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Summary

In this thesis we study various groups of piecewise continuous transformations, notably
of the interval, consisting of piecewise translations. One of these is the group IET of
interval exchange transformations. A larger one is the group IET./ of interval exchange
transformations with flips. For every subgroup Γ of R, we consider a subgroup of IET,
denoted by IET(Γ), consisting of elements of IET which are continuous outside Γ. We
similarly define the group IET./(Γ). This is a countable group when Γ is countable.

The preliminary Chapter 1 introduces these groups in detail.
In Chapter 2, we exhibit a natural isomorphism between the abelianization of IET(Γ)

and the second skew-symmetric power of Γ over Z. The case Γ = R was treated by Arnoux-
Fathi-Sah. The case when Γ is equal to 2Γ can be treated similarly, but otherwise there is
a new difficulty, and indeed 2-torsion then appears in the abelianization (the above skew-
symmetric power not just being the second exterior power). The idea is to construct a group
homomorphism which “measures”, for every f ∈ IET(Γ), the set of pairs flipped by f . This
group homomorphism is inspired of the classical signature on finite permutation groups. In
Chapter 3 we exhibit a natural isomorphism between the abelianization of IET./(Γ) and
an explicit 2-elementary abelian group. In the case Γ = R, Arnoux proved that IET./ is a
perfect group.

In Chapter 4, we prove the vanishing of the Kapoudjian class of the group of piecewise
continuous self-transformations of [0, 1[. This result is equivalent to the existence of a
group homomorphism onto Z/2Z which extends the classical signature on finitely supported
permutations.

In Chapter 5 we study a generalization of IET in higher dimension. For d ≥ 1, we
consider the group Recd of rectangle exchange transformations of [0, 1[d. We introduce a
family of transformations, called restricted shuffles, and we prove that they form a genera-
ting subset of Recd. In dimension 1, this result is already known and easy, but the proof for
d ≥ 2 is much more complicated, the underlying combinatorics being richer. We use this ge-
neration result to identify the abelianization of Recd by generalizing the Arnoux-Fathi-Sah
homomorphism to this higher-dimensional context.
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Introduction en français

Cette thèse porte sur l’étude de certains groupes d’origine dynamique en s’intéressant à leur
abélianisé, ce qui revient à classifier leurs invariants additifs (c’est-à-dire, leurs morphismes
vers des groupes abéliens). Elle a été réalisée sous la supervision d’Yves Cornulier entre
octobre 2018 et juin 2021. Les groupes d’origine dynamique en question sont des groupes
agissant par isométries par morceaux sur un intervalle. Un exemple plutôt connu est le
groupe des échanges d’intervalles, noté IET, constitué des translations par morceaux de
l’intervalle [0, 1[.

1) Bref historique
Les éléments du groupe IET sont introduits par M. Keane [Kea75] en 1975 et ce sont

principalement leur dynamique et leurs propriétés ergodiques qui sont étudiés. L’étude de
IET en tant que groupe est initiée par Arnoux-Fathi [Arn81a] et Sah [Sah81] par l’iden-
tification de l’abélianisé de IET. Durant ces quinze dernières années, cette étude s’est
poursuivie et renforce notre compréhension des sous-groupes de IET. On peut citer en par-
ticulier les travaux de C. Novak [Nov09], Dahmani-Fujiwara-Guirardel [DFG13, DFG17],
Boshernitzan [Bos16] et Vorobets [Vor17]. Ces travaux incluent des progrès sur la question
de l’existence ou non d’un sous-groupe libre de rang 2 dans IET de Katok. Une autre
question, posée par Y. Cornulier, porte sur le caractère moyennable ou non moyennable
du groupe IET. Pour cette question aussi, des avancées ont été faites en particulier avec
le travail de Juschenko-Monod [JM13] et un peu plus tard rejoints par Matte Bon et de la
Salle [JMMS18].

0 1

1

Gauche : Le graphe d’un élément de IET (sans précisions sur les valeurs en les points de
discontinuité). Droite : Son "action" sur [0, 1[.

1



Si on autorise toutes les transformations qui sont isométriques par morceaux, alors
on obtient le groupe des échanges d’intervalles avec renversements, noté IET./. Ce groupe
possède de nombreuses connexions avec les feuilletages mesurés non orientés sur des surfaces
et billards. L’étude de la dynamique et des propriétés ergodiques d’un élément a intéressé
Gutierrez [Gut78], Arnoux [Arn81b], Nogueira [Nog89] et Danthony-Nogueira [DN90] et
plus récemment O. Paris-Romaskevich et P. Hubert [PRH18] ou Skripchenko-Troubetzkoy
[ST18]. Peu de choses sont connus sur le groupe lui-même, Arnoux [Arn81b] a prouvé que
c’est un groupe simple et N. Guelman et I. Liousse [GL19a] ont prouvé que ce groupe est
uniformément parfait (tout élément est produit d’au plus 6 commutateurs).

0 1

1

− −

Gauche : Le graphe d’un élément de IET./ qui contients des renversements (sans précisions
sur les valeurs en les points de discontinuité). Droite : Son "action" sur [0, 1[.

Le groupe des transformations continues par morceaux et affines par morceaux appa-
raît dans différents travaux en particulier à cause de l’inclusion naturelle des groupes de
Thompson. Il a été initialement définit par M. Stein [Ste92] et récemment N. Guelman et I.
Liousse ont prouvé que son sous-groupe des éléments qui préservent l’ordre par morceaux
est simple.

Le groupe de tous les éléments continus par morceaux, dénoté par PC./, a aussi été
étudié. Arnoux [Arn81b] a prouvé que son sous-groupe PC+ des éléments qui préservent
l’orientation des morceaux est simple.

0 1

1

Le graphe d’un élément de PC./ (sans précisions sur les valeurs en les points de disconti-
nuité).
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2) Abélianisés des groupes IET(Γ) et IET./(Γ)
Le chapitre 1 introduit tous les groupes considérés dans cette thèse.
On décrit des sous-familles d’éléments qui jouent un rôle important dans l’étude de

ces groupes, par exemple l’ensemble des rotations restreintes (voir définition 1.2.7) est un
système générateur du groupe IET.

On introduit aussi des familles de sous-groupes des groupes IET et IET./ qui sont à
l’origine de cette thèse. Pour tout sous-groupe Γ de R/Z, on définit IET(Γ), respectivement
IET./(Γ), comme le sous-groupe de IET, respectivement de IET./, des éléments qui sont
continus en dehors de la pré-image Γ̃ de Γ dans R. L’identification de leur abélianisé est
le premier problème étudié dans cet thèse. Le cas où Γ est fini peut être réduit à l’étude
d’un groupe de permutation fini, ainsi on comprend directement son sous-groupe dérivé et
son abélianisé. Pour Γ̃ = R, Arnoux-Fathi et Sah ont démontré le théorème suivant :

Théorème 1 (Arnoux-Fathi-Sah [Arn81a, Sah81]). Il existe un morphisme de groupes
surjectif (explicite) ϕ : IET→

∧2
QR dont le noyau est égal au sous-groupe dérivé D(IET).

Il est appelé le SAF-invariant.

On s’intéresse ici au cas de la restriction de ce morphisme aux sous-groupes IET(Γ)
pour Γ infini. Que peut-on tirer de la preuve originale ? Celle-ci utilise le fait qu’on peut
couper un intervalle en son milieu. Ainsi avec la condition Γ̃ = 2Γ̃ on peut toujours couper
un intervalle en son milieu et ainsi il est possible d’adapter la preuve originale pour obtenir
que ϕ induit un isomorphisme :

IET(Γ)ab '
∧2

Z Γ̃.

Quand cette condition n’est pas satisfaite on ne peut plus forcément couper un intervalle
en son milieu. Pour Γ quelconque on a encore un morphisme surjectif

IET(Γ)ab →
∧2

Z Γ̃

mais il n’est pas forcément injectif ; son noyau est en fait un 2-groupe. Pour le décrire plus
précisément, on introduit la seconde puissance anti-symétrique de Γ̃ au dessus de Z noté
�∧2

Z Γ̃ qui est généralement différente de la seconde puissance extérieure
∧2

Z Γ̃. Dans le
chapitre 2 on prouve le résultat suivant :

Théorème 2 (Voir théorème 2.3.24). Il existe un morphisme de groupes surjectif (explicite)
εΓ : IET(Γ)→ �∧2

Z Γ̃ dont le noyau est égal au sous-groupe dérivé D(IET(Γ)).

L’idée est de construire un morphisme de groupes qui mesure, pour tout f ∈ IET(Γ),
son ensemble d’inversions : {(x, y) | x ≤ y, f(x) ≥ f(y)}. Il est inspiré du morphisme
signature des groupes de permutations finis. Nous obtenons alors un morphisme de groupes
qui est la "moitié" du SAF-invariant. Pour cela on considère une algèbre de Boole noté AΓ

telle que l’ensemble des inversions appartient à AΓ⊗AΓ. On construit aussi une mesure sur
l’algèbre de Boole AΓ ⊗AΓ, à valeurs dans

⊗2
Z Γ̃, pour mesurer l’ensemble des inversions.

Dans le cas où Γ̃ est un groupe abélien libre de rang d, on obtient que l’abélianisé de
IET(Γ) est naturellement isomorphe à Z

d(d−1)
2 × (Z/2Z)d.

Arnoux [Arn81b] a prouvé que le groupe IET./ est simple et sa preuve utilise aussi le
fait qu’on peut couper un intervalle en son milieu. On montre que si on a la condition
Γ̃ = 2Γ̃ alors IET./(Γ) est toujours un groupe simple. Dans le cas général on montre le
résultat suivant :

Théorème 3 (Voir théorème 3.4.5). L’abélianisé IET./(Γ)ab est naturellement isomorphe
au groupe 〈{a⊗ a [mod 2] | a ∈ Γ̃}〉 × 〈{` ∧ ` [mod 2] | ` ∈ Γ̃}〉, où le terme de gauche du
produit appartient à

⊗2
Z Γ̃/(2

⊗2
Z Γ̃) et le terme de droite à �∧2

Z Γ̃/(2�
∧2

Z Γ̃).
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L’ensemble des inversions d’un élément de IET./(Γ) n’est plus à chaque fois dans AΓ⊗
AΓ et ne peut donc plus être mesuré comme dans le cas de IET(Γ). On remarque alors qu’en
considérant l’union de cet ensemble avec son symétrique (par rapport à l’axe y = x) on
obtient un ensemble qui appartient toujours à AΓ⊗AΓ. Cela donne un premier morphisme
de groupes mais dont le noyau est plus gros que le sous-groupe dérivé D(IET./(Γ)). La
deuxième idée est d’"approximer", en un certain sense, les éléments de IET./(Γ) par des
éléments de IET(Γ). Cela nous permet d’utiliser le morphisme construit pour IET(Γ) pour
obtenir un autre morphisme sur IET./(Γ). On prouve alors que l’intersection des noyaux
des deux morphismes construits est égal au sous-groupe dérivé D(IET./(Γ)).

3) Classe de Kapoudjian
Soit X un ensemble (pour la suite on aura X = [0, 1[) et soit S(X) le groupe de toutes

les permutations deX. On noteSfin = Sfin(X) son sous-groupe des permutations à support
fini. On rappelle ici qu’avec la même preuve utilisée pour les groupes de permutations finis,
on peut construire un morphisme de groupes surjectif de Sfin sur Z/2Z que l’on appelle
la signature classique. Son noyau, noté Afin, est l’unique sous-groupe d’indice 2 de Sfin ; il
est appelé le sous-groupe alterné.

On définit P̂C./ le sous-groupe de S(X) constitué des transformations qui sont conti-
nues en dehors d’un nombre fini de points et on note PC./ sa projection dans S(X)/Sfin.
Ainsi pour tout sous-groupe G de S(X)/Sfin on note Ĝ sa pré-image dans S(X).

Dans cette partie, il est important de faire la distinction entre les groupes continus par
morceaux (sous-groupes de P̂C./) et leur projection dans PC./. En effet, dans [Cor19b], Y.
Cornulier a prouvé que le groupe PC./ ne se relève pas dans le groupe des permutations de
l’intervalle [0, 1[. Cela motive alors sa question sur l’annulation d’un élément spécifique du
second groupe de cohomologie appelé la classe de Kapoudjian ; en effet la non-annulation
de cette classe impliquerait le résultat de non-relèvement ci-dessus. Cette classe apparaît
dans le travail de Kapoudjian et Sergiescu [Kap02, KS05] où ils considèrent la suite exacte
suivante :

0→ Z/2Z = Sfin/Afin → S/Afin → S(X)/Sfin → 1

De plus, pour tout sous-groupe G de S(X)/Sfin on obtient la suite exacte suivante :

0→ Z/2Z = Sfin/Afin → Ĝ/Afin → G→ 1

Cette suite exacte correspond en fait à une extension centrale et donc à un élément du
second groupe de cohomologie H2(G,Z/2Z) appelé la classe de Kapoudjian de G.

Dans le chapitre 4, on répond à la question posée par Cornulier [Cor19b] en prouvant
l’annulation de la classe de Kapoudjian pour PC./. La première chose à noter est que cette
question est équivalente à la construction d’un morphisme de groupes sur P̂C./ qui étend
la signature classique. C’est le théorème suivant :

Théorème 4 (Voir théorème 4.1.2). Il existe un morphisme de groupes ε : P̂C./ → Z/2Z
qui étend la signature classique de Sfin.

Ainsi la classe de Kapoudjian de PC./ est égale à la classe triviale et cela implique le
même résultat pour tous les sous-groupes de PC./. L’idée derrière ce théorème est d’écrire
tous les éléments f ∈ P̂C./ comme un produit d’un élément de IET avec un produit de
renversements et une permutation à support fini. En imposant un certain paramètre on
arrive à avoir une telle décomposition qui est unique et on prouve que la somme modulo 2
du nombre de renversements apparaissant dans la décomposition avec la signature classique
de la permutation à support fini est un nombre invariant de ce paramètre. Il reste alors à
prouver que l’on a bien un morphisme de groupes.
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Une application de ce résultat est la description complète des sous-groupes normaux
de certains sous-groupes de P̂C./ :

Théorème 5 (Voir théorème 4.1.4). Soit G un sous-groupe de PC./ qui est simple et non
abélien. Soit Ĝ sa pré-image dans P̂C./. Alors Ĝ a exactement 5 sous-groupes normaux,
qui forment le diagramme suivant :

Ĝ

Sfin Ker(ε|
Ĝ

)

Afin

{1}

Un point commun entre cette partie et la précédente est la construction d’un morphisme
de groupes à valeurs dans un 2-groupe abélien élémentaire. Toutefois, une différence impor-
tante est que dans la partie précédente, le morphisme est construit sur le groupe IET./(Γ).
En comparaison, le morphisme est ici défini sur une pré-image de IET./, et montre qu’un
élément naturellement donné du groupe H2(IET./,Z/2Z) s’annule.

4) Echanges de rectangles
Une manière de généraliser le groupe IET en dimension d pour d ≥ 1 est de rempla-

cer l’intervalle [0, 1[ par le rectangle [0, 1[d. On peut alors considérer le groupe Recd des
bijections f de [0, 1[d telles qu’il existe une partition finie en sous-rectangles de [0, 1[d telle
que f est une translation sur tous les rectangles de cette partition. On remarque alors que
pour d = 1 on a l’égalité entre Rec1 et IET.

1 2 3

4 5 6

7 8 9

5

1

4

2 3

9

7

6

8

Un élément de Rec2.

Dans le chapitre 5, on commence l’étude du groupe Recd par donner un analogue des
rotations restreintes appelé battage restreint (voir définition 5.1.3).

On prouve le théorème suivant :

Théorème 6 (Voir théorème 5.1.5). L’ensemble des battages restreints est un système
générateur de Recd.

En dimension 1, on peut interpreter un échange d’intervalle comme une permutation de
segments et le résultat se ramène au fait que le groupe symétrique Sn est engendré par les
transpositions (i, i+ 1). En dimension supérieure ou égale à 2, on a pas une interprétation
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combinatoire si simple : par exemple il n’existe pas forcément de quadrillage envoyé sur un
autre quadrillage par translation des pièces. L’idée est alors de démontrer qu’avec certaines
conditions sur une partition il est possible de la transformer en quadrillage grâce à des
battages restreints. Ces conditions portent sur de la Q-liberté de sous-ensembles de R qui
sont liés aux longueurs des côtés des pièces de la partition.

Après cela, on poursuit avec l’étude du sous-groupe dérivé D(Recd). On dit qu’un
élément f ∈ Recd est une transposition de rectangles s’il existe un sous-rectangle P de
[0, 1[d tel que P ∩ f(P ) = ∅ et f permute P avec f(P ) en fixant le reste de [0, 1[d (voir
définition 5.1.3) ; on note par Td l’ensemble de toutes les transpositions de rectangles et
on prouve le résultat suivant :

Théorème 7 (Voir théorème 5.1.6). Le sous-groupe dérivé D(Recd) est simple et est en-
gendré par son sous-ensemble Td. De plus il est contenu dans tous les sous-groupes normaux
non triviaux de Recd.

Pour le cas d = 1, la simplicité est due à Sah [Sah81] (non-publié) et le résultat
d’engendrement s’en déduit facilement. Une preuve détaillée est due à Arnoux [Arn81b],
une preuve plus simple est presentée par Vorobets dans [Vor17]. Ce théorème repose en
partie sur le théorème qui le précède. En effet on déduit de ce dernier que le groupeD(Recd)
est engendré par les conjugés des commutateurs de deux battages restreints.

Le dernier théorème du chapitre 5 est une généralisation du théorème d’Arnoux-Fathi-
Sah [Arn81a, Sah81] à propos de l’identification de l’abélianisé de IET. On note R⊗k la
k-ième puissance tensorielle de R au dessus de Q.

Théorème 8 (Voir théorème 5.7.21). Le groupe (Recd)ab est naturellement isomorphe à
(R⊗d−1 ⊗ (

∧2
QR))d.

L’idée est que chaque direction a une contribution qui est indépendante des autres
directions et que cette contribution est calculée grâce à un analogue du morphisme construit
par Arnoux-Fathi-Sah. Un exemple d’application est que le groupe 〈IETd ∪Td〉 6= Recd si
d ≥ 2. En effet, on vérifie que la restriction de l’isomorphisme (R⊗d−1⊗ (

∧2
QR))d n’est pas

surjective.
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Introduction in English

This thesis focuses on the study of some groups with dynamical origins by looking at the
abelianization, it is the same as classifying their additive invariants (in other words, group
homomorphisms from these groups to abelian groups). It has been realized under the
supervision of Yves Cornulier between October 2018 and June 2021. More precisely, we
deal with groups which act piecewise isometrically on an interval. An important example
of such group is the group of interval exchange transformations denoted by IET, consisting
of piecewise translations.

1) Brief historical account.
The elements of IET were introduced by M. Keane [Kea75] in 1975 and it is mostly their

dynamics and ergodic properties which have been studied. The study of the group itself was
initiated by Arnoux-Fathi [Arn81a] and Sah [Sah81] by determinating its abelianization.
In the past fifteen years, this study has been pursued and rises our understanding of
IET’s subgroups, notably with the work of C. Novak [Nov09], Dahmani-Fujiwara-Guirardel
[DFG13, DFG17], Boshernitzan [Bos16] and Vorobets [Vor17]. These works contain some
progress about the question, due to Katok, of the existence of a free subgroup of rank 2 in
IET. The related question of the amenability of IET has been raised by Y. Cornulier and
here also, some progress has been made by Juschenko-Monod [JM13] and further the two
of them with Matte Bon and de la Salle [JMMS18].

0 1

1

Left: A graph of an element of IET (without specifying values at discontinuity points).
Right: Its “action” on [0, 1[.

If one allows all piecewise isometric transformations, we obtain the interval exchange
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transformations group with flips, denoted IET./. This group has strong connections with
non oriented measured foliations on surfaces and billiards and the study of the dynam-
ical and ergodic properties of a single element has interested Gutierrez [Gut78], Arnoux
[Arn81b], Nogueira [Nog89] and Danthony-Nogueira [DN90] and more recently by O. Paris-
Romaskevich and P. Hubert [PRH18] or Skripchenko-Troubetzkoy [ST18]. Few things are
known about the group itself, Arnoux [Arn81b] proved that it is a simple group and N.
Guelman and I. Liousse [GL19a] proved that this group is uniformly perfect (every element
is a product of 6 commutators).

0 1

1

− −

Left: A graph of an element of IET./ that contains flips (without specifying values at
discontinuity points). Right: Its “action” on [0, 1[.

The group of piecewise continuous and affine transformations appears in different works
because of the natural inclusion of Thompson’s groups. It has been initially defined by M.
Stein [Ste92] and recently N. Guelman and I. Liousse [GL19a] proved that its subgroup
consisting of piecewise orientation-preserving elements is simple.

The whole group of piecewise continuous elements, denoted by PC./, has been barely
studied. Arnoux [Arn81b] proved that its subgroup PC+, consisting of piecewise order-
preserving transformations, is a simple group.

0 1

1

A graph of an element of PC./ (without specifying values at discontinuity points).

2) Abelianization of IET(Γ) and IET./(Γ)

Chapter 1 introduces all the groups considered in the thesis.
We describe subfamilies which play a main role in the study of subgroups of PC./, for

8



instance the set of all restricted rotations (see Definition 1.2.7) is a generating subset of
IET.

We also introduce a family of subgroups of IET and IET./ which were the starting
point of the thesis. For every subgroup Γ of R/Z, we define IET(Γ) (resp. IET./(Γ)) as the
subgroup of IET (resp. IET./) consisting of all elements that are continuous outside the
preimage Γ̃ of Γ in R. The identification of their abelianization was the first problem of
my thesis. The case where Γ is finite can be reduced to the study of a finite permutation
group and thus we already well-understand its derived subgroup and abelianization. For
Γ̃ = R, Arnoux-Fathi and Sah prove the following theorem:

Theorem 1 (Arnoux-Fathi-Sah [Arn81a, Sah81]). There exists an explicit surjective group
homomorphism ϕ : IET→

∧2
QR whose kernel is equal to the derived subgroup D(IET). It

is called the SAF-invariant.

Here we try to understand the restriction of this morphism to subgroups IET(Γ) for Γ
infinite. What can we deduce from the original proof? This proof uses the fact that we
can cut an interval at its middle point, then with the condition Γ̃ = 2Γ̃ it is still possible to
cut an interval at its middle point thus it is possible to adapt the original proof to obtain
that ϕ induces an isomorphism

IET(Γ)ab '
∧2

Z Γ̃.

This is no longer true when this condition is not satisfied. For a general Γ, we still have a
sujective group homomorphism

IET(Γ)ab →
∧2

Z Γ̃

but it is not always injective; its kernel is in fact a 2-group. In order to describe it more
precisely, we introduce the second skew-symmetric power of Γ̃ over Z denoted by �∧2

Z Γ̃
which is generally different from the second exterior power

∧2
Z Γ̃. In Chapter 2 we prove

the following:

Theorem 2 (See Theorem 2.3.24). There exists an explicit surjective group homomorphism
εΓ : IET(Γ)→ �∧2

Z Γ̃ whose kernel is equal to the derived subgroup D(IET(Γ)).

The idea is to construct a group homomorphism which for every f ∈ IET(Γ) measures
the set of inversions: {(x, y) | x ≤ y, f(x) ≥ f(y)}. It is inspired by the signature
group homomorphism for finite permutation groups. This brings us to obtain a group
homomorphism that is the “half” of the SAF-invariant. For this we consider a Boolean
algebra denoted by AΓ such that the set of inversions belongs to AΓ ⊗ AΓ. We construct
a measure on the Boolean algebra AΓ ⊗ AΓ, with value in

⊗2
Z Γ̃, to measure the set of

inversions.
In the case where Γ̃ is an abelian free group of rank d, we obtain that the abelianization

of IET(Γ) is naturally isomorphic to Z
d(d−1)

2 × (Z/2Z)d.
Arnoux [Arn81b] proved that the group IET./ is simple and its proof uses the fact that

we can cut an interval at its middle point. The proof then extends to if Γ̃ = 2Γ̃ 6= {0} then
IET./(Γ) is simple. In the general case we prove the following theorem:

Theorem 3 (See Theorem 3.4.5). The abelianization group IET./(Γ)ab is naturally iso-
morphic to the group 〈{a⊗ a [mod 2] | a ∈ Γ̃}〉 × 〈{` ∧ ` [mod 2] | ` ∈ Γ̃}〉, where the left
term of the product is in

⊗2
Z Γ̃/(2

⊗2
Z Γ̃) and the right one is in �∧2

Z Γ̃/(2�
∧2

Z Γ̃).

The set of inversions of an element of IET./(Γ) is not always in AΓ ⊗ AΓ. But, if we
considered the union of this set with its mirror (its symmetric image according to the axis
y = x) we obtain a new set that belongs to AΓ⊗AΓ. This gives a first group homomorphism
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but its kernel is larger than the derived subgroup D(IET./(Γ)). The second idea here is to
“approximate” in some sense an element of IET./(Γ) by elements of IET(Γ). From this we
manage to construct a second group homomorphism and we prove that the intersection of
their kernels is equal to the derived subgroup D(IET./(Γ)).

3) Kapoudjian class
Let X be a set (in the following we will have X = [0, 1[) and let S(X) be the group

of all permutations of X. Let Sfin = Sfin(X) be its subgroup consisting of all finitely
supported permutations. We recall that with the same proof used for finite permutation
groups, we can construct a surjective group homomorphism called the classical signature
from Sfin onto Z/2Z. Its kernel, denoted by Afin, is the alternating subgroup and it is the
unique subgroup of index 2 of Sfin.

We denote by P̂C./ the subgroup of S(X) consisting of all piecewise continuous trans-
formations and we denote by PC./ its projection in S(X)/Sfin. Then for every subgroup
G of mfS(X)/Sfin we define Ĝ its preimage in S(X).

In this part, it is important here to distinguish between piecewise continuous groups
(subgroups of P̂C./) and their image in PC./. Indeed, in [Cor19b], Y. Cornulier proved
that the group PC./ cannot be lifted to a group of permutations of the interval [0, 1[. This
motivates his question on the vanishing of a specific element of the second cohomology
group called the Kapoudjian class; precisely the vanishing of this class implies the above
nonlifting result. This class appears in the work of Kapoudjian and Sergiescu [Kap02, KS05]
where they considered the following exact sequence:

0→ Z/2Z = Sfin/Afin → S/Afin → S(X)/Sfin → 1

For every subgroup G of S(X)/Sfin, we obtain similarly the following exact sequence:

0→ Z/2Z = Sfin/Afin → Ĝ/Afin → G→ 1

This exact sequence is in fact a central extension and thus can be seen as an element
of the second cohomology group H2(G,Z/2Z) called the Kapoudjian class of G.

In Chapter 4, we answer the question of Cornulier [Cor19b] by proving that the Kapoud-
jian class of PC./ vanishes. The first thing to notice is that this question is equivalent to
the construction of a group homomorphism from P̂C./ which extends the classical signature
on Sfin, it is the following theorem:

Theorem 4 (See Theorem 4.1.2). There exists a group homomorphism ε : P̂C./ → Z/2Z
that extends the classical signature on Sfin.

Hence the Kapoudjian class of PC./ vanishes and this implies the result for every
subgroup of PC./. The idea behind this theorem is to write every f ∈ P̂C./ into a product
of an element of IET with a product of flips and a finitely supported permutation. Up to
a parameter we manage to get that this decomposition is unique and we prove that the
sum modulo 2 of the number of flips in the decomposition with the signature of the finitely
supported permutation is independent of this parameter. It remains to prove that it is a
group homomorphism.

An application of this result is the complete description of normal subgroups of some
subgroups of P̂C./:

Theorem 5 (see Theorem 4.1.4). Let G be a subgroup of PC./ which is simple nonabelian
and let Ĝ be its preimage in S. Then Ĝ has exactly 5 normal subgroups, which constitute
the following diagram:
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Ĝ

Sfin Ker(ε|
Ĝ

)

Afin

{1}

One common point between this part the previous one is the construction of a homo-
morphism into an elementary abelian 2-group. An important difference, however, is that
such homomorphism was constructed in the group IET./(Γ). In contrast, here the homo-
morphism is defined on a certain preimage of IET./, and actually shows that some given
natural element of H2(IET./,Z/2Z) vanishes.

4) Rectangle exchanges
A way to generalize the group IET in dimension d for every d ≥ 1, is to replace the

interval [0, 1[ by the rectangle [0, 1[d. Then we can consider the group Recd consisting of
all bijections f of [0, 1[d such that there exists a finite partition into subrectangles of [0, 1[d

such that f is a translation on every rectangle of this partition. Then for d = 1 we have
the equality Rec1 = IET.

1 2 3

4 5 6

7 8 9

5

1

4

2 3

9

7

6

8

An element of Rec2.

In Chapter 5, we begin the study of Recd by giving an analogue of a restricted rotation
called restricted shuffle (see Definition 5.1.3) and proving the following:

Theorem 6 (See Theorem 5.1.5). The set of all restricted shuffles is a generating subset
of Recd.

In dimension 1, we can interpret an interval exchange transformation as a permutation
of segments and the result reduces to the fact that the symmetric group Sn is generated
by transpositions (i, i+ 1). In dimension superior or equal to 2 , there is not such an easy
combinatorial description: for instance there does not always exist a grid-pattern sent onto
another grid-pattern by translation of the pieces. The idea is to prove that, with some
conditions on a partition, it is possible de move pieces of this partition, thanks to restricted
shuffles, in order to obtain a grid-pattern. These conditions are related to the Q-freeness
of some subsets of R which are linked with the length of the side of pieces of the partition.

After that we pursue the study of the derived subgroup D(Recd) by giving a generating
subset of the derived subgroup. We called an element f ∈ Recd a rectangle transposition
if there exists a subrectangle P of [0, 1[d such that P ∩ f(P ) = ∅ and f permutes P with
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f(P ) while fixing the rest of [0, 1[d (see Definition 5.1.3); we denote by T the set of all
rectangle transpositions and we prove the following theorem:

Theorem 7 (See theorem 5.1.6). The derived subgroup D(Recd) is simple and is generated
by its subset Td. It is contained in every nontrivial normal subgroup of Recd.

