
Convergence of finite volume schemes for the coupling between the

inviscid Burgers equation and a particle

Nina Aguillon∗, Frédéric Lagoutière†, Nicolas Seguin‡

April 2, 2015

Abstract

The convergence of a class of finite volume schemes for the model of coupling between a Burgers
fluid and a pointwise particle is proved. In this model, introduced by Lagoutière, Seguin and
Takahashi in 2008, the particle is seen as a moving point through which an interface condition is
imposed, which links the velocity of the fluid on the left and on the right of the particle and the
velocity of the particle (the three quantities are all not equal in general). The total momentum of
the system is conserved through time.

The proposed schemes are consistent with a “large enough” part of the interface conditions. The
proof of convergence is an extension of the one of Andreianov and Seguin (2012) to the case where
the particle moves under the influence of the fluid (two-way coupling). This extension contains two
new main difficulties: first, the fluxes and interface conditions are time-dependent, and second, the
coupling between and ODE and a PDE.
Key phrases: Fluid-particle interaction; Burgers equation; Non-conservative coupling; moving
interface; convergence of finite volume schemes; PDE-ODE coupling
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1 Introduction and main results

We study the convergence of finite volume schemes for the Cauchy problem











∂tu+ ∂x
u2

2 = −λ(u − h′(t))δh(t)(x),

mph
′′(t) = λ(u(t, h(t))− h′(t)),

u|t=0 = u0, h(0) = h0, h′(0) = v0.

(1)

It models the behavior of a pointwise particle of position h, velocity h′ and acceleration h′′ with
mass mp, immersed into a “fluid”, whose velocity at time t and point x is u(t, x). The velocity
of the fluid is assumed to follow the inviscid Burgers equation. This system is fully coupled: the
fluid exerts a drag force D = λ(u(t, h(t)) − h′(t)) on the particle, where λ is a positive friction
parameter. In accordance with the action-reaction principle, the particle exerts the force −D on the
fluid. The interaction is local: it applies only at the point where the particle is. This friction force
tends to bring the velocities of the fluid and the particle closer to each other: as λ is positive, the
particle accelerates if u(t, h(t)) is larger than h′(t), and vice-versa. This toy model was introduced
in [LST08] (see also [BCG13] and [Agu15] for related problems). In contrast with the model studied
in [VZ03], [Hil05] and [VZ06], the particle and the fluid do not share the same velocity and the fluid
is inviscid. In particular the fluid velocity is typically discontinuous through the particle. It yields
issues to define correctly the product (u−h′)δh and the ODE for the particle in system (1). To do so,
the idea is to regularize the Dirac measure in (1), and to remark that the values of the fluid velocity
on both sides of this thickened particle are independent of the regularization. It allows to reformulate
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System (1) as an interface problem, where the traces around the particle u−(t) = limx→h(t)− u(t, x)
and u+(t) = limx→h(t)+ u(t, x) must belong to a set Gλ(h

′(t)), which takes into account the interface
conditions. Another way to understand Gλ(v) is to say that for a fixed v, this set describes the
family of piecewise constant equilibrium for System (1) in the case where the particle velocity is
fixed equal to v. Indeed, for every (u−, u+) ∈ R

2, the function

u(t, x) =

{

u− if x < vt,

u+ if x > vt,

is the solution of
{

∂tu+ ∂x
u2

2 = −λ(u− v)δvt(x),

u0(x) = u−1x<0 + u+1x>0,

if and only if (u−, u+) belongs to Gλ(v). Following [AKR11], we call this family of equilibrium states
the germ at speed v. The derivation of Gλ(v) via a regularization of the Dirac mass has been done
in details in [LST08], and we recall its definition below.

Definition 1.1. For any given speed v ∈ R, the germ at speed v, Gλ(v), is the set

Gλ(v) = G1
λ ∪ G2

λ(v) ∪ G3
λ(v),

where
G1
λ =

{

(u−, u+) ∈ R
2 : u− = u+ + λ

}

,

G2
λ(v) =

{

(u−, u+) ∈ R
2 : v ≤ u− ≤ v + λ, v − λ ≤ u+ ≤ v and u− − u+ < λ

}

,

and
G3
λ(v) =

{

(u−, u+) ∈ R
2 : −λ ≤ u+ + u− − 2v ≤ λ and u− − u+ > λ

}

.

The germ Gλ(0) and its partition are depicted on Figure 1 on the left (note that the germ Gλ(v)
is the translation of Gλ(0) by the vector (v, v)). Here, we choose a slightly different partition of the
germ than in [AS12] and [ALST13], which is depicted on the right of Figure 1. The reason is that we
are able to find a class of finite volume schemes which are consistent with G1

λ∪G2
λ(0) with this choice,

but not with the original partition. However, the essential property that G1
λ ∪ G2

λ(0) is a definite
germ still holds true with the partition of Definition 1.1 (more details are given in Definition 1.4 and
Proposition 4.8). Once the germ has been defined, System (1) is defined as an interface problem.

u− u−

u+u+

−λ−λ

λλ

G1
λG1

λ

G2
λ(0)G2

λ(0)

G3
λ(0) G3

λ(0)

Figure 1: The germ for a motionless particle and its partitions. Left: the partition used in this work.
Right: the partition used in [AS12] and [ALST13].

The equation on the particle is reformulated to keep the conservation of total momentum

mph
′(t) +

∫

R

u(t, x)dx

which holds formally in (1). In [LST08], an entropy inequality that takes into account the particle
is also derived.
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Definition 1.2. A pair (u, h) of functions in L∞(R+ × R) ×W 2,∞(R+) is a solution of (1) with
initial data u0 in L∞(R) and (h0, v0) ∈ R

2 if:

• the function u is an entropy weak solution of the Burgers equations on the sets {(t, x), x < h(t)}
and {(t, x), x > h(t)},

• for almost every positive time t,

mph
′′(t) = (u−(t)− u+(t))

(

u−(t) + u+(t)

2
− h′(t)

)

(2)

and
(u−(t), u+(t)) ∈ Gλ(h

′(t)).

This definition requires the existence of traces along the particle’s trajectory h. It follows from
the works of Panov [Pan07] and Vasseur [Vas01]. For the one way coupling when the particle is
motionless, well-posedness in the BV setting was proved in [AS12], while for the fully coupled
system (1), it is proved in [ALST10] and [ALST13].

