Contrôle, lundi 18 mai 2020

Il sera tenu compte de la rédaction. Les arguments et les raisonnements devront être clairement détaillés. Les résultats du cours utilisés devront être explicitement cités.

La méthode de Gauss-Seidel comme méthode de descente.

Soit $n \in \mathbf{N}^*$. Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice **symétrique définie positive** et $b \in \mathbf{R}^n$ un vecteur donnés. On définit la fonctionnelle quadratique $f : \mathbf{R}^n \to \mathbf{R}$ par : pour tout $x \in \mathbf{R}^n$, $f(x) = \frac{1}{2}x^TAx - x^Tb$. Dans la suite, $\|.\|$ désigne la norme euclidienne sur \mathbf{R}^n : pour tout $y \in \mathbf{R}^n$, $\|y\|^2 = y^Ty$.

Pour minimiser une fonction $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ (non forcément quadratique), on appelle méthode de descente à pas fixe $\alpha \in \mathbf{R}_+^*$ la méthode itérative définie par la récurrence

$$\left\{ \begin{array}{l} x^{(0)} \in \mathbf{R}^n, \\ x^{(k+1)} = x^{(k)} + \alpha w^{(k)} \text{ pour tout } k \in \mathbf{N}, \end{array} \right.$$

où $w^{(k)} \in \mathbf{R}^n$, appelé alors direction de descente stricte, satisfait pour tout k à $w^{(k)}^T \nabla f(x^{(k)}) < 0$ tant que $x^{(k)}$ ne réalise pas un minimum local de f.

- 1. Préliminaires.
 - (a) Soit $B \in \mathcal{M}_n(\mathbf{R})$ une matrice symétrique définie positive. On note λ_{min} (respectivement λ_{max}) la plus petite (respectivement la plus grande) valeur propre de B.

 Montrer que pour tout $y \in \mathbf{R}^n$, $\lambda_{min} ||y||^2 \le y^T B y \le \lambda_{max} ||y||^2$.
 - (b) Calculer, pour tout $x \in \mathbf{R}^n$, $\nabla f(x)$.
- 2. On rappelle que la méthode de Gauss-Seidel est la méthode itérative pour la résolution de Ax = b basée sur la décomposition A = M N avec M = D + E et N = -F où D, E et F sont les matrices telles que A = D + E + F, D est diagonale, E est triangulaire inférieure stricte et F est triangulaire supérieure stricte. La méthode de Gauss-Seidel est définie par la récurrence

$$\begin{cases} x^{(0)} \in \mathbf{R}^n, \\ Mx^{(k+1)} = Nx^{(k)} + b \text{ pour tout } k \in \mathbf{N}. \end{cases}$$

- (a) Justifier que les coefficients diagonaux de A sont tous strictement positifs.
- (b) Montrer que M est inversible.
- (c) Montrer que pour tout $y \in \mathbf{R}^n$, $y^T M y = \frac{1}{2} (y^T A y + y^T D y)$.
- (d) En déduire que pour tout $y \in \mathbf{R}^n$ non nul, $y^T M y > 0$ et $y^T M^{-1} y > 0$.
- (e) Montrer que la méthode de Gauss-Seidel est une méthode de descente à pas fixe $\alpha = 1$. Identifier pour tout $k \in \mathbb{N}$, la direction de descente stricte $w^{(k)}$. On montrera soigneusement que $w^{(k)} \nabla f(x^{(k)}) < 0$ si $x^{(k)} \neq A^{-1}b$.
- 3. Dans la suite, on considère la variante suivante de la méthode de Gauss-Seidel : on remplace le pas fixe α par un pas optimal, $\alpha^{(k)}$, dépendant de l'itération, défini comme réalisant le minimum sur \mathbf{R}_+ de $\alpha \longmapsto f(x^{(k)} + \alpha w^{(k)})$, pour le $w^{(k)}$ trouvé à la question précédente.
 - (a) Soit $k \in \mathbf{N}$ tel que $w^{(k)} \neq 0$. Montrer qu'il existe un unique tel minimiseur $\alpha^{(k)}$, puis que $\alpha^{(k)} = \frac{w^{(k)^T} r^{(k)}}{w^{(k)^T} A w^{(k)}} \text{ où } r^{(k)} = b A x^{(k)} \text{ est le résidu.}$

(b) Soit $k \in \mathbf{N}$ tel que $w^{(k)} \neq 0$. Montrer que

$$|f(x^{(k+1)}) - f(x^{(k)})| = \frac{|w^{(k)^T} r^{(k)}|^2}{2w^{(k)^T} A w^{(k)}} = \frac{|w^{(k)^T} M w^{(k)}|^2}{2w^{(k)^T} A w^{(k)}}.$$

(c) Soit $k \in \mathbb{N}$ tel que $w^{(k)} \neq 0$. On note λ_{min} (respectivement λ_{max}) la plus petite (respectivement la plus grande) valeur propre de A et d_{min} la plus petite valeur (propre) de D. Montrer que

$$\frac{|w^{(k)^T} M w^{(k)}|^2}{2w^{(k)^T} A w^{(k)}} \ge \frac{(\lambda_{min} + d_{min})^2}{8\lambda_{max}} ||w^{(k)}||_2^2$$

- (d) Montrer que $r^{(k)}$ tend vers $0 \in \mathbf{R}^n$ lorsque k tend vers l'infini.
- (e) Montrer que la suite $(x^{(k)})_{k \in \mathbb{N}}$ converge vers la solution x du système Ax = b quand k tend vers l'infini.