For the case d = 1, the simplicity is due to Sah [Sah81] (unpublished) and the result of
generation is deduced easily. A detailed proof is due to Arnoux [Arn81b], and a simpler one
is presented by Vorobets in [Vor17]. This theorem relies on the previous one because we
obtain that D(Recd) is generated by conjugates of commutators of two restricted shuffles.

The last theorem of Chapter 5 is a generalization of the theorem of Arnoux-Fathi-Sah
[Arn81a, Sah81] about the identification of the abelianization of IET. We denote by R⊗k
the k-th tensor power of R over Q.

Theorem 8 (See Theorem 5.7.21). The group (Recd)ab is naturally isomorphic to (R⊗d−1⊗
(
∧2

QR))d.

The idea is that every direction has a contribution which is independent from other
directions. This contribution is calculated thanks to an analogue of the group homomor-
phism constructed by Arnoux-Fathi-Sah [Arn81a, Sah81]. An application is that the group
〈IETd ∪Td〉 6= Recd if d ≥ 2. Indeed, we check that the restriction of the isomorphism
(R⊗d−1 ⊗ (

∧2
QR))d is not surjective.

12



CHAPTER 1

Piecewise continuous groups

Résumé en français. Dans ce chapitre nous construisons les groupes continus par mor-
ceaux. On donne aussi des systèmes générateurs de ces groupes ainsi que de leur sous-
groupe dérivé. On présente des résultats connus qui sont des préliminaires pour les autres
chapitres.

English abstract. This chapter contains a formal definition for piecewise continuous
groups. We define subfamilies which allow us to have generating subset for these groups
or their derived subgroups. Also, we give known results about these groups that are
preliminaries for next chapters.
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1.1 Definitions

1.1.1 Construction

The group of interval exchanges IET can be easily define as the group of all bijections of
[0, 1[ that are continuous outside a finite set, right-continuous and piecewise a translation.
This implies that we always send a right-open and left-closed interval to another. However
if we want to allow flips then a right-open and left-closed interval should be sent onto a
right-closed and left-open interval. Thus the definition of IET./ is not immediate. One way
to deal with this is to considered such elements up to a finitely supported permutation.
The following is the formal construction to do this.

We denote by S([0, 1[) the group of bijections of [0, 1[ to [0, 1[. This group contains a
natural normal subgroup denoted by Sfin consisting of all finitely supported permutations.
For every subgroup G of S([0, 1[)/Sfin, we denote by Ĝ its preimage in S([0, 1[). We use
this notation because our interests is on subgroups of S([0, 1[)/Sfin, also it is easier to
define subgroups of S([0, 1[).

Definition 1.1.1. We denote by P̂C./(X) the subgroup of S([0, 1[ consisting of all el-
ements that are continuous outside a finite set. Its subgroup consisting of all piecewise
orientation-preserving transformations is denoted P̂C+.

The group P̂C./ contains the subgroup Sfin thus the quotient PC./ = P̂C.//Sfin is
well-defined.

Definition 1.1.2. We denote by ÎET./ the subgroup of S([0, 1[) consisting of all elements
that are continuous outside a finite set and piecewise isometric. We also define ÎET+ as
the intersection ÎET./ ∩ P̂C+.

Then we notice that the group IET+ is isomorphic to IET thus we freely use either
both notations. The group IET./ is the group of interval exchanges with flips up to a
finitely supported permutation.

Remark 1.1.3. Here the “+” means that we preserve locally the order of [0, 1[. We can
also consider PC− the subset of PC./ consisting of piecewise-reversing elements. It is not
a group however if we consider PC± = PC+ tPC− we obtain a proper subgroup of PC./.
Then PC+ is a subgroup of index 2 in PC±. The same remark can be done by defining
similarly IET− and IET± and we obtain the following property:

Proposition 1.1.4. The normalizer of IET+ in IET./ is IET±. The same is true when we
replace IET by PC.

Proof. Let g be an element of ÎET./ which is not the identity. There are two cases:

1. If g ∈ ÎET+ r IET then g = σg′ with σ ∈ Sfin r {Id} and g′ ∈ IET. Then for every
f ∈ IET we have gfg−1 = σg′fg′−1σ−1. Thus it is enough to treat the case of Sfin.
Let us assume g ∈ Sfin then let x in the support of g. There exist two consecutive
right-open and left-closed intervals I and J of the same length such that x is the right
endpoint of I (and the left endpoint of J). Up to reduce I and J we can assume
that I does not intersect the support of g. Then let f ∈ IET which exchanges I
and J while fixing the rest of [0, 1[. Then gfg−1 exchanges the interior of I with
the interior of J but gfg−1(x) is not equal to f(x) because f(x) is the left endpoint
of I and I does not intersect the support of g. Then we deduce that gfg−1 is not
right-continuous on J .
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2. If g ∈ ÎET./r ÎET+. Then we can find two consecutive subinterval I and J where g
is continuous and order-reversing on I ∪ J . Let a be the right endpoint of J . Let f
be the element in IET which exchanges I and J . Then gfg−1 exchanges the interior
of g(J) with the interior of g(I). However the left endpoint of g(J) is send by g−1

on a which is fixed by f . Then gfg−1 fixes the left endpoint of g(J), thus gfg−1 is
not right-continuous on g(J).

A natural family of subgroups of IET+ and IET./ can be defined thanks to subgroups
of R/Z. Let Γ be a subgroup of R/Z and let Γ̃ be its preimage in R.

Definition 1.1.5. We denote by ̂IET./(Γ) (resp. ̂IET+(Γ)) the subgroup of ÎET./ (resp.
ÎET+) consisting of all elements that are continuous outside Γ̃.

We describe below the case where Γ is finite. After that we always assume that the
group Γ is dense in R/Z.

Remark when Γ is finite

We assume that Γ is a finite subgroup of R/Z. Then there exists n ∈ N≥1 such that Γ̃ is
equal to 1

nZ. We deduce that for every 1 ≤ i ≤ n, every element of ̂IET./(Γ) is continuous
on the interval [ i−1

n , in [ up to a finitely supported permutation.
Then the group IET(Γ) is naturally isomorphic to the finite permutation group Sn.

It is a Coxeter group of type An−1 so its abelianization is {1} if n = 1 and it is Z/2Z if
n > 1.

The group IET./(Γ) is isomorphic to the signed symmetric group Z/2Z o Sn. It is a
Coxeter group of type Bn so its abelianization is Z/2Z for n = 1 and it is (Z/2Z)2 if n > 1.

1.1.2 Topological-full groups

A way to understand groups is to understand their actions on some spaces. Here we explicit
how piecewise continuous groups and their image in PC./ act on a Stone space.

Definition 1.1.6. A Stone space is a totally disconnected compact space.

For example every Cantor space is a Stone space. In this context we define topological-
full groups.

Definition 1.1.7. Let X be a Stone space and G be a subgroup of Homeo(X). The group
G is a topological-full group if for every n in N, every {X1, X2, . . . , Xn} and {Y1, Y2, . . . , Yn}
two partitions into clopen subsets of X and for every gi in G such that gi(Xi) = Yi; the
element g ∈ Homeo(X) which satisfies g = gi on Xi is an element of G. The group G is
said to be minimal if for every x ∈ X the orbit of x is dense in X.

Topological-full groups have connection with groupoids and they are intensively stud-
ied. We do not explain more these notions in this thesis and for more background about it
we redirect to the work of Matui [Mat06, Mat15], of Nekrashevych [Nek19] and the work
of Matte Bon [MB18]. We explicit a result of Nekrashevych about the smallest normal
subgroups appearing in minimal topological-full groups, adapted to our cases. It gives the
simplicity of a lot of derived subgroups.

Theorem (Nekrashevych [Nek19]). Let X be an infinite Stone space and let G be a sub-
group of Homeo(X) such that G is a topological-full group acting minimally on X. Then
the subgroup of G generated by the subset of all elements of order 3 is simple and contained
in every normal subgroup of G.
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Next, we present two Stone spaces and we explain how P̂C./ and PC./ act on one of
them.

Examples. 1. We denote by S(−,+) the space obtained from R/Z by "doubling" all
points. We replace every point x ∈ R/Z by two copies x−, x+ where x− < x+ and
where we endow S(−,+) with the topology induced by the natural circular order on
it. For more clarity we think about [0, 1[ as S(−,+) where every interval [a, b[ has to
be understand as the interval [a+, b−] in S(−,+). As we have the order topology then
the set of every such intervals is a basis of the topology, hence the space is Hausdorff
and totally disconnected. The compactness is a consequence of the compactness of
R/Z. Indeed let I be a directed set and ψ : I → S(−,+) be a net. Let p : S(−,+) →
R/Z be the natural projection. Then ξ := p(ψ) is a net for R/Z which is compact
so there exists a cluster point α ∈ R/Z for ξ. By contradiction, assume that α−

and α+ are not cluster points for ψ. Hence there exist a ∈ I and U−, U+ open
neighbourhoods of respectively α− and α+ such that for every b ∈ I with b ≥ a we
have ψ(b) /∈ U− ∪U+. We deduce that there exists w, x ∈ R/Z different from α such
that α−, α+ ∈ [w+, x−] and ψ(b) /∈ [w+, x−] for every b ≥ a. Hence for every b ≥ a
we have ξ(b) = p(ψ(b)) /∈ ]w, x[ ⊂ p([w+, x−]). But ]w, x[ is an open neighbourhood
of α which is in contradiction with the fact that α is a cluster point for ξ. We deduce
that either α− or α+ is a cluster point for ψ.

2. The second example is when we triple every point. We denote by S(−,•,+) the space
obtained from R/Z by "tripling" all points. We replace every point x ∈ R/Z by
three copies x−, x•, x+ where x− < x• < x+ and where we endow S(−,•,+) with
the topology induced by the natural circular order on it. Here an [a, b[ has to be
understand as {a•} t [a+, b−] in S(−,•,+). Similar proof can be done to prove that it
is a Stone space. We just point that {a•} is also a clopen subset; thus S(−,•,+) is a
Stone space with isolated points.

Then we can see that P̂C./ and its subgroups can also be seen as subgroups of Homeo(S(−,•,+)).
For every f ∈ P̂C./ and for every a ∈ [0, 1[ if f is continuous on a neighbourhood of a then
if f is order-preserving on this neighbourhood we define f(aε) = (f(a))ε with ε ∈ {+,−}
and if f is order-reversing we define f(aε) = (f(a))−ε. Also for every a ∈ [0, 1[, we put
f(a•) = (f(a))•.

Similarly, PC./ and its subgroups can be seen as subgroups of Homeo(S(−,+)).
With this point of view it is immediate that every group defined with the symbol PC or

IET are topological-full groups. However only those that are subgroups of Homeo(S(−,+))
are minimal topological-full groups. Indeed for subgroups of Homeo(S(−,•,+)), the orbit of
any point a• with a ∈ [0, 1[ is never dense.

1.2 Subfamilies and tools

We introduce the notion of partition associated to an element, this tool is really useful to
describe how act an element. We pursue by describing different subfamilies and how they
manage to describe some groups. After that we focus on the group IET by expliciting the
decomposition into minimal and periodic elements done by Arnoux-Fathi [Arn81a]. We
finish by some properties between elements of finite order and those of order 2. We denote
by λ the Lebesgue measure on R.

1.2.1 Partition associated and combinatorial description

From now on every partition into intervals of [0, 1[ is supposed to be finite and into right-
open and left-closed intervals. For every subinterval I of R we denote by I◦ its interior.
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Definition 1.2.1. Let f̂ be an element of P̂C./ and P be a partition into intervals of [0, 1[.
The partition P is said to be a partition associated with f̂ if for every interval I ∈ P, the
element f̂ is continuous on I◦. We denote by Π

f̂
the set of all partitions associated with f̂ .

It is an essential partition associated with f̂ if there exists a finitely supported permutation
σ such that P is a partition associated with σf̂ . For every essential partition associated
with f̂ we denote by f̂(P ) the arrival partition of f̂ associated with P the partition into
right-open and left-closed intervals of [0, 1[ such that for every J ∈ f(P) there exists I ∈ P
such that J◦ = σf̂(I◦).

It is necessary to define essential partitions in order to define partition associated with
an element of PC./. Because two representatives have the same set of essential partitions
associated but not the same set of partitions associated.

Definition 1.2.2. Let f ∈ PC./ and let f̂ be a representative of f in P̂C./. Let P be a
partition into intervals of [0, 1[. The partition P is said to be a partition associated with f
if it is an essential partition associated with f̂ . We denote by Πf the set of all partitions
into intervals associated with f . We denote by f(P) the arrival partition of f associated
with P the arrival partition of f̂ associated with P.

Let f̂ ∈ P̂C./ and f be its image in PC./. We precise that the set Πf is not equal to
Π
f̂
, it is more larger.

Remark 1.2.3. For every f in PC./ there exists a unique partition Pmin
f associated with f

which has a minimal number of intervals. It is actually minimal in the sense of refinement:
Πf consists precisely of the set of partitions refining Pmin

f . This partition is the partition

define by the set of discontinuities of the unique representative of f in P̂C./ that has the
minimal number of discontinuities.

Sometimes we will want to know where the length of the intervals live:

Definition 1.2.4. Let S be a subset of R. Let f ∈ PC./ and P be a partition associated
with f . The partition P is called a S-partition if for every I ∈ P the length of I is in S.

Remark 1.2.5. Let Γ be a subgroup of R/Z and let Γ̃ be its preimage in R. For the sake
of notations, a Γ̃-partition is also called a Γ-partition.

Another description strongly used in IET is a description that gives the dynamic of the
element:

Definition 1.2.6. Let f ∈ IET and let P = {I1, . . . , Ik} be a partition associated
with f where we order the intervals to be consecutive. Let f(P) = {J1, . . . , Jk} be
the arrival of f associated with P where we order the intervals to be consecutive. Let
µ := {λ(I1), . . . , λ(Ik)} and σ be the finitely supported permutation such that f(Ii) = Jσ(i)

up to a finite number of points. Then (µ, σ) is called a combinatorial description of f . If ev-
ery component of µ is in Γ̃ then (µ, σ) is a Γ-combinatorial description of f . The partition
P is also called the partition associated with (µ, σ).

1.2.2 Subfamilies

One of the first thing we want to get, when we study a group, is a nice generating subset.
We start in IET to finish in PC./.
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1.2.2.1 In IET

Definition 1.2.7. For every a, b ∈ R, a restricted rotation of type (a, b) is an element r of
IET such that there exists two consecutive intervals I and J of length a and b respectively
with sup(I) = inf(J), where r is the translation by +b on I and −a on J . The intervals I
and J are called the intervals associated with r.

For every subgroup Γ of R/Z, a Γ-restricted rotation is a restricted rotation in IET(Γ).

a b

0 1

1

a b

Figure 1.2.1 – Left: Graph of a restricted rotation. Right: representation of a restricted
rotation in pictures.

We cite Arnoux [Arn81b] and Vorobets [Vor17] for the following theorem.

Theorem 1.2.8. Let f ∈ IET and let P be a partition associated with f . Let S = {λ(I) |
I ∈ P}. Then f is a product of restricted rotations with type inside S × S.

Proof. Let f,P and S be as in the statement. We numbered the intervals of P, then f act
like a permutation on this numbering. Such a permutation can be written as a product of
transposition and such a transposition on the numbering coincide with a restricted rotation
with type inside S × S.

Corollary 1.2.9. The group IET is generated by its subset of all restricted rotations and
for every subgroup Γ of R/Z, the group IET(Γ) is generated by its subset of all Γ-restricted
rotations.

This gives one decomposition with a property on the length of the intervals. Another
useful property is the decomposition into elements of small support. To obtain this result
we introduce some elements of order 2 and we need to understand how we can reduce a
restricted rotation. This is done by Vorobets in [Vor17] in IET.

Definition 1.2.10. Let a ∈ [0, 1
2 ] and f ∈ IET. The element f is an IET-transposition

of type a if it permutes two non-overlapping subintervals of [0, 1[ of length a while fixing
the rest of [0, 1[. For every subgroup Γ of R/Z, if in addition f ∈ IET(Γ) then f is a
Γ-transposition of type a.
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0 1

1

Figure 1.2.2 – Left: Graph of a transposition. Right: representation of a transposition
in pictures.

Proposition 1.2.11. Let Γ be a subgroup of R and let Γ̃ be its preimage in R. Let r be
a Γ-restricted rotation of type (a, b). Then r is the product of a Γ-transposition of type
min(a, b) with a Γ-restricted rotation r′ of type (a− b, b) ou (a, b− a). We can also choose
r′ such that inf(Supp(r′)) = inf(Supp(r)).

Proof. This is immediate with Figure 1.2.3. If a ≤ b then it appears a Γ-restricted rotation
of type (a, b− a) and if a ≥ b it is a Γ-restricted rotation of type (a− b, b).

a− b b b

ba a b

a ab− a

Figure 1.2.3 – Left: Case where min(a, b) = b. Right: Case where min(a, b) = a.

Lemma 1.2.12. For every a, b > 0 and ε > 0 there exists sequences (ai)i∈N and (bi)i∈N
such that:

1. (a0, b0) = (a, b);

2. either (ai+1, bi+1) = (ai, bi − ai) or (ai − bi, bi);

3. both (ai)i and (bi)i converge to 0.

Proof. By induction we define (ai+1, bi+1) = (ai − bi, bi) if ai > bi and (ai+1, bi+1) =
(ai, bi − ai) if ai ≤ bi. Then we notice that both (ai)i and (bi)i are decreasing sequences
of positive real numbers. By construction we have ai+1 + bi+1 = ai + bi − min(ai, bi).
By iterating the equality we deduce that the sum of the minimum converges thus this
minimum tends to 0. As we reduce at each step the maximum by the minimum we deduce
that the minimum encounters both an infinite number of times (ai)i and (bi)i thus these
two sequences tend to 0.

Proposition 1.2.13. Let Γ be a subgroup of R/Z. For every ε > 0 and every f ∈ IET,
the element f is a product of Γ-restricted rotations and Γ-transpositions with a support’s
length smaller than ε.
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Proof. Let Γ be a subgroup of R/Z and let Γ̃ be its preimage in R. Let ε and f as in the
statement. If f is a Γ-transposition, let I be the interval such that f permutes I and f(I)
while fixing the rest of [0, 1[. The interval I has endpoints in Γ̃ hence we can partition
I into intervals with endpoints in Γ̃ and with support’s length smaller than ε

2 . Then we
obtain that f is a product of Γ-transpositions with support’s length smaller than ε. By
Theorem 1.2.8 it is enough to do the case where f is a restricted rotation. Thanks to
Proposition 1.2.11 and Lemma 1.2.12 and the previous case we deduce the result.

1.2.2.2 In ÎET./ and IET./

The only difference between the definition of ÎET+ and ÎET./ is that we have piecewise
isometric elements and not only piecewise translations. This means that the only thing we
add is the possibility to reverse an interval.

Definition 1.2.14. Let I be a subinterval of [0, 1[. We define the I-reflection map as the
element r̂I of ÎET./ that reverses the interior I◦ while fixing the rest of [0, 1[. The type
of an I-reflection map is the length of I. We define the I-reflection as the image of the I-
reflection map in IET./. The type of an I-reflection is the length of I. For every subgroup
Γ of R/Z, a Γ-reflection is anI-reflection for some subinterval of [0, 1[ with endpoints in Γ.

Remark 1.2.15. A reflection is also called a flip and that is why IET./ is called the group
of Interval Exchange Transformations with flips.

It is immediate that ÎET./ is generated by ÎET+ and its subset of reflection maps. The
similar is true for ̂IET./(Γ). Hence the group IET./ is generated by IET+ and its subset
of reflections. Also we can reduce to the subset of reflection:

Proposition 1.2.16. For every subgroup Γ of R/Z, the group IET./(Γ) is generated by its
subset of Γ-reflections.

Proof. It is enough to show that IET+(Γ) is generated by flips, thus to show that every Γ-
restricted rotation is a product Γ-reflections. Let r be a Γ-restricted rotation and let I and J
be the two intervals associated to r. We assume sup(I) = inf(J). For every right-open and
left-closed subinterval I of [0, 1[, we define sI the I-reflection. Then rI,J = sIsJsI∪J .

We deduce that we have generating subsets consisting of elements with small support:

Corollary 1.2.17. For every ε > 0 and every subgroup Γ of R/Z, the group IET./(Γ) is
generating by its subset of Γ-reflections and Γ-transpositions whose support’s measure is
less than ε.

1.2.2.3 In P̂C./

The main thing to see here is that we can modify the length of every interval by an
element of the homeomorphism group of [0, 1[ which preserves the orientation (this group
is denoted by Homeo+([0, 1[)). This allows us to link the group P̂C./ with ÎET./ and to
give a generating subset consisting of elements which have small support.

Proposition 1.2.18. For every f̂ ∈ P̂C./ there exist φ, ψ ∈ Homeo([0, 1[) such that f̂ ◦ φ
and ψ ◦ f̂ are two elements of ÎET./.

Proof. Let f̂ ∈ P̂C./ and let P := {I1, . . . , In} be a partition associated with f̂ where we
sorted the intervals such that for every 1 ≤ i ≤ n − 1 we have sup(Ii) = inf(Ii+1). We
denote by ai the left endpoint of Ii. Let f(P) = {J1, . . . , Jn} and let σ be the permutation
of {1, . . . , n} such that f(I◦i ) = J◦σ(i). We denote by bi the left endpoint of Ji. There exists
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a finitely supported permutation whose support is included in {ai | 1 ≤ i ≤ n} such that
f(aτ(i)) = bi. Let {K1, . . . ,Kn} be the partition of [0, 1[ into intervals such that for every
1 ≤ i ≤ n the length of Ki is equal to Iσ−1(i). Let ĝ be the element of ÎET./ which sends
K◦i on I◦σ−1(i) and sends the left endpoint of Ki on the left one of Iσ−1(i). We also ask ĝ to

be order-reversing on Ki if f̂ is order-reversing on Iσ−1(i), and order-preserving otherwise.
Then the composition f̂ ◦ τ ◦ ĝ is an element of Homeo+([0, 1[) by sending Ki on Ji. Hence
there exists ψ ∈ Homeo+([0, 1[) such that ψ ◦ f ∈ ÎET./. The other case is similar.

Corollary 1.2.19. We have the following equalities:

1. P̂C./ = Homeo+([0, 1[)ÎET./;

2. P̂C+ = Homeo+([0, 1[)ÎET+.

Hence, to obtain that there exists a generating subset of P̂C./ consisting of elements
of small support it is enough to show it for Homeo+([0, 1[), a proof is given by Arnoux in
[Arn81b].

Proposition 1.2.20. Let ε > 0, then every f ∈ Homeo+([0, 1[) is a product of elements
of Homeo+([0, 1[) with support’s length less than ε.

Proof. Let f ∈ Homeo+([0, 1[). Let I = [a, a + b[ be a subinterval of [0, 1[ such that
Supp(f) ⊂ I. Let us assume that f(a + b

2) ∈ [a, a + b
2 [. Then there g ∈ Homeo+([0, 1[)

such that g(f(a + b
2)) = a + b

2 and Supp(g) ∈ [a, a + 3
4b[. Then a + b

2 is a fixed point
of g ◦ f hence there exist f1, f2 ∈ Homeo+([0, 1[) such that Supp(f1) ⊂ [a, a + b

2 [ and
Supp(f2) ⊂ [a+ b

2 , a+b[. Then we deduce that f = g−1 ◦f1 ◦f2 and every homeomorphism
of this product have a support’s length less than λ(I)

3 . The same can be done if we assume
that f(a + b

2) ∈ [a + b
2 , a + b[, thus by iterating this process a finite number of time we

obtain the result.

Corollary 1.2.21. For every ε > 0, the group PC./ and PC+ have a generating subset
consisting of elements which have support’s length less than ε.

1.2.3 Minimal and finite order elements in IET

The study of finite order elements appears to be useful for the study of the derived sub-
group, see Subsection 2.3.3. First we give a nice decomposition into two kinds of elements
done by Arnoux in [Arn81b] and then we describe how finite order elements and elements
order 2 are related.

1.2.3.1 Decomposition into elements with disjoint support

Definition 1.2.22. Let U be a subset of [0, 1[. An element f of IET is said to be minimal
on U if U is invariant by f and for every x ∈ U , the orbit of x by f is dense in U .

The following decomposition into minimal and periodic elements done by Arnoux in
[Arn81b] is a decomposition into disjoint elements. Arnoux proved it in the case of IET
and the result in the case of IET(Γ) is just a consequence.

Proposition 1.2.23. Let Γ be a subgroup of R/Z ad let Γ̃ be its preimage in R. Let f ∈
IET(Γ). There exist unions of right-open and left-closed disjoint intervals U1, . . . , Un, V1, . . . , Vk
with endpoints in Γ̃, such that:

1. they form a partition of [0, 1[ into f -invariant subsets;
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2. For every 1 ≤ i ≤ n the element f is minimal on Ui;

3. For every 1 ≤ i ≤ k there exists pi ∈ N such that every element x ∈ Vi has minimal
period pi.

1.2.3.2 Finite order elements

A consequence of Proposition 1.2.23 is the following Proposition proved by Vorobets [Vor17]
in the case of IET:

Proposition 1.2.24. Let Γ be a subgroup of R/Z. Every finite order element f of IET(Γ)
is a finite product of Γ-transpositions. In particular there exist n ∈ N and P := {I1, . . . , In}
a partition associated with f and a permutation σ of {1, . . . , n} such that f(Ii) = Iσ(i).

Proof. Let f ∈ IET(Γ) be a finite order element. By Proposition 1.2.23 there exists k ∈ N
and for every 1 ≤ i ≤ k there exist pi ∈ N and an element fi ∈ IET(Γ) of minimal period
pi such that:

1. for every 1 ≤ i 6= j ≤ k the support of fi and the support of fj do not overlap;

2. f = f1 . . . fk.

Then it is enough to assume f to have minimal period p ∈ N. In this case, the union of
the set of discontinuities of powers of f is finite, we denote by P the partition of [0, 1[
into intervals defined by these points. We notice that P is a Γ-partition associated with
f . By construction there exists a partition of P into subsets p intervals such that f is a
permutation of the intervals in every of these subsets. We deduce that f is a product of
Γ-transpositions.

Now we want to understand how the product of two IET-transpositions is a finite order
element. This is not immediate because for every n ∈ N we can construct examples of such
a product with order n:

Proposition 1.2.25. For every n in N≥1 there exist two IET-transpositions f and g such
that the product gf has order n.

Proof. We distinguish the case where n is even or odd. In both cases we illustrate the
proof with Figure 1.2.4. The case n = 1 is given by the equality f2 = Id for any IET-
transposition f . Let n ∈ N≥1.

Let I and J be two consecutive intervals of the same length ` ∈ [0, 1
2 ] and let g be

the IET-transposition that swaps I and J . Let A1, A2, . . . , An−1 and C be consecutive
intervals of length `

n such that the left endpoint of A1 is the left endpoint of I (hence the
right endpoint of C is the right endpoint of I). Let D and B1, B2, . . . , Bn−1 be consecutive
intervals of length `

n such that the right endpoint of Bn−1 is the right endpoint of J (hence
the left endpoint of D is the left endpoint of J). Let f be the IET-transposition that swaps
Ai and Bi for every 1 ≤ i ≤ n−1. Hence by definition we get g(A1) = D, g(Ai) = Bi−1 for
every 2 ≤ i ≤ n− 1 and g(C) = Bn−1. So the composition gf is equal to the permutation
(A1 A2 . . . An−1 C Bn−1 Bn−2 . . . B1 D). Thus gf has order 2n.

It remains the case of order 2n − 1. Let I, J and K be three consecutive intervals
with I and J of length ` ∈ [0, 1

3 [ and K of length `′ ∈ ] `n , `[. Let g be the IET-
transposition that swaps I and J . We define A1, A2, . . . , An−1 consecutive intervals of
length `

n such that the right endpoint of An−1 is the right endpoint of I. We define also
D and B1, B2, . . . , Bn−1 consecutive intervals of length `

n such that the left endpoint of
Bn−1 is the left endpoint of K. Let f be the IET-transposition that swaps Ai and Bi for
every 1 ≤ i ≤ n − 1. One can check that the product gf in this case is the permutation
(A1 A2 . . . An−1 Bn−1 Bn−2 . . . B1 D) so gf has order 2n− 1.
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I J

A1 A2 A3 C D B1 B2 B3A4 B4

I J

A1 A2 A3 D B1 B2 B3A4 B4

K

Figure 1.2.4 – Illustration of Proposition 1.2.25 with n = 5. Left: For the case “fg has order 2n”.
Right: For the case “fg has order 2n− 1”.

To prove that every product of IET-transpositions is a fintie order element, we use
the notion of reversible maps and some of their properties proved by N. Guelman and I.
Liousse in [GL19b].

Definition 1.2.26. Let h, k be two elements of IET. We said that h reverses k if hkh−1 =
k−1.

A direct consequence of the definition is:

Proposition 1.2.27. Let h, k ∈ IET such that h reverses k. Then for every p ∈ Z both h
and h−1 reverse kp. Thus kph = hk−p.

For every f ∈ IET we denote by Per(f) the set of periodic points of f and by Fix(f)
the set of fixed points of f .

Lemma 1.2.28. Let h, k ∈ IET such that h reverses k. Then:

1. The set Per(k) is invariant by h;

2. The set Fix(h) is a subset of Per(k).

Proof. 1. Let x ∈ Per(k) and let p ∈ Z such that kp(x) = x. By Proposition 1.2.27 we
have kp(h(x)) = hkp(x) = h(x), thus h(x) ∈ Per(k).

2. By contradiction let x ∈ Fix(h)rPer(k). As h is in IET we deduce that there exists
c ∈ [0, 1[ such that the whole interval [x, c[ ⊂ Fix(h). Also x is not a periodic point of
k thus the point x is a right cluster point of the k-orbit of x. This means that there
exists a sequence (pn)n of positive integers such that kpn(x) > x and lim

n→∞
kpn(x) = x.