Remark that Definition 1.2 is not suitable to prove convergence of finite volume schemes in a
general framework. Indeed, a scheme can create a numerical boundary layer near the particle, of
several cells width. It does not prevent the scheme from converging in, say, L∞

loc in time and L1 in
space; but in that case we cannot expect the numerical traces to converge to their correct values.
Nevertheless we will prove the convergence of some schemes that create such boundary layers. The
key point is to use, instead of Definition 1.2, an equivalent definition which does not involve the
traces of u. We begin with some properties of the germ Gλ(v).

In the sequel, we denote by Φv the so-called Kruzhkov entropy flux associated with fv(u) =
u2

2 − vu:

Φv :
R

2 −→ R

(a, b) 7−→ sgn(a− b)
((

a2

2 − va
)

−
(

b2

2 − vb
))

and we define

Ξv :
R

2 × R
2 −→ R

((a−, a+), (b−, b+)) 7−→ Φv(a−, b−)− Φv(a+, b+)

Proposition 1.3. If both (a−, a+) and (b−, b+) belong to Gλ(v), then

Ξv((a−, a+), (b−, b+)) ≥ 0.

Conversely, if (a−, a+) is such that

∀(b−, b+) ∈ Gλ(v), Ξv((a−, a+), (b−, b+)) ≥ 0,

then (a−, a+) belongs to the germ.

Adopting once again the vocabulary of [AKR11], Proposition 1.3 means that Gλ(v) is a maximal
L1-dissipative germ. The proof can be found in [AS12], see Proposition 2. We now introduce another
notion, which will allow us to restrict our attention to a small part of Gλ(v).

Definition 1.4. A subset Hλ(v) of Gλ(v) is said to be definite if any (a−, a+) that satisfies

∀(b−, b+) ∈ Hλ(v), Ξv((a−, a+), (b−, b+)) ≥ 0 (3)

belongs to the germ Gλ(v).

Example 1.5. The subset G1
λ ∪ G2

λ(v) is definite. This is proved in Proposition 4.8.

We now focus on alternative traceless characterizations of entropy solutions. In the sequel Hλ(v)
always denotes a definite part of Gλ(v). For all (c−, c+) we denote by c the piecewise constant
function

c(t, x) = c−1x<h(t) + c+1x≥h(t),

and by dist1(a,X) the L1-distance of a point a := (a−, a+) of R2 to a set X included in R
2:

dist1((a−, a+), X) = inf
(x−,x+)∈X

(

|a− − x−|+ |a+ − x+|
)

.

3



Proposition 1.6. Let h be a function of W 2,∞
loc (R+) and let u be a function of L∞

loc(R+ ×R), which
is an entropy solution of the Burgers equation on the sets {(t, x), x < h(t)} and {(t, x), x > h(t)}.
The following assertions are equivalent.

• For almost every time t > 0, (u−(t), u+(t)) belongs to Gλ(h
′(t)).

• For almost every time t > 0, for all (c−, c+) ∈ R
2, there exist δ ∈ (0, t) and a constant A

depending only on ||u0||∞, λ, (c−, c+) and ||h′||∞ such that for every nonnegative function ϕ
in C∞

0 ((t− δ, t+ δ)× R),

∫

R+

∫

R

|u− c|(s, x)∂sϕ(s, x− h(s)) + Φh′(t)(u, c)(s, x)∂xϕ(s, x− h(s))dx ds

≥ −A

∫

R+

dist1((c−, c+),Hλ(h
′(s)))ϕ(s, 0) ds.

(4)

Proof. For the sake of completeness we reproduce here the main ingredients of the proof that can
be found in [AS12]. Let ϕ be in C∞

0 ((t− δ, t+ δ)× R), where δ belongs to (0, t). For positive ε, we
introduce the function

ζε(z) = 1−min(1, |z|/ε),

whose support is (−ε, ε). The support of the function

ψε(t, x) = (1− ζε)ϕ(t, x − h(t))

is included in {(t, x), t > 0, x 6= h(t)}. The function u is an entropy solution of the Burgers equation
on the sets {(t, x), x < h(t)} and {(t, x), x > h(t)}, thus for all real κ,

∫∫

R+×R

|u(s, x)− κ|∂sψε(s, x) + Φ0(u(s, x), κ)∂xψεdx ds ≥ 0.

But ∂sψε(s, x) = ∂s((1− ζε)ϕ)(s, x− h(s))− h′(s)∂x((1− ζε)ϕ)(s, x− h(s)), and using the fact that

Φv(a, b) = Φ0(a, b)− v|a− b|,

we obtain
∫∫

R+×R

|u− c|(s, x)(∂s(1− ζε)ϕ)(s, x − h(s)) + Φ0(u, c)(s, x)∂x((1 − ζε)ϕ)(s, x − h(s))dx ds ≥ 0.

Thus we have
∫∫

R+×R

|u− c|(s, x)∂sϕ(s, x− h(s)) + Φh′(t)(u, c)(s, x)∂xϕ(s, x− h(s))dx ds

≥ lim inf
ε→0

∫∫

R+×R

|u− c|(s, x)(∂s(ζεϕ))(s, x − h(s)) + Φh′(t)(u, c)(s, x)(∂x(ζεϕ))(s, x − h(s))dx ds

=

∫

R+

Φh′(s)(u−(s), c−)− Φh′(s)(u+(s), c+)ϕ(s, 0)ds

=

∫

R+

Ξh′(s)((u−(s), u+(s)), (c−, c+))ϕ(s, 0)ds

For all s for which the pair (u−(s), u+(s)) exists and belongs to Gλ(h
′(s)), we denote by (c̃−(s), c̃+(s))

a L1-projection of (c−, c+) on Hλ(h
′(s)), i.e. a point that minimizes the distance dist1((c−, c+),Hλ(h

′(s))).
We have

Ξh′(s)((u−(s), u+(s)), (c−(s), c+(s))) ≥ Ξh′(s)((u−(s), u+(s)), (c̃−(s), c̃+(s)))

− |Ξh′(s)((u−(s), u+(s)), (c−(s), c+(s)))− Ξh′(s)((u−(s), u+(s)), (c̃−(s), c̃+(s)))|.

