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Commutative Constructive theory Constructive theory in zero dimensions

Ordinary φ4
4

dν =
1

Z
e−(λ)

R
φ4(x)dxdµC (φ)

C (p) =
1

(2π)2

1

p2 + m2
, C (x , y) =

∫ ∞
0

dαe−αm2 e−|x−y |2/4α

α2
,

SN(z1, ..., zN) =

∫
φ(z1)...φ(zN)dν(φ).

2
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Commutative Constructive theory Constructive theory in zero dimensions

Perturbative φ4
4

Expanding in the coupling constant λ yields (bare) perturbative field theory:

SN(z1, ..., zN) =
1

Z

∞∑
n=0

(−λ)n

n!

∫ [∫
φ4(x)dx

]n
φ(z1)...φ(zN)dµ(φ)

=
∑

G

AG (z1, · · · , zN)

AG (z1, · · · , zN) =

∫ n∏
v=1

ddxv

∏
`

C (x`, x
′
`)

3
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Commutative Constructive theory Constructive theory in zero dimensions

Scale decomposition

It is convenient to perform it using the parametric representation of the
propagator:

C =
∑
i∈N

C i ,

C i (x , y) =

∫ M−2(i−1)

M−2i

dαe−αm2 e−‖x−y‖2/4α

α2

6 KM2ie−cM i‖x−y‖

where M is a fixed integer.

Higher and higher values of the scale index i probe shorter and shorter
distances.

4
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Commutative Constructive theory Constructive theory in zero dimensions

Scale attributions, high subgraphs

Decomposing the propagator means that for any graph we have to sum
over an independent scale index for each line of the graph.

At fixed scale attribution, some subgraphs play an essential role. They are
the connected subgraphs whose internal lines all have higher scale index
than all the external lines of the subgraph. Let’s call them the ”high”
subgraphs. They form a single forest for the inclusion relation.

5



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Scale attributions, high subgraphs

Decomposing the propagator means that for any graph we have to sum
over an independent scale index for each line of the graph.

At fixed scale attribution, some subgraphs play an essential role. They are
the connected subgraphs whose internal lines all have higher scale index
than all the external lines of the subgraph. Let’s call them the ”high”
subgraphs. They form a single forest for the inclusion relation.

5



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Power counting

The key question is whether after spatial integration of the internal vertices
of a high subgraph, save one, the sum over the gap between the lowest
internal and highest external scale converges or diverges.

In four dimension by the previous estimates of a single scale propagator C ,
power counting delivers a factor M2i per line and M−4i per vertex
integration

∫
d4x . There are n − 1 ”internal” integrations to perform to

compare a high connected subgraph to a local vertex.
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Commutative Constructive theory Constructive theory in zero dimensions

Perturbative renormalisability of φ4
4

For a connected φ4
4 graph, the net factor is 2l(G )−4(n(G )−1) = 4−N(G )

(because 4n = 2l + N). When this factor is strictly negative, the sum is
geometrically convergent, otherwise it diverges.

For instance for this graph the sum over the red scale i at fixed blue scale
diverges (logarithmically) because there are two line factors M2i and a
single internal integration M−4i .

7
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Perturbative renormalisability of φ4
4

High subgraphs with N = 2 and 4 diverge when inserted into ordinary ones.

However (by the locality principle) this divergence can be absorbed into a
change of the three parameters (coupling constant, mass and wave
function) which appeared in the initial model.

This means physically that the parameters of the model do change with the
observation scale but not the structure of the model itself. This is a kind of
non-trivial self-similarity.

8
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The flow

Every ”high” subgraph looks more and more local as the gap between the
smallest internal and the largest external scale grows.

In the case of the φ4
4 theory the evolution of the coupling constant λ under

change of scale is mainly due to the first non trivial one-particle irreducible
graph

−λi−1 = −λi + β(−λi )
2,

dλi

di
= +β(λi )

2,

9
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Effective versus renormalized series

Expressing the perturbation theory in terms of the last (renormalized)
coupling leads to the renormalized expansion.

The renormalized expansion requires some complicated book-keeping
(Zimmermann’s forests, Connes-Kreimer Hopf algebra).

It subtracts local pieces of divergent subgraphs irrespective of whether
they are high or not.

There is a price to pay, called renormalons.
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Renormalons

Let us write the bubble graph in momentum space

AG (k) =

∫
d4p

1

(p2 + m2)(p + k)2 + m2)

Aeff
G (k) =

∫
d4p

1

(p2 + m2)(p + k)2 + m2)
−
∫
|p|≥|k|

1

(p2 + m2)2

is bounded: |Aeff
G (k)| ≤ const.

Aren
G (k) =

∫
d4p

1

(p2 + m2)(p + k)2 + m2)
−
∫

1

(p2 + m2)2

is finite but unbounded: |Aeff
G (k)| ∼|k|→∞ c log |k/m|.
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Renormalons, II

A chain of n such graphs as above behaves as [log |q|]n. Inserting them in a
convergent loop leads to a total amplitude of Pn∫

[log |q|]n d4q

[q2 + m2]3
'n→∞ cnn!

which cannot be summed over n.

