigenvalues

µ′
n(ξ) = ∂ξ

∫ 0

−∞
dx ψ̂n,ξ (x)Hξ ψ̂n,ξ (x) =

∫ 0

−∞
dx|ψ̂n,ξ (x)|2V ′

ξ (x) (5)

where ψ̂n,ξ is the normalized eigenfunction,
∫ 0
−∞ dx|ψ̂n,ξ (x)|2 = 1. Clearly, this

normalization is only possible since µn(ξ) is a right eigenvalue. Using integration by
parts and ψ̂n,ξ (0) = ψ̂n,ξ (−∞) = ψ̂ ′

n,ξ (−∞) = 0 we find
∫ 0

−∞
dx|ψ̂n,ξ (x)|2V ′

ξ (x) = −
∫ 0

−∞
dx ψ̂ ′

n,ξ (x)ψ̂n,ξ (x)Vξ (x) − c.c.

= −
∫ 0

−∞
dx ψ̂ ′

nξ
(x)(Eψ̂n,ξ (x) +

h̄2

2m
ψ̂ ′′

n,ξ (x)) − c.c.

= − h̄2

2m
|ψ̂ ′

n,ξ (0)|2 < 0.

For left eigenvalues one proceeds similarly, but uses the space L2(R�0) instead. Since 0
is then the left boundary of the integral one obtains a relative minus sign in the calculation.
The remaining case is that µn(ξ) is neither a left nor a right eigenvalue. Then it must be
at a band edge and therefore an extremum of µn.

This has the following consequence which is crucial below: since a real eigenfunction
to a right Dirichlet eigenvalue µn(ξ) has n zeroes on [0, L) the equations µn(ξ) =
µ,µ′

n(ξ) < 0 have exactly n solutions on ξ ∈ [0, L).
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Using an approximation of the trace per unit volume by the trace per unit volume in
the representations L2([−NL,NL]) with Dirichlet boundary conditions one obtains from
Sturm–Liouville theory in the limit N → ∞

IDS(µn(ξ)) = n

L
(6)

independent of ξ .
We determine the boundary force (2). If � is an interval in the nth gap of the bulk spectrum

then Hξ has exactly one non-degenerate eigenvalue (a right Dirichlet eigenvalue) provided
µ(ξ) ∈ � and µ′

n(ξ) < 0, otherwise it has none. Hence the integral kernel 〈x|P�(Ĥ ξ )|y〉 of

P�(Ĥ ξ ) is ψ̂n,ξ (x)ψ̂n,ξ (y)χ�(µn(ξ))�(−µ′
n(ξ)) where χ� is the characteristic function on

the interval � and � the Heaviside function. In one dimension τ̂ is the operator trace and
therefore

τ̂ (P�(Ĥ ξ )V
′
ξ ) =

∫ 0

−∞
dx|ψ̂n,ξ (x)|2χ�(µn(ξ))�(−µ′

n(ξ))V ′
ξ (x).

By (5) and the fact that µn(ξ) = µ,µ′
n(ξ) < 0 has exactly n solutions on ξ ∈ [0, L)∫ L

0
dξ

∫ 0

−∞
dx|ψ̂n,ξ (x)|2χ�(µn(ξ))�(−µ′

n(ξ))V ′
ξ =

∫ L

0
dξ µ′

n(ξ)χ�(µn(ξ))�(−µ′
n(ξ))

= −n

∫
�

dµ = −n|�|.
As it should be, this expression is negative and so the force points into the sample. We
conclude that

|Fb(E)| = n

L

and so the strength of the boundary force per unit area and unit energy is equal to the integrated
density of states for an energy E which lies in a gap of the bulk spectrum. We end this section
with some remarks.

1. The integer n appearing in the above expression may also be interpreted as a winding
number of the Dirichlet eigenvalue on the complex spectral curve of Hξ . This is similar
but not identical to the phenomenon observed in [H93].

2. The above also yields, for an arbitrary interval � in the nth gap,

h̄2

2m|�|
∫ L

0
dξ |ψ̂ ′

n,ξ (0)|2χ�(µn(ξ))�(±µ′
n(ξ))

= h̄2

2mwn

∫ L

0
dξ |ψ̂ ′

n,ξ (0)|2�(±µ′
n(ξ)) = n.

Here wn is the width of the nth gap and, for the + sign (− sign), ψ̂n,ξ is a normalized
eigenfunction to the left (right) Dirichlet eigenvalue. These two equations seem interesting
in their own right for one-dimensional periodic operators.

3. Since, by the boundary conditions,

|ψ̂ ′
n,ξ (0)|2 = ∂2

x |ψ̂n,ξ (x)|2
2

∣∣∣∣∣
x=0

we see that the boundary force per unit area and unit energy is determined by the P-average
of the first non-vanishing coefficient in the Taylor expansion of the density of the particles
at the edge.

4. We note again that the P-average is crucial for the topological quantization. In fact,
ψ̂ ′

n,ξ (0) tends to 0 if ξ tends to the extrema of the function µn(ξ).
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