Since (c̃−(s), c̃+(s)) belongs to Hλ(h
′(s)), Proposition 1.3 yields

∫

R+

Ξh′(s)((u−(s), u+(s)), (c̃−(s), c̃+(s)))ϕ(s, 0)ds ≥ 0.
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On the other hand

|Ξh′(s)((u−(s), u+(s)), (c−(s), c+(s)))− Ξh′(s)((u−(s), u+(s)), (c̃−(s), c̃+(s)))|

≤ |Φh′(s)(u−(s), c−(s))− Φh′(s)(u−(s), c̃−(s))|+ |Φh′(s)(u+(s), c+(s)) − Φh′(s)(u+(s), c̃+(s))|

which is smaller than a constant depending only on ||h′||∞, ||u||∞, c and λ (since c 7→ c̃ depends on
λ), multiplied by the L1-distance between (c−, c+) and (c̃−(s), c̃+(s)), and we obtain the result.

Conversely, using a sequence of test functions ϕ concentrating at a time t for which u has traces
in (4), we obtain that for all (c−, c+) in Hλ(h

′(t)),

Ξh′(t)((u−(t), u+(t)), (c−, c+)) ≥ 0,

and thus by Proposition 1.3, (u−(t), u+(t)) belongs to the germ Gλ(h
′(t)).

Proposition 1.7. Let u in L∞
loc(R+×R) be a solution of the Burgers equation on the sets {(t, x), x <

h(t)} and {(t, x), x > h(t)}. A function h in W 2,∞
loc (R+) satisfies (2) almost everywhere, with initial

data (h(0), h′(0)) = (h0, v0), if and only if for all ξ ∈ C∞
0 ([0, T ]) and for all ψ ∈ C∞

0 (R) such that
ψ(0) = 1 the following holds:

−

∫ T

0

mph
′(t)ξ′(t)dt = mpv

0ξ(0) +

∫

R

∫ T

0

u2

2
(s, x)ξ(s)ψ′(x− h(s))ds dx

+

∫

R

∫ T

0

u(s, x)[ξ′(s)− h′(s)ψ′(x− h(s))]ds dx

+

∫

R

u0(x)ψ(x − h0)ξ(0)dx.

(5)

Proof. This characterization was proved in [ALST10]. It follows from the application of the Green–
Gauss theorem and the fact that u is an entropy solution of the Burgers equation away from the
particle:

∫ T

0

∫

R

u2

2
(s, x)ξ(s)ψ′(x− h(s)) + u(s, x)[ξ′(s)− h′(s)ψ′(x− h(s))]ds dx

=

∫ T

0

∫

R

u2

2
(s, x)∂x(ξψ(x − h(s))) + u(s, x)∂s(ξψ(x − h(s)))ds dx

= −

∫ T

0

∫

x 6=h(t)

(

∂x
u2

2
+ ∂tu

)

(ξψ)dx ds −

∫

R

u0(x)ψ(x − h(0))ξ(0)dx

+

∫ T

0

ξ(s)

((

u2−(s)

2
− h′(s)u−(s)

)

−

(

u2+(s)

2
− h′(s)u+(s)

))

ds

=

∫ T

0

mph
′′(s)ξ(s)ds −

∫

R

u0(x)ψ(x − h(0))ξ(0)dx.

We now present the family of finite volume schemes for which we prove convergence. The proof
follows the guidelines of the Lax–Wendroff theorem. In Section 3, we obtain a BV bound on the
fluid velocity and a W 2,∞ bound on the particle’s trajectory that allow us to extract convergent
subsequences in L1

loc(R+ ×R) and W 1,∞
loc (R+). The difficulties are to treat numerically the interface

conditions enclosed in the germ and the coupling between an ODE and a PDE. More precisely:

• First, we have to take into account at the numerical level the interface condition of Defini-
tion 1.1. We will use schemes that preserves a “sufficiently large” part of the germ.

• Second, the moving particle must be handle with care. It is crucial that the particle lies at
an interface of the mesh at the beginning of the time step. To do so and avoid the problem
of the replacement of the particle, we use a mesh that tracks the particle and we update the
particle’s velocity by conservation of total momentum.
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Let us fix a time step ∆t and a space step ∆x. In the sequel we assume that the time step and
the space step are proportional, and we denote by µ = ∆t

∆x their ratio. We propose to approximate
the solution of (1) with a finite volume scheme. We use a mesh that follows the particle, which
is placed between the cells numbered 0 and 1. The speed of the particle is approximated by a
piecewise constant (vn)n∈N. Given the solution a time n∆t: we consider that the particle has
constant velocity vn on the whole time step (n∆t, (n + 1)∆t) to update the fluid velocity, then
we update vn by conservation of the total momentum. The interface 1/2 where the particle lies
is special, and we have to use appropriate fluxes at this interface. Due to the source term, the
equation is not conservative around the particle, thus we have two different fluxes fn,−

1/2 and fn,+
1/2 on

the left and on the right of the particle respectively. Away from the particle, Equation (1) writes as
a scalar conservation law, and we can use any standard flux for the Burgers equation. The scheme
is initialized with

∀j ∈ Z, u0j =
1

∆x

∫ x0
j+1/2

x0
j−1/2

u0(x) dx.

From the integration of the first equation of (1) on the space time cell

Cn
j = {(n∆t+ s, xnj−1/2 + y + svn), 0 ≤ s < ∆t, 0 ≤ y < ∆x},

we obtain the finite volume scheme






























un+1
j = unj − µ(fn

j+1/2(v
n)− fn

j−1/2(v
n)) for j ∈ Z, j /∈ {0, 1},

un+1
0 = un0 − µ(fn

1/2,−(v
n)− fn

−1/2(v
n)),

un+1
1 = un1 − µ(fn

3/2(v
n)− fn

1/2,+(v
n)),

vn+1 = vn + ∆t
mp

(fn
1/2,−(v

n)− fn
1/2,+(v

n)),

xn+1
j = xnj + vn∆t.

(6)

Here we emphasized the dependency of the flux on the particle’s velocity. In the sequel we denote
by u∆t the constant by cell function

u∆t(t, x) = unj if (t, x) ∈ Cn
j . (7)

and by v∆t and h∆t the constant and linear by cell functions:
{

v∆t(t) = vn if n∆t ≤ t < (n+ 1)∆t,

h∆t(t) = h0 +∆t
∑n−1

m=0 v
m + vn(t− n∆t) if n∆t ≤ t < (n+ 1)∆t.

