Feuille d'exercices nº 3

Moindres carrés, recherche de valeurs propres.

Exercice 1.

Trouver la droite du plan qui passe au plus près (au sens des moindres carrés) des points $(0,1)^T$, $(1,2)^T$ et $(3,3)^T$.

Exercice 2. Approximation polynomiale.

Soit $n \in \mathbb{N}^*$. On note $\|\cdot\|$ la norme euclidienne canonique de \mathbb{R}^n .

On souhaite connaître au mieux une fonction $f: \mathbf{R} \to \mathbf{R}$ grâce à n mesures y_1, \dots, y_n en n points t_1, \dots, t_n . Pour cela on se fixe un degré $d \in \mathbf{N}$ et l'on détermine une approximation de f dans l'espace des polynômes de degré inférieur ou égal à d.

Notons \mathcal{P}_d cet espace. On cherche $P \in \mathcal{P}_d$ tel que

$$\left\| \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} P(t_1) \\ \vdots \\ P(t_n) \end{pmatrix} \right\| = \min_{Q \in \mathcal{P}_d} \left\| \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} Q(t_1) \\ \vdots \\ Q(t_n) \end{pmatrix} \right\|.$$

- 1. Écrire le problème comme la résolution au sens des moindres carrés d'un système Ax = b pour une certaine matrice $A \in \mathcal{M}_{n,d+1}(\mathbf{R})$ et un certain vecteur $b \in \mathbf{R}^n$.
- 2. Pour d = 0, 1, résoudre explicitement le problème quand il possède une unique solution.
- 3. On suppose que les points t_1, \ldots, t_n sont deux à deux distincts. À quelle condition sur d la matrice A^*A est-elle inversible?

Exercice 3. Un calcul par la décomposition QR.

On définit $A \in \mathcal{M}_{4,2}(\mathbf{R})$ et $b \in \mathbf{R}^4$ par

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 0 \\ 2 & 4 \\ 1 & 0 \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}.$$

- 1. Résoudre Ax = b au sens des moindres carrés à l'aide d'une décomposition QR obtenue par la méthode de Householder.
- 2. Quelle est la taille de l'erreur d'approximation?

Exercice 4. Théorème de Gerschgorin.

Soit $n \in \mathbf{N}^*$ et $A \in \mathcal{M}_n(\mathbf{C})$. Montrer que

$$\sigma(A) \subset \bigcup_{i=1}^{n} \left\{ \lambda \in \mathbf{C} \mid |\lambda - A_{i,i}| \leq \sum_{j \neq i} |A_{i,j}| \right\}.$$

Exercice 5. Méthode de la puissance.

On considère la matrice

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

- 1. Calculer les modes propres de A.
- 2. Soit $x \in \mathbb{C}^2$ non nul.
 - (a) Calculer $(A^k x)_{k \in \mathbf{N}}$.
 - (b) On pose $(x^{(k)})_{k\in\mathbf{N}}=\left(\frac{A^kx}{\|A^kx\|}\right)_{k\in\mathbf{N}}$. À quelle condition sur x la suite

$$\left(\left\langle Ax^{(k)}, x^{(k)} \right\rangle\right)_{k \in \mathbf{N}}$$

converge-t-elle vers une valeur propre de A?

Exercice 6. Méthode QR.

Calculer les itérations successives de la méthode QR de recherche de valeurs propres pour la matrice

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.$$

Qu'en conclure?