Hence there exists an integer p > 0 such that kp(x) ∈ [x, c[ thus it is a fixed point
of h. Then kp(x) = h(kp(x)) = k−p(h(x)) = k−p(x) and we deduce that x ∈ Per(k)
which is a contradiction.

Corollary 1.2.29. Let f and g be two IET-transpositions. Then f and g reverse gf and for
every x /∈ Per(gf) the 〈f, g〉-orbit of x is contained in [0, 1[rPer(gf) ⊂ Supp(f)∩Supp(g).

Lemma 1.2.30. Let f and g be two IET-transpositions. Then gf has finite order.

Proof. Let I, J,A,B be the intervals such that sup(I) ≤ inf(J) and f swaps I with J while
fixing the rest of [0, 1[ and sup(A) ≤ inf(B) and g swaps A with B while fixing the rest
of [0, 1[. Let α, β ∈ [0, 1[ such that J = I + α and B = A+ β. A crucial property is that
either J ∩A or I ∩B is the empty set.

By contradiction let x be a point that is not in Per(gf). By Corollary 1.2.29 we know
that the 〈f, g〉-orbit of x is included in :

Supp(f) ∩ Supp(g) = (I ∩A) t (I ∩B) t (J ∩A) t (J ∩B)

We distinguish three cases:
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1. If the 〈f, g〉-orbit of x does not intersect (I ∩ A) t (J ∩ B) then it is included in
(I ∩ B) ∩ (J ∩ A) and as one of them is empty it is included either in I or J which
is impossible.

2. Now assume that the 〈f, g〉-orbit of x intersects I∩A. Up to change x by a point of its
gf -orbit we can assume that x ∈ I∩A. Then we deduce that f(x) ∈ (J∩A)t(J∩B).

a If J ∩ A = ∅ then f(x) ∈ J ∩ B thus gf(x) ∈ I ∩ A hence for every n ∈ N we
have (gf)n(x) ∈ I ∩A. Then (gf)n(x) = x+ n(α− β) hence x has to be inside
Per(gf) which is a contradiction.

b If J ∩ A 6= ∅ then I ∩ B = ∅ thus g(x) ∈ J ∩ B and we deduce that fg(x) ∈
I ∩ A. Then for ever n ∈ N we obtain that (fg)n(x) = x + n(β − α) hence
x ∈ Per(fg). Also Per(fg) = Per(g−1f−1) = Per(gf) thus x ∈ Per(gf) which
is a contradiction.

3. Let now assume that the 〈f, g〉-orbit of x intersects J ∩ B and does not intersect
I ∩A. Up to change x by a point of its gf -orbit we can assume that x ∈ J ∩B. Then
f(x) ∈ I ∩B, in particular I ∩B 6= ∅ thus J ∩A = ∅ and we deduce that g(x) ∈ I ∩A
which is a contradiction.

Remark 1.2.31. In the case where α = β every point of [0, 1[ has a gf -orbit of at most
cardinal three. Thus gf is at most of order 6.

1.3 Derived subgroup and abelianization

1.3.1 Simplicity of the derived subgroup

For a group G, its derived subgroup, denoted D(G), is the subgroup generated by its
subset of all commutators. The quotient Gab = G/D(G) is the abelianization of G. It is
the biggest quotient of G which is an abelian group. A group is said to be perfect if it is
equal to its derived subgroup and it is said to be simple if the only normal subgroups of G
are {1} and G.

We recall how a generating set of a group G can give a generating subset of D(G).

Proposition 1.3.1. Let G be a group and S be a generating set. Let N be the normal
closure of the set of commutators of the elements of S. Then N is a generating subset of
D(G).

Proof. The proof is only a consequence of the following equalities between commutators:

1. [f1f2, g] = f1[f2, g]f−1
1 [f1, g];

2. [f, g1g2] = [f, g1]g1[f, g2]g−1
1 .

Thanks to Theorem 1.1.2 It is enough to prove that the derived subgroup is the smallest
normal subgroup to obtain that the derived subgroup is simple. This come from the
Epstein’s simplicity criterion [Eps70].

Theorem 1.3.2. Let Γ be a dense subgroup of R/Z. Let G be a subgroup of PC./ which
contains IET+(Γ) and such that for every ε > 0 there exists a generating subset of G
consisting of elements with support’s length less than ε. Then D(G) is the smallest normal
subgroup of G.
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Proof. Let G be a subgroup of PC./ which contains IET+(Γ) and let N be a normal
subgroup of G. It is enough to show that there exists ε > 0 such that every commutator
of two element in G with a support’s length less than ε is in N . Let f ∈ N r {Id}.
There exists an interval I such that f is continuous on I and I ∩ f(I) = ∅ and I ∪ f(I) 6=
[0, 1[. Let ε = λ(I)

3 and let g1, g2 ∈ PC+ (resp. IET+) with support’s length less than
ε. By density of Γ, there exists t ∈ IET+(Γ) that translates Supp(g1) ∪ Supp(g2) inside
I. Let h = t−1 ◦ f ◦ t. As N is normal we deduce that h ∈ N . Also we notice that
h(Supp(g1) ∪ Supp(g2)) ∩ (Supp(g1) ∪ Supp(g2)) = ∅ thus Supp(g1) ∩ Supp(hg2h

−1) = ∅
thus these two elements commute. We deduce that the commutator [g1, [g2, h]] = [g1, g2]
also [g2, h] ∈ N and so [g1, [g2, h]] ∈ N . Then [g1, g2] ∈ N and we deduce that D(G) is a
subgroup of N .

Corollary 1.3.3. Let G be a subgroup of PC./. Assume that there exists a dense subgroup
Γ of R/Z such that IET+(Γ) is a subgroup of G. Then the derived subgroup D(G) is simple.
In particular this is true for PC./,PC+, IET./(Γ) and IET+(Γ) for every dense subgroup
Γ of R/Z.

1.3.2 Abelianization

1.3.2.1 Simple groups

We explicit here some groups that are perfect and thanks to Corollary 1.3.3 these groups
will be simple.

Theorem 1.3.4 (Arnoux [Arn81b]). Both PC+ and IET./ are simple.

The case of IET./ results of the fact that a reflection is a commutator thanks to Figure
1.3.1. For PC+ it results from the simpleness of the group Homeo+(R/Z) (see Schreier
and Ulam [SU34]); this implies that a restricted rotation is a commutator as well as every
homeomorphism of [0, 1[ with small support. Theorem 1.3.4 has for direct consequence:

Corollary 1.3.5. The group PC./ is perfect and thus simple.

− −

−−

−

Figure 1.3.1 – How a reflection can be seen as a commutator.
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1.3.2.2 The second skew-symmetric power

Let A be a commutative ring (we only deal with Z and Q) and let V be a A-module.
The second tensor product of V over A is simply

⊗2
A V . The second symmetric power

S2
AV is the quotient of

⊗2
A V by the submodule W generated by elements x ⊗ y − y ⊗ x

when x and y range over V . The second exterior power
∧2
A V is the quotient of

⊗2
A V

by the submodule generated by elements x⊗ x when x ranges over V . These notions are
very classical. We need a less usual one, namely the second skew-symmetric power �∧2

A V ,
defined as the quotient of the second tensor power

⊗2
A V by the submodule W ′ generated

by the set {x⊗ y + y ⊗ x | x, y ∈ V }.
Thanks to the inclusion W ′ ⊂ W , there is a canonical quotient map �∧2

A V →
∧2
A V ;

if 2 is invertible in A, this is an isomorphism, but we will typically deal with the ring Z in
which case this kernel can be a nontrivial elementary abelian 2-group.

When 2 is invertible in A, we can identify
∧2 V with the submodule of

⊗2
A V generated

by elements of the form x⊗ y − y ⊗ x.
For instance, if V ' Zd, then

∧2
Z V is isomorphic to Zd(d−1)/2, while this kernel is

isomorphic to (Z/2Z)d.

1.3.2.3 Abelianization of IET

Arnoux-Fathi [Arn81a] and Sah [Sah81] proved the following theorem that identifies the
abelianization of IET.

Theorem 1.3.6 (Arnoux-Fathi-Sah [Arn81a, Sah81]). There exists a surjective group ho-
momorphism from IET onto the second skew-symmetric algebra of R over Q whose kernel
is the derived subgroup of IET.

Definition 1.3.7. This group homomorphism is called the SAF-invariant, or the SAF-
homomorphism, and it is define by the following:

ϕ := IET −→
∧2

QR
f 7−→

∑
a∈R

a ∧ λ((f − Id)−1({a}))

In particular, for every restricted rotation f of type (a, b) we have ϕ(f) = 2b ∧ a.

Remark 1.3.8. Let Γ be a subgroup of R/Z and let Γ̃ be its preimage in R. If Γ̃ = 2Γ̃
then the restriction of the SAF-invariant to IET+(Γ) is surjective on �∧2

Z Γ̃ and its kernel
is equal to the derived subgroup D(IET+(Γ)).

We explicit how this homomorphism can be expressed thanks to a combinatorial de-
scription:

Proposition 1.3.9. Let f ∈ IET and (µ, σ) be a combinatorial description of f . Let k be
the number of coordinates of µ. Then we have:

ϕ(f) =
k∑
i=1

 ∑
i:

σ(i)<σ(j)

µi −
∑
i<j

µi

 ∧ µj
Proof. Let f ∈ IET and (α, τ) be a combinatorial description of f . Let n be the length of
α and let {I1, I2, . . . , In} be the partition associated with (α, τ). For each j we denote by

v(j) the value of f − Id on Ij . Thus we deduce that ϕ(f) =
n∑
j=1

v(j)∧λ(Ij) =
n∑
j=1

v(j)∧αj .

Also we know that v(j) =
∑
i

τ(i)<τ(j)

αi −
∑
i<j

αi (see Figure 1.3.2 below), and this gives the

conclusion.
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αj

P

i<j
αi

P

fijτ(i)<τ(j)g
αi

Figure 1.3.2 – Illustration for the value of the SAF-homomorphism in Proposition 1.3.9

The injectivity of the SAF-homomorphism relies on the fact that we can always cut an
interval into two intervals with the same size. This is the main obstruction to obtain the
abelianization of IET(Γ). This is the same obstruction to understand the abelianization
of IET./(Γ) because to show that a reflection is a commutator we cut an interval into four
intervals of the same size.
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CHAPTER 2

Abelianization of IET(Γ)

Résumé en français. Soit Γ un sous-groupe dense de R/Z et Γ̃ sa pré-image dans R.
Dans ce chapitre on établit un isomorphisme naturel entre l’abélianisé de IET(Γ) et la
seconde puissance anti-symétrique de Γ̃ sur Z notée par �∧2

Z Γ̃. Ce groupe possède souvent
de la 2-torsion qui n’est pas détectée par le morphisme de groupes SAF. L’idée est de
construire un morphisme de groupes qiu est inspiré par le morphisme signature sur les
groupes de permutations finis. On introduit la notion d’inversion pour un élément du
groupe IET et on essaye de mesurer l’ensemble de ses inversions. Ce chapitre correspond
à la première moitié de l’article [Lac20a].

English abstract. Let Γ be a dense subgroup of R/Z and Γ̃ be its preimage in R. In
this chapter, we establish a natural isomorphism between the abelianization of IET(Γ)

and the second skew-symmetric power of Γ̃ over Z denoted by �∧2
Z Γ̃. This group often

has non-trivial 2-torsion, which is not detected by the SAF-homomorphism. The idea is
to construct a group homomorphism that is inspired by the classical signature on finite
permutation group. We introduce the notion of inversions for an element of IET and we
try to measure the set of inversions. This chapter corresponds with the first half of the
article [Lac20a].
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2.1 Positive cone of Γ̃

One difficulty encountered to understand the abelianization of IET(Γ) is that R is a Q-
vector space and Γ̃ is only a Z-module. Hence understanding the positive cone of Γ̃ will
give informations about how cutting an interval into smaller intervals.

Let us introduce some classical terminology from the theory of ordered abelian groups.
An ordered abelian group is an abelian group endowed with an invariant partial ordering.

For any subgroup H of R we denote by H+ := {x ∈ H | x ≥ 0} the positive cone of H.
A difficulty is that H+ is not, in general, finitely generated as a subsemigroup. For every
subset B of R we denote by VectN(B) the subsemigroup generated by B.

A subsemigroup of an abelian group is simplicial if it is generated, as a subsemigroup,
by a finite Z-independent subset, and it is ultrasimplicial if it is the direct limit of an
upward directed set of simplicial subsemigroups. An ordered abelian group is simplicially
ordered if its positive cone is simplicial and is ultrasimplicially ordered if its positive cone
is ultrasimplicial. The next theorem is proved by G.A. Elliott in [Ell79]:

Theorem 2.1.1. Every totally ordered abelian group is ultrasimplicially ordered.

We deduce the following corollary for the totally ordered abelian group Γ̃:

Corollary 2.1.2. There exist an upward directed set (MΓ,≤) and a finite Z-linearly inde-
pendent subset Sa of Γ̃ for every a ∈MΓ such that for every a, b ∈MΓ with a ≤ b we have
VectN(Sa) ⊂ VectN(Sb) and Γ̃+ is equal to the direct limit lim

−→
VectN(Sa).

We will use the Theorem 2.1.1 in the form of the following corollary which specifies the
finite rank case:

Corollary 2.1.3. Let H be an abelian subgroup of R of finite rank d. Then there exists a
sequence (Bn)n∈N of Z-basis of H such that for each n we have VectN(Bn) ⊂ VectN(Bn+1)
and H+ is equal to the increasing union

⋃
n VectN(Bn). Furthermore for every k ∈ N and

L1, L2, . . . , Lk ∈ H+ there exists a basis {`1, `2, . . . , `d} ⊂ H+ of H such that for every
1 ≤ i ≤ k the element Li is a linear combination of `1, `2, . . . , `d with coefficients in N.

2.2 Kernel of the SAF-homomorphism’s restriction to IET(Γ)

See Definition 1.3.7 for the definition of the SAF-homomorphism. We denote by ϕΓ the
restriction of the SAF-homomorphism to IET(Γ). We follow the idea of Y. Vorobets in
[Vor17] and introduce the notion of balanced product of restricted rotations. The aim is to
show that the kernel of ϕΓ is generated by its subset of all balanced products of Γ-restricted
rotations.

2.2.1 Balanced product of Γ-restricted rotations

Definition 2.2.1. Let n ∈ N and let ri be a restricted rotation for every 1 ≤ i ≤ n.
For every a, b ∈ Γ̃+ let na,b be the number of restricted rotation ri of type (a, b). The
tuple (r1, r2, . . . , rn) is said to be a balanced tuple of restricted rotations if na,b = nb,a for
every a, b ∈ Γ̃+. We say that a product g of restricted rotations is a balanced product of
restricted rotations if there exists a balanced tuple of restricted rotations (r1, . . . , rn) such
that g = r1 . . . rn.

Example 2.2.2. Let a be an element in Γ̃+ with a ≤ 1
2 . Every Γ-restricted rotation of

type (a, a) is a balanced product of restricted rotations. It is also a Γ-transposition which
swapped two consecutive intervals of same length a.
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Example 2.2.3. Let a, b ∈ Γ̃+ with a+ b ≤ 1. If h is a Γ-restricted rotation of type (a, b)
then h−1 is a Γ-restricted rotation of type (b, a). Thus every element of D(IET(Γ)) is a
balanced product of Γ-restricted rotations.

In order to get the decomposition of the elements of Ker(ϕΓ), we need to know the
freeness of some families of �∧2

Z V .

Lemma 2.2.4. Suppose V is a subgroup of R (then it is a Z-module). Let k in N≥1

and v1, v2, . . . vk elements of V which are Z-linearly independent. Then the wedge products
vi ∧ vj for 1 ≤ i < j ≤ k are Z-linearly independent in �∧2

Z V .

Proof. Let v1, v2, . . . vk in V which are Z-linearly independent. It is sufficient to prove the
lemma for V = R because being Z-linearly independent in �∧2

ZR implies being Z-linearly
independent in �∧2

Z V . We know that �∧2
ZR is isomorphic to

∧2
ZR. Let us assume that

v1, v2, . . . , vk are in R. Then being Z-linearly independent is the same that being Q-linearly
independent. Indeed if there exist p1, p2, . . . , pk in Z and q1, q2, . . . , qk in N≥1 such that
k∑
i=1

pi
qi
vi = 0 then

k∑
i=1

(
∏
j=1
j 6=i

qjpi)vi = 0 is an equality in Z. Thus for each i ∈ {1, 2, . . . , k} we

have
∏
j=1
j 6=i

qjpi = 0. Or qj 6= 0 for every j then pi = 0 for every i.

The Q-vector space generated by all the vi for 1 ≤ i ≤ k is isomorphic to Qk. We can
complete the Q-linearly independent set {v1, v2, . . . , vk} in a basis S of R seen as a Q-vector
space. Thus in

∧2
ZR the elements vi ∧ vj for 1 ≤ i < j ≤ k are Q-linearly independent so

they are Z-linearly independent in �∧2
ZR and this gives the conclusion.

Lemma 2.2.5. Any transformation f in Ker(ϕΓ) can be written as a balanced product of
Γ-restricted rotations.

Proof. Let f ∈ Ker(ϕΓ). This is trivial if f = id; assume otherwise. Let (µ, σ) be a
Γ-combinatorial description of f (see Definition 1.2.6), let k ∈ N and {I1, I2, . . . , Ik} be
the partition into intervals associated to (µ, σ) ( we have k ≥ 2 as f is not the identity).
We recall that µi is the length of Ii for every 1 ≤ i ≤ k.

We treat the case where Γ is finitely generated. Then Γ̃ is also finitely generated and
we denote by d its rank. By Corollary 2.1.3 there exist `1, `2, . . . , `d in Γ̃+ such that
L := {`1, `2, . . . , `d} is a basis of Γ̃ and such that µi is a linear combination of `1, `2, . . . , `d
with non-negative integer coefficients for every 1 ≤ i ≤ k. Then Ii can be partitioned into
smaller intervals with length in L for every 1 ≤ i ≤ k. We obtain a partition associated
with f whose intervals have length in L. By Theorem 1.2.8 there exist n ∈ N and a
restricted rotation fi of type (ai, bi) with ai, bi ∈ L for 1 ≤ i ≤ n such that f = f1f2 . . . fn.
For any i, j ∈ {1, 2, . . . , d} let sij be the number of Γ-restricted rotation of type (`i, `j) in
the tuple (f1, f2, . . . , fn). As ϕΓ(fi) = `j ∧ `i − `i ∧ `j = 2`j ∧ `i (see Definition 1.3.7), we
obtain that:

ϕΓ(f) =

d∑
i=1

d∑
j=1

2sij(`j ∧ `i) =
∑

1≤i<j≤d
2(sij − sji)(`j ∧ `i)

We know that {`1, `2, . . . , `d} is a basis of Γ̃ thus by Lemma 2.2.4 we obtain that
{`j ∧`i}1≤i<j≤d is a free family of �∧2

Z Γ̃. Then the assumption ϕΓ(f) = 0 implies sij = sji
for every 1 ≤ i < j ≤ d. This means that the product of Γ-restricted rotations f1f2 . . . fn
is balanced.

We do not assume Γ finitely generated any more. Hence we only know that ϕΓ(f) =
k∑
j=1

( ∑
i:

σ(i)<σ(j)

µi−
∑
i<j

µi
)
∧µj = 0 in �∧2

Z Γ̃ (see Proposition 1.3.9). We denote by ϕΓ(f) :=
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k∑
j=1

( ∑
i:

σ(i)<σ(j)

µi −
∑
i<j

µi
)
⊗ µj . It is a representative of ϕΓ(f) in

⊗2
Z Γ̃. Then there exist a

finite set J and xj , yj ∈ Γ̃ for every j ∈ J , such that ϕΓ(f) =
∑
j∈J

xj ⊗ yj + yj ⊗ xj . We

denote by Ã the subgroup of Γ̃ generated by {µi}1≤i≤k ∪ {xj , yj}j∈J . Then Ã is a finitely
generated subgroup of R which contains Z. Its image A in R/Z is a finitely generated
subgroup of R/Z. Also we know that f is in IET(A) and (µ, σ) is also a A-combinatorial
description of f and ϕΓ(f) is an element of

⊗2
Z Ã. Thus in

�∧2
Z Ã we have:

ϕA(f) =

k∑
j=1

( ∑
i:

σ(i)<σ(j)

µi −
∑
i<j

µi
)
∧ µj = [ϕΓ(f)]�∧2

Z Ã
= [
∑
j∈J

xj ⊗ yj + yj ⊗ xj ]�∧2
Z Ã

= 0

Then we can applied the previous case and conclude that f is a balanced product of
A-restricted rotations, thus a balanced product of Γ-restricted rotations.

2.2.2 Ker(ϕΓ) is generated by Γ-transpositions

The work of Y.Vorobets [Vor17] done for IET can be adapted to show the next two lemmas.
We reproduce here their proof.

Lemma 2.2.6. Let f and g be two Γ-restricted rotations. If they have the same type then
f−1g is finite a product of Γ-transpositions.

Proof. The case f = g is immediate and we assume that f 6= g. Thanks to Proposition
1.2.11, we can reduce to the case where f and g have a support whose length is less than
1
5 thanks to a finite number of Γ-transpositions. Then there exists an interval I disjoint
from Supp(f)∪Supp(g) and such that λ(I) = λ(Supp(f)). Let h be the restricted rotation
which has the type of f and such that its support is equal to I. Then f−1g = f−1hh−1g.
Then f and h has non-overlapping support, same is true for g and h, and Figure 2.2.1
proves that f−1h and h−1g are products of three Γ-transpositions.

Figure 2.2.1 – Proof of Lemma 2.2.6 in the case where f and g have non-overlapping
support.

Lemma 2.2.7. Let f be a Γ-restricted rotation and g be any transformation in IET(Γ).
Then the commutator [f, g] is a product of Γ-transpositions.

Proof. Let I be the support of f . If g is continuous on I then gf−1g−1 is a Γ-restricted
rotation of support g(I) with the same type of f−1 and by Lemma 2.2.6 we obtain the
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result. Thanks to Proposition 1.2.11 there exists a product h of Γ-transposition such that
hf is a Γ-restricted rotation such that g is continuous on Supp(hf). Then it is enough to
see that we have the following equalities:

[f, g] = fgf−1g−1 = h−1(hfgf−1h−1g−1)(ghg−1) = h−1[hf, g]ghg−1

Hence by the previous case [hf, g] is a product of Γ-transpositions. Also we can always
write a Γ-transposition into a product of Γ-transpositions with smaller supports. Hence
the conjugate ghg−1 is a product of Γ-transpositions.

These lemmas with Proposition 1.2.13 give us the next theorem. It is proved by
Y.Vorobets in the case Γ = R/Z in [Vor17].

Theorem 2.2.8. Every balanced product of Γ-restricted rotations can be written as a prod-
uct of Γ-transpositions.

Proof. Let (f1, f2, . . . , fn) be a balanced tuple of restricted rotations. The proof is by
strong induction on the length n of the tuple. If n = 1 then (f1) is a balanced tuple of
Γ-restricted rotations, thus f1 is a Γ-restricted rotation of type (a, a) with a ∈ Γ̃ so it is
also a Γ-transposition.
For the general case, let (a, b) be the type of f1. If a = b then f1 is a Γ-transposition and
(f2, f3, . . . , fn) is a balanced tuple of restricted rotations. By the induction assumption we
obtain the result. If a 6= b then there exists k ∈ {2, . . . , n} such that fk is a Γ-restricted
rotation of type (b, a). Let g1 = f2 . . . fk−1 or g1 = Id if k = 2. Let g2 = fk+1 . . . fn or
g2 = Id if k = n. Then we can write

f1f2 . . . fn = f1g1fkg2 = (f1fk)(f
−1
k g1fkg

−1
1 )(g1g2)

Hence, the induction assumption and Lemmas 2.2.6 and 2.2.7 give the result.

Corollary 2.2.9. The kernel Ker(ϕΓ) is generated by the set of all Γ-transpositions.

2.3 Description of the abelianization of IET(Γ)

In this section we construct a surjective group homomorphism εΓ : IET(Γ)→ �∧2
Z Γ̃ whose

kernel is the derived subgroup D(IET(Γ)).

2.3.1 Boolean measures

In finite permutation groups there is a natural signature. One way to describe the signature
is as follows: the signature of a finite permutation f , viewed in Z/2Z is the number modulo
2 of pairs (x, y) such that x < y and f(x) > f(y). In our context where f ∈ IET(Γ), while
this set is infinite, the idea is to measure it in a meaningful sense. We denote by Itv(Γ)
the set of subintervals of R whose endpoints are in Γ̃.

Definition 2.3.1. Let A be a Boolean algebra and G be an abelian group. Let µ : A→ G
be a finitely additive map: ∀ U, V ∈ A disjoint, µ(U t V ) = µ(U) + µ(V ). Such a µ is
called a Boolean algebra measure for A in G.

Notation 2.3.2. We recall that Itv(Γ) is the set of all intervals [a, b[ with a and b in Γ̃
and 0 ≤ a < b ≤ 1. Let AΓ be the Boolean algebra of subsets of [0, 1[ generated by Itv(Γ).
Then AΓ is a Boolean subalgebra of {0, 1}[0,1[. By noting λ the Lebesgue measure on [0, 1[
we get that λ is a Boolean measure for AΓ in Γ̃.
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It might be useful to notice that for k in N≥1 and every I1, I2, . . . , Ik intervals in
Itv(Γ), the intersection

⋂
i
Ii is still an element of Itv(Γ). Moreover for every I in Itv(Γ),

the complement of I is the disjoint union of two elements of Itv(Γ). Thus any Boolean
combination of elements of Itv(Γ) is a finite disjoint union of such elements.

Proposition 2.3.3. Let X and Y be two sets, let A be a Boolean subalgebra of {0, 1}X and
let B be a Boolean subalgebra of {0, 1}Y . Let G and H be two abelian groups (we see them
as Z-modules), let µ : A → G be a Boolean algebra measure for A in G and ν : B → H
be a Boolean algebra measure for B in H. Let C := A⊗B be the Boolean algebra product
(generated by subsets of the form a× b with a in A and b in B). Then there exists a unique
Boolean algebra measure ω : C → G⊗H for C in G⊗H such that for every a in A and b
in B we have ω(a× b) = µ(a)⊗ ν(b).

Proof. Let ω1 and ω2 be two such Boolean algebra measures, thus they are equal on every
a × b for a ∈ A and b ∈ B. Let c be an element of C, then there exist k in N and

a1, . . . , ak in A and b1, . . . , bk in B such that c =
k⊔
i=1

ai × bi. So ω1(c) =
k∑
i=1

ω1(ai × bi) =

k∑
i=1

ω2(ai × bi) = ω2(c). Thus ω1 = ω2 and the unicity is proved.

It is sufficient to prove the existence for every finite Boolean subalgebra of C. Indeed if
we assume that for every D finite Boolean subalgebra of C there exists a Boolean algebra
measure mD for D in G ⊗ H such that mD(a × b) = µ(a) ⊗ ν(b) for every a in A and
b in B with a × b in D. Let c be an element of C. Then {0C , c, ¬c, 1C} is a finite
Boolean subalgebra of C non-trivial. Moreover if c is in D1 ∩ D2 where D1 and D2 are
two finite Boolean subalgebras of C then by noting D the Boolean subalgebra generated
by D1 and D2 we get that D is a finite Boolean subalgebra of C containing c. Thus
mD|D1 is a Boolean measure for D1 in G⊗H which satisfies mD|D1(a× b) = µ(a)⊗ ν(b)
for every a in A and b in B with a × b in D1. By unicity we get mD|D1 = mD1 and
the same argument gives mD|D2 = mD2 thus mD1(c) = mD(c) = mD2(c). So by putting
ω(c) = mD(c), the map ω is well-defined. also if we take two disjoint elements c and c′ in
C. Then by taking any finite Boolean subalgebra D of C which contains c and c′ we get
mD(c+ c′) = mD(c) +mD(c′) = ω(c) + ω(c′) and the value does not depend on D. Thus
ω is the wanted Boolean algebra measure.
Let nowD be a finite Boolean subalgebra of C. Then there exist k, ` ∈ N and a1, . . . , ak ∈ A
and b1, . . . , b` ∈ B such that every d ∈ D is a Boolean combination of ai× bj . Then let D′

be the finite Boolean algebra generated by all the ai×bj with 1 ≤ i ≤ k and 1 ≤ j ≤ `. Let
U be the finite Boolean subalgebra of A generated by all ai and let V be the finite Boolean
subalgebra of B generated by all bj . Then U and V are atomic. Let u1, . . . un be the atoms
of U and v1, . . . vm be the atoms of V . Hence D′ is atomic with atoms given by ui × vj
for every 1 ≤ i ≤ k and 1 ≤ j ≤ `. Then for each element d in D′ there exists a unique
Jd ⊂ {1, 2, . . . , n}×{1, 2, . . . ,m} such that d =

⊔
(i,j)∈Jd

ui⊗vj . Hence the map mD′ defined

by mD′(d) = mD′(
⊔

(i,j)∈Jd
ui × vj) =

∑
(i,j)∈Jd

µ(ui) ⊗ ν(vj) is well-defined, finitely additive

and satisfies mD′(a× b) = µ(a)⊗ ν(b) for every a ∈ A, b ∈ B such that a× b ∈ D′.

Notation 2.3.4. By applying the previous proposition with X = Y = [0, 1[ and A =
B = AΓ and µ = ν = λ, there exists a unique Boolean algebra measure ωΓ : AΓ ⊗ AΓ →⊗2

Z Γ̃ such that for every a, b, c and d in Γ̃+ with a < b ≤ 1 and c < d ≤ 1 we have
ωΓ([a, b[× [c, d[) = (b− a)⊗ (d− c).

We need to check some IET(Γ)-invariance for the measure ωΓ. For this we define an
action of IET(Γ) on [0, 1[ × [0, 1[ by f.(x, y) = (f(x), f(y)). Hence for every P in AΓ we
have f.P in AΓ, this gives us a new Boolean algebra measure f∗ωΓ.
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Proposition 2.3.5. For every f in IET(Γ) and every P in AΓ ⊗ AΓ we have f.P :=
{(f(x), f(y)) | (x, y) ∈ P} in AΓ ⊗AΓ. Furthermore we have f∗ωΓ = ωΓ.