(8)

Another way to proceed is to perform the change of variable

ũ(t, x) = u(t, x+ h(t))

in (1). This function satisfies the PDE

∂tũ+ ∂x

(

ũ2

2
− h′(t)ũ

)

= −λ(ũ− h′)δ0(x) (9)

The particle is now motionless but the flux depends on time. Integrating (9) on [n∆t, (n+ 1)∆t]×
[x0j−1/2, x

0
j+1/2], and using special fluxes around the particle (still placed at interface 1/2), we obtain

the finite volume scheme






















ũn+1
j = ũnj − µ(fvn,n

j+1/2 − fvn,n
j−1/2) for j ∈ Z \ {0, 1},

ũn+1
0 = ũn0 − µ(fvn,n−

1/2 − fvn,n
−1/2),

ũn+1
1 = ũn1 − µ(fvn,n

3/2 − fvn,n+
1/2 ),

vn+1 = vn + ∆t
mp

(fvn,n−
1/2 − fvn,n+

1/2 ).

(10)

The two points of view are illustrated on Figure 2.
The fluxes fn

j−1/2(v
n) with j 6= 1/2 (or fn±

1/2(v
n) if j = 1/2) are strongly related to the fluxes

fvn,n
j−1/2: in (6), fn

j+1/2(v
n) is an approximation of

1

∆t

∫ (n+1)∆t

n∆t

(f0(u)− vnu)(t, xnj+1/2 + vnt)dt
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∂tu+ ∂x
u2

2 = −λ(u− h′(t))δh(t)(x) ∂tũ+ ∂x

(

ũ2

2 − h′(t)ũ
)

= −λ(ũ− h′)δ0(x)

t1

t2

vn

x01/2
x01/2

x11/2

Figure 2: To approximate the solution of (1), we can either use a mesh that follows the particle (on
the left) or straighten the particle’s trajectory and approximate the solution of (9). In both cases, the
particle’s trajectory is the bold line.

while in (10), fvn,n
−1/2 is an approximation of

1

∆t

∫ (n+1)∆t

n∆t

fvn

(ũ)(t, x0j+1/2)dt.

In the following we prove the convergence of Scheme (6) under a set of assumptions on the fluxes
fn
j+1/2, f

n
1/2,− and fn

j+1/2,+ and a Courant–Friedrichs–Lewy condition. We restrict the study to
two-points fluxes

fn
j+1/2 = g(unj , u

n
j+1, v

n) and fn
1/2,± = g±λ (u

n
j , u

n
j+1, v

n).

The assumptions on the flux fn
j+1/2 away from the particle are the classical ones:

• consistency with the modified Burgers equation:

∀a ∈ R, ∀v ∈ R, g(a, a, v) =
a2

2
− va, (11)

• monotonicity with respect to the first two arguments:

∀(a, b) ∈ R
2, ∀v ∈ R, ∂1g(a, b, v) ≥ 0 and ∂2g(a, b, v) ≤ 0. (12)

• local Lipschitz-continuity of g; (13)

they ensure convergence of the scheme to an entropy solution of the Burgers equation away from
the particle.

The assumptions on the fluxes around the particle are the following. We first have some con-
sistency assumptions, which ensure that some particular solutions corresponding to a large enough
part of the germ are exactly preserved by the numerical scheme. More precisely, the hypotheses on
the fluxes g±λ are:

• consistency the part G1
λ of the germ:

∀v ∈ R, ∀(a, b) ∈ G1
λ, g

−
λ (a, b, v) =

a2

2
− va and g+λ (a, b, v) =

b2

2
− vb. (14)

In Section 4, we make the stronger assumption that g is consistent with a subset Hλ of Gλ

which contains G1
λ and is definite (see Definition 1.4)

∀v ∈ R, ∀(a, b) ∈ Hλ(v), g
−
λ (a, b, v) =

a2

2
− va and g+λ (a, b, v) =

b2

2
− vb. (15)
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Hypothesis (14) will be used to prove BV estimates on the fluid part (unj )j∈Z,n∈N. We also assume
that

• if the particle has the same velocity as the fluid, its velocity does not change:

∀v ∈ R, g−λ (v, v, v) = g+λ (v, v, v). (16)

This hypothesis will be used to prove a L∞ bound on the particle velocity (vn)n∈N. We add two
classical conditions of regularity and monotonicity, also used to prove the BV bound on (unj )j∈Z,n∈N.
We assume that:

• both g−λ and g+λ are locally Lipschitz-continuous; (17)

• g−λ and g+λ are nondecreasing with respect to their first arguments, and nonincreasing with
respect to their second arguments. (18)

Just like in [AS12], we need a dissipativity property to prove discrete entropy inequalities. Moreover,
it will also be a key assumption to prove the bounds on the particle’s velocity.

• The function g−λ − g+λ is nondecreasing with respect to its first two arguments. (19)

For this family of finite volume schemes, we are able to prove the following convergence theorem.

Theorem 1.8. Consider a finite volume scheme of the form (6) that satisfies the set of Hypotheses
(11–14) and (16–19), and (15) in Section 4. Assume that u0 belongs to BV (R) ∩ L1(R). Let us
denote by L the largest Lipschitz constant of g, g+ and g− on the set [m,M ]2 × [v, v̄], where



















m = min{ess infR−u0 − λ, ess infR+u0},

M = max{ess supR−u0, ess supR+u0 + λ},

v = min(m, v0),

v̄ = max(M, v0).

Then, under the Courant-Friedrichs-Lewy condition

Lµ ≤
1

2
, (20)

the sequence (u∆t) converges in L1
loc(R+×R) toward u and the sequence (h∆t) converges in W 1,∞

loc (R+)
toward h when ∆t tends to 0, where (h, u) is the solution of (1).

The next two Sections are devoted to the proof. In Section 3, we prove bounds on the total
variation of the fluid and on the acceleration of the particle, which permit us to extract converging
subsequences. Then in Section 4, we prove Theorem 1.8. Hypothesis (15) is sufficient to obtain
a discrete version of (4). In Section 5, we drop hypothesis (15) and prove the following theorem,
which extends the proof of convergence of [AS12] to the fully coupled case (1).

Theorem 1.9. Consider a finite volume scheme of the form (6) with

{

g−λ (a, b, v) = g(a, b+ λ, v),

g+λ (a, b, v) = g(a− λ, b, v).