12
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Effective versus renormalized series

Expressing the theory in terms of all the running couplings leads to the
effective expansion (which is not a power series in a single coupling).

Because there is a single forest subtracted there is no book-keeping,
(no need for Zimmermann’s forests nor Connes-Kreimer Hopf algebras)

There are also no renormalons, so the effective expansion is good for
constructive purpose.

13
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The Forest Formula or ”constructive swiss knife”

Let F be a smooth function of n(n − 1)/2 line variables x`, ` = (i , j),
1 ≤ i < j ≤ n. The forest formula states

F (1, ..., 1) =
∑
F

{∏
`∈F

[ ∫ 1

0
dw`
]}{∏

`∈F

∂

∂x`
F

}[
xF ({w})

]
, where

the sum over F is over all forests over n vertices,

the ”weakening parameter” xF` ({w}) is 0 if ` = (i , j) with i and j in
different connected components with respect to F ; otherwise it is the
infimum of the w`′ for `′ running over the unique path from i to j in F .

Furthermore the real symmetric matrix xFi ,j ({w}) (completed by 1 on
the diagonal i = j) is positive.

14
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Commutative Constructive theory Constructive theory in zero dimensions

Borel Summability

Borel summability of a series an means existence of a function f with two
properties

Analyticity in a disk tangent at the origin to the imaginary axis

plus uniform remainder estimates:

|f (λ)−
N∑

n=0

anλ
n| ≤ KN |λ|N+1N! (1.1)

Given any series an, there is at most one such function f . When there is
one, it is called the Borel sum, and it can be computed from the series to
arbitrary accuracy.

15



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Borel Summability

Borel summability of a series an means existence of a function f with two
properties

Analyticity in a disk tangent at the origin to the imaginary axis

plus uniform remainder estimates:

|f (λ)−
N∑

n=0

anλ
n| ≤ KN |λ|N+1N! (1.1)

Given any series an, there is at most one such function f . When there is
one, it is called the Borel sum, and it can be computed from the series to
arbitrary accuracy.

15



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Borel Summability

Borel summability of a series an means existence of a function f with two
properties

Analyticity in a disk tangent at the origin to the imaginary axis

plus uniform remainder estimates:

|f (λ)−
N∑

n=0

anλ
n| ≤ KN |λ|N+1N! (1.1)

Given any series an, there is at most one such function f . When there is
one, it is called the Borel sum, and it can be computed from the series to
arbitrary accuracy.

15



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Borel Summability

Borel summability of a series an means existence of a function f with two
properties

Analyticity in a disk tangent at the origin to the imaginary axis

plus uniform remainder estimates:

|f (λ)−
N∑

n=0

anλ
n| ≤ KN |λ|N+1N! (1.1)

Given any series an, there is at most one such function f . When there is
one, it is called the Borel sum, and it can be computed from the series to
arbitrary accuracy.

15



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Borel Summability

Borel summability of a series an means existence of a function f with two
properties

Analyticity in a disk tangent at the origin to the imaginary axis

plus uniform remainder estimates:

|f (λ)−
N∑

n=0

anλ
n| ≤ KN |λ|N+1N! (1.1)

Given any series an, there is at most one such function f . When there is
one, it is called the Borel sum, and it can be computed from the series to
arbitrary accuracy.

15



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Four different ways to compute a log

F (λ) =

∫ +∞

−∞
e−λx4−x2/2 dx√

2π

is Borel summable. How to compute G (λ) = log F (λ) (and prove it is also
Borel summable)?

Composition of series (XIXth century)

A la Feynman (1950)

‘Classical Constructive”, à la Glimm-Jaffe-Spencer (1970’s-2000’s)

With loop vertices (2007)

... your way here?

16
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Commutative Constructive theory Constructive theory in zero dimensions

Composition of series

F = 1 + H, H =
∑
p≥1

ap(−λ)p, ap =
(4p)!!

p!

log(1 + x) =
∞∑

n=1

(−1)n+1 xn

n

G =
∞∑

n=1

(−1)n+1 H(λ)n

n
=
∑
k≥1

bk (−λ)k ,

bk =
k∑

n=1

(−1)n+1

n

∑
p1,..,pn≥1

p1+...+pn=k

∏
j

(4pj )!!

pj !

Borel summability is unclear. Even the sign of bk is unclear.
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Commutative Constructive theory Constructive theory in zero dimensions

A la Feynman

F = 1 + H, H =
∑
p≥1

ap(−λ)p, ap =
1

p!
#{vacuum graphs on p vertices}

G =
∞∑

k=1

(−λ)kbk , bk =
1

k!
#{vacuum connected graphs on k vertices}

b1 = 3, b2 = 48, b3 = 1584...