Proof. Let f ∈ IET(Γ) and (µ, σ) be a Γ-combinatorial description of f and let {I1, . . . , In}
be the partition into intervals associated. Let P be an element of AΓ⊗AΓ. There exist m

in N and pairwise disjoint elements p1, p2, . . . , pm of Itv(Γ)× Itv(Γ) such that P =
k⊔
i=1

pi.

As f is a permutation of [0, 1[ we get f.
m⊔
i=1

pi =
m⊔
i=1

f.pi, so it is enough to show that f.p

belongs to AΓ ⊗ AΓ. For i ∈ {1, . . . , k}, let ai, bi, ci, di ∈ Γ̃ such that pi = [ai, bi[× [ci, di[.
Then f.pi =

⊔
(k,l)

f([ai, bi[ ∩ Ik)× f([ci, di[ ∩ Il) which is a finite disjoint union of elements

of Itv(Γ)× Itv(Γ) because ai, bi, ci, di and extremities of Il are in Γ̃ for each 1 ≤ l ≤ n. In
conclusion f.pi is in AΓ ⊗AΓ thus f.P is in AΓ ⊗AΓ.
Also f is piecewise a translation and λ is the Lebesgue measure, so for any J in Itv(Γ) we
have λ(J) = λ(f(J)). Thus:

ωΓ(f.pi) =
∑
(k,l)

ωΓ(f([ai, bi[ ∩ Ik)× f([ci, di[ ∩ Il))

=
∑
(k,l)

λ(f([ai, bi[ ∩ Ik))⊗ λ(f([ci, di[ ∩ Il))

= (
∑
k

λ([ai, bi[ ∩ Ik))⊗ (
∑
l

λ([ci, di[ ∩ Il))

= λ([ai, bi[)⊗ λ([ci, di[)

= ωΓ(pi)

This gives us ωΓ(f.P ) =
m∑
i=1

ωΓ(f.pi) =
m∑
i=1

ωΓ(pi) = ωΓ(P ). Hence ωΓ = f−1
∗ ωΓ. As

f−1 is also in IET(Γ) we can do the same to deduce ωΓ = f∗ωΓ.

2.3.2 Creation of a signature

Definition 2.3.6. Let f be a transformation in IET(Γ). Every pair (x, y) in [0, 1[× [0, 1[
such that x < y and f(x) > f(y) is called an inversion of f . We denote by Ef the set of
all inversions of f .

Proposition 2.3.7. Let f be a transformation in IET(Γ) and (µ, τ) be a combinatorial
description of f . Let {I1, I2, . . . , Ik} be the partition into intervals associated with (µ, τ)

(see Definition 1.2.6). We have Ef =
n⊔
j=1

⊔
i<j

τ(i)>τ(j)

Ii × Ij.

Proof. Let (µ, τ) be a Γ-combinatorial description of f and let {I1, I2, . . . , Ik} be the
partition into intervals associated. Let (x0, y0) be an element of Ef . Then there exist
i, j ∈ {1, 2, . . . , k} such that x0 ∈ Ii and y0 ∈ Ij . As x0 < y0 we have i ≤ j. Furthermore if
i = j then as f is an isometry which preserves the order on Ii we get f(x0) < f(y0) which
is a contradiction, we deduce that i < j. By definition of f we have f(Ii), f(Ij) ∈ Itv(Γ)
and they are disjoint. Thus as f(x0) > f(y0) we deduce that for every x ∈ Ii and y ∈ Ij
we have x < y and f(x) > f(y), so Ii × Ij ⊂ Ef . Also, this implies σ(i) > σ(j) and we

deduce that
k⊔
j=1

⊔
i<j

τ(i)>τ(j)

Ii × Ij = Ef .

Corollary 2.3.8. For every f ∈ IET(Γ) we have Ef ∈ AΓ ⊗AΓ.
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We denote by p the projection from
⊗2

Z Γ̃ into �∧2
Z Γ̃.

Definition 2.3.9. The signature for IET(Γ) is the following map:

εΓ : IET(Γ) −→ �∧2
Z Γ̃

f 7−→ p ◦ ωΓ(Ef )

Proposition 2.3.10. For every A and B in AΓ we have:

p ◦ ωΓ(A×B) = −p ◦ ωΓ(B ×A)

Proof. Let A,B ∈ AΓ then:

p ◦ ωΓ(A×B) = λ(A) ∧ λ(B)

= −λ(B) ∧ λ(A)

= −p ◦ ωΓ(B ×A)

Theorem 2.3.11. The map εΓ is a group homomorphism.

Proof. Let f, g ∈ IET(Γ). We denote by s the symmetry of axis y = x. We remark that
every element I of AΓ ⊗ AΓ satisfies s(I) ∈ AΓ ⊗ AΓ. Then {(x, y) | x < y, g(x) >
g(y), fg(x) < fg(y)} = Eg ∩ sg−1(Ef ) is an element of AΓ ⊗ AΓ. We also notice that
{(x, y) | x < y, g(x) < g(y), fg(x) > fg(y)} = Ef◦g ∩ Ecg and {(x, y) | x < y, g(x) >
g(y), fg(x) > fg(y)} = Ef◦g ∩ Eg are two elements of AΓ ⊗AΓ.

For more clarity we do some calculus first. By Proposition 2.3.5 and Proposition 2.3.10
we get:

− p ◦ ωΓ({(x, y) | x < y, g(x) > g(y), fg(x) < fg(y)})
= − p ◦ ωΓ({(g(x), g(y)) | x < y, g(x) > g(y), fg(x) < fg(y)})
= p ◦ ωΓ({(g(y), g(x)) | x < y, g(x) > g(y), fg(x) < fg(y)})
= p ◦ ωΓ({(u, v) | g−1(u) > g−1(v), u < v, f(u) > f(v)})

and

p ◦ ωΓ({(x, y) | x < y, g(x) < g(y), fg(x) > fg(y)})
= p ◦ ωΓ({(g(x), g(y)) | x < y, g(x) < g(y), fg(x) > fg(y)})
= p ◦ ωΓ({(u, v) | g−1(u) < g−1(v), u < v, f(u) > f(v)})

In addition:

p ◦ ωΓ({(u, v) | g−1(u) > g−1(v), u < v, f(u) > f(v)})
+ p ◦ ωΓ({(u, v) | g−1(u) < g−1(v), u < v, f(u) > f(v)})

= p ◦ ωΓ(Ef )

= εΓ(f)
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Hence by adding and remove the same quantity at the fourth equality we obtain:

εΓ(f ◦ g) = p ◦ ωΓ({(x, y) | x < y, fg(x) > fg(y)}
= p ◦ ωΓ({(x, y) | x < y, g(x) > g(y), fg(x) > fg(y)}

t {(x, y) | x < y, g(x) < g(y), fg(x) > fg(y)})
= p ◦ ωΓ({(x, y) | x < y, g(x) > g(y), fg(x) > fg(y)})

+ p ◦ ωΓ({(x, y) | x < y, g(x) < g(y), fg(x) > fg(y)})
= p ◦ ωΓ({(x, y) | x < y, g(x) > g(y), fg(x) > fg(y)})

+ p ◦ ωΓ({(x, y) | x < y, g(x) > g(y), fg(x) < fg(y)})
− p ◦ ωΓ({(x, y) | x < y, g(x) > g(y), fg(x) < fg(y)})
+ p ◦ ωΓ({(x, y) | x < y, g(x) < g(y), fg(x) > fg(y)})

= p ◦ ωΓ(Eg) + p ◦ ωΓ(Ef )

= εΓ(g) + εΓ(f)

In conclusion, εΓ is additive thus it is a group homomorphism.

Proposition 2.3.12. Let a ∈ Γ̃+ with a ≤ 1
2 and f be a Γ-transposition of type a. Then

εΓ(f) = a ∧ a.

Proof. Let u, v, b ∈ Γ̃ such that ((u, a, b, a, v), (2 4)) is a Γ-combinatorial description of f
(see Figure 2.3.1). Let {I1, . . . , I5} be the partition into intervals associated. We already
proved in 2.3.7 that it is sufficient to check if a pair (x, y) ∈ Ii × Ij is in Ef to know
that Ii × Ij is in Ef . We also have Ii × Ij /∈ Ef if j ≤ i. Thus one can look at the
graph of f to find that Ef is equal to the tiling space on Figure 2.3.1. We deduce that
εΓ(f) = a ∧ b+ a ∧ a+ b ∧ a = a ∧ a.

10
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Figure 2.3.1 – Illustration of how to calculate the value of εΓ on a Γ-transposition f in Proposition
2.3.12. Left: The graph of f . Right: The set Ef .

Thanks to Proposition 2.3.7 we can calculate the value of εΓ for every f ∈ IET(Γ):

Proposition 2.3.13. Let f ∈ IET(Γ) and (α, τ) be a Γ-combinatorial description of f .
Let n be the length of α. Then

εΓ(f) =
n∑
j=1

∑
i<j

τ(i)>τ(j)

αi ∧ αj
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Proposition 2.3.14. The group homomorphism εΓ is surjective.

Proof. Let a, b ∈ Γ̃. We assume that 0 ≤ a, b < 1 and 0 ≤ a+ b ≤ 1. Let r be the IET(Γ)
restricted rotation of type (a, b), whose intervals associated are [0, a[ and [a, a + b[. Then
we obtain that εΓ(r) = a ∧ b.

In the general case, let w ∈ Γ̃ with 0 ≤ w ≤ 1
2 . Then there exist k, ` ∈ Z and

a′, b′ ∈ Γ̃ with 0 ≤ a′, b′ < w such that a = kw + a′ and b = `w + b′. Then a ∧ b =
k`w∧w+kw∧b′+`a′∧w+a′∧b′. By the previous case and as εΓ is a group homomorphism,
we deduce that a ∧ b is in Im(εΓ).

2.3.3 Description of Ker(εΓ)

The aim of this part is to conclude that Ker(εΓ) = D(IET(Γ)) and the induced morphism
IET(Γ)ab → �∧2

Z Γ̃ is an isomorphism. We recall that ϕΓ is the restriction of the SAF-
homomorphism ϕ to IET(Γ). The image of ϕΓ is in

∧2
QR which is equal to �∧2

ZR. Let ρ
be the canonical map from �∧2

Z Γ̃ to
∧2

QR induced by the inclusion Γ̃ ⊂ R.

Lemma 2.3.15. We have 2ρ ◦ εΓ = −ϕΓ.

Proof. Let f ∈ IET(Γ) and (α, τ) be a Γ-combinatorial description of f . Let n be the
length of α. Thanks to Propositions 1.3.9 and 2.3.13 we have:

ϕΓ(f) =
n∑
j=1

( ∑
i

τ(i)<τ(j)

αi −
∑
i<j

αi
)
∧ αj

=
n∑
j=1

∑
i>j

τ(i)<τ(j)

αi ∧ αj +

n∑
j=1

( ∑
i<j

τ(i)<τ(j)

αi −
∑
i<j

αi
)
∧ αj

=
n∑
i=1

∑
j<i

τ(j)>τ(i)

αi ∧ αj −
n∑
j=1

∑
i<j

τ(i)>τ(j)

αi ∧ αj

= − 2
n∑
i=1

∑
j<i

τ(j)>τ(i)

αj ∧ αi

= − 2 ρ ◦ εΓ(f)

Corollary 2.3.16. We have the inclusion Ker(εΓ) ⊂ Ker(ϕΓ).

By Corollary 2.2.9 we know that Ker(ϕΓ) is generated by the set of all Γ-transpositions.
Thus it is natural to look at these elements who are also in Ker(εΓ). If σ is a Γ-transposition
of type a in Ker(εΓ) then we have the equality a ∧ a = 0. We want to prove that σ is in
D(IET(Γ)) if and only if a ∈ 2Γ̃.

We denote by S2
ZΓ̃ the second symmetric power of Γ̃ and we denote by a� a image of

a⊗ a in S2
ZΓ̃.

For every group G and every w ∈ G we use the notation w [mod 2] for the image of w in
G/2G.

Lemma 2.3.17. For every group G, the group �∧2
ZG/2(�

∧2
ZG) is naturally isomorphic

to S2
ZG/2(S2

ZG).

Proof. We have a surjective group homomorphism from G ⊗ G onto S2
ZG/2(S2

ZG). We
notice that for every x, y ∈ G, the element x⊗ y + y ⊗ x is sent to 2(x� y) [mod 2] = 0.
Hence we deduce a surjective group homomorphism from �∧2

ZG onto S2
ZG/2(S2

ZG). It is
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immediate that 2(�
∧2

ZG) is sent to zero. Thus we have a surjective group homomorphism
from �∧2

ZG/2(�
∧2

ZG) onto S2
ZG/2(S2

ZG). In order to show that it is injective we take
w ∈ G ⊗ G such that [w]S2

ZG
[mod 2] = 0 = 0 and we show that [w]�∧2

ZG
[mod 2] = 0.

There exist n ∈ N and a1, . . . an, b1, . . . , bn ∈ G such that w+
n∑
i=1

ai⊗bi−bi⊗ai = 0. Hence

[w]�∧2
ZG

+ 2
∑
ai ∧ bi = 0. Finally [w]�∧2

ZG
[mod 2] = 0 thus we have an isomorphism

between �∧2
ZG/2(�

∧2
ZG) and S2

ZG/2S
2
ZG.

Proposition 2.3.18. Let a ∈ Γ̃, if a ∧ a [mod 2] = 0 then a belongs to 2Γ̃.

Proof. For every group G, the group �∧2
ZG/2(�

∧2
ZG) is naturally isomorphic to the second

symmetric power S2
ZG/2(S2

ZG). This comes from the fact that these groups satisfy the
following universal property: for every group G and every abelian elementary 2-group We
denote i the natural inclusion of G × G into S2

ZG/2(S2
ZG). For every bilinear symmetric

group homomorphism b : G × G → A there exists a unique group homomorphism f :
S2
ZG/2(S2

ZG)→ A such that for every g, h ∈ G we have b(g, h) = f(i(g, h)).
Let a ∈ Γ̃ with a 6= 0 (because we already have 0 = 2×0). We denote by a�a the image

of a⊗a in S2
ZG/2(S2

ZG), and we assume that a�a [mod 2] = 0. The projection Γ̃→ Γ̃/2Γ̃
gives rise to a morphism ζ : S2

ZΓ̃→ S2
Z(Γ̃/2Γ̃). As 2(S2

ZΓ̃) ⊂ Ker(ζ) we obtain a morphism
ζ ′ : S2

ZΓ̃/2S2
ZΓ̃→ S2

Z(Γ̃/2Γ̃). Hence if a /∈ 2Γ̃ then ζ(a� a) 6= 0 thus ζ ′(a� a [mod 2]) 6= 0
which is a contradiction with the assumption. In conclusion a ∈ 2Γ̃.

Corollary 2.3.19. Every Γ-transposition f in Ker(εΓ) is in D(IET(Γ)).

Proof. Let a ∈ Γ̃+, with a ≤ 1
2 , be the type of f and let u, v ∈ Γ̃+ such that I1 = [u, u+ a[

and I2 = [v, v + a[ are the two intervals swapped by f . From f ∈ Ker(ε) we deduce that
εΓ(f) = a∧a = 0. Hence a∧a [mod 2] = 0 in �∧2

Z Γ̃/2(�
∧2

Z Γ̃). Then by Proposition 2.3.18
there exists b ∈ Γ̃ such that a = 2b. Thus if we define g as the unique Γ-transposition of
type b that swaps [u, u+ b[ and [v, v+ b[ and h as the unique IET(Γ) that swaps [u, u+ b[
with [u + b, u + a[ and [v, v + b[ with [v + b, v + a[. Then f = ghgh and as g2 = h2 = Id
we deduce that f ∈ D(IET(Γ)).

In order to show that Ker(εΓ) = D(IET(Γ)) we prove that any element f ∈ Ker(εΓ)
can be written as f = σh where h ∈ D(IET(Γ)) and σ is a Γ-transposition. This concludes
because we just show that a Γ-transposition which is also in Ker(εΓ) is in D(IET(Γ)). We
begin by a particular case of a product of Γ-transpositions with pairwise disjoint support.
The aim will be to reduce the general case to this one. We recall that the identity is
considered as a Γ-transposition.

Lemma 2.3.20. Let k ∈ N and τ1, τ2, . . . , τk be Γ-transpositions with pairwise disjoint sup-
port. Then τ1τ2 . . . τk = σh where σ is a Γ-transposition and h is an element of D(IET(Γ)).
Moreover the support of h and σ do not overlap and are included in the union of the supports
of the τi.

Proof. By induction it is enough to show the result in the case k = 2 Let respectively a1

and a2 be the type of τ1 and τ2. As their support do not overlap we know that τ1 and
τ2 commute. Hence we can assume a1 ≥ a2 without loss of generality. If a1 = a2 then
there exists f ∈ IET(Γ) such that τ1 = fτ2f

−1. Thus τ1τ2 is in D(IET(Γ)). If a1 > a2 let
u, v ∈ Γ̃ such that [u, u+ a1[ and [v, v + a1[ are the intervals swapped by τ1. Let g and h
be Γ-transpositions such that g swaps the intervals [u, u+ a2[ and [v, v + a2[ and h swaps
the intervals [u + a2, u + a1[ and [v + a2, v + a1[. Thus τ1 = hg. Moreover g and τ2 are
two Γ-transpositions with same type and non-overlapping support. Then by the previous
case, the product gτ2 is in D(IET(Γ)) and its support does not intersect the support of h.
Then f = h(gτ2) is the wanted decomposition.
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We can now treat the case of finite order elements:

Lemma 2.3.21. If f ∈ IET(Γ) has finite order then there exist a Γ-transposition σ and
h ∈ D(IET(Γ)) such that the support of σ and h are inside the support of f and f = σh.

Proof. Let f ∈ IET(Γ) as in the statement. By Proposition 1.2.24 there exist n ∈ N and
P = {I1, I2, . . . , In} ∈ Πf and σ ∈ Sn such that f(Ii) = Iσ(i). Let k ∈ N and σ = c1c2 . . . ck
be the disjoint cycle decomposition for σ. Let fi be the element of IET(Γ) that is equal
to f on Ij for every j ∈ Supp(ci) while fixing the rest of [0, 1[. Then f = f1 . . . fk and
fi commutes with fj for every 1 ≤ i 6= j ≤ k. Then if the statement is true for every fi
we can write fi = τihi with τi a Γ-transposition and h ∈ D(IET(Γ)), both of them with
support inside the support of fi. Then f = f1 . . . fk = τ1h1 . . . τkhk = τ1 . . . τkh1 . . . hk
because the support of τi does not overlap with the support of τj of hj for every 1 ≤ j ≤ k
and j 6= i. We conclude with Lemma 2.3.20 applied to τ1 . . . τk.
Let c by a cycle of length n ≥ 2 and let I1, I2, . . . , In be non-overlapping intervals of Itv(Γ)
of same length. Let f ∈ IET(Γ) be the element that permutes the set {I1, I2, . . . , In} by
c. Then if c ∈ D(Sn) = An we deduce that f ∈ D(IET(Γ)). If c /∈ D(Sn) then let g
be the unique Γ-transposition that swaps I1 with Ic(1) (we notice that the support of g is
included in the support of f). By the previous case, gf ∈ D(IET(Γ)) and we conclude
that f = g(gf) is a wanted decomposition.

Corollary 2.3.22. Let τ and τ ′ be two Γ-transpositions. There exist a Γ-transposition σ
and h ∈ D(IET(Γ)) such that ττ ′ = σh and the support of σ and h are included in the
union of the support of τ and the one of τ ′.

Proof. By Lemma 1.2.30 we deduce that f := ττ ′ has finite order. Hence by Lemma 2.3.21
we obtain the result.

Lemma 2.3.23. Let k in N and τ1, τ2, . . . , τk be some Γ-transpositions. Then there exist
a Γ-transposition σ and h ∈ D(IET(Γ)) such that τ1τ2 . . . τk = σh.

Proof. The proof is by induction on k. The initialisation k = 1 is immediate. The case
k = 2 is Corollary 2.3.22. Now if we assume the result for k ≥ 2 let τ1, τ2, . . . , τk, τk+1 be Γ-
transpositions. Then by assumption, applied to τ2τ3 . . . τk+1, there exist a Γ-transposition
σ and h ∈ D(IET(Γ)) such that τ2τ3 . . . τk+1 = σh. Hence τ1τ2 . . . τk+1 = τ1σh. By using
the case k = 2 we deduce that there exist a Γ-transposition σ′ and h′ ∈ D(IET(Γ)) such
that τ1σ = σ′h′. Thus τ1τ2 . . . τk+1 = σ′g, with g = h′h ∈ D(IET(Γ)), which is a wanted
decomposition.

Finally we can prove the main theorem of the section:

Theorem 2.3.24. We have the equality Ker(εΓ) = D(IET(Γ)), and the induced morphism
IET(Γ)ab → �∧2

Z Γ̃ is an isomorphism.

Proof. The inclusion from right to left is immediate. For the other inclusion let f ∈
Ker(εΓ). By Corollary 2.3.16 we know that f ∈ Ker(ϕΓ), then by Corollary 2.2.9 there
exists k ∈ N such that f is equal to the product τ1τ2 . . . τk where τi is a Γ-transposition.
By Lemma 2.3.23 there exist a Γ-transposition σ and h ∈ D(IET(Γ)) such that f = σh.
Then εΓ(f) = εΓ(σ)εΓ(h) = εΓ(σ) = 0. By Corollary 2.3.19 we deduce σ ∈ D(IET(Γ)).
Hence f = σh ∈ D(IET(Γ)).

We deduce that the induced group homomorphism ε′Γ : IET(Γ)ab → �∧2
Z Γ̃ is injective.

Furthermore εΓ is surjective by Proposition 2.3.14 thus ε′Γ is surjective and we conclude
that ε′Γ is an isomorphism.
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CHAPTER 3

Abelianization of IET./(Γ)

Résumé en français. Pour tout sous-groupe IET./(Γ) on établit un isomorphisme na-
turel entre son abélianisé et le 2-groupe 〈{a⊗a [mod 2] | a ∈ Γ̃}〉×〈{`∧` [mod 2] | ` ∈ Γ̃}〉.
Ce groupe est un sous-groupe abélien élémentaire de

⊗2
Z Γ̃/(2

⊗2
Z Γ̃) × �∧2

Z Γ̃/(2�
∧2

Z Γ̃).
Pour obtenir ce résultat, on construit deux morphismes de groupes. L’un des deux est un
analaogue du morphisme signature εΓ construit dans la section 2.3. L’ensemble des inver-
sions ne peut plus tous le temps être mesuré avec la mesure construite dans la section 2.3.1,
toutefois l’union de cet ensemble avec son symétrique peut être mesuré. Le noyau du mor-
phisme signature est légèrement plus gros que le sous-groupe dérivé D(IET./(Γ)) ; en fait,
il manque quelques renversements d’un certain type. On remarque que ces renversements
qui manquent sont conjugués à une rotation restreinte. On veut alors utiliser le morphisme
de groupes εΓ directement. Pour cela, on a besoin de voir un élémént de IET./(Γ) comme
une "limite" d’éléments de IET(Γ) en un certain sens.

Ce chapitre correspond à la seconde moitié de l’article [Lac20a].

English abstract. For every subgroup IET./(Γ) we establish a natural isomorphism
between its abelianization and 〈{a ⊗ a [mod 2] | a ∈ Γ̃}〉 × 〈{` ∧ ` [mod 2] | ` ∈ Γ̃}〉
which is a 2-elementary abelian subgroup of

⊗2
Z Γ̃/(2

⊗2
Z Γ̃) × �∧2

Z Γ̃/(2�
∧2

Z Γ̃). In order
to obtain this we construct two group homomorphisms. One is an analogue of the signature
homomorphism εΓ constructed in Section 2.3. The set of inversions cannot be measured
anymore with the measure created in Section 2.3.1, however the union of this with its
symmetric still can be measured. The kernel of the signature will be slightly larger than
D(IET./(Γ)); in fact, it will miss some reflections of a certain type. We notice that these
missing reflections are conjugate to a restricted rotation, thus we will try to use directly
the group homomorphism εΓ. To do this we need to see that an element of IET./(Γ) is a
“limit” of elements in IET(Γ) in some sense.

This chapter corresponds with the second half of the article [Lac20a].
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3.1 Positive substitute

We refer to Section 1.2.1 for the different kinds of partition associated. Here we introduce
the notion of positive substitute. The idea is to get a unique decomposition for every ele-
ment of ÎET./. This can be obtain by having a parameter on which the decomposition will
depend and this parameter is the partition associated chosen. Also it will be important to
understand in which cases this decomposition satisfies the group homomorphism relation.
For this we introduce the notion of a partition associated with a tuple.

3.1.1 Definition

We recall here that for every subinterval I of R we denote by r̂I the I-reflection map and
by rI the I-reflection.

Proposition 3.1.1. Let f̂ ∈ P̂C./ (resp. ÎET./) and let P be a partition associated with
f̂ . Then there exist a unique subset A(f̂ ,P) ⊂ f̂(P) and a unique finitely supported per-
mutation σ

(f̂ ,P)
such that σ

(f̂ ,P)
◦ (

∏
I∈A(f̂ ,P)

r̂I) ◦ f̂ belongs to P̂C+ (resp. ÎET+) and is

right-continuous.

Proof. Let f̂ and P as in the statement.We know that f̂ is continuous on every interior I◦

with I ∈ P. We define:

A(f,P) = {J | ∃I ∈ P such that J◦ = f̂(I◦) and f̂ |I◦ is order-reversing }

It is the unique subset of f̂(P) such that (
∏

I∈A(f̂ ,P)

r̂I) ◦ f̂ is an element of P̂C+ and thus

it exists a unique finitely supported permutation σ
(f̂ ,P)

such that σ
(f̂ ,P)

◦ (
∏

I∈A(f̂ ,P)

r̂I) ◦ f̂

is right-continuous.

Corollary 3.1.2. Let f ∈ PC./ (resp. IET./) and P be a partition associated with f . There
exists a unique subset A(f,P) ⊂ f(P) such that (

∏
I∈A(f,P)

rI)◦f belongs to PC (resp. IET).

Definition 3.1.3. The finitely supported permutation σ
(f̂ ,P)

is called the default of pseudo

right-continuity of f̂ according to P. The composition σ
(f̂ ,P)

◦ (
∏

I∈A(f̂ ,P)

r̂I) ◦ f̂ is equal to

(
∏

I∈A(f,P)

rI) ◦ f . We denote it by f+
P and it is called the positive P-substitute of f̂ and f .

The dependance on the partition is really important as we can see on Figures 3.1.1 and
3.1.2.
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1x x+ a
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P

Figure 3.1.1 – Positive substitute for a reflection in the case S = {x, a, 1− (x+ a)}.

0

1

1x x+ a 0

1

1x x+ ax+ b x+ b

r r
+

Q

Figure 3.1.2 – Positive substitute for a reflection in the case S = {x, b, a− b, 1− (x+ a)}.

3.1.2 Compatibility with the composition

We need to define what is a partition associated with a tuple.

Definition 3.1.4. Let n ∈ N and f1, f2, . . . , fn ∈ IET./(Γ). Let S be a finite subset of R
and let P be a partition into intervals of [0, 1[, we said that P is a partition into S-intervals
associated with (f1, f2, . . . , fn) if:

1. P is a partition into S-intervals associated with f1,

2. For every 2 ≤ i ≤ n − 1, fifi−1 . . . f1(P) is a partition into S-intervals associated
with fi+1.

Remark 3.1.5. Let S and T be two finite subsets of R and let P be a partition into S-
intervals associated with (f1, f2, . . . , fn). Then any refinement of P into T -intervals is a
partition into T -intervals associated with (f1, f2, . . . , fn).

We also want to talk about order-preserving and order-reversing for elements in IET./.

Definition 3.1.6. Let f ∈ IET./ and P ∈ Πf . Let I ∈ P, we say that f is order-
preserving on I (resp. order-reversing on I) if there exists a representative of f in ÎET./

that is order-preserving on I (resp. order-reversing on I).

Thanks to this when we have a partition P associated with an element f ∈ IET./ we
can always say that f is either order-preserving or order-reversing on every interval of P.

With some conditions we deduce how positive substitute behaves with composition.
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Proposition 3.1.7. Let n ∈ N and f1, f2, . . . , fn ∈ IET./(Γ). Let P be a partition into S-
intervals associated with (f1, f2, . . . , fn). Let g1 = (f1)+

P and gi = (fifi−1 . . . f1)+
fi−1...f1(P)

for every 2 ≤ i ≤ n. Then (fnfn−1 . . . f1)+
P = gngn−1 . . . g1.

Proof. For this proof we denote by rI the I-reflection for every subinterval I of [0, 1[.
By iteration it is sufficient to show the result for n = 2. Let f, g ∈ IET./(Γ) and P be a
partition into S-intervals associated with (f, g). Let n ∈ N such that P = {I1, I2, . . . , In}
and f(P) = {J1, J2, . . . , Jn} and f+

P (Ii) = Ji for 1 ≤ i ≤ n. Let 1 ≤ i ≤ n, we notice that
rJi ◦ f

+
P |Ii ◦ rIi = f+

P |Ii . There are 4 cases:

1. If f is order-preserving on Ii and g is order-preserving on Ji then g ◦ f is order-
preserving on Ii so :

(g ◦ f)+
P |Ii = (g ◦ f)|Ii = g|Ji ◦ f |Ii = g+

f(P)|Ji ◦ f
+
P |Ii

2. If f is order-preserving on Ii and g is order-reversing on Ji then g◦f is order-reversing
on Ii so :

(g ◦f)+
P |Ii = (g ◦f)Ii ◦rIi = g|Ji ◦f |Ii ◦rIi = g+

f(P)|Ji ◦rJi ◦f
+
P |Ii ◦rIi = g+

f(P)|Ji ◦f
+
P |Ii

3. If f is order-reversing on Ii and g is order-preserving on Ji then g◦f is order-reversing
on Ii so :

(g ◦f)+
P |Ii = (g ◦f)Ii ◦rIi = g|Ji ◦f |Ii ◦rIi = g+

f(P)|Ji ◦f
+
P |Ii ◦rIi ◦rIi = g+

f(P)|Ji ◦f
+
P |Ii

4. If f is order-reversing on Ii and g is order-reversing on Ji then g◦f is order-preserving
on Ii so :

(g ◦ f)+
P |Ii = (g ◦ f)|Ii = g|Ji ◦ f |Ii = g+

f(P)|Ji ◦ rJi ◦ f
+
P |Ii ◦ rIi = g+

f(P)|Ji ◦ f
+
P |Ii

3.2 Analogue of the signature

3.2.1 Balanced product of reflections

We give here a first description of D(IET./). It is inspired of the work done for IET with
balanced product restricted rotations.