Assume that g satisfies Assumptions (11–13). Then g−λ and g+λ satisfies (14) and (16–18). Eventu-
ally, assume that Hypothesis (19) holds.

Let the initial data u0 belongs to BV (R)∩L1(R), and denote by L the largest Lipschitz constant
of g, g+ and g− on the set [m,M ]2 × [v, v̄], where



















m = min{ess infR−u0 − λ, ess infR+u0},

M = max{ess sup
R−u0, ess supR+u0 + λ},

v = min(m, v0),

v̄ = max(M, v0).

Then, under the Courant-Friedrichs-Lewy condition Lµ ≤ 1
2 , the sequence (u∆t) converges in

L1
loc(R+ ×R) toward u and the sequence (h∆t) converges in W 1,∞

loc (R+) toward h when ∆t tends to
0, where (h, u) is the solution of (1).
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This type of schemes was introduced in [AS12]. They a priori only preserve the part G1
λ of the

germ, i.e. they do not satisfy (15). As G1
λ is not a definite subset of Gλ(v). This makes the proof

more difficult, because we cannot use a numerical equivalent of Formule (4) anymore. In Section 2,
we present several numerical illustrations, illustrating either Theorem 1.8 or Theorem 1.9. We also
compare the results given by different numerical fluxes. In particular, we bring out the possible
occurrence of numerical boundary layers at the particle position for the less accurate scheme.

2 Numerical Results

To begin with, let us give some numerical illustration of solution of Model (1) with Scheme (6). For
the fluxes around the particle, we compare the choice

{

g−λ (u−, u+, v) = g(u−,min(u+ + λ,max(u−, v)), v)

g+λ (u−, u+, v) = g(max(u− − λ,min(u+, v)), u+, v)
(21)

which satisfies Hypothesis (15), with the choice

{

g−λ (u−, u+, v) = g(u−, u+ + λ, v)

g+λ (u−, u+, v) = g(u− − λ, u+, v)
(22)

studied in Section 5, which only satisfies (14). In both cases, we compare the Rusanov flux and the
Godunov flux. We will prove in Propositions 4.9 and 4.10 that the monotonicity assumption (18)
and the dissipativity property (19) hold for these fluxes. Numerical schemes for (1) are proposed
in [ALST10] and [Tow15]. They both use a fixed grid and the flux form (22) around the particle in
order to preserve the equilibrium in Gλ. In [ALST10] the motion of the particle is updated with a
random sampling procedure, while in [Tow15], a modified stencil is used when the particle crosses
an interface. Below we present several numerical test cases. The initial data is a Riemann problem,
in the sense that the fluid’s velocity is constant on both sides of the particle. The solutions are
classified and described in [LST08].

2.1 Standing particle in a fluid at rest

One of the aims of this subsection is to show that with Choice (22), boundary layers may appear
around the particle. On the contrary, no such boundary layer with Choice (21), which has the
additional property (15). The key difference between the two schemes is that (21) exactly preserves
the trivial equilibrium u = 0 and v = 0. This is illustrated on Figure 3. We do not plot the velocity
as it is always equal to 0. For this test case, λ = 1, mp = 0.1, ∆x = 0.02 and ∆t = 0.01. The final
time is T = 1.
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Figure 3: Scheme (21) on the right preserves the solution consisting of a fluid at rest containing a
standing particle, while Scheme (22) on the left may create boundary layers.
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2.2 Particle traveling inside a shock or a rarefaction wave

We now give two other examples of this phenomenon, with λ = 1, mp = 0.1, ∆x = 0.02 and
∆t = 0.01 as before. The final time is T = 1. The first one is the case where

u0(x) = 0.2 ∗ 1x<0 − 0.2 ∗ 1x>0, h
0 = 0, v0 = 0.1. (23)

This is an example of Case (V) of [LST08], in which all the Riemann problems for (1) are solved.
The exact solution consists in the initial shock moving at the speed of the particle, whose trajectory
is given by

h(t) =
mpv

0

0.4

(

1− e
− 0.4

mp
t
)

.

The second one is with the initial data

u0(x) = −0.2 ∗ 1x<0 + 0.2 ∗ 1x>0, h
0 = 0, v0 = 0.1. (24)

This is case (I) in [LST08]. In that case the fluid does not see the particle: the solution is a
rarefaction fan for the fluid in the middle of which stands the particle, which velocity is constant
equal to v0.
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Figure 4: Comparison of Scheme (22) (left) and Scheme (21) for the initial data (23). All schemes
except (22) with the Rusanov flux are very close to the exact solution.

The results are displayed on Figures 4 and 5 respectively. Scheme (22) with the Rusanov scheme
creates a boundary layer. We also observe that the velocity of the particle is strongly impacted by
the boundary layer. In fact the particle’s trajectory does not converge in W 2,∞: it is easy to check
that the numerical acceleration at time 0 is given by

mp
v1 − v0

∆t
= λ

(

u− + u+
2

− v0
)
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and not by (2). Let us underline however that this scheme converges toward the exact solution by
Theorem 1.8, in W 1,∞ for the particle’s velocity.

On the other hand, when g is the Godunov flux, no boundary layer appears in Scheme (22). This
is because the scheme is more consistent than expected: it satisfies (15) with Hλ(v) = G1

λ ∪ G2
λ(v).
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Figure 5: Comparison of Scheme (22) (left) and Scheme (21) for the initial data (23). All the scheme
except (22) with the Rusanov flux give solution that are very close to the exact solution.

Once again, a boundary layer is created around the particle if Choice (21) is made.

2.3 Particle initially much faster than the fluid, large friction

This test case is a Riemann problem in which the particle initially has a velocity much larger than
the fluid’s. It corresponds to case (III) in [LST08], and can also be compared with the result
in [Tow15] (which has the advantage of being written on a fixed grid). At first the particle generates
an acceleration of the fluid behind it, creating a rarefaction fan. As λ = 15 is large (compared to
the jump in the fluid’s velocity), the particle is quickly slowed down. Eventually, the rarefaction fan
disappears and the particle travels inside a shock. The initial data is

u0(x) = −2 ∗ 1x>0, h
0 = 0.5, v0 = 10. (25)

and we took ∆x = 0.001 and ∆t = 0.000025. The solutions at different times are depicted on
Figure 6. Once again, boundary layers appear when the jump in the fluid’s velocity through the
particle becomes smaller than λ.