Borel summability unclear. bk ≥ 0 clear.
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Commutative Constructive theory Constructive theory in zero dimensions

Classical Constructive

Cluster expansion = Taylor-Lagrange expansion of the functional integral:

F = 1 + H, H = −λ
∫ 1

0
dt

∫ +∞

−∞
x4e−λtx4−x2/2 dx√

2π

Mayer expansion: define Hi = −λ
∫ 1
0 dt

∫ +∞
−∞ x4

i e−λtx4
i −x2

i /2 dxi√
2π

= H ∀i ,
εij = 0 ∀i , j and write

F = 1 + H =
∞∑

n=0

n∏
i=1

Hi (λ)
∏

1≤i<j≤n

εij

Defining ηij = −1, εij = 1 + ηij = 1 + xijηij |xij=1 and apply swiss knife.

19
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Commutative Constructive theory Constructive theory in zero dimensions

Classical Constructive Field Theory, II

F =
∞∑

n=0

1

n!

∑
F

n∏
i=1

Hi (λ)

{∏
`∈F

[ ∫ 1

0
dw`
]
η`

}∏
`6∈F

[
1 + η`x

F
` ({w})

]

G =
∞∑

n=1

1

n!

∑
T

n∏
i=1

Hi (λ)

{∏
`∈T

[ ∫ 1

0
dw`
]
η`

}∏
`6∈T

[
1 + η`x

T
` ({w})

]
where the second sum runs over trees!

Convergence easy because each Hi contains a different ”copy”
∫

dxi of
functional integration.

Borel summability now easy from the Borel summability of H. But this
method does not extend to noncommutative theory.
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Commutative Constructive theory Constructive theory in zero dimensions

Loop Vertices

Intermediate field representation

F =

∫ +∞

−∞
e−λx4−x2/2 dx√

2π
=

∫ +∞

−∞

∫ +∞

−∞
e−i
√

2λσx2−x2/2−σ2/2 dx√
2π

dσ√
2π

=

∫ +∞

−∞
e−

1
2

log[1+i
√

8λσ]−σ2/2 dσ√
2π

=

∫ +∞

−∞

∞∑
n=0

V n

n!
dµ(σ) (2.2)

Apply swiss knife by making copies: V n(σ)→
∏n

i=1 Vi (σi ),
dµ(σ)→ dµC ({σi}), Cij = 1 = xij |xij=1.
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Loop Vertices, II

F =
∞∑

n=0

1

n!

∑
F

{∏
`∈F

[ ∫ 1

0
dw`
]}∫ {∏

`∈F

∂

∂σi(`)

∂

∂σj(`)

n∏
i=1

V (σi )

}
dµCF

where CFij = xF` ({w}) if i < j , CFii = 1.

G =
∞∑

n=1

1

n!

∑
T

{∏
`∈T

[ ∫ 1

0
dw`
]}∫ {∏

`∈T

∂

∂σi(`)

∂

∂σj(`)

n∏
i=1

V (σi )

}
dµCT

where the second sum runs over trees!
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Advantages

One can picture the result as a sum over trees on loops, or ”cacti”. Since

∂k

∂σk
log[1 + i

√
8λσ] = −(k − 1)!(−i

√
8λ)k [1 + i

√
8λσ]−k ,

Convergence is easy because |[1 + i
√

8λσ]−k | ≤ 1.

Borel summability is easy.

This method extends to non commutative field theory.

23



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Advantages

One can picture the result as a sum over trees on loops, or ”cacti”. Since

∂k

∂σk
log[1 + i

√
8λσ] = −(k − 1)!(−i

√
8λ)k [1 + i

√
8λσ]−k ,

Convergence is easy because |[1 + i
√

8λσ]−k | ≤ 1.

Borel summability is easy.

This method extends to non commutative field theory.

23



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Advantages

One can picture the result as a sum over trees on loops, or ”cacti”. Since

∂k

∂σk
log[1 + i

√
8λσ] = −(k − 1)!(−i

√
8λ)k [1 + i

√
8λσ]−k ,

Convergence is easy because |[1 + i
√

8λσ]−k | ≤ 1.

Borel summability is easy.

This method extends to non commutative field theory.

23



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Advantages

One can picture the result as a sum over trees on loops, or ”cacti”. Since

∂k

∂σk
log[1 + i

√
8λσ] = −(k − 1)!(−i

√
8λ)k [1 + i

√
8λσ]−k ,

Convergence is easy because |[1 + i
√

8λσ]−k | ≤ 1.

Borel summability is easy.

This method extends to non commutative field theory.

23



Lyon, September 2008, Lyon, September 2008 Vincent Rivasseau, LPT Orsay

Commutative Constructive theory Constructive theory in zero dimensions

Advantages

One can picture the result as a sum over trees on loops, or ”cacti”. Since

∂k

∂σk
log[1 + i

√
8λσ] = −(k − 1)!(−i

√
8λ)k [1 + i

√
8λσ]−k ,

Convergence is easy because |[1 + i
√

8λσ]−k | ≤ 1.

Borel summability is easy.

This method extends to non commutative field theory.

23


	Commutative Constructive theory
	Constructive theory in zero dimensions