Definition 3.2.1. Let n ∈ N and r1, r2, . . . , rn be some Γ-reflections. For every ` ∈ Γ̃+ let
n` be the number of Γ-reflections of type ` among these elements. The tuple (r1, r2, . . . , rn)
is a balanced tuple of Γ-reflections if 2 divides n` for every ` ∈ Γ̃+. We say that a product
of Γ-reflections is a balanced product of Γ-reflections if it can be written as a product of a
balanced tuple of Γ-reflections.

Lemma 3.2.2. The set of all balanced products of Γ-reflections is a generating subset of
D(IET./(Γ)).

Proof. As any element of IET./(Γ) is a finite product of Γ-reflections (see Proposition
1.2.16) and as a reflection has order 2 we deduce that every element of D(IET./(Γ)) is a
balanced product of reflections.
Let r and s be two reflections with the same type. Let t be the transposition that swaps
the support of r with the support of s, then s = trt−1. As a reflection has order 2, the
product rs is a commutator.
Let n ∈ N and r1, r2, . . . rn be Γ-reflections such that r1r2 . . . rn is a balanced product of
reflections. Then n is even and up to compose with an element of D(IET./) we can assume
that r2i−1 and r2i have the same type for every 1 ≤ i ≤ n

2 . Thus by the previous case we
deduce that r1r2 . . . rn is in D(IET./).
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By Proposition 1.2.16 and Lemma 3.2.2 we deduce the following:

Corollary 3.2.3. Let f ∈ IET./(Γ) then f2 ∈ D(IET./(Γ)).

Proposition 3.2.4. Any balanced product of Γ-restricted rotations with type in {(a, b) ∈
(Γ̃+)2 | a 6= b} is a balanced product of Γ-reflections.

Proof. Let a, b ∈ Γ̃+. Let r be a restricted rotation of type (a, b) an s be a restricted
rotation of type (b, a). Let I and J be the two consecutive intervals permuted by r. Then
r is the composition of the I-reflection, the J-reflection and the I ∪ J-reflection thus a
product of a reflections of type a with one of type b and one of type a + b. The same is
true for s thus we obtain that rs is the product of two reflections of type a, two of type b
and two of type a+ b; so rs is a balanced product of Γ-reflections.

3.2.2 The group homomorphism

Here we start with the work done in Section 2.3. We remark that if we denote A′R the
Boolean algebra of subsets of [0, 1[ generated by the set of all intervals [a, b], AR the one
generated by the set of all intervals [a, b[ and Afin the one generated by all the singletons
{x} then AR is isomorphic to A∗R := A′R/Afin. This is why we do not make a difference
between AΓ and its image in A∗R.

The notion of inversions as defined in 2.3.6 is no longer relevant because for every
reflection r, we have its set of inversions Er /∈ AΓ ⊗AΓ; indeed if I is the interval reflected
by r then Er = {(x, y) ∈ I × I | x < y}. We need to be more precise:

Definition 3.2.5. For every element f ∈ ̂IET./(Γ) we define:

1. Ef,1 := {(x, y) | x < y, f(x) > f(y)}, the set of all inversions of type 1 of f ,

2. Ef,2 := {(x, y) | y < x, f(y) > f(x)}, the set of all inversions of type 2 of f ,

3. E./f := Ef,1 ∪ Ef,2, the set of all inversions of f .

From now on we will write E./f = Ef .

Proposition 3.2.6. For every f ∈ ̂IET./(Γ) we have Ef ∈ AΓ ⊗AΓ.

Proof. Let f ∈ ÎET./ and let P be a partition associated with f . Let f+
P be the positive

P-substitute of f . Let J ⊂ P be the subset of intervals where f is order-reversing. By
seeing AΓ as its image in A∗R then we deduce that Ef = Ef+

P
∪
⋃
I∈J

I × I is an element of

AΓ ⊗AΓ.

Then this set can be measured with the same measure ωΓ : AΓ ⊗ AΓ →
⊗2

Z Γ̃ (see
Notation 2.3.4).

Example 3.2.7. 1. If we consider a Γ-restricted rotation r of type (a, b) (with a, b ∈
Γ̃+), we obtain ωΓ(Er) = a⊗ b+ b⊗ a (see Figure 3.2.1).

2. Let I ∈ Itv(Γ) be a subinterval of [0, 1[ of length a. Let r be the I-reflection map.
We have ωΓ(Er) = a⊗ a (see Figure 3.2.1).

3. Let τ a finitely supported permutation. Then Eτ is a union of singletons thus Eτ =
∅ ∈ AΓ ⊗AΓ and ωΓ(Eτ ) = ωΓ(∅) = 0.
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Figure 3.2.1 – Left: Set of inversions for a restricted rotation. Right: Set of inversions for a I-reflection

Here we expect a 2-group for the image of our group homomorphism. We denote by π
the projection of

⊗2
Z Γ̃ onto

⊗2
Z Γ̃/2(

⊗2
Z Γ̃) and for every a ∈ Γ̃ we denote π(a ⊗ a) by

a⊗ a [mod 2].

Definition 3.2.8. We define the signature for ̂IET./(Γ) as the map:

ε̂./Γ : ̂IET./(Γ) −→
⊗2

Z Γ̃/2(
⊗2

Z Γ̃)
f −→ ωΓ(Ef ) [mod 2]

For more clarity we explicit some equalities used to show that ε̂./Γ is a group homomor-
phism.

Lemma 3.2.9. Let f, g ∈ ̂IET./(Γ). We have the following equalities:

1. Ef◦g ∪ (Eg ∩ g−1(Ef )) = Eg ∪ g−1(Ef ),

2. Ef◦g ∩ Eg ∩ g−1(Ef ) = ∅.

Remark 3.2.10. We notice that Eg ∩ g−1(Ef ) is an element of AΓ ⊗AΓ.

Proof. 1. We proceed by double inclusions.
From left to right, we know that Eg ∩ g−1(Ef ) ⊂ Eg ∪ g−1(Ef ) hence it is sufficient
to show the inclusion Ef◦g ⊂ Eg ∪ g−1(Ef ). Let (x, y) be in Ef◦g. We can assume
that x < y, the case x > y is similar. Then we deduce that f(g(x)) > f(g(y)).
We have two cases, if g(x) > g(y) then (x, y) ∈ Eg else we have g(x) < g(y) and
f(g(x)) > f(g(y)) thus (x, y) = g−1(g(x), g(y)) ∈ g−1Ef .
From right to left, let (x, y) ∈ Eg∪g−1(Ef ). We can assume that x < y the case x > y
is similar. If (x, y) ∈ Eg ∩ g−1(Ef ) then it is done. We have two cases, if (x, y) ∈ Eg
and (x, y) /∈ g−1(Ef ) then as x < y we have g(x) > g(y) and f(g(x)) > f(g(y)) thus
(x, y) ∈ Ef◦g. If (x, y) ∈ g−1(Ef ) and (x, y) /∈ Eg then as x < y we have g(x) < g(y)
and f(g(x)) > f(g(y)) thus (x, y) ∈ Ef◦g.

2. By contradiction let us assume that there exists (x, y) ∈ Ef◦g ∩Eg ∩ g−1(Ef ). We can
assume that x < y, the case x > y is similar. As x < y and (x, y) ∈ Ef◦g ∩ Eg we
know that g(x) > g(y) and f(g(x)) > f(g(y)). However g.(x, y) = (g(x), g(y)) ∈ Ef
thus as g(x) > g(y) we have f(g(x)) < f(g(y)) which is a contradiction.
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Theorem 3.2.11. The signature ε̂./Γ is a group homomorphism.

Proof. Let f, g ∈ ̂IET./(Γ). By using the second equality of Thanks to Lemma 3.2.9 on
the third line and the first equality on the fourth line, we have:

ε̂./Γ (f ◦ g) =ωΓ(Ef◦g) [mod 2]

=ωΓ(Ef◦g) + ωΓ(Eg ∩ g−1(Ef ))− ωΓ(Eg ∩ g−1(Ef )) [mod 2]

=ωΓ(Ef◦g t (Eg ∩ g−1(Ef )))− ωΓ(Eg ∩ g−1(Ef )) [mod 2]

=ωΓ(Eg ∪ g−1(Ef ))− ωΓ(Eg ∩ g−1(Ef )) [mod 2]

=ωΓ(Eg) + ωΓ(g−1(Ef ))− 2ωΓ(Eg ∩ g−1(Ef )) [mod 2]

=ωΓ(Eg) + ωΓ(g−1(Ef )) [mod 2]

=ε̂./Γ (g) + ε̂./Γ (f)

We notice that every finitely supported permutation of support in Γ̃ is in Ker(ε̂./Γ ).

Corollary 3.2.12. There exists a group homomorphism ε./Γ : IET./(Γ)→
⊗2

Z Γ̃/2(
⊗2

Z Γ̃)

such that for every f ∈ IET./(Γ) we have ε./Γ (f) = ε̂./Γ (f̂) for every representative f̂ of f
in ̂IET./(Γ).

Example 3.2.13. We give the value of ε./Γ for two kinds of elements:

1. Let r be a Γ-reflection of type a then ε./Γ (r) = a⊗ a [mod 2],

2. Let s be a Γ-restricted rotation of type (p, q) then:

ε./Γ (s) = p⊗ q + q ⊗ p [mod 2]

As IET./ is generated by reflections, we deduce the image of ε./Γ :

Corollary 3.2.14. The subgroup Im(ε./Γ ) of
⊗2

Z Γ̃/2(
⊗2

Z Γ̃) is generated by the subset
〈{a⊗ a [mod 2] | a ∈ Γ̃}〉.

3.2.3 Description of Ker(ε./Γ )

As
⊗2

Z Γ̃/2(
⊗2

Z Γ̃) is an abelian group we know that D(IET./(Γ)) is included in Ker(ε./Γ ).
We will see later that the other inclusion is false in general.

With Figure 1.3.1 we already know that for every a ∈ Γ̃ such that a
4 ∈ Γ̃ then every

Γ-reflection of type a is in the derived subgroup D(IET./(Γ).

Definition 3.2.15. We denote by ΩΓ the conjugate closure of the group generated by the
set of all Γ-reflections of type 2` with ` ∈ Γ̃ r 2Γ̃ (the closure inside IET./(Γ)).

The inclusion ΩΓ ⊂ Ker(ε./Γ ) is immediate. With Figure 3.2.2 we obtain the following:

Proposition 3.2.16. Every Γ-reflections of type 2` with ` ∈ Γ̃ r 2Γ̃ is conjugated to a
Γ-restricted rotation of type (`, `).
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Figure 3.2.2

The aim here is to show the equality Ker(ε./Γ ) = D(IET./(Γ))ΩΓ.

We begin by proving the result in the specific case where Γ has finite rank. We will
reduce the general case to this one.

Lemma 3.2.17. Let Γ be a finitely generated subgroup of R/Z. Then for every f ∈ Ker(ε./Γ )
there exist δ ∈ D(IET./(Γ)) and h ∈ ΩΓ such that f = δh.

Proof. As Γ is finitely generated, we know that Γ̃ is finitely generated. Let d be the rank
of Γ̃.

Let f ∈ Ker(ε./Γ ). Let n ∈ N and P := {I1, I2, . . . , In} be a partition into Γ-intervals
associated with f . We denote by Li the length of Ii for every 1 ≤ i ≤ n. By Corollary 2.1.3
there exists B := {`1, `2, . . . , `d} a basis of Γ̃ with elements in Γ̃+ such that Li ∈ VectN(B)
for every 1 ≤ i ≤ n. Hence we can cut each Ii into smaller intervals with length in B.
This operation gives us a new partition Q := {J1, J2, . . . , Jk}, with k ∈ N, into Γ-intervals
associated with f .

For every 1 ≤ i ≤ k we define ri as the Ji-reflection if f is order-reversing on Ji else
we put ri = Id. Let g be the product fr1r2 . . . rk; it is an element of IET(Γ) and Q is a
partition into Γ-intervals associated with g. By Theorem 1.2.8 the element g can be written
as a finite product of Γ-restricted rotations with type inside {(lp, lq) | p, q ∈ {1, 2, . . . , d}}.
Thanks to an element of D(IET./(Γ)) we can organize this product to put all Γ-restricted
rotations of type (lp, lp) together (with 1 ≤ p ≤ d; they are elements in ΩΓ): there exist
w1 ∈ D(IET./(Γ)) and h ∈ ΩΓ and m ∈ N and s1, s2, . . . , sm some Γ-restricted rotations
with type inside {(lp, lq) | p, q ∈ {1, 2, . . . , d}, p 6= q} such that g = w1hs1s2 . . . sm. Then
f = w1hs1s2 . . . smrkrk−1 . . . r1.

We define up := Card{i ∈ {1, 2, . . . , k} | ri 6= Id, type(ri) = lp}. Let vp,p = 0 for
every 1 ≤ p ≤ d and let vp,q := Card{j ∈ {1, 2, . . . ,m} | type(sj) = (lp, lq)} for every
1 ≤ p 6= q ≤ d. Then we have:

ε./Γ (f) =

k∑
i=1

ε./Γ (ri) +

m∑
j=1

ε./Γ (sj) =

d∑
p=1

uplp ⊗ lp +

d∑
p=1

d∑
q=1

vp,q(lp ⊗ lq + lq ⊗ lp) [mod 2] = 0

We notice that
d∑
p=1

d∑
q=1

vp,q(lp⊗ lq + lq⊗ lp) =
d∑
p=1

d∑
q=1

(vp,q + vq,p)lp⊗ lq. Furthermore B is a

basis of Γ̃ so {lp⊗ lq}1≤p,q≤d is a basis of
⊗2

Z Γ̃, thus we deduce that 2 divides up for every
1 ≤ p ≤ d and 2 divides vp,q + vq,p for every 1 ≤ p, q ≤ d.

We obtain that r1r2 . . . rk is a balanced product of Γ-reflections hence by Lemma 3.2.2
it is an element of D(IET./(Γ)) denoted w2. We also deduce that the product s1s2 . . . sm is
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a balanced product of Γ-restricted rotations with type inside {(a, b) | a 6= b ∈ Γ̃+}. Hence
by Proposition 3.2.4 we obtain that it is also an element of D(IET./(Γ)), denoted w3.

Finally we have f = w1hw3w2 = δh with δ ∈ D(IET./(Γ)) and h ∈ ΩΓ.

The next lemma gives an inclusion used to conclude in the general case:

Lemma 3.2.18. For all Γ, A subgroups of R/Z such that A ⊂ Γ we have:

D(IET./(A))ΩA ⊂ D(IET./(Γ))ΩΓ

Proof. The inclusion D(IET./(A)) ⊂ D(IET./(Γ)) is immediate. It is sufficient to show
that ΩA ⊂ D(IET./(Γ))ΩΓ. Let Ã be the preimage of A in R.

Let f be an element of ΩA. Then there exist n ∈ N and a1, a2, . . . , an ∈ Ã r 2Ã
and w1, w2, . . . , wn some Γ-reflections such that the type of wi is 2ai and there exist

g1, g2, . . . gn ∈ IET./(A) such that f =
n∏
i=1

giwig
−1
i .

Let U := {i ∈ {1, 2, . . . , n} | ai ∈ Γ̃ r 2Γ̃}. By definition we have {giwig−1
i | i ∈

U} ⊂ ΩΓ. Take V := {1, 2, . . . , n} r U . As A is a subgroup of Γ we deduce that V =
{j ∈ {1, 2, . . . , n} | aj ∈ 2Γ̃}. Thus for every j ∈ V the type of wj is in 4Γ̃ so we deduce
that wj and gjwjg−1

j belong to D(IET./(Γ)) (see Figure 1.3.1). We know that there exists
h ∈ D(IET./(Γ)) such that:

f = h
∏
j∈V

gjwjg
−1
j

∏
i∈U

giwig
−1
i

Then f ∈ D(IET./(Γ))ΩΓ.

We can prove the theorem for the general case:

Theorem 3.2.19. For any dense subgroup Γ of R/Z we have:

Ker(ε./Γ ) = D(IET./(Γ))ΩΓ

Proof. The inclusion from right to left is already proved.
Let f ∈ Ker(ε./Γ ), let n ∈ N and P := {I1, I2, . . . , In} be a partition into Γ-intervals

associated with f . We denote by Li the length of Ii for every 1 ≤ i ≤ n. As ε./Γ (f) = 0
we know that there exist k ∈ N and a1, a2 . . . , ak, b1, b2, . . . , bk ∈ Γ̃ such that ωΓ(Ef ) =

2
k∑
i=1

ai ⊗ bi inside
⊗2

Z Γ̃.

Let Ã be the subgroup of R generated by {Li}i=1...n ∪ {1} ∪ {ai, bi}i=1...k. Then Ã
contains Z, is finitely generated and is a subgroup of Γ̃. Let A be the image of Ã in R/Z.
The partition P is also a partition into A-intervals associated with f thus f belongs to
IET./(A). Furthermore we have ωA(Ef ) = ωΓ(Ef ). Hence:

ε./A(f) = [ωA(Ef )]⊗2
Z A/2(

⊗2
Z A) = [ωΓ(Ef )]⊗2

Z A/2(
⊗2

Z A) = [2
k∑
i=1

ai ⊗ bi]⊗2
Z A/2(

⊗2
Z A) = 0

By Lemma 3.2.17 we deduce that f ∈ D(IET./(A))ΩA and by Lemma 3.2.18 we deduce
that f ∈ D(IET./(Γ))ΩΓ.
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3.3 The positive contribution

Thanks to Proposition 3.2.16, we know that every Γ-reflection of type 2` with ` ∈ Γ̃ r 2Γ̃
is conjugated to a Γ-restricted rotation of type (`, `). Also this is an element of IET+(Γ)
which is not send on the trivial element by the morphism εΓ. We use the notion of positive
substitute in order to use the group homomorphism εΓ to send such a reflection on a
nontrivial element. For this we need to use the upward directed set MΓ and the Z-linearly
independent finite subset Sa of Γ̃+ for every a ∈ MΓ given by Corollary 2.1.2. We recall
that for every a, b ∈MΓ with a ≤ b we have VectN(Sa) ⊂ VectN(Sb) and Γ̃+ is equal to the
direct limit lim

−→
VectN(Sa).

For every a ∈ MΓ, we construct a map depending on Sa. They are not group ho-
momorphisms but satisfy the group homomorphism property on some products thanks to
Proposition 3.1.7.

3.3.1 Some subsets of IET./(Γ)

Let S be a finite set of Γ̃+. We denote by GS the set of all f in IET./(Γ) such that there
exists a partition P into S-intervals associated with f . We remark that GS is not a group
in general. We want to know how these sets and IET./(Γ) are linked.

Proposition 3.3.1. Let S and T be two finite subsets of Γ̃+. If S ⊂ VectN(T ) then
GS ⊂ GT . More precisely for every partition P into S-intervals of [0, 1[ there exists a
refinement Q of P which is a partition into T -intervals of [0, 1[.

Proof. Let f ∈ GS and let P be a partition into S-intervals associated with f . As S ⊂
VectN(T ) each interval I ∈ P can be subdivided with intervals of length in T . After
subdividing this way the intervals of P, we obtain a refinement Q of P. We notice that Q
is a partition into T -intervals associated with f so f ∈ GT .

As Γ̃+ is the direct limit of the VectN(Sa) we deduce the next proposition:

Proposition 3.3.2. For every finite subset S of Γ̃+, there exists a ∈ MΓ such that for
every b ≥ a we have S ⊂ VectN(Sb).

From Propositions 3.3.1 and 3.3.2 we obtain:

Corollary 3.3.3. Let f ∈ IET./(Γ). There exists a ∈ MΓ such that for every b ≥ a we
have f ∈ GSb

.

We also want to check that if we take any product of elements in IET./(Γ) there will
be a moment where we have a partition associated to the tuple of these elements.

Proposition 3.3.4. Let k ∈ N and f1, f2, . . . , fk ∈ IET./(Γ). There exists a ∈ MΓ

such that for every b ≥ a there exists Pb a partition into Sb-intervals associated with
(f1, f2, . . . , fk).

Proof. Thanks to Proposition 3.3.1 and Remark 3.1.5 we deduce that it is sufficient to
find only one a ∈ MΓ such that there exists a partition into Sa-intervals associated with
(f1, f2, . . . , fk).

By Corollary 3.3.3 there exist ai ∈MΓ and Pi a partition into Sai intervals associated
with fi for every 1 ≤ i ≤ k. We denote by Vi the set of all the endpoints of the intervals in
Pi. Let V = V1 ∪ f−1

1 (V2) ∪ . . . ∪ (fk−1 . . . f1)−1(Vk). We know that V is finite thus there
exist m ∈ N and v0, v1, . . . , vm ∈ Γ̃+ such that V = {vi}i=0...m. Up to change the order we
can assume that v0 = 0 < v1 < v2 < . . . < vm−1 < vm = 1. Let Ij be the interval [vj−1, vj [
and `j be the length of Ij for every 1 ≤ j ≤ m. Let T = {`j}j=1...m and P = {Ij}j=1...m.
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We have V1 ⊂ V then P is a refinement of P1 so P is a partition into T -intervals associated
with f1. Similarly for every 2 ≤ i ≤ k we know that Vi ⊂ fi−1 . . . f1(V ) thus fi−1 . . . f1(P)
is a refinement of Pi so fi−1 . . . f1(P) is a partition into T -intervals associated with fi.
Hence P is a partition into T -intervals associated with (f1, f2, . . . , fk).
Thanks to Proposition 3.3.2 there exists a ∈ MΓ such that for every b ≥ a we have
T ⊂ VectN(Sb) and by Proposition 3.3.1 and Remark 3.1.5 there exists a refinement Q of
P which is a partition into Sa-intervals associated with (f1, f2, . . . , fk).

3.3.2 The S-map

Let S be a finite subset of Γ̃+ for all this subsection. We assume that S is free inside
VectZ(S). For every a, b ∈ Γ̃, we use the notation [a ∧ b]2�∧2

Z Γ̃ = a ∧ b [mod 2].
Let f ∈ GS and P be a S-partition associated with f . We show that the value

εΓ(f+
P ) [mod 2] does not depend on P, where εΓ is the group homomorphism define in

2.3.9.

Proposition 3.3.5. Let f ∈ IET./(Γ) and let P,Q be two partitions into S-intervals
associated with f . Then εΓ(f+

P ) [mod 2] = εΓ(f+
Q ) [mod 2].

Proof. For this proof we denote by rI the I-reflection for every subinterval I of [0, 1[ and
we recall that λ is the Lebesgue measure. First we reduce the case to a simpler one.

Let f ∈ IET./(Γ) and P,Q be two partitions into S-intervals associated with f . Let
n, k ∈ N such that P = {I1, I2, . . . , In} and Q = {J1, J2, . . . Jk}. Up to change the index
we can assume that the Ii are consecutive intervals and so are the Ji. We denote by
M the unique partition into Γ-intervals associated with f that has the minimal number
of intervals. Let m be this number and M := {M1,M2, . . . ,Mm} where the Mi are
consecutive intervals. As P,Q are also partitions into Γ-intervals we know that they are
refinements of M .

Let 1 ≤ i ≤ m and let n0 = k0 = 0. There exist n1 < n2 < . . . < nm, k1 < k2 <

. . . < km ∈ N such that Mi =
ni⊔

j=ni−1+1
Ij =

ki⊔
j=ki−1+1

Jj . Hence λ(Mi) =
ni∑

j=ni−1+1
λ(Ii) =

ki∑
j=ki−1+1

λ(Jj). For every s ∈ S we define as = Card({j ∈ {ni−1 + 1, . . . , ni} | λ(Ij) = s}

and bs = Card({j ∈ {ki−1 + 1, . . . , ki} | λ(Jj) = s}. Then
∑
s∈S

ass =
∑
s∈S

bss. As S is

free in VectZ(S) we deduce that as = bs for every s ∈ S. This implies that ni = ki for
every 1 ≤ i ≤ n and n = k. We also get the existence of a permutation σi of the set
{ni−1 + 1, . . . , ni} such that λ(Ij) = λ(Jσi(j)) for every j ∈ {ni−1 + 1, . . . , ni}.

We deduce that it is sufficient to show the result when only one permutation σi is a
transposition (a a+ 1) with ni−1 + 1 ≤ a < ni.
Let i0 in {1, 2, . . .m} and a ∈ {ni0−1 + 1, . . . , ni0}. We assume now that σi0 is the
transposition (a a + 1) and σi = Id for every i 6= i0. Then Ij = Jj for every j ∈
{1, 2, . . . , n} r {a, a + 1}. We also have Ia ∪ Ia+1 = Ja ∪ Ja+1 and λ(Ia+1) = λ(Ja).
In the case where f is order-preserving on Mi0 then f+

P = f+
Q . In the case where f is

order-reversing on Mi0 we deduce that (f+
Q )−1 ◦ f+

P is equal to the square of the restricted
rotation whose intervals associated are Ia and Ia+1 (see Figure 3.3.1).

In both cases we deduce εΓ(f+
P ) [mod 2] = εΓ(f+

Q ) [mod 2].
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(f+
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Figure 3.3.1 – Illustration of the fact that (f+
Q)−1 ◦ f+

P is equal to the square of a restricted rotation in
Proposition 3.3.5

Definition 3.3.6. We define the S-map as:

ψS : IET./(Γ) −→ �∧2
Z Γ̃/2�

∧2
Z Γ̃

f 7−→
{
εΓ(f+

P ) [mod 2] f ∈ GS
0 f /∈ GS

Where P is a partition into S-intervals associated with f .

Thanks to Proposition 3.3.5, the map ψS is well-defined. We check that ψS satisfies
the morphism condition when we have the existence of a partition in S-intervals associated
with a tuple.

Proposition 3.3.7. Let n ∈ N and f1, f2, . . . , fn ∈ IET./(Γ). If there exists P a partition
into S-intervals associated with (f1, f2, . . . , fn) then:

ψS(fnfn−1 . . . f1) =

n∑
i=1

ψS(fi)

Proof. Let n ∈ N and f1, f2, . . . , fn ∈ IET./(Γ). The case n = 1 is trivial thus we assume
n ≥ 2. Let P be a partition into S-intervals associated with (f1, f2, . . . , fn). Let g1 = (f1)+

P
and for every 2 ≤ i ≤ n let gi = (fi)

+
fi−1...f1(P). By Proposition 3.1.7 we know that

(fnfn−1 . . . f1)+
P = gngn−1 . . . g1, then:

ψS(fnfn−1 . . . f1) = εΓ((fnfn−1 . . . f1)+
P) [mod 2] = εΓ(gngn−1 . . . g1) [mod 2]

Also εΓ is a group homomorphism thus:

ψS(fnfn−1 . . . f1) =
n∑
i=1

εΓ(gi) [mod 2] =
n∑
i=1

ψS(fi)

3.3.3 The group homomorphism

We recall that MΓ is the upward directed set introduced by Corollary 2.1.2 in the context
of ultrasimplicially ordered groups. We define the group of germs at infinity of functions
from MΓ to �∧2

Z Γ̃/2�
∧2

Z Γ̃ as the quotient: ΞΓ = (�
∧2

Z Γ̃/2�
∧2

Z Γ̃)MΓ/Net0, where Net0 is
the normal subgroup of eventually zero functions defined by:

Net0 := {(wa)a∈MΓ
| ∃a ∈MΓ ∀b ∈MΓ, b ≥ a⇒ wb = 0}

We are now able to define a new group homomorphism from IET./(Γ) to ΞΓ.
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Definition 3.3.8. We define the positive contribution of IET./(Γ) as the next map:

ψΓ : IET./(Γ) −→ ΞΓ

f 7−→ [(ψSa(f))a∈MΓ
]

Proposition 3.3.9. The map ψΓ is a group homomorphism.

Proof. Let f, g ∈ IET./(Γ). By Proposition 3.3.4, there exists a0 ∈ MΓ such that for
every b ≥ a0, there exists a partition Pb into Sb-intervals associated with (f, g). Then by
Proposition 3.3.7 we deduce that for every b ≥ a0 we have ψSb

(g ◦ f) = ψSb
(g) + ψSb

(f).
We denote by w = (wa)a∈MΓ

the element of (�
∧2

Z Γ̃/2�
∧2

Z Γ̃)MΓ defined by wa =
ψSa(g ◦ f) − ψSa(g) − ψSa(f) for every a ∈ MΓ. We remark that wb = 0 for every
b ≥ a0 thus w ∈ Net0. Then we have (ψSa(g ◦ f))a = (ψSa(g))a + (ψSa(f))a − w. So
ψΓ(g ◦ f) = ψΓ(g) + ψΓ(f).

The following lemma gives the value of an element in IET(Γ). The proof is immediate
from the definition of ψSa .

Lemma 3.3.10. For every f ∈ IET(Γ), there exists a0 ∈ MΓ such that for every b ∈
MΓ with b ≥ a0 we have we have ψSb

(f) = εΓ(f) [mod 2]. In particular ψΓ(f) =
[(εΓ(f) [mod 2])a∈MΓ

].

Remark 3.3.11. In fact the definition of ΨSa gives us that for every a ∈ MΓ there exists
a′ ∈MΓ with a′ ≥ a such that for every b ≥ a′ we have ψSb

(f) = εΓ(f) [mod 2]. This is a
sufficient condition to obtain the wanted equality in ΞΓ. It is also a necessary condition.
Indeed, let us assume that there exists a0 ∈ MΓ such that for every b ∈ MΓ with b ≥ a0

we have ψSb
(f) = εΓ(f) [mod 2]. Then thanks to the property of MΓ to be an upward

directed set we deduce that for every a ∈ MΓ there exists ca ∈ MΓ such that ca ≥ a and
ca ≥ a0. Thus for every b ∈MΓ such that b ≥ ca we have ψSb

(f) = εΓ(f) [mod 2].