2.4 Particle initially much faster than the fluid, small friction

Here again the particle is initially very fast, but this time λ = 1 is small (compared to v0 − uL). It
corresponds to case (IV) in [LST08]. At first the solution contains two discontinuities: the first one
is a shock in the fluid’s domain, and the second one is a discontinuity that travels at the speed of
the particle. At first the speed of the first shock is smaller than the one of the particle, but it always

11
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Figure 6: Comparison of Scheme (22) for g the Rusanov flux (top) or the Godunov flux (bottom) for
the initial data (25). The particle’s trajectory is in black.

.
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has the same speed, whereas the particle slows down. Thus at some point a new Riemann problem
with a single discontinuity appears. In the example below, the pattern with two shocks separating
and regrouping occurs three times, after what the particle just travels inside the shock.

The initial data is

u0(x) = 7.2 ∗ 1x<0 − 2.2 ∗ 1x>0, h
0 = 0, v0 = 15. (26)

and we took ∆x = 0.001 and ∆t = 0.000025 as before. The solution at different times is depicted on
Figure 7. Here the fluid’s velocity jump through the particle is always larger than λ and there is no
boundary layers. Thus we only represent the results for Scheme (22). The results for Scheme (21)
are almost identical.
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Figure 7: Scheme (22) with the Rusanov flux for the initial data (26). The particle’s trajectory is in
black.

3 A priori bounds

In the sequel we assume that u0 belongs to L1(R)∩BV (R), that Hypotheses (11), (12) and (13) on
the flux g are satisfied, and that the monotonicity and regularity assumptions (18) and (17) on g±

are satisfied. We will specify the consistency hypotheses on g± along the way. We first consider the
uncoupled problem where (vn)n∈N is fixed.

Proposition 3.1. Let u0 be in BV (R) ∩ L1(R). Let (vn)n∈N be given and v and v̄ in R such that

∀n ∈ N, v ≤ vn ≤ v̄.

Consider the finite volume scheme










un+1
j = unj − µ(g(unj , u

n
j+1, v

n)− g(unj−1, u
n
j , v

n)) for j ∈ Z \ {0, 1},

un+1
0 = un0 − µ(g−λ (u

n
0 , u

n
1 , v

n)− g(un−1, u
n
0 , v

n)),

un+1
1 = un1 − µ(g(un1 , u

n
2 , v

n)− g+λ (u
n
0 , u

n
1 , v

n)).

Assume that the fluxes g± satisfy (14) and that the CFL condition (20) holds. Then we have the
following L∞ and BV estimates in space on u∆t, with m and M the constants of Theorem 1.8:

∀n ≥ 0, ∀j ∈ Z, m ≤ un+1
j ≤M (27)

13



and
∀n ∈ N,

∑

j∈Z

|unj − unj−1| ≤
∑

j∈Z

|u0j − u0j−1|+ 2λ. (28)

Proof. Due to the presence of the particle, the maximum and the total variation of the exact
solution u of (1) can increase through time. For example if u0 is equal to 0 and if v0 > λ, then
||u(0+, ·)||L∞(R) = ||u0||L∞(R)+λ and ||u(0+, ·)||BV (R) = ||u0||BV (R)+2λ (see [LST08], Lemma 5.7).
This prevents us from applying the LeRoux and Harten lemma (see [Har84] and [LeR77]) directly
to (unj )j∈Z, n∈N. Yet it can be applied to the sequence (wn

j )j∈Z, n∈N defined by

wn
j =

{

unj − λ
2 if j ≤ 0,

unj + λ
2 if j ≥ 1.

Let us prove that there exists two families of real numbers (Cn
j+1/2)j∈Z,n∈N and (Dn

j+1/2)j∈Z,n∈N

such that for all j in Z, for all n in N,

wn+1
j = wn

j + Cn
j+1/2(w

n
j+1 − wn

j )−Dn
j−1/2(w

n
j − wn

j−1), (29)

and
0 ≤ 1− Cn

j+1/2 −Dn
j+1/2 ≤ 1, 0 ≤ Cn

j+1/2 ≤ 1 and 0 ≤ Dn
j+1/2 ≤ 1.

In other words, wn+1
j writes as a convex combination of wn

j−1, w
n
j and wn

j+1 and therefore,

∀n ≥ 0, min
k
wn

k ≤ wn+1
j ≤ max

k
wn

k .

As a consequence, for all n ∈ N and for j ≤ 0,

min
k
w0

k + λ/2 ≤ unj ≤ max
k

w0
k + λ/2,

which rewrites
min{· · · , u00, u

0
1 + λ, · · · } ≤ unj ≤ max{· · · , u00, u

0
1 + λ, · · · }.

Similarly, for all n ∈ N and for all j ≥ 1,

min{· · · , u00 − λ, u01, · · · } ≤ unj ≤ max{· · · , u00 − λ, u01, · · · },

hence the L∞ bound (27) is proven. Moreover, the LeRoux and Harten lemma yields

∀n ∈ N,
∑

j∈Z

|wn+1
j − wn+1

j−1 | ≤
∑

j∈Z

|wn
j − wn

j−1|,

and thus (28).
Let us go back to the existence of Cn

j+1/2 and Dn
j−1/2. In the sequel we denote by |a, b| the

interval [min(a, b),max(a, b)]. Assume first that (29) holds for some n ∈ N. Then for every j ≤ −1,
there exists w̃n

j−1/2 ∈ |wn
j−1, w

n
j | and w̄n

j+1/2 ∈ |wn
j , w

n
j+1|

wn+1
j = wn

j − µ
(

g(unj , u
n
j+1, v

n)− g(unj−1, u
n
j , v

n)
)

= wn
j − µ

(

gλ

(

wn
j +

λ

2
, wn

j+1 +
λ

2
, vn

)

− gλ

(

wn
j−1 +

λ

2
, wn

j +
λ

2
, vn

))

= wn
j − µ

(

∂1gλ

(

w̃n
j−1/2 +

λ

2
, wn

j+1 +
λ

2
, vn

)

(wn
j − wn

j−1)

+∂2gλ

(

wn
j−1 +

λ

2
, w̄n

j+1/2 +
λ

2
, vn

)

(wj+1 − wj)

)

.