The next proposition show that the set we used to define ΩΓ is not sent to the trivial
element by ψΓ; thus this is not a subset of D(IET./(Γ)).

Proposition 3.3.12. Let ` ∈ Γ̃ r 2Γ̃ and r be a Γ-reflection of type 2`. Then ψΓ(r) =
[(` ∧ ` [mod 2])a∈MΓ

] 6= 0.

Proof. We know that such a Γ-reflection is conjugate to a Γ-restricted rotation of type
(`, `). We denote by s this Γ-restricted rotation. We have εΓ(s) = ` ∧ ` [mod 2]. Then
by Lemma 3.3.10 we have ψΓ(r) = ψΓ(s) = [(` ∧ ` [mod 2])a]. Thus if ψΓ(r) = 0 then
there exists (wa)a∈MΓ

∈ Net0 such that (` ∧ ` [mod 2])a + (wa)a = 0. We deduce that
`∧ ` [mod 2] = 0. Or this implies ` ∈ 2Γ̃ and this is a contradiction. Hence ψΓ(r) 6= 0.

3.4 Description of IET./(Γ)ab

With both morphisms ε./Γ and ψΓ we are now able to describe D(IET./(Γ)). We recall that
ΩΓ is the conjugate closure of the group generated by the set of all Γ-reflections of type 2`
with ` ∈ Γ̃ r 2Γ̃.

Lemma 3.4.1. We have the inclusion:

ΩΓ ∩Ker(ψΓ) ⊂ D(IET./(Γ))

Proof. Let w ∈ ΩΓ ∩ Ker(ψΓ). There exist n ∈ N and g1, g2, . . . gn ∈ IET./(Γ) and

r1, r2, . . . , rn some Γ-reflections with type inside Γ̃r2Γ̃ such that w =
n∏
i=1

girig
−1
i . We know

that every Γ-reflection is conjugate to a Γ-restricted rotation so there exist h1, h2, . . . hn ∈
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IET./(Γ) and s1, s2, . . . , sn some Γ-restricted rotations such that si = hirih
−1
i for every

1 ≤ i ≤ n. Then w =
n∏
i=1

gih
−1
i sihig

−1
i . By Lemma 3.2.2 it is sufficient to show that w is

a balanced product of Γ-reflections.
As for every 1 ≤ i ≤ n we have gi and g−1

i which appear the same number of time in

w (the same is true for h and h−1) we deduce that it is sufficient to show that w′ :=
n∏
i=1

si

is a balanced product of Γ-reflections. By Lemma 3.2.2 it is enough to show that w′ ∈
D(IET./(Γ)).

We notice that ψΓ(w) = ψΓ(w′) thus by the assumption we deduce that ψΓ(w′) = 0.
Hence by Lemma 3.3.10 we deduce that εΓ(w′) [mod 2] = 0. This equality stands in
�∧2

Z Γ̃/2�
∧2

Z Γ̃. There exists k ∈ N and for every 1 ≤ j ≤ k there exist aj , bj ∈ Γ̃+ with

aj + bj < 1 and nj ∈ N and νj ∈ {−1, 1} such that εΓ(w′) +
k∑
j=1

2njνjaj ∧ bj = 0. For every

1 ≤ j ≤ k let γj be a Γ-restricted rotation of type (aj , bj). Then the element w′
k∏
j=1

(γ
njνj
j )2

is in IET(Γ) and satisfies:

εΓ(w′
k∏
j=1

(γ
njνj
j )2) = εΓ(w′) +

k∑
j=1

2njνjaj ∧ bj = 0

By Theorem 2.3.24 the element w′
k∏
j=1

(γ
njνj
j )2 is in D(IET(Γ)) ⊂ D(IET./(Γ)). By

Corollary 3.2.3 we know that
k∏
j=1

(γ
njνj
j )2 is in D(IET./(Γ)). Then we deduce that w′ ∈

D(IET./(Γ)). Hence w is in D(IET./(Γ)).

Theorem 3.4.2. We have D(IET./(Γ)) = Ker(ε./Γ ) ∩Ker(ψΓ).

Proof. The inclusion from left to right is trivial.
Let f ∈ Ker(ε./Γ )∩Ker(ψΓ). By Theorem 3.2.19 there exist g ∈ D(IET./(Γ) and h ∈ ΩΓ

such that f = gh. We deduce that ψΓ(h) = ψΓ(f) = 0 so h ∈ Ker(ψΓ) ∩ ΩΓ. By Lemma
3.4.1 we obtain that h ∈ D(IET./(Γ)), thus f ∈ D(IET./(Γ)).

Corollary 3.4.3. We have D(IET./(Γ)) = Ker(ψΓ|Ker(ε./Γ )).

Lemma 3.4.4. The quotient Ker(ε./Γ )/D(IET./(Γ)) is isomorphic to the subgroup 〈{` ∧
` [mod 2] | ` ∈ Γ̃}〉 of �∧2

Z Γ̃/2�
∧2

Z Γ̃.

Proof. By Corollary 3.4.3 we have:

Ker(ε./Γ )/D(IET./(Γ)) ' Im(ψΓ|Ker(ε./Γ )) = ψΓ(Ker(ε./Γ ))

By Theorem 3.2.19 and as ψΓ is a group homomorphism we have the equality ψΓ(Ker(ε./Γ )) =
ψΓ(ΩΓ). Furthermore ΩΓ is the normal closure of the group generated by all Γ-reflections
of type 2` with ` ∈ Γ̃ r 2Γ̃. Hence we deduce that:

ψΓ(ΩΓ) = 〈{[(` ∧ ` [mod 2])n∈N] | ` ∈ Γ̃ r 2Γ̃〉 = 〈{[(` ∧ ` [mod 2])n∈N] | ` ∈ Γ̃〉

Thus ψΓ(Ker(ε./Γ )) ' 〈{` ∧ ` [mod 2] | ` ∈ Γ̃}〉.

Theorem 3.4.5. We have the following group isomorphisms:

IET./(Γ)ab ' Im(ε./Γ )×Ker(ε./Γ )/D(IET./(Γ))

' 〈{a⊗ a [mod 2] | a ∈ Γ̃}〉 × 〈{` ∧ ` [mod 2] | ` ∈ Γ̃}〉,

where the left term of the product is in
⊗2

Z Γ̃/(2
⊗2

Z Γ̃) and the right one is in �∧2
Z Γ̃/(2�

∧2
Z Γ̃).
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Proof. The second isomorphism is given by Corollary 3.2.14 and Lemma 3.4.4.
For the first isomorphism we recall that we have the following exact sequence:

1→ Ker(ε./Γ )/D(IET./(Γ))→ IET./(Γ)ab → IET./(Γ)/Ker(ε./Γ )→ 1

Each group in this exact sequence has exponent 2. Then they are also F2-vectorial spaces.
We deduce that this exact sequence is an exact sequence of F2-vectorial spaces, thus it
splits and gives the result.

Remark 3.4.6. If Γ̃ has dimension d then 〈{a⊗ a [mod 2] | a ∈ Γ̃}〉 has dimension d(d+1)
2 ,

as F2-vector space, and 〈{` ∧ ` [mod 2] | ` ∈ Γ̃}〉 has dimension d, as F2-vector space, so
IET./(Γ)ab has dimension d(d+3)

2 over F2.

Remark 3.4.7. The inclusion of IET(Γ) in IET./(Γ) induces a group morphism:

η : IET(Γ)ab/2(IET(Γ)ab)→ IET./(Γ)ab.

By Theorem 1.2.8 we know that IET(Γ) is generated by Γ-restricted rotations thus we
deduce that the image of η is the subgroup 〈{p ⊗ q + q ⊗ p [mod 2] | p, q ∈ Γ̃}〉 × 〈{a ∧
a [mod 2]}〉 of

⊗2
Z Γ̃/(2

⊗2
Z Γ̃) × �∧2

Z Γ̃/(2�
∧2

Z Γ̃). This is isomorphic to �∧2
Z Γ̃/(2�

∧2
Z Γ̃)

and if Γ̃ has dimension d then its dimension is d(d+1)
2 as F2-vector space. In this case η is

not surjective and its cokernel has dimension d over F2. In the case where Γ̃ has infinite
dimension over Z we deduce that Im(η) also has infinite dimension over F2. By Proposition
2.3.18 we deduce that the group 〈{p⊗ q + q ⊗ p [mod 2] | p, q ∈ Γ̃}〉 is equal to the group
〈{a⊗ a [mod 2] | a ∈ Γ̃}〉 if and only if Γ̃ = 2Γ̃. Then η is surjective if and only if Γ̃ = 2Γ̃.

Proposition 3.4.8. The group homomorphism η is injective.

Proof. For every f ∈ IET(Γ) we denote by [f ] its image in IET(Γ)ab. Thanks to Theorem
2.3.24 we know that [f ] ∈ 2 IET(Γ)ab if and only if εΓ(f) ∈ 2�

∧2
Z Γ. Hence to prove

the statement it is enough to prove that for every f ∈ IET(Γ) such that ε./Γ (f) = 0
and projKer(ε./Γ )(f) = 0 we have εΓ(f) ∈ 2�

∧2
Z Γ. We use notations of inversions defined

in Definition 3.2.5. By Corollary 2.1.3 there exists n ∈ N and a Z-linearly independent
family {l1, l2, . . . , ln} of Γ+ and ni,j ∈ Z such that Ef,1 =

∑
i,j
ni,jli ⊗ lj . The equality

projKer(ε./Γ )(f) = 0 gives us that ni,i = 0. We have ε./Γ (f) =
∑
i 6=j

(ni,j+nj,i)li⊗lj [mod 2] = 0.

We deduce that 2 divides (ni,j + nj,i) for every 1 ≤ i 6= j ≤ n. We obtain that :

εΓ(f) =
∑
i 6=j

ni,jli ∧ lj

=
∑
i<j

(ni,j − nj,i)li ∧ lj

=
∑
i<j

(ni,j + nj,i)li ∧ lj − 2
∑
i<j

nj,ili ∧ lj

We deduce that 2 divides εΓ(f) and this gives the result.
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CHAPTER 4

Signature for piecewise continuous groups

Résumé en français. On montre l’annulation de la classe de Kapoudjian de PC./ et par
conséquent l’annulation de la classe de Kapoudjian de tous les sous-groupes de PC./. Cela
correspond à ce que le groupe PC./ se relève dans le quotient de P̂C./ par son sous-groupe
alterné des permutations paires. Pour démontrer ce résultat, on construit un morphisme de
groupes non trivial, appelé signature, de P̂C./ vers Z/2Z qui étend la signature naturelle
sur Sfin. Soit G un sous-groupe de PC./ qui est simple et non-abélien et soit Ĝ sa pré-
image dans P̂C./ ; grâce au morphisme signature que l’on a construit on peut alors lister
l’ensemble des sous-groupes normaux de Ĝ.

Ce chapitre correspond à l’article [Lac20b].

English abstract. We show that the Kapoudjian class of PC./ vanishes, and by con-
sequence the one of every subgroup of PC./ also vanishes. That is, the quotient map
P̂C./ → PC./ splits modulo the alternating subgroup of even permutations. This is shown
by constructing a nonzero group homomorphism, called signature, from P̂C./ to Z/2Z
which extends the natural signature on Sfin. Let G be a subgroup of PC./ which is simple
nonabelian and let Ĝ be its preimage in P̂C./; thanks to the signature on P̂C./ we are able
to list normal subgroups of Ĝ.

This chapter corresponds to the article [Lac20b].
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4.1 Introduction

The beginning of the study of the symmetric group of an infinite set X, denoted by S(X),
date back at least in 1915 with an article of Vitali [Vit15] and one of Andreoli [And15].
Even if he does not use the language of group theory, Vitali proves that every element of
S(Z) is a finite product of squares. A direct consequence is the following:

Theorem 4.1.1 (Vitali [Vit15]). The only group homomorphism from S(X) into Z/2Z is
the trivial one.

A natural subgroup to consider is the one consisting of all finitely supported permuta-
tions, denoted by Sfin(X). It is a normal subgroup and with the same proof as in finite
permutation group, we can define a surjective group homomorphism εfin(X) onto (Z/2Z,+)
called the classical signature. We denote it by Afin(X) the kernel of the classical signature.
It is called the alternating subgroup and it is a subgroup of index two of Sfin(X) and also
a normal subgroup of S(X). In 1929, Onefri [Ono29] proves that Sfin(X) and Afin(X)
are the only proper normal subgroups of S(X) when X is a countable set. This result
was extended to every infinite set X by Baer [Bae34]. With these groups we obtain the
following exact sequence:

0→ Z/2Z = Sfin(X)/Afin(X)→ S(X)/Afin(X)→ S(X)/Sfin(X)→ 1

It is a central extension, thus it gives a canonical element of the cohomology group
H2(S(X)/Sfin(X),Z/2Z). It appears in the work of Kapoudjian and Sergiescu [Kap02,
KS05], and also in the work of Cornulier [Cor19a] in the context of near actions.

Here we work with the interval [0, 1[ and we recall that Sfin = Sfin([0, 1[). We denote
also εfin = εfin([0, 1[). For every subgroup G of S([0, 1[)/Sfin we denote by Ĝ its preimage
in S([0, 1[). Then, we have the following exact sequence:

0→ Z/2Z = Sfin/Afin → Ĝ/Afin → G→ 1

As before, it is a central extension, thus it gives a canonical element of the cohomology
group H2(G,Z/2Z), called the Kapoudjian class of G. For such a G, Cornulier [Cor19b]
asks when its Kapoudjian class vanishes. This is answered positively below. Such a van-
ishing implies in particular that Ĝ/Afin is isomorphic to the direct product G × Z/2Z. If
there exists a group homomorphism from Ĝ onto Z/2Z which extends the signature εfin,
then the above exact sequence splits and this implies the vanishing of the Kapoudjian class
of G.

Theorem 4.1.2. There exists a group homomorphism ε : P̂C./ → Z/2Z that extends the
classical signature on Sfin.

In contrast, Theorem 4.1.1 implies that the Kapoudjian class of S([0, 1[)/Sfin, does
not vanish.

Corollary 4.1.3. Let G be a subgroup of PC./. Then the Kapoudjian class of G is zero.

The idea of the proof of Theorem 4.1.2 is to associate for every f ∈ P̂C./ and every
finite partition P of [0, 1[ into intervals associated with f , two numbers. The first is the
number of interval of P where f is order-reversing and the second is the signature of a
particular finitely supported permutation. The next step is to prove that the sum modulo
2 of this two numbers is independent from the choice of partition. Then we show that
it is enough to prove that ε|IET./ is a group homomorphism. For this we show that it is
additive when we look at the composition of two elements of ÎET./ by calculate the value
of the signature with a particular partition.

In Section 4.3, we apply these results to the study of normal subgroups of P̂C./ and
certain subgroups. More specifically we prove:
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Theorem 4.1.4. Let G be a subgroup of PC./ which is simple nonabelian and let Ĝ be
its preimage in S. Then Ĝ has exactly 5 normal subgroups, which constitute the following
diagram:

Ĝ

Sfin Ker(ε|
Ĝ

)

Afin

{1}

Let ÂIET be the subgroup of P̂C./ consisting of elements that are piecewise affine,
and let ÂIET+ be its subgroup of piecewise orientation-preserving elements. N. Guel-
man and I. Liousse [GL19a] prove that AIET+ is uniformly perfect and uniformly sim-
ple. Then with Theorem 1.3.4 we deduce that AIET./ is also perfect and so simple
(see Corollary 1.3.3). Hence with Theorem 1.3.4 and Corollary 1.3.5 we deduce that
PC./,PC+,AIET./,AIET+, IET./ are examples of groups that satisfy conditions of Theo-
rem 4.1.4.

For every real interval I we denote by I◦ its interior in R and if I = [0, t[ we agree
that its interior is ]0, t[. We use the notion of partition associated defined in Section 1.2.1.
We recall that for every f ∈ PC./, we denote by Πf the set of all partitions into intervals
associated with f . We recall that Pmin

f is the unique partition in Πf such that every
partition Q ∈ Πf is a refinement of Pmin

f .

4.2 Construction of the signature homomorphism

4.2.1 Definitions

The main decomposition we use here is the one given by Proposition 3.1.1. We recall the
statement:

Proposition 4.2.1. Let f̂ ∈ P̂C./ (resp. ÎET./) and let P be a partition associated with
f̂ . Then there exist a unique subset A(f̂ ,P) ⊂ f̂(P) and a unique finitely supported per-
mutation σ

(f̂ ,P)
such that σ

(f̂ ,P)
◦ (

∏
I∈A(f̂ ,P)

r̂I) ◦ f̂ belongs to P̂C+ (resp. ÎET+) and is

right-continuous.

Where σ
(f̂ ,P)

is the default of pseudo right-continuity of f̂ according to P and the

composition σ
(f̂ ,P)

◦ (
∏

I∈A(f̂ ,P)

r̂I) ◦ f̂ is denoted by f+
P and it is called the positive P-

substitute of f̂ and f .

Definition 4.2.2. The cardinal of A(f̂ ,P) is denoted R(f̂ ,P) and is called the flip number
of f̂ about P.

It is important to notice that we will use here partitions associated with an element
of P̂C./ and not all essential partitions. We also give a definition more dynamical for the
default of pseudo right-continuity:
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Definition 4.2.3. Let f̂ be an element of P̂C./, n ∈ N and P = {I1, I2, . . . , In} ∈ Π
f̂
. For

every 1 ≤ j ≤ n, let αj be the left endpoint of Ij and βj be the left endpoint of f̂(I◦j ). We
define the default of pseudo right continuity for f̂ about P denoted σ

(f̂ ,P)
as the finitely

supported permutation which sends f̂(αj) to βj for every 1 ≤ j ≤ n (this is well-defined
because the set of all f̂(αj) is equal to the set of all βj).

The equivalence between the two definitions is given by the right-continuity of f̂+
P .

Definition 4.2.4. For f̂ ∈ P̂C./ and P ∈ Π
f̂
, define ε(f̂ ,P) ∈ Z/2Z as R(f̂ ,P) +

εfin(σ
(f̂ ,P)

) [mod 2]. We define also ε(f̂) = ε(f̂ ,Pfin
f̂

).

Proposition 4.2.5. For every τ ∈ Sfin and every P ∈ Πτ we have ε(τ,P) = εfin(τ).

Proof. It is clear that for every τ ∈ Sfin and every partition P associated with τ we have
R(τ,P) = 0 and σ(τ,P) = τ .

We deduce that ε extends the classical signature εfin. Thus we will write ε instead of
εfin.

Proposition 4.2.6. Every right-continuous element f̂ of P̂C+ satisfies ε(f̂ ,P) = 0 for
every P ∈ Π

f̂
.

Proof. In this case, for every partition P into intervals associated with f̂ we always have
R(f̂ ,P) = 0 and σ

(f̂ ,P)
= Id.

4.2.2 Proof of Theorem 4.1.2

In order to prove that ε is a group homomorphism, it is useful to calculate ε(f̂) thanks
to ε(f̂ ,P) for every f̂ ∈ P̂C./ and P ∈ Π

f̂
.

Lemma 4.2.7. For every f̂ ∈ P̂C./ and every P ∈ Πh we have ε(f̂) = ε(f̂ ,P).

Proof. Let f̂ and P be as in the statement. By minimality of Pmin
f̂

, in term of refinement,
we deduce that there exist n ∈ N and P1,P2, . . . ,Pn ∈ Π

f̂
such that:

1. P1 = Pmin
f̂

;

2. Pn = P;

3. for every 2 ≤ i ≤ n the partition Pi is a refinement of the partition Pi−1 where only
one interval of Pi−1 is cut into two.

Hence it is enough to show ε(f̂ ,Q) = ε(f̂ ,Q′) where Q,Q′ ∈ Π
f̂
such that there exist

consecutive intervals I, J ∈ Q with I ∪ J ∈ Q′ and Q′ r {I ∪ J} = Qr {I, J}.
Let α be the left endpoint of I and let x be the right endpoint of I (x is also the left

endpoint of J). There are only two cases but in both cases, we know that σ
(f̂ ,Q)

= σ
(f̂ ,Q′)

except maybe on f̂(α) and f̂(x):

1. The first case is when f̂ is order-preserving on (I ∪ J)◦. Then as Q r {I, J} =
Q′ r {I ∪ J} we get R(f̂ ,Q) = R(f̂ ,Q′). As f̂ is order-preserving on the interior of
I ∪ J we know that σ

(f̂ ,Q′)(f̂(α)) is the left endpoint of f̂((I ∪ J)◦) which is the left

endpoint of f̂(I◦) thus equals to σ
(f̂ ,Q)

(f̂(α)). With the same reasoning we deduce

that σ
(f̂ ,Q′)(f̂(x)) = σ

(f̂ ,Q)
(f̂(x)) hence σ

(f̂ ,Q)
= σ

(f̂ ,Q′). Thus in Z/2Z we have

R(f̂ ,Q′) + ε(σ
(f̂ ,Q′)) = R(f̂ ,Q) + ε(σ

(f̂ ,Q)
).
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2. The second case is when f̂ is order-reversing on (I ∪ J)◦. Then we get R(f̂ ,Q) =
R(f̂ ,Q′) + 1. This time σ

(f̂ ,Q′)(f̂(α)) is still the left endpoint of f̂((I ∪ J)◦) which

is the left endpoint of f̂(J◦) thus equals to σ
(f̂ ,Q)

(f̂(x)). With the same reasoning

we deduce that σ
(f̂ ,Q′)(f̂(x)) = σ

(f̂ ,Q)
(f̂(α)). Then by denoting τ the transposition

(f̂(x) σ
(f̂ ,Q′)(f̂(α))), we obtain σ

(f̂ ,Q)
= τ ◦ σ

(f̂ ,Q′). We must notice that the trans-

position is not the identity because f̂−1(σ
(f̂ ,Q′)(f̂(α))) is an endpoint of one of the

intervals of Q′ and x is not.
In conclusion in Z/2Z we have:

R(f̂ ,Q′) + ε(σ
(f̂ ,Q′)) = R(f̂ ,Q′) + 1 + 1 + ε(σ

(f̂ ,Q′)) = R(f̂ ,Q) + ε(σ
(f̂ ,Q)

)

I J I J

α α xx

h(x)

h(x)

σ(h;Q0)(h(α))

σ(h;Q)

Figure 4.2.1 – Illustrations of the two cases appearing in Lemma 4.2.7. Left: Case where f̂ is order-
preserving on (I∪J)◦ and we see that σ(f̂ ,Q)(f̂(x)) = σ(f̂ ,Q′)(f̂(x)). Right: Case where f̂ is order-reversing

on (I ∪ J)◦ and we see that σ(f̂ ,Q)(f̂(x)) = (f̂(x) σ(f̂ ,Q′)(f̂(α))) ◦ σ(f̂ ,Q′)(f̂(x)).

If φ ∈ Homeo+([0, 1[), then it follows from Proposition 4.2.6 that ε(φ) = 0. We show
that ε is invariant by the action of Homeo+([0, 1[) on P̂C./.

Lemma 4.2.8. For every f̂ ∈ P̂C./ and every φ ∈ Homeo+([0, 1[) we have ε(f̂φ) = ε(f̂) =
ε(φf̂).

Proof. Let f̂ ∈ P̂C./ and φ ∈ Homeo+([0, 1[) be as in the statement. Let n ∈ N and
P := {I1, I2, . . . , In} ∈ Π

f̂
. ThenQ := {φ−1(I1), φ−1(I2), . . . , φ−1(In)} is in Π

f̂φ
. We know

that φ is order preserving then for every 1,≤ i ≤ n, f̂φ preserves (reverses respectively)
the order on φ−1(I◦i ) if and only if f̂ preserves (reverses respectively) the order on I◦i , so
R(f̂ ,P) = R(f̂φ,Q). We can notice that the left endpoint of φ−1(I◦i ) (denoted by αi) is
send on the left endpoint of Ii (denoted by ai) by φ hence f̂(ai) = f̂φ(αi) has to be send
on σ

(f̂ ,P)
(f̂(ai)) so σ

(f̂φ,Q)
= σ

(f̂ ,P)
. we deduce that ε(f̂φ) = ε(f̂).

The other equality has a similar proof. We denote by f̂(P) the arrival partition of f̂
associated with P. We know that φ is continuous thus f̂(P) is in Πφ and we deduce
that P ∈ Π

φf̂
. Also φ is order-preserving then R(f̂ ,P) = R(φf̂ ,P)). We know that

σ
(φ,f̂(P))

= Id then we can notice that φ ◦ σ
(f̂ ,P)

◦ f̂ sends the left endpoint of Ii to the left

endpoint of φf̂(I◦i ). Then σ
(φf̂,P)

= φσ
(f̂ ,P)

φ−1 and we deduce that ε(σ
(φf̂,P)

) = ε(σ
(f̂ ,P)

).

Hence ε(φf̂) = ε(f̂).
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Thanks to Proposition 1.2.18 it is enough to prove that ε|
ÎET./ is a group homomor-

phism.

Lemma 4.2.9. The map ε|
ÎET./ is a group homomorphism.

Proof. Let f̂ , ĝ ∈ ÎET./. Let P ∈ Π
f̂
and Q ∈ Πĝ. For every I ∈ Q (resp. J ∈ P) we denote

by αI (resp. βJ) the left endpoint of I (resp. J). Up to refine P and Q we can assume
that P = ĝ(Q) thus ĝ({αI}I∈Q) = {βJ}J∈P . Then Q ∈ Π

f̂◦ĝ and for every K ∈ f̂ ◦ ĝ(Q)
we denote by γK the left endpoint of K.
In Z/2Z, we get immediately that R(f̂ ◦ ĝ, Q) = R(ĝ, Q) + R(f̂ , ĝ(Q)). Now we want
to describe the default of pseudo right continuity for f̂ ◦ ĝ about Q. We recall that
σ

(f̂◦ĝ,Q)
is the permutation that sends f̂ ◦ ĝ(αI) on γ

f̂◦ĝ(I) for every I ∈ Q while fixing the

rest of [0, 1[. Furthermore σ(ĝ,Q)(ĝ(αI)) = βĝ(I) and σ
(f̂ ,ĝ(Q))

(f̂(βĝ(I))) = γ
f̂◦ĝ(I). Then

σ
(f̂ ,ĝ(Q))

◦ f̂ ◦ σ(ĝ,Q) ◦ ĝ(αI) = γ
f̂◦ĝ(I) and we deduce that the permutation σ

(f̂ ,ĝ(Q))
◦ f̂ ◦

σ(ĝ,Q) ◦ f̂−1 sends f̂ ◦ ĝ(αI) on γ
f̂◦ĝ(I) for every I ∈ Q while fixing the rest of [0, 1[. Thus

σ
(f̂◦ĝ,Q)

= σ
f̂ ,ĝ(Q)

◦ f̂ ◦ σ(ĝ,Q) ◦ f̂−1. Then ε(σ
(f̂◦ĝ,Q)

) = ε(σ
f̂ ,ĝ(Q)

) + ε(σ(ĝ,Q)) and we

conclude that ε(f̂ ◦ ĝ) = ε(f̂) + ε(ĝ).

Corollary 4.2.10. The map ε is a group homomorphism.

4.3 Normal subgroups of P̂C./ and some subgroups

Here we present some corollaries of Theorem 4.1.2. For every group G we denote by D(G)
its derived subgroup.

Definition 4.3.1. For every group H, we define J3(H) as the subgroup generated by
elements of order 3.

Let Ĝ be a subgroup of P̂C./ containing Sfin. We denote by G its projection on PC./.
We recall that Afin is a normal subgroup of Ĝ, and has a trivial centraliser. We deduce
that for every nontrivial normal subgroup H of Ĝ contains Afin.

From the short exact sequence:

0 −→ Sfin −→ Ĝ −→ G −→ 1

we deduce the next short exact sequence which is a central extension:

0 −→ Z/2Z −→ Ĝ/Afin −→ G −→ 1.

This short exact sequence splits because the signature ε|Ĝ : Ĝ → Z/2Z constructed

in § 4.2 is a retraction. Then we deduce that Ĝ/Afin is isomorphic to the direct product
Z/2Z×G.

Corollary 4.3.2. The projection Ĝab → Gab extends in an isomorphism Ĝab ∼ Gab ×
Z/2Z. Furthermore D(Ĝ) = Ker(ε)∩D̂(G) is a subgroup of index 2 in D̂(G). In particular,
if G is a perfect group then Ĝab = Z/2Z.

Corollary 4.3.3. Let G be a subgroup of PC./ which is simple nonabelian and let Ĝ be its
preimage in S. Then we have the following normal subgroups diagram of Ĝ:
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Ĝ

Sfin Ker(ε|
Ĝ

)

Afin

{1}

Proof. Let G as in the statement and let Ĝ be its preimage in S. First we immediately
check that the subgroups in the diagrams are distinct normal subgroups of Ĝ. In the case
of Ker(ε), there exists g ∈ ĜrSfin thus either g ∈ Ker(ε)rSfin or σg ∈ Ker(ε)rSfin for
any transposition σ.
Second let H be a normal subgroup of Ĝ distinct from {1}. Then it contains Afin. Also
H/Afin is a normal subgroup of Ĝ/Afin ' Z/2Z×G. Furthermore G is simple then there are
only four possibilities for H/Afin. As two normal subgroups H,K of Ĝ containing Afin such
that H/Afin = K/Afin are equal, we deduce that Ĝ has at most 5 normal subgroups.

Corollary 4.3.4. Let G be a subgroup of PC./ which is simple nonabelian and let Ĝ be its
preimage in S. If there exists an element of order 3 in G r Afin then J3(Ĝ) = Ker(ε) =
D(Ĝ).

Remark 4.3.5. In the context of topological-full groups, the group J3(G) appears naturally
(with some mild assumptions) and is denoted by A(G) by Nekrashevych in [Nek19]. In
some case of topological-full groups of minimal groupoids (see [Mat15]) we have the equality
A(G) = D(G) thanks to the simplicity of D(G). In spite of the analogy, it is not clear that
the corollary can be obtained as particular case of this result.
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CHAPTER 5

Rectangle exchange transformations
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Résumé en français. On étudie une généralisation du groupe des échanges d’intervalles
en dimension d ≥ 1 quelconque, appelé le groupe des échanges de rectangles (Recd). On
introduit les battages restreints, qui sont une généralisation des rotations restreintes et on
démontre que l’ensemble des battages restreints forme un système générateur de Recd. On
note Td l’ensemble des éléments qui permutent deux rectangles en les translatant, et on
prouve qu’il forme un système générateur du sous-groupe dérivé D(Recd). On termine par
une généralisation du morphisme SAF qui nous permet d’identifier l’abélianisé de Recd.

English abstract. We study a generalization of the Interval Exchange Transformations
group (IET) in every dimension d ≥ 1 called the Rectangle exchange transformations group
(Recd). The subset of restricted rotations in IET is a generating subset and we prove that a
natural generalization of these elements, called restricted shuffle, form a generating subset
of Recd. We denote by Td the subset of Recd made up of those transformations that
permute two rectangles by translation. We prove that the derived subgroup is generated
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by Td. We also identify the abelianization of Recd.
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5.1 Introduction

We recall that the group IET is the group consisting of all permutations of [0, 1[ continuous
outside a finite set, right-continuous and piecewise a translation. We study a generalization
of IET in higher dimension. Let d ≥ 1 be an integer. We denote by X = [0, 1[d the left
half-open square of dimension d. Let B = {e1, e2, . . . , ed} be the canonical basis of Rd
and we denote by λ the Lebesgue measure on R. For 1 ≤ i ≤ d let pri be the orthogonal
projection on Vect(ei) and pr⊥i be the orthogonal projection on the hyperplane e⊥i . For
an element x ∈ Rd we use the notation xi = pri(x). A natural way to generalize left half-
open intervals is to consider elements of the form I1 × . . .× Id where Ii is a left half-open
subinterval of [0, 1[. They are called left half-open d-rectangles. In the following, every
d-rectangle is supposed to be left half-open.

We define the rectangle exchange transformations group of dimension d, denoted by
Recd, as the set of all permutations f of [0, 1[d such that there exists a finite partition of
[0, 1[d into d-rectangles such that f is a translation on each of these d-rectangles. Elements
of Recd are called d-rectangle exchange transformations.

Historically, H. Haller [Hal81] introduced 2-rectangle exchange transformations in 1981
and it is mainly ergodic properties of a single 2-rectangle exchange transformation which
are studied. More generally, dynamics of piecewise isometries on polytopes are studied,
in particular by A. Goetz [Goe00], however the group itself is rarely considered. In con-
trast, the group of piecewise affine self-homeomorphisms of some manifolds are recently
considered in particular by D. Calegari and D. Rolfsen [CR15].

Definition 5.1.1. Let f ∈ Recd and P be a partition of X into rectangles (resp. a grid-
pattern). We said that P is a partition associated with f (resp. a grid-pattern associated
with f) if for every K ∈ P the restriction of f to K is a translation. Then the set
f(P) := {f(K) | K ∈ P} is a new partition of X into rectangles called the arrival
partition of f with P. We denote by Πf the set of all partitions associated with f . From
now on every partition is assumed to be finite.

Remark 5.1.2. The fact that Recd is a group under composition is immediate. One can see
that if f, g ∈ Recd and P ∈ Πf ,Q ∈ Πg, then there exists a partition R into d-rectangles
that refines both f(P) and Q. Thus f−1(R) is a partition into d-rectangles such that g ◦ f
acts on every d-rectangle of f−1(R) by translation.

In the following, the “d” of d-rectangle may be omitted whenever there is no possible
confusion.

We introduce two kinds of special elements in Recd.

Definition 5.1.3. A restricted shuffle in direction i is an element σR,s,i of Recd where R
is a (d− 1)-subrectangle of e⊥i and s is a restricted rotation, defined by:

1. if pr⊥i (x) /∈ R, σR,s,i(x) = x;

2. if pr⊥i (x) ∈ R:

(a) for j 6= i, σR,s,i(x)j = xj ;
(b) σR,s,i(x)i = s(xi).

For disjoint translation-isometric rectangles P,Q ⊂ [0, 1[d, define the Recd-transposition
τP,Q as the element of Recd defined as the identity outside P ∪Q, and as a translation on
each of P,Q, exchanging them. The set of all Recd-transpositions is denoted by Td.

Notation 5.1.4. If I and J are the two intervals associated with s then the d-rectangles
P1 and P2, defined by pri(P1) = I, pri(P2) = J and pr⊥i (P1) = pr⊥i (P2) = R, are two
rectangles which partitioned the support of f and where f is continuous on both of them.
We say that f shuffles this two rectangles.
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Figure 5.1.1 – Left: Examples of restricted shuffles in dimension 2 with different directions.
Right: Example of a Rec2-transposition.

We know that the set of all restricted rotation is a generating subset of IET, see
Theorem 1.2.8. Restricted shuffles are a natural generalization of these elements in Recd.
It is natural to ask if they define a generating subset for Recd and the next theorem answers
it positively. For d = 1, it essentially amounts to seeing an IET as a permutation of n
intervals, and arguing that the symmetric group Sn is generated by transpositions (i, i+1).
For d ≥ 2 there is no such simple combinatorial argument and much more work is required;
it is done in Section 5.4.

Theorem 5.1.5. The set of all restricted shuffles is a generating subset of Recd.

For d = 2 a variant of the proof, providing a combinatorial refinement of Theorem
5.1.5, is performed in Section 5.5

The group IETd acting coordinate-wise is a subgroup of Recd which for d ≥ 2 is a
proper subgroup.

One main difficulty we have to dealt with for d ≥ 2 is that there does not always exist
a grid that is mapped to another grid by translation of all components.

In the case where d ≥ 2, if we take two disjoint d-rectangles which are translation-
isometric such that their orthogonal projections on Vect(ei) are not [0, 1[ for every 1 ≤ i ≤
d, then the Recd-transposition which permutes these two rectangles is not in IETd.

Thanks to Theorem 5.1.5 we obtain that D(Recd) is generated by conjugates of com-
mutators of two restricted shuffles. With this result we prove the following theorem:

Theorem 5.1.6. The derived subgroup D(Recd) is simple and generated by its subset Td of
Recd-transpositions. It is contained in every in every nontrivial normal subgroup of Recd.

In Section 5.7 we extend Theorem 1.3.6 which identifies the abelianization of IET
thanks to the SAF-homomorphism. We denote by R⊗k the k − th tensor power of R over
Q. In the case of Recd we prove that it is enough to consider an analogue of this group
homomorphism in every direction to obtain the following result:

Theorem 5.1.7. There exists a natural surjective group homomorphism from Recd onto
(R⊗(d−1)⊗(

∧2
QR))d, called the generalized SAF-homomorphism, whose kernel is the derived

subgroup D(Recd).

This theorem is done by Arnoux-Fathi-Sah in dimension 1 and thanks to Theorem
5.1.5, the proof is similar in dimension d.
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Finally in Section 5.7.4 we consider the subgroup GtGd of Recd generated by the
subset IETd ∪Td. While for d = 1 it is obviously equal to the whole group IET = Rec1, a
consequence of Theorem 5.1.7 for d ≥ 2 is:

Corollary 5.1.8. The group GtGd is a proper normal subgroup of Recd, which strictly
contains D(Recd).

5.2 Grid-patterns, setwise Q-freeness

We fix d ≥ 1; in a first reading, one can assume d = 2. We introduce the notion of partition
associated with an element of Recd and also the one of grid-pattern.

Definition 5.2.1. A partition P of X into rectangles is called a grid-pattern if for every
1 ≤ i ≤ d, there exists a partition Qi of [0, 1[ into half-open intervals such that P =
Q1 ×Q2 × . . .×Qd.

Definition 5.2.2. Let n ∈ N and P = {P1, P2, . . . , Pn} be a partition of X into rect-
angles. For every 1 ≤ i ≤ d, let Hi = {pri(Pj)}1≤j≤n and let Ei := {a ∈ [0, 1[ : ∃I ∈
Hi such that a is an endpoint of I}. Let ki be the cardinal of Ei and let a1 < a2 < . . . < aki
be its elements. We define Qi := {[aj , aj+1[}1≤j≤ki−1, it is a finite partition of [0, 1[ into
intervals. Then Q = Q1×Q2× . . .×Qd is a grid-pattern called the grid-pattern refinement
of P.

In fact we will need some rigidity on partitions associated with an element of Recd. For
this we want to have some objects to be Q-free.

Definition 5.2.3. Let P be a partition into rectangles of [0, 1[d. For every 1 ≤ i ≤ d we
denote by Fi the set {λ(pri(K)) | K ∈ P}. If for every 1 ≤ i ≤ d the set Fi is Q-linearly
independent then we say that P is a setwise Q-free partition.

Warning. The Q-independence required is that of the set {λ(pri(K)) | K ∈ P}, and not
the family (λ(pri(K)))K∈P}. So the set-wise freeness condition says, roughly speaking, that
the only Q-linear dependence relations among the λ(pri(K)), for K ∈ P (for each fixed K)
are equalities.

Proposition 5.2.4. Let Q be a grid-pattern. There exists a setwise Q-free grid-pattern Q′
that refines Q.

Proof. Thanks to Corollary 2.1.3 we know that for every finite subset S of positive real
numbers there exists a finite Q-free subset of positive real numbers S′ such that every
element of S is a linear combination of elements in S′ with nonnegative integer coefficient.
This statement is Lemma 4.1 of Vorobets in [Vor17]. Here let Q = Q1 × . . . × Qd where
Qi is a partition into intervals of [0, 1[ and let Fi := {λ(I) | I ∈ Qi}. By applying the
previous fact for every Fi we obtain a new finite set of length F ′i and we know we can
refines every Qi into a finite partition Q′i into intervals of [0, 1[ such that for every I ∈ Q′i
we have λ(I) ∈ F ′i . Then Q′ := Q′1× . . .×Q′d is a setwise Q-free grid-pattern which refines
Q.
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Figure 5.2.1 – We assume that {a, b} is a setwise Q-free subset of R as well as {c, d}. Left:
A grid-pattern that is not setwise Q-free. Right: A setwise Q-free grid-pattern which
refines the left grid-pattern.

It will be important to have some rigidity on the number of pieces which are translation-
isometric inside a partition. The next lemma explains how there exists a bijection between
two partitions which share the same combinatorial conditions such that every piece and
its image by this bijection are translation-isomorphic. The following corollary is the main
result to use the induction property.

Lemma 5.2.5. For every 1 ≤ i ≤ d, let Fi be a setwise Q-free subset of R+. Let P and
P ′ be two partitions into d-rectangles of [0, 1[d such that for every K ∈ P ∪ P ′ we have
λ(pri(P )) ∈ Fi. Then, there exists a bijection δ between P and P ′ such that for every
K ∈ P we have K and δ(K) which are translation-isometric. If K ∈ P ∩ P ′ we can also
ask δ(K) = K.

Proof. Let A be the Boolean algebra of subsets of [0, 1[ generated by the set of all left
half-open subintervals of [0, 1[. We denote by A⊗d the Boolean algebra tensor product. It
is generated by subsets of the form I1× . . .× Id with Ii in A for every 1 ≤ i ≤ d. We recall
that λ is the Lebesgue measure on R and we denote by R⊗d the d− th tensor power of R
over Q. Thanks to Proposition 2.3.3 we know that there exists a Boolean algebra measure
µd for A⊗d in R⊗d such that µd(I1 × . . .× Id) = λ(I1)⊗ . . .⊗ λ(Id).

By setwise Q-freeness of Fi we deduce that F = {a1 ⊗ . . . ⊗ ad | (a1, . . . , aj) ∈ F1 ×
. . .× Fj} is a setwise Q-free subset of A⊗d. By definition of P and P ′ we have:

µd([0, 1[d) = µd(
⊔
K∈P

K) =
∑
a∈F

Card({K ∈ P | µd(K) = a})a

= µd(
⊔

K∈P ′
K) =

∑
a∈F

Card({K ∈ P ′ | µd(K) = a})a

Then by setwise Q-freeness of F we deduce that for every a ∈ F we have Card({K ∈ P |
µd(K) = a}) = Card({K ∈ P ′ | µd(K) = a}). From this we deduce that there exists a
bijection δ between P and P ′ such that for every K ∈ P we have K and δ(K) which are
translation-isometric and for every K ∈ P ∩ P ′ we can have δ(K) = K.

Corollary 5.2.6. In particular, there exists f ∈ Recd such that P ∈ Πf and f(P) = P ′
and for every K ∈ P∩P ′ we have f(K) = K. More precisely the support of f is partitioned
by P r (P ∩ P ′) and for every K ∈ P, the restriction of f to K is a translation.

5.3 First observations

We establish some easy particular cases of Theorem 5.1.5, which asserts that Recd is
generated by restricted shuffles.
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A direct consequence of the definition of a restricted shuffle, Definition 5.1.3, and
Theorem 1.2.8 is the following proposition, which is a first easy particular case of Theorem
5.1.5, and a step in its proof.

Proposition 5.3.1. Every element of IETd is a finite product of restricted shuffles.

Here is a second elementary particular case of Theorem 5.1.5, which will also be needed.

Proposition 5.3.2. For all disjoint translation-isometric P,Q rectangles, the Recd-transposition
τP,Q is a product of restricted shuffles.

Proof. We first prove this in the special case when there exists 1 ≤ i ≤ d such that
pri(P ) ∩ pri(Q) = ∅ and pr⊥i (P ) = pr⊥i (Q). In this case we obtain it is a product of two
restricted shuffles. Indeed, this is a consequence of the fact that this lemma is true when
d = 1. Let a, b, a′, b′ ∈ [0, 1[ such that pri(P ) = [a, b[ and pri(Q) = [a′, b′[. Up to change
the role of P and Q we can assume that b < a′. Let R and S be the two rectangles such
that pr⊥i (R) = pr⊥i (S) = pr⊥i (P ) and pri(R) = [b, b′[ and pri(S) = [b, a′[. Let r1 be the
restricted shuffle in direction i that shuffles P with R (this one send P on Q) and r2 be
the restricted shuffle in direction i that permutes P with S. Then the composition r−1

2 r1

is equals to the rectangle transposition that permutes P with Q.
Now let us prove the general case. Let P and Q be two rectangles which are translation-

isometric such that P ∩ Q = ∅. Let Pi := pri(P ) and Qi := pri(Q) for every 1 ≤ i ≤ d.
Thus P = P1 × P2 × . . . × Pd and Q = Q1 × Q2 × . . . × Qd. For every 1 ≤ i ≤ d − 1 let
Ri be the rectangle Q1 × . . . × Qi × Pi+1 × . . . × Pd. We put R0 = P and Rd = Q. Let
ti be the rectangle transposition that permutes Ri−1 with Ri for every 1 ≤ i ≤ d. Then
τP,Q = t1 . . . td−1tdtd−1 . . . t1 and by the special case above, we know that ti is a product
of two restricted shuffles in direction i. Then s is a finite product of restricted shuffles.

We now consider another special case, of an element of Recd mapping grid to grid by
translating pieces. Recall from Remark 5.3.4 that not every element of Recd has this form.

Proposition 5.3.3. Every element f ∈ Recd such that there exists a setwise Q-free grid-
pattern Q such that f(Q) is a grid-pattern can be written as a finite product of restricted
shuffles.

Proof. Let Q = Q1 × . . .×Qd and f(Q) = Q′1 × . . .×Q′d, where Qi and Q′i is a partition
into intervals of [0, 1[. Thanks to the setwise Q-freeness of Q we know that f(Q) is setwise
Q-free, also for every 1 ≤ i ≤ d and every a ∈ [0, 1[ we have:

Card({I ∈ Qi | λ(I) = a}) = Card({I ∈ Q′i | λ(I) = a})

Hence there exists an element g of IETd such that g(f(Q)) = Q. By Proposition 5.3.1
we know that g is a finite product of restricted shuffles. Also as g ◦ f send Q on itself
we deduce that g ◦ f is a permutation on every maximal subset of translation-isometric
rectangles of Q. Hence it is a product of Recd-transpositions and by Proposition 5.3.2 we
deduce that f is a finite product of restricted shuffles.

Remark 5.3.4. For an element of Recd there does not always exist a grid-pattern associated
which is sent to another grid-pattern. For example this is the case for every restricted shuffle
σR,s,i of infinite order such that R 6= [0, 1[d−1.
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5.4 Generation by restricted shuffles

The proof of Theorem 5.1.5 is by induction on the dimension d and the case of the dimension
1 is already known to be true.

Let f ∈ Recd and Q be a grid-pattern associated with f . Thanks to Proposition 5.2.4
we can assume that Q is a setwise Q-free grid-pattern.

Let d ≥ 2 be the ambient dimension and assume Theorem 5.1.5 true for Recd−1. Here
the height is represented by the d-th coordinate. For every illustration in dimension 2
we use the following element ftest of Rec2. The following partition Ptest (on the left of
the following picture) is associated with ftest, and is understood to be setwise Q-free. We
denote by P ′test = ftest(Ptest) (on the right of the following picture).
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Figure 5.4.1 – Definition of ftest,Ptest and P ′test.

We now introduce a number of simple definitions in this setting, which for the above
test example P ′test are illustrated in Figures 5.4.2, 5.4.5, 5.4.6

Definition 5.4.1. Let P be a setwise Q-free rectangle partition of [0, 1[d. The ground of
P is the following subset of P:

Grd(P) = {K ∈ P | 0 ∈ prd(K)}.

Let K0 be an element of Grd(P). A tower above K0 is a subset T of P such that :

1. K0 ∈ T ;

2. ∀K ∈ T, pr⊥d (K) = pr⊥d (K0);

3. The set
⋃
K∈T

prd(K) is a subinterval of [0, 1[.

The element K of T which satisfies sup(prd(K)) = sup
( ⋃
K∈T

prd(K)
)
is called the top of

the tower T , denoted by Top(T ). The highest tower above K0, denoted by T (K0), is the
maximal tower above K0 according to the inclusion order.

Definition 5.4.2. A city of P is a subset of P containing Grd(P), and which is a union of
towers. The highest city of P, denoted by City(P), is the union of all highest towers above
an element of the ground Grd(P). The top of a city V ⊂ P is the set of Top(T ) when T
ranges over maximal towers in V. The sky of P, denoted by Sky(P), is the complement of
City(P) in P.
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Figure 5.4.2 – Hatched pieces compose the Ground of P ′test, it is also a city of P ′test. All
grey pieces (hatched or not) compose City(P ′test). Full white pieces represent the sky of
P ′test.

Definition 5.4.3. The complexity of P is the following subset of ]0, 1[:

C (P) = {min(prd(K)) | K ∈ Sky(P)}.

The set C (P) is empty if and only if P = City(P). Otherwise, the minimum of the set
C (P) is called the working height of P denoted by Cmin(P).

The idea is to move pieces of City(P) with restricted shuffles in direction in {1, 2, . . . , d−
1} such that the new partition P ′ obtained satisfies C (P ′) ⊂ C (P) r {Cmin(P)}. For this
we describe more precisely how and where we move pieces.

Definition 5.4.4. We define the building worksite of P, denoted by Work−(P), as the
following subset of Top(City(P)):

Work−(P) = {K ∈ Top(City(P)) | sup(prd(K)) = Cmin(P)}.

Similarly we define the upper building worksite of P, denoted by Work+(P), as the following
subset of Sky(P):

Work+(P) = {P ∈ Sky(P) | min(prd(P )) = Cmin(P)}.

We define the site of P as the subset of e⊥d define as the following:

Site(P) =
⋃

K∈Work−(P)

pr⊥d (K).
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Figure 5.4.3 – The set of all grey pieces represents Top(City(P ′test)) and the set of all
hatched pieces represents Work+(P).

Figure 5.4.4 – In dimension 3, illustration of a city of a partition where the hatched space
represents the site of the partition.

The proof of Theorem 5.1.5 is done by induction on the cardinal c of Cmin(P); the core
of the arguments being the following two lemmas, which treat c = 0 and the induction step
for c > 0.

Lemma 5.4.5. Let P be a setwise Q-free partition such that C (P) = ∅. Then there exists
a product r of restricted shuffles in direction d such that P is associated with r and r(P)
is a grid-pattern. (See illustration in Figure 5.4.6.)

Proof. A consequence of Cmin(P) = ∅ is that City(P) = P, that is, highest towers partition
[0, 1[d. In particular, we have a partition D of e⊥d such that for every x ∈ [0, 1[ we have
{pr⊥d (K) | K ∈ P, and x ∈ prd(P )} = D. Also the set {prd(K) | K ∈ P} is setwise Q-free,
thus for every a ∈ [0, 1[, the number of rectangles K such that λ(prd(K)) = a is the same
in every tower T ⊂ City(P). Then by using only restricted shuffles in direction d, we can
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move pieces inside every tower T ⊂ City(P) to order them according to the length of their
projection on Vect(ed). The image of P by the product of these restricted shuffles is a
grid-pattern.

Lemma 5.4.6. Let P be a setwise Q-free partition such that C (P) 6= ∅. There exists a
product g of restricted shuffles in direction inside {1, 2, . . . , d− 1} such that P ∈ πg and:

C (g(P)) ⊂ C (P) r {Cmin(P)}.

Proof. For every 1 ≤ i ≤ d let Fi = {λ(pri(K)) | K ∈ P}; it is a setwise Q-free subset of
R+. By definition we know that Ω− = {pr⊥d (K) | K ∈ Top(City)(P)} and Ω+ = {pr2(K) |
K ∈ Work+ ∪Top(City(P)) r Work−} are two partitions of [0, 1[d−1 such that for every
K ∈ Ω− ∪ Ω+ and every 1 ≤ i ≤ d we have λ(pri(K)) ∈ Fi. Then, by Corollary 5.2.6 we
deduce that there exists δ ∈ Recd−1 such that Ω− ∈ Πδ (for every element K of Ω−, the
restriction of δ to K is a translation) and δ(Ω−) = Ω+ and for every K ∈ Ω− ∩ Ω+ we
have δ(K) = K. As we assumed Theorem 5.1.5 in dimension d− 1, we know that δ can be
written as the product of restricted shuffles of Recd−1. Then we define g ∈ Recd such that:

g(x) =

{
(δ × Id)(x) if pr2(x) < Cmin(P)

x else.

From this definition we obtain that g is the product of restricted shuffles in Recd with
direction in {1, 2 . . . , d−1}. Also by definition of δ we obtain that for everyK ∈ Grd(P) we
have g(T (K)) ⊂ T (g(K)) and g(Sky(P)) = Sky(P). This implies C (g(P)) ⊂ C (P). Also
as δ(Ω−) = Ω+ we deduce that for every K ∈ Sky(P) such that min(prd(K)) = Cmin(P)
there exists QK ∈ Grd(P) such that δ(pr⊥d (QK) = pr⊥d (K). Hence we have K ∈ T (g(QK))
and this implies that Cmin(P) /∈ C (g(P)).

Then by induction on the cardinal of the complexity we deduce the following proposi-
tion:

Proposition 5.4.7. Let Q be a setwise Q-free grid-pattern of [0, 1[d. For every f ∈ Recd
such that Q ∈ Πf , there exists a finite product rf of restricted shuffles such that f(Q) ∈ Πrf

and C (rf (f(Q))) = ∅.

Thanks to Proposition 5.4.7 and Proposition 5.4.5 we deduce Theorem 5.1.5.
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Figure 5.4.5 – Iterations to find a product r of restricted shuffles such that P ′test ∈ Πr and
Sky(r(P ′test)) = ∅. On every left pictures, all grey pieces represent the highest city, all grey
hatched pieces represent towers whose top’s height is the complexity of the partition and
all white hatched pieces represent pieces of sky of the partition which are also in the upper
work.
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Figure 5.4.6 – Illustration of what looks like a setwise Q-free partition with an empty sky
and how moving pieces inside each tower can lead to a setwise Q-free grid-pattern.

5.5 A refinement for Rec2

Here we establish a more precise and concrete statement in dimension 2. Theorem 5.1.5
says every element f in Recd can be obtained as a composition of restricted shuffles. It is
tempting to improve this statement by fixing a setwise Q-free partition P ∈ Πf , and then
shuffling rectangles in f(P) without changing the partition. The proof seems at first sight
to provide this, but the induction step forces to change the partition. In dimension 2, we
can avoid this, see Theorem 5.5.2 below.

In this case we can be more precise than Theorem 5.1.5.

Definition 5.5.1. Let P be a partition into rectangles of [0, 1[d. A restricted shuffle on
P is a restricted shuffle which shuffles two rectangles of P. For n ∈ N∗, a n-sequence
of restricted shuffles on P is a a sequence (r1, . . . , rn) of restricted shuffles such that for
every 1 ≤ i ≤ n the element ri is a restricted shuffle on ri−1 ◦ . . . ◦ r1(P). The partition
rn ◦ . . . ◦ r1(P) is called the image of P by this sequence.

Here is the refined version of Theorem 5.1.5, in dimension 2

Theorem 5.5.2. Suppose d = 2. For every f ∈ Recd and for every setwise Q-free partition
P ∈ Πf , there exists a sequence of restricted shuffles (r1, . . . , rn) on P such that f =
rn ◦ . . . ◦ r1.

Remark 5.5.3. To motivate the setwise Q-free property, we illustrate with a partition which
is a in the image by Recd of a grid-pattern Q which is not setwise Q-free. Indeed if we
do not allowed to cut pieces of Q then for every sequence of restricted shuffles on Q, the
image of Q by this sequence is always Q.
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Figure 5.5.1 – Left: A grid-patternQ which is not setwise Q-free. Right: A rearrangement
of Q which is not the image of Q by a sequence of restricted shuffles on Q.

Theorem 5.5.2 in dimension 1 is Theorem 1.2.8. In dimension 2, we begin by two
refinements of Proposition 5.3.3 and Lemma 5.4.5 obtained with immediate changes.

Lemma 5.5.4. Let d ∈ N∗, let f ∈ Recd such that there exists a setwise Q-free grid-pattern
Q such that f(Q) is a grid-pattern. Then there exists a sequence (r1, . . . , rn) of restricted
shuffles on Q such that the image of Q by this sequence is f(Q), in particular we have
f = rn ◦ . . . ◦ r1.

Lemma 5.5.5. Let P be a setwise Q-free partition such that C (P) = ∅. Then there
exists a sequence of restricted shuffles on P such that the image of P by this sequence is a
grid-pattern.

With these two results, the proof of Theorem 5.5.2 is the same as the one of Theorem
5.1.5 until Lemma 5.4.6, where we proved the following refinement in dimension 2:

Lemma 5.5.6. Suppose d = 2. Let P be a setwise Q-free partition. There exists a product
g of restricted shuffles in direction inside {1, 2, . . . , d− 1} such that P ∈ πg and:

C (g(P)) ⊂ C (P) r {Cmin(P)}.

Also there exists a sequence (r1, . . . , rn) of restricted shuffles on P such that g = rn◦. . .◦r1.

Proof. First we rearrange every tower of City(P) such that pieces of every tower is ordered
by increasing order about their length of their 2-projection.

We recall that Ω− = {pr⊥d (K) | K ∈ Top(City(P))} and Ω+ = {pr⊥d (K) | K ∈
Work+ ∪Top(City(P)) r Work−}. by Corollary 5.2.6 we deduce that there exists δ ∈
Recd−1 such that Ω− ∈ Πδ (for every element K of Ω−, the restriction of δ to K is a
translation) and δ(Ω−) = Ω+ and for every K ∈ Ω− ∩ Ω+ we have δ(K) = K. The main
argument is that every connected component C of Site(P) =

⊔
K∈Ω−

K is a left half-open

interval and there exists Ω−C ⊂ Ω− which partitions C. Similarly we can define the subset
Ω+
C of Ω+ which partitions C. Then by Q-freeness we can also ask δ to send Ω−C on Ω+

C .
Then we define gC ∈ Rec2 such that:

gC(x) =

{
(δ × Id)(x) if pr2(x) < Cmin(P) and pr1(x) ∈ C

x else

We can see that gC only moves towers of City(P). And as these towers are rearrange
such that pieces of every tower is ordered by increasing order about their length of their
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2-projection. We deduce that there exists a sequence (r1, . . . , rn) of restricted shuffle on P
such that gC = rn ◦ . . . ◦ r1. Let g be the product of every gC where C ranges over the set
of all connected components of Site(P). It satisfies the statement of the lemma.

At this point we are unable to prove Theorem 5.5.2 for arbitrary d. Here are some
possible step towards a proof.

Definition 5.5.7. Define (Sδ) as the following statement. For every R be finite union of
rectangles in [0, 1[δ. Let P,Q be rectangle partitions of R. Suppose that for each i there is
a Q-free subset Fi of ]0, 1[ such that for every K ∈ P ∪ Q, we have λ(pri(K)) ∈ Fi. Then
one can change Q into P by a finite sequence of shuffles.

Then the statement Sd−1 implies Theorem 5.5.2 in dimension d, the argument being
an immediate adaptation of the above one.

Indeed, we know that S1 holds. Here R is just a disjoint union of intervals, and the
difficulty is that components of R can have complicated shapes in general. Note that
proving (Sδ) immediately reduces to the case when R is connected; however it sounds
convenient not to assume R connected in order to set up a proof (e.g., by induction on the
number of the rectangles).

5.6 The derived subgroup

We recall that Td is the subset of all Recd-transpositions where d ≥ 1 is the ambient
dimension. In this subsection, we prove Theorem 5.1.6, namely that Td is a generating
subset of D(Recd). We start with some preliminary observations.

Lemma 5.6.1. Every element of order 2 in Recd is a product of Recd-transpositions with
pairwise disjoint support.