Both triplets
(

w̃n
j−1/2 +

λ
2 , w

n
j+1 +

λ
2 , v

n
)

and
(

wn
j−1 +

λ
2 , w̄

n
j+1/2 +

λ
2 , v

n
)

belong to [m,M ]2×[v, v̄].

The CFL condition (20), and the fact that ∂1g ≥ 0 and ∂2g ≤ 0, yield (29) with






Dn
j−1/2 = µ∂1gλ

(

w̃n
j−1/2 +

λ
2 , w

n
j+1 +

λ
2 , v

n
)

,

Cn
j+1/2 = −µ∂2gλ

(

wn
j−1 +

λ
2 , w̄

n
j+1/2 +

λ
2 , v

n
)

.
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The case j ≥ 2 can be treated in the exact same way. We now turn to the trickier case j = 0. The
facts that g−λ is consistent with G1

λ and that g is consistent (Hypothesis (14) and (11)) imply that

g−λ

(

wn
0 +

λ

2
, wn

0 −
λ

2
, vn

)

= gλ

(

wn
0 +

λ

2
, wn

0 +
λ

2
, vn

)

,

which allows us to write

wn+1
0 = wn

0 − µ
(

g−λ (u
n
0 , u

n
1 , v

n)− g(un−1, u
n
0 , v

n)
)

= wn
0 − µ

(

g−λ

(

wn
0 +

λ

2
, wn

1 −
λ

2
, vn

)

− gλ

(

wn
−1 +

λ

2
, wn

0 +
λ

2
, vn

))

= wn
0 − µ

(

g−λ

(

wn
0 +

λ

2
, wn

1 −
λ

2
, vn

)

− g−λ

(

wn
0 +

λ

2
, wn

0 −
λ

2
, vn

)

+gλ

(

wn
0 +

λ

2
, wn

0 +
λ

2
, vn

)

− gλ

(

wn
−1 +

λ

2
, wn

0 +
λ

2
, vn

))

.

Thus, there exists w̃n
−1/2 ∈ |wn

−1, w
n
0 | and w̄n

1/2 ∈ |wn
0 , w

n
1 | such that

wn+1
0 = wn

0 − µ

(

∂2g
−
λ

(

wn
0 +

λ

2
, w̄n

1/2 −
λ

2
, vn

)

(wn
1 − wn

0 )

+∂1gλ

(

w̃n
−1/2 +

λ

2
, wn

0 +
λ

2
, vn

)

(wn
0 − wn

−1)

)

.

Once again, both triplets
(

wn
0 + λ

2 , w̄
n
1/2 −

λ
2 , v

n
)

and
(

wn
0 + λ

2 , w̃
n
−1/2 +

λ
2 , v

n
)

belong to [m,M ]2×

[v, v̄]. The monotonicity on g and g−λ allows to conclude with







Dn
−1/2 = µ∂1gλ

(

w̃n
−1/2 +

λ
2 , w

n
0 + λ

2 , v
n
)

,

Cn
1/2 = −µ∂2g

−
λ

(

wn
0 + λ

2 , w̄
n
1/2 −

λ
2 , v

n
)

.

The case j = 1 can be treated in the exact same way, using the consistency assumption

g+λ

(

wn
1 +

λ

2
, wn

1 −
λ

2
, vn

)

= gλ

(

wn
1 −

λ

2
, wn

1 −
λ

2
, vn

)

.

We now turn to the case where the particle’s velocity is updated from time to time, and focus
on the estimates on the velocity and acceleration of the particle.

Proposition 3.2. Assume that the fluxes g± satisfy (16) and (19), that the CFL condition (20)
holds, and that the time step also satisfies

4L

mp
∆t ≤ 1. (30)

Then, the sequence (unj )j∈Z,n∈N defined by (6) satisfies Estimates (27) and (28), while for (vn)n∈N

we have the following estimates:

∀n ∈ N, v ≤ vn ≤ v̄, (31)

and

∀n ∈ N,

∣

∣

∣

∣

vn+1 − vn

∆t

∣

∣

∣

∣

≤
2L

mp
(||u0||∞ + λ+ ||v||∞). (32)

The constants v̄ and v are defined in Theorem 1.8.

Proof. We proceed by induction. Let us first remark that if the estimate (31) on vn is satisfied at
time tn, the proof of Proposition 3.1 yields the L∞ and BV estimates on (un+1

j )j∈Z. Therefore, we
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focus on the estimate on vn+1. Using Hypothesis (16), we introduce the null quantity g−λ (v
n, vn, vn)−

g+λ (v
n, vn, vn) and write

vn+1 = vn +
∆t

mp
(g−λ (u

n
0 , u

n
1 , v

n)− g+λ (u
n
0 , u

n
1 , v

n))

= vn +
∆t

mp

(
∫ 1

0

∂s(g
−
λ (v

n + s(un0 − vn), vn + s(un1 − vn), vn))ds

−

∫ 1

0

∂s(g
+
λ (v

n + s(un0 − vn), vn + s(un1 − vn), vn))ds

)

,

and we obtain

vn+1 = vn +
∆t

mp

(
∫ 1

0

(un0 − vn) ∂1(g
−
λ − g+λ )

(

vn + s(un0 − vn), vn + s(un1 − vn), vn
)

ds

+

∫ 1

0

(un1 − vn) ∂2(g
−
λ − g+λ )

(

vn + s(un0 − vn), vn + s(un1 − vn), vn
)

ds

)

.

(33)

Assume now that vn ≤ min(un0 , u
n
1 ). Then both (un1 − vn) and (un0 − vn) are nonnegative.

Moreover, the dissipativity assumption (19) implies that ∂1(g
−
λ − g+λ ) and ∂2(g

−
λ − g+λ ) are also

nonnegative. Hence we have vn+1 ≥ vn and Hypothesis (30) yields

vn+1 ≤ vn + 2L
∆t

mp
(un0 − vn + un1 − vn)

≤

(

1−
4L∆t

mp

)

vn +
4L∆t

mp
max(un0 , u

n
1 )

≤ v̄.

We now treat the case un0 ≤ vn ≤ un1 . The only difference is that un0 − vn is now negative. The
integral form (33) of vn+1 and Hypothesis (31) yield

v ≤ vn − 2L
∆t

mp
(vn − un0 ) ≤ vn+1 ≤ vn + 2L

∆t

mp
(un1 − vn) ≤ v̄.