Proof. Let f ∈ Recd have order 2. For v ∈ Rd, define Xv = {x : f(x)− x = v}. Note that
Xv ∪X−v is f -invariant. Choose a subset V+ of Rd of elements called “positive elements",
such that Rd is the disjoint union V+ t−V+ t{0}. For v positive, choose a finite partition
Wv of Xv into rectangles, and let W be the union, for v positive, of all Wv. Then f is the
(disjoint support) product of all τK,f(K) for K ranging over W.

Proposition 5.6.2. (a) Td ⊂ D(Recd).

(b) If D(Recd) is simple then it is generated by Td.

Proof. (a) Let f ∈ Td and P and R be the two rectangles switched by f . We can
decompose P = P1 tP2 such that P1 and P2 are translation-isometric. Let f1 be the
element that switches P1 with f(P1) and let f2 be the element that switches P1 with
P2 and f(P1) with f(P2). Then we have f = [f1, f2].

(b) From Lemma 5.6.1, it follows that the subgroup N generated by Td coincides with
the subgroup generated by elements of order 2. By (a), N ⊂ D(Recd). Hence, if
D(Recd) is simple, it follows that N = D(Recd).

For d=1, simplicity of D(Recd) was proved by Sah [Sah81] and it follows that D(Recd)
is generated by Recd-transpositions. Vorobets [Vor17] more recently reproved simplicity of
D(Rec1), by first proving that it is generated by transpositions. Our approach for arbitrary
d ≥ 1 is inspired by the latter.

Definition 5.6.3. For every ε > 0 we define T ε
d as the set of all rectangle transpositions

τK,L such that K ∪ L is contained in a square of length ε.
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Proposition 5.6.4. (a) The subset Td generates D(Recd).

(b) For every ε > 0, the subset T ε
d generates D(Recd).

(c) For every subset U ⊂ [0, 1[d with nonempty interior, the group D(Recd) is normally
generated by those rectangle transpositions τK,L such that K ∪ L is contained in U .

Proof. (a) From usual commutator formulas it follows that in a group, every commutator
[a1a2 . . . , b1b2 . . . ] is a product of conjugates of the [ai, bj ]. Then thanks to Theorem
5.1.5 we deduce that every commutator of elements in Recd can be written as the
product of conjugates of commutators of restricted shuffles. Hence thanks to Lemma
5.6.1 we deduce that it is enough to prove that every commutator of restricted shuffles
is a product of elements of order 2. We already saw that this statement is true in
dimension 1. Let i, j ∈ {1, 2 . . . , d} and s, s′ be two restricted rotations and R,R′ be
two (d− 1)-subrectangles of [0, 1[d−1. We have different cases:

(1) If i = j then for every x ∈ [0, 1[d and for every k ∈ {1, . . . , d} with k 6= i, we have
[σR,s,i, σR′,s′,i](x)k = xk. Also pr⊥i (x) /∈ R ∩R′ we have [σR,s,i, σR′,s′,i](xi) = xi
and if pr⊥i (x) ∈ R ∩ R′ we have [σR,s,i, σR′,s′,i](x)i = [s, s′](xi). Then by using
the result in dimension 1 we deduce that [σR,s,i, σR′,s′,i] is a product of elements
of order 2.

(2) Let assume i 6= j. We remark that if R = R1 tR2 then σR,s,i = σR1,s,i ◦ σR2,s,i.
Then by using again the equality between commutators we deduce that it
is enough to show that the commutator [σR,s,i, σR′,s′,i] is a product of ele-
ments of order 2, where R and R′ are as small as we want. In particular as
i 6= j we can assume that R and R′ are small enough such that for every
x ∈ Supp(σR,s,i) ∩ Supp(σR′,s′,i) we have both σR,s,i(x) /∈ Supp(σR′,s′,i) and
σR′,s′,i(x) /∈ Supp(σR,s,i). Then in this case the commutator [σR,s,i, σR′,s′,i] per-
mutes cyclically three disjoint rectangles by translations. Hence it is a product
of two rectangle transpositions.

(b) Let f be a rectangle transposition. It can be written as disjoint support product of
rectangle transpositions, each exchanging two rectangles K,L each of lengths ≤ ε

3 .
We can then construct disjoint rectangles K = K0,K1 . . . ,Kn = L, each congruent
to K, such that Ki ∪Ki+1 is contained in a square of size ≤ ε for each i. Since τK,L
is contained in the subgroup generated by the τKi,Ki+1 , this completes the proof.

(c) We can assume that U is a square of size ε. Then each generator as in (b) is conjugate,
by a rectangle transposition, to an element supported by this square, and the result
follows.

We deduce the simplicity of the derived subgroup D(Recd):

Theorem 5.6.5. Every nontrivial subgroup of Recd normalized by D(Recd) contains D(Recd).
In particular:

a) The group D(Recd) is simple.

b) The group D(Recd) is contained in every nontrivial normal subgroup of Recd.

Proof. Let N be a nontrivial normal subgroup of Recd normalized by D(Recd). Let f be
a non-identity element of N . For some ε, there exists a square K of length ε, such that f
is a translation on K and such that K and f(K) are disjoint.

Let us prove that every rectangle transposition τP,Q with P ∪Q ⊂ K belongs to N . By
Proposition 5.6.4 (c) this yields the conclusion.
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Cut P and Q in two equal halves according to the d-coordinate: let P1 and Q1 be
their lower halves, and P2, Q2 their upper halves. Then [f, τP1,Q1 ] permutes P1 and Q1

by translations, permutes f(P1) and f(Q1) by translations, and is identity elsewhere. Let
s permute P2 and f(P1) by translations, Q2 and f(Q1) by translations, and be identity
elsewhere. Then s[f, τP1,Q1 ]s−1 = τP,Q. Hence τP,Q ∈ N .

5.7 Abelianization of Recd

In this section we generalize the abelianization group homomorphism of IET given by
Arnoux-Fathi and Sah in [Arn81a, Sah81] called the SAF-homomorphism. The idea
is to define, in each direction, a homomorphism, analogous to the 1-dimensional SAF-
homomorphism.

For every group G, we denote by D(G) its derived subgroup and by Gab := G/D(G)
its abelianization. For every f ∈ Recd we denote by f̃ its image in (Recd)ab. For every
α ∈ R we denote by {α} its fractional part. We recall that R⊗d is the d-th tensor power
of R over Q.

5.7.1 Tensor-valued measures

With notation in the proof of Lemma 5.2.5, we recall thatA is the Boolean algebra of subset
of [0, 1[ generated by the set of all left half-open subinterval of [0, 1[, and µd : A⊗d → R⊗d
is the Boolean algebra measure such that

µd(I1 × . . .× Id) = λ(I1)⊗ . . .⊗ λ(Id)

where λ is the Lebesgue measure on R. In order to have more homogeneous results for
every direction we need to use variants of the µd that place some coordinates at the end:

Definition 5.7.1. For every 1 ≤ i ≤ d we define a Boolean algebra measure on A⊗d by
µd,i = σi ◦ µi: where σi is the linear automorphism of R⊗d defined by:

σi(x1 ⊗ · · · ⊗ xd) = (x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xd ⊗ xi).

Thus:

µd,i : A⊗d −→ R⊗d
I1 × . . .× Id 7−→ µd(I1 × . . .× Ii−1 × Ii+1 × . . .× Id × Ii).

For every restricted rotation we exhibit a useful representative of its conjugacy class.

Definition 5.7.2. Let 1 ≤ i ≤ d and let aj ∈ ]0, 1] for every j ∈ {1, . . . , d} r {i}; let
a = (a1, . . . , ai−1, ai+1, . . . , ad). Let α ∈ ]0, 1] and β ∈ [0, α[. Let P and Q be the two
rectangles such that prj(P ) = prj(Q) = [0, aj [ for every j 6= i and pri(P ) = [0, α − β[
and pri(Q) = [α− β, α[. We call the standard shuffle of parameters a, i, α, β the restricted
shuffle in direction i that shuffles P and Q; we denote it by Ra,i,α,β .

5.7.2 The generalized SAF-homomorphism

Every f ∈ Recd is a piecewise translation; thus we directly see that the pushforward
measure f∗(µd) is equal to µd. Hence for every 1 ≤ k ≤ d the measure µd,i (see Definition
5.7.1) also satisfies f∗(µd,i) = µd,i.

For every f ∈ Recd and 1 ≤ i ≤ d, we define νi(f) : [0, 1[d → R by νi(f)(x) =
pri(f(x))−pri(x). One can notice that for every g ∈ Recd we have νi(f◦g) = νi(f)◦g+νi(g).
Also by definition of f it is immediate that for every x ∈ R, the inverse image νi(f)−1(x)
belongs to A⊗d and νi : [0, 1[d → R takes finitely many values.
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Definition 5.7.3. For every 1 ≤ i ≤ d we define the map ξ′i as the following:

ξ′i : Recd −→ R⊗(d+1)

f 7−→
∑
α∈R

µd,i((νi(f))−1({α}))⊗ α

We define ξi as the projection of ξ′i in R⊗(d−1) ⊗ (
∧2

QR).

Example 5.7.4. Let 1 ≤ i ≤ d and a = (a1, . . . , ad−1) ∈ ]0, 1]d−1. For every α ∈ ]0, 1] and
every β ∈ [0, α[ we have:

ξ′i(Ra,i,α,β) = a1 ⊗ . . .⊗ ad−1 ⊗ (α− β)⊗ β + a1 ⊗ . . .⊗ ad−1 ⊗ β ⊗ (−(α− β)).

Then we deduce that:

ξi(Ra,i,α,β) = 2(a1 ⊗ . . .⊗ ad−1 ⊗ (α ∧ β)) = a1 ⊗ . . .⊗ ad−1 ⊗ (α ∧ 2β).

For every 1 ≤ j 6= i ≤ d we have ξ′j(Ra,i,α,β) = 0 because νj(Ra,i,α,β)(x) = 0 for every
x ∈ [0, 1[d.

Definition 5.7.5. The map ξ : Recd →
(
R⊗(d−1) ⊗ (

∧2
QR)

)d
defined by:

ξ(f) = (ξ1(f), ξ2(f), . . . , ξd(f))

for every f ∈ Recd, is called the generalized SAF-homomorphism.

The map ξi is an analogue of the SAF-homomorphism given by Arnoux-Fathi and Sah in
[Arn81a, Sah81]. Then the proof that the SAF-homomorphism is a group homomorphism
works for ξi with immediate changes; we give the proof for the sake of completeness.

Proposition 5.7.6. The map ξ = (ξ1, . . . , ξd) is a surjective group homomorphism.

Proof. For every f, g ∈ Recd we have the following equalities:

ξ′i(f ◦ g) =
∑
α∈R

µd,i((νi(f ◦ g))−1({α}))⊗ α

=
∑
α∈R

µd,i((νi(f) ◦ g + νi(g))−1({α}))⊗ α

=
∑

β,γ∈R
µd,i
(
(νi(f) ◦ g)−1({β}) ∩ (νi(g))−1({γ})

)
⊗ (β + γ)

=
∑
β∈R

µd,i((νi(f) ◦ g)−1({β})⊗ β +
∑
γ∈Rd

µd,i((νi(g))−1({γ})⊗ γ

= ξ′i(f) + ξ′i(g)

The last equality is given by the fact that λi is invariant by an element of Recd, so that
g∗µd,i = µd,i. We deduce that ξ′i is a group homomorphism and this implies that ξi is also
a group homomorphism.

To show surjectivity, it is enough to show that {0}i−1 ⊕ (R⊗(d−1) ⊗ Λ2
QR) ⊕ {0}d−i is

contained in the image. One can notice that the group R⊗(d−1) ⊗ (
∧2

QR) is generated by
the subset {a1⊗ . . .⊗ad−1⊗ (α∧β) | aj , α, β ∈ [0, 1

2 ]}. Then it is sufficient to remark that
for every a1, . . . , ad−1, α, β ∈ [0, 1

2 ] the element a1⊗ . . .⊗ ad−1⊗ (α∧ β) is the image by ξi
of the standard shuffle of parameters (a1, . . . , ad−1), i, α, β/2 (see Example 5.7.4).
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5.7.3 An inverse of the generalized SAF-homomorphism

The group (R⊗(d−1) ⊗ (
∧2

QR))d is abelian, therefore ξ induces a surjective group homo-
morphism ξ from (Recd)ab onto (R⊗(d−1) ⊗ (

∧2
QR))d. In order to show that the kernel

Ker(ξ) is equal to the derived subgroup D(Recd), we construct an inverse of ξ in a similar
way Arnoux-Fathi and Sah did in [Arn81a, Sah81].

In the following we use additive notations for (Recd)ab. We begin by giving a generating
subset of (Recd)ab, for that, we see that we can relate every restricted shuffle to a standard
shuffle by conjugating with a rectangle transposition:

Proposition 5.7.7. Let 1 ≤ i ≤ d and let aj ∈ ]0, 1] for every j ∈ {1, . . . , d} r {i} and
let α, β ∈ ]0, 1]. Let r be a restricted shuffle in direction i that shuffles two rectangles P
and Q such that λ(prj(P )) = λ(prj(Q)) = aj for every j 6= i and λ(pri(P )) = α and
λ(pri(Q)) = β. We assume that sup(pri(P )) = inf(pri(Q)). Then r is conjugate to the
standard shuffle of parameters (a1, . . . , ai−1, ai+1, . . . , ad), i, α+ β, β.

Proof. All maps considered move only in direction i, and hence this is an immediate con-
sequence of the case d = 1 observed in [Arn81a]

From Theorem 5.1.5 and Proposition 5.7.7 we deduce the following corollary:

Corollary 5.7.8. The group (Recd)ab is generated by the subset{
R̃a,i,α,β | a ∈ ]0, 1]d−1, 1 ≤ i ≤ d, α ∈ ]0, 1], β ∈ [0, α[

}
.

Thanks to Theorem 5.1.6 we know that for every 1 ≤ i ≤ d, every a ∈ [0, 1[d−1 and
every α ∈ [0, 1[, the standard shuffle Ra,i,α,α/2 is in the derived subgroup D(Recd). The
next lemma gives a relation between some standard shuffles, it is a direct consequence of
the case in dimension 1 proved by Arnoux-Fathi in [Arn81a, Theorem IV.2]:

Lemma 5.7.9. Let α, α′ ∈ ]0, 1] such that α + α′ ∈ ]0, 1]. Let β ∈ [0,min(α, α′)[. Let
a ∈ ]0, 1]d−1 and 1 ≤ i ≤ d. Then:

1. R−1
a,i,α′,β ◦Ra,i,α+α′,β is conjugate to Ra,i,α+β,β;

2. R−1
a,i,α+β,β ◦Ra,i,α,β is conjugate to Ra,i,2β,β.

In the following, we use a lot of parameters. For the sake of clarity, parameters will be
inside brackets and not in index.

Definition 5.7.10. Let a ∈ ]0, 1]d−1 and 1 ≤ i ≤ d. For every α ∈ ]0, 1] we define:

Ψ[i, a, α] : R −→ (Recd)ab

β 7−→ ˜Ra,i,α,α{β/α}
.

We define Ψ[i, a, α] = 0 whenever α = 0 or aj = 0 for at least one 1 ≤ j ≤ d− 1.

Lemma 5.7.11. Let a = (a1, . . . , ad−1) ∈ [0, 1]d−1 and 1 ≤ i ≤ d. For every α ∈ [0, 1] the
map Ψ[i, a, α] is Z-linear.

Proof. One can see that Ra,i,α,β is the rotation of angle β on P ∪Q when we look at the
projection on Vect(ei). We recall that for every b ∈ R we have that α{b/α} is equal to b
modulo α. Hence for every c ∈ R we have α{(b+ c)/α} = α{b/α}+ α{c/α} [mod α]. We
deduce that for every b, c ∈ R we have Ra,i,α,α{(b+c)/α} = Ra,i,α,α{b/α} ◦ Ra,i,α,α{c/α}, and
this concludes.

In the following we prove that Ψ is linear on some other variable for small values.
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Lemma 5.7.12. Let a = (a1, . . . , ad−1) ∈ [0, 1]d−1 and 1 ≤ i ≤ d. For every α, α′ ∈ [0, 1]
such that α+ α′ ≤ 1 we have Ψ[i, a, α+ α] = Ψ[i, a, α] + Ψ[i, a, α′].

Proof. The case where α = 0 or α′ = 0 is immediate. We assume α 6= 0 and α′ 6= 0.
Let β ∈ R. Up to change β in β + kα with k ∈ Z we can assume that β ≥ 0. Let
n ∈ N such that β′ := β/n ∈ [0,min(α, α′)[. We have (α + α′){β′/(α + α′)} = β′. Then
Ψ[i, a, α+ α′](β′) = ˜Ra,i,α+α′,β′ . By Lemma 5.7.9 there exist g, h ∈ Rec such that:

Ra,i,α+α′,β′ = Ra,i,α′,β′ ◦ g ◦Ra,i,α+β′,β′ ◦ g−1

= Ra,i,α′,β′ ◦ g ◦ h ◦Ra,i,2β′,β′ ◦ h−1 ◦Ra,i,α,β′ ◦ g−1.

We know that Ra,i,2β′,β′ is in the derived subgroup D(Rec) thanks to Theorem 5.1.6.
Hence ˜Ra,i,α+α′,β′ = R̃a,i,α,β′ + R̃a,i,α′,β′ .

We remark that α{β′/α} = α′{β′/α′} = β′ so we have:

Ψ[i, a, α+ α′](β′) = Ψ[i, a, α](β′) + Ψ[i, a, α′](β′).

Then we can multiply by n this equality and by linearity on the variable β we deduce
Ψ[i, a1, . . . , ad−1, α+ α′](β) = Ψ[i, a, α](β) + Ψ[i, a, α′](β).

Lemma 5.7.13. Let a = (a1, . . . , ad−1) ∈ [0, 1]d−1 and 1 ≤ i ≤ d. Let α ∈ [0, 1]. For
every 1 ≤ j ≤ d− 1 and every u ∈ [0, 1] such that aj + u ∈ [0, 1], we have:

Ψ[i, a+ uej , α] = Ψ[i, a, α]
+Ψ[i, a+ (u− aj)ej , α].

Proof. Let 1Rd−1 = (1, . . . , 1) ∈ Rd−1. Let b = a + uej and c = a + (u − aj)ej . One can
notice that for every β ∈ [0, α[ we have:

Rb,i,α,β = Ra,i,α,β ◦R1Rd−1 ,j,1,aj ◦Rc,i,α,β ◦R
−1
1Rd−1 ,j,1,aj

.

Thus R̃b,i,α,β = R̃a,i,α,β + R̃c,i,α,β and this concludes.

We extend the definition of Ψ[i, a, α] for a ∈ ]−1, 1[d−1 and α ∈ ]−1, 1[:

Definition 5.7.14. Let a ∈ [0, 1[d−1 and α ∈ [0, 1[. For every 1 ≤ j ≤ d− 1 and for every
β ∈ R we define:

Ψ[i, a,−α](β) := Ψ[i, a− 2ajej , α](β)
:= Ψ[i, a, α](−β).

Lemma 5.7.15. Let a = (a1, . . . , ad−1) ∈ [0, 1]d−1 and 1 ≤ i ≤ d. Let α ∈ [0, 1] and
β ∈ R. For every q ∈ Q such that |qα| ≤ 1 we have:

Ψ[i, a, qα](β) = Ψ[i, a, α](qβ).

Also for every 1 ≤ j ≤ d− 1 such that |qaj | ≤ 1, let b = (a1, . . . , aj−1, qaj , aj+1, . . . , ad−1),
we have:

Ψ[i, b, α](β) = Ψ[i, a, α](qβ).

Proof. Let n ∈ Z and m ∈ N∗ such that q = n
m . As |qα| ≤ 1 we have | 1

m |a ≤ 1. By Lemma
5.7.11 and Lemma 5.7.12 we deduce that:

Ψ[i, a, nmα](β) = nΨ[i, a, αm ](β)
= Ψ[i, a, αm ](nβ).
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Also:
Ψ[i, a, α](nβ) = Ψ[i, a,m α

m ](nβ)
= mΨ[i, a, αm ](nβ).

Hence:
Ψ[i, a, qα](β) = Ψ[i, a, αm ](nβ)

= 1
mΨ[i, a, α](nβ)

= Ψ[i, a, α](qb).

The second equality is the same proof by using Lemma 5.7.13 instead of Lemma 5.7.12.

For every u ∈ R we denote by due the ceiling of u. For every a ∈ Rd−1 we denote by
a = ( a1

d|a1|e , . . . ,
ad−1

d|ad−1|e).

Definition 5.7.16. For every 1 ≤ i ≤ d we define :

Ψi : Rd+1 −→ (Recd)ab

(a1, . . . , ad−1, α, β) 7−→ Ψ[i, (a1, . . . , ad−1), α
d|α|e ](βd|α|e

d−1∏
j=1
d|ai|e).

Proposition 5.7.17. For every 1 ≤ i ≤ d the map Ψi is (d+ 1)-multilinear over Z.

Proof. Let a = (a1, . . . , ad−1) ∈ Rd−1. The linearity in the variable β is given by Lemma
5.7.11. Let α, α′ ∈ R+. We have α+α′

d|α+α′|e ≤ 1 so by Lemma 5.7.12 we obtain:

Ψ[i, a, α+α′

d|α+α′|e ](βd|α+ α′|e
d−1∏
j=1
d|ai|e) =

Ψ[i, a, α
d|α+α′|e ](βd|α+ α′|e

d−1∏
j=1
d|ai|e)

+Ψ[i, a, α′

d|α+α′|e ](βd|α+ α′|e
d−1∏
j=1
d|ai|e).

Also α
d|α+α′|e = α

d|α|e ×
d|α|e
d|α+α′|e . Then by Lemma 5.7.15 we deduce that:

Ψ[i, a, α
d|α+α′|e ](βd|α+ α′|e

d−1∏
j=1
d|ai|e)

= Ψ[i, a, α
d|α|e ](βd|α+ α′| × d|α|e

d|α+α′|ee
d−1∏
j=1
d|ai|e)

= Ψi(a1, . . . , ad−1, α, β).

A similar computation can be done to obtain:

Ψ
[
i, a,

α′

d|α+ α′|e
](
βd|α+ α′|e

d−1∏
j=1

d|ai|e) = Ψi(a1, . . . , ad−1, α
′, β
)
.

Hence we have:

Ψi(a1, . . . , ad−1, α+ α′, β) = Ψi(a1, . . . , ad−1, α, β) + Ψi(a1, . . . , ad−1, α
′, β).

Now let assume α+ α′ ∈ R. If α+ α′ is negative then by Definition 5.7.14 we have:

Ψi(a, α+ α′, β) = Ψi(a,−(α+ α′),−β).

Also for α, α′ ∈ R+ such that α− α′ ∈ R+ we have:

Ψi(a, α, β) = Ψi(a, α− α′, β) + Ψi(a, α
′, β).

In conclusion we obtain that Ψi is linear in the variable α.
The linearity of Ψi in the variable aj for 1 ≤ j ≤ d is the same proof as the linearity in

the variable α using Lemma 5.7.13 instead of Lemma 5.7.12.
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We deduce that Ψi can be seen as a group homomorphism from R⊗(d+1) onto (Recd)ab.

Lemma 5.7.18. For every 1 ≤ i ≤ d and every a1, . . . , ad−1, α, β ∈ R we have Ψi(a1 ⊗
. . .⊗ ad−1 ⊗ α⊗ β + a1 ⊗ . . .⊗ ad−1 ⊗ β ⊗ α) = 0.

Proof. Let a = (a1, . . . , ad−1). By Q-linearity of Ψ it is enough to show the lemma for the
case where a1, . . . , ad−1, α, β ∈ [0, 1

2 [ and such that α > β > α − β. Then we remark that
β{α/β} = α− β. Then by Lemma 5.7.9 we have:

Ψi(a1 ⊗ . . .⊗ ad−1 ⊗ α⊗ β + a1 ⊗ . . .⊗ ad−1 ⊗ β ⊗ α)

= Ψ[i, a, α](β) + Ψ[i, a, β](α)

= R̃a,i,α,β + ˜Ra,i,β,α−β

= R̃a,i,α,β + ˜Ra,i,α,α−β + ˜Ra,i,2(α−β),α−β = 0.

Thanks to Lemma 5.7.18 and Corollary 5.7.8, we deduce that Ψi induces a group
homomorphism from R⊗(d−1) ⊗ (

∧2
QR) onto (Recd)ab. It is also denoted by Ψi.

Definition 5.7.19. We define the generalized SAF-inverse as the following group homo-
morphism:

Ψ : (R⊗(d−1) ⊗ (
∧2

QR))d −→ (Recd)ab

(a1,i ⊗ . . .⊗ ad−1,i ⊗ (αi ∧ βi))1≤i≤d 7−→
d∑
i=1

Ψi(a1,i ⊗ . . .⊗ ad−1,i ⊗ (αi ∧ βi
2 )).

Lemma 5.7.20. We have Ψ ◦ ξ = Id(Recd)ab
.

Proof. Let 1 ≤ i ≤ d and let a = (a1, . . . , ad−1) ∈ (]0, 1])d−1. For every α ∈ ]0, 1] and
every β ∈ [0, α[. It is enough to show the result for R̃a,i,α,β . By Example 5.7.4 we have
ξ(R̃a,i,α,β) = (uj)1≤j≤d where ui = 2(a1 ⊗ . . . ⊗ ad−1(α ∧ β)) = a1 ⊗ . . . ⊗ ad−1(α ∧ (2β))
and uj = 0 for j 6= i. Then by definition of Ψ and Ψi we have Ψ((uj)1≤j≤d) = Ψi(a1 ⊗
. . .⊗ ad−1(α ∧ β)) = R̃a,i,α,β .

We deduce that the generalized SAF-invariant ξ : (Recd)ab → (R⊗(d−1) ⊗ (
∧2 RQ))d is

injective. Thus it gives the following theorem:

Theorem 5.7.21. The generalized SAF-invariant ξ induces an isomorphism from (Recd)ab

onto (R⊗(d−1) ⊗ (
∧2

QR))d.

5.7.4 A normal subgroup larger than the derived subgroup

We denote by GtGd the subgroup of Recd generated by IETd ∪Td.

Proposition 5.7.22. Suppose d ≥ 2. The group GtGd is a normal subgroup of Recd and
strictly contains D(Recd).

Proof. We recall that the group IET is generated by its subset of restricted rotations, see
Theorem 1.2.8. For every 1 ≤ i ≤ d and every ε > 0, we define:

F εi = {σ[0,1[d−1,r,i | r is a restricted rotation whose support has measure < ε}.

Then the set
d⋃
i=1

F εi generates IETd. We obtain that the image of GtGd by the group

homomorphism ξ is equal to ({1}d−1⊗(
∧2 R))d which is not the trivial subgroup. Hence, we

deduce that GtGd strictly contains D(Recd) thanks to Theorem 5.7.21. This gives also that
GtGd is a proper subgroup of Recd because the image of Recd by ξ is (Rd−1⊗(

∧2 R))d. The
fact that GtGd is a normal subgroup of Recd is immediate from the inclusion D(Recd) ⊂
GtGd.
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Remark 5.7.23. The notation GtGd is for “Grid-to-Grid”. We denote by S the subset of
Recd consisting of elements f such that there exists a grid-pattern associated Q such that
f(Q) is still a grid-pattern. Then S contains IETd ∪Td but is not equal to GtGd. However
the normal closure in GtGd of S is GtGd.
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Invariants de certains groupes d’origine dynamique

Résumé. Le but de cette thèse est d’étudier des groupes agissant par isométries par morceaux
sur un intervalle en s’intéressant à leur abélianisé. Le cas du groupe des échanges d’intervalles
IET a été traité par Arnoux-Fathi et Sah. Tout d’abord, pour tous sous-groupe Γ de R/Z, on
identifie l’abélianisé de tous les sous-groupes IET(Γ) du groupe IET ; ainsi que celui de tous les
sous-groupes IET./(Γ) du groupe des échanges d’intervalles avec renversements IET./. L’idée est
adapter le morphisme signature sur les groupes de permutations finis en essayant de mesurer
l’ensemble des inversions d’un élément.

Par ailleurs on démontre aussi que la signature des groupes des permutations finis s’étend au
groupe des permutations de de [0, 1[ qui sont continus en dehors d’un nombre fini de points. Cela
a pour conséquence que la classe de Kapoudjian, un élément du second groupe de cohomologie,
s’annule.

Ensuite, on se place en dimension d ≥ 1 et on considère le groupe Recd des permutations
du rectangle [0, 1[

d qui bougent un nombre fini de sous-rectangles par translations et qui sont
l’identité ailleurs. On démontre que la généralisation naturel des rotations restreintes (qui forment
un système de générateur du groupe IET) forme un système générateur de Recd. Puis on identifie
son abélianisé en généralisant le travail fait pour le groupe IET par Arnoux-Fathi et Sah.

Mots-clés : abélianisé, échanges d’intervalles, échanges de rectangles, groupes continus par
morceaux, signature.

Invariants of some groups with dynamical origin

Abstract. In this thesis we study groups piecewise acting by isometries on an interval by
identifying their abelianization. The case of the Interval Exchange Transformations (IET) group
has been done by Arnoux-Fathi and Sah. First, for every subgroup Γ of R/Z, we identify the
abelianization of every subgroup IET(Γ) of the group IET and also every subgroup IET./(Γ) of
the Interval Exchange Transformations group with flips IET./. The idea is to adapt the group
homomorphism signature on finite permutation groups by measuring the set of inversions of an
element.

Also we prove that the group homomorphism signature on finite permutation groups can be
extended to the group consisting of permutations of [0, 1[ which are continuous outside a finite
number of points. A consequence is the vanishing of an element of the second cohomology group
called the Kapoudjian class.

Then, we deal with higher dimension. Let d ≥ 1 and let Recd be the group of all permutations
of [0, 1[

d which are a translation on a finite number of subrectangles and fix the rest of [0, 1[
d. We

prove that the natural generalization of restricted rotations (which define a generating subset of
IET) define a generating subset of Recd. Next we identify the abelianization of Recd by extending
the work of Arnoux-Fathi and Sah on IET.

Keywords: abelianization, interval exchanges, rectangle exchanges, piecewise continuous
groups, signature.

Image de couverture : Tableau réalisé au fusain par mon grand-père André Roddier.
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