Once the L∞ bounds on (unj )j∈Z,n∈N and (vn)n∈N are proven, the bound of the particle’s accelera-

tion (32) is an easy consequence of the integral form of vn+1.

Remark 3.3. Condition (30) is satisfied for small enough ∆t. Thus it is not a restriction to prove
the convergence of the scheme. However from the numerical point of view, one has to check Condi-
tion (30) in addition to the CFL condition (20). This restriction is severe if the particle is very light.
It is possible, at the cost of solving a nonlinear system, to use an implicit version of Scheme (6) for
the particle’s velocity, i.e.































un+1
j = unj − µ(fn

j+1/2(v
n+1)− fn

j−1/2(v
n+1)) for j ∈ Z, j /∈ {0, 1},

un+1
0 = un0 − µ(fn

1/2,−(v
n+1)− fn

−1/2(v
n+1)),

un+1
1 = un1 − µ(fn

3/2(v
n+1)− fn

1/2,+(v
n+1)),

vn+1 = vn + ∆t
mp

(fn
1/2,−(v

n+1)− fn
1/2,+(v

n+1)),

xn+1
j = xnj + vn∆t.

In that case, we obtain Bounds (31) and (32) without Constraint (30) on the time step. The proof is
exactly the same than the one of Proposition 3.2. For example in the case where vn+1 ≤ min(un0 , u

n
1 ),

we obtain

vn+1 ≤ vn + 2L
∆t

mp
(un0 − vn+1 + un1 − vn+1),

and thus, without any constraint on ∆t other than (20),

vn+1 ≤
vn + 2L ∆t

mp
(un0 + un1 )

1 + 4L ∆t
mp

≤ v̄. △
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We are now in position to extract converging subsequences of (u∆) and (h∆) (defined in (7)
and (8)). In Section 4, we will prove that their limits are solutions of the Cauchy problem (1) for
the fully coupled problem.

Proposition 3.4. Assume that u0 belongs to BV (R)∩L1(R), and that Hypotheses (11-14) and (16-
19) are satisfied. Moreover, assume that the CFL condition (20) holds. Then there exists u in
BVloc(R+ ×R) and h in W 2,∞

loc (R+) such that, up to a subsequence, the sequence (u∆t) converges in

L1
loc(R+ × R) toward u and the sequence (h∆t) converges in W 1,∞

loc (R) toward h as ∆t tends to 0.

Proof. Let us first fix a time T > 0 and a constant A > 0 and prove the convergence in L1([0, T ]×
[−A,A]) and W 1, ∞([0, T ]). By Proposition 3.1, we can use Helly’s theorem to prove the conver-
gence in L1([0, T ] × [−A,A]) of (u∆t), toward a function u in BV (([0, T ] × [−A,A])). Similarly
Proposition 3.2 allows us to apply Arzelà-Ascoli’s theorem to prove convergence in W 1,∞([0, T ]) of
(h∆t) to a function h belonging to W 2,∞([0, T ]). The result is extended to the whole time-space
R+ × R thanks to the Cantor diagonal extraction argument.

Remark 3.5. Up to the same subsequence, (v∆t) converges toward h′ in L1
loc. Moreover the sequence

of functions (c∆t) defined by

c∆t(t, x) =

{

c− if t < h∆x(t),

c+ if t > h∆x(t),

converges in L1
loc toward

c(t, x) =

{

c− if t < h(t),

c+ if t > h(t).

Indeed, we have

∫ A

−A

∫ T

0

|c∆t(t, x)− c(t, x)|dtdx ≤ |c+ − c−|

∫ T

0

|h∆t(t)− h(t)|dt ≤ 2LT∆t.

△

4 Convergence of schemes consistent with a definite part of

the germ

From now on, we assume that all the hypotheses of Proposition 3.4 are satisfied, and that both
Conditions (20) and (30) are satisfied. The aim of this section is to prove Theorem 1.8. To that
purpose, we prove that under Condition (15), which states that the fluxes g±λ around the particle are
consistent with a definite subset Hλ of the germ (see Definition 1.4), the limit (u, h) of the scheme
is the solution of (1).

The fact that the Cauchy problem (1) is well-posed in BV (R) is proven in [ALST13]. Once we
know that Scheme (6) converges toward a solution of (1), the uniqueness of the solution yields that
the whole sequence (u∆t, h∆t) converges. Theorem 1.8 gives a different way to prove the existence
of a solution (but not the uniqueness).

4.1 Convergence of the fluid’s part

The aim of this subsection is to prove that the limit u of (u∆t) satisfies (4). We prove in Proposi-
tion 4.3 that (unj )j∈Z,n∈N satisfies a discrete version of (4). In the sequel, for all real numbers a and
b we denote by

a⊤b = max(a, b) and by a⊥b = min(a, b).

In the following proposition, we establish a discrete entropy inequality.

Proposition 4.1. Assume that Hypotheses (11-19) hold (included (15)) and that the CFL condi-
tion (20) is satisfied. Then for all (c−, c+) in R

2, there exists a constant A, depending only on λ,
||u0||∞, ||v||∞ and (c−, c+), such that for all j ∈ Z, for all n ∈ N, the following inequality holds:

|un+1
j − cj | − |unj − cj|

∆t
+
Gn

j+1/2,− −Gn
j−1/2,+

∆x
≤ εj

A

∆x
dist1((c−, c+),Hλ(v

n)), (34)
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where
∀j 6= 0, Gn

j+1/2,− = Gn
j+1/2,+ = Gn

j+1/2,

with
Gn

j+1/2 = g(unj⊤cj , u
n
j+1⊤cj+1, v

n)− g(unj⊥cj , u
n
j+1⊥cj+1, v

n),

Gn
1/2,± = g±λ (u

n
0⊤c0, u

n
1⊤c1, v

n)− g±λ (u
n
0⊥c0, u

n
1⊥c1, v

n),

cj =

{

c− if j ≤ 0,

c+ if j ≥ 1,
and εj =

{

1 if j ∈ {0, 1},

0 otherwise.

Proof. We follow the guidelines of proofs of classical entropy inequalities. They rely on the identity

|un+1
j − cj | = un+1

j ⊤cj − un+1
j ⊥cj .

For j ∈ Z \ {0, 1}, we use the condensed notation un+1
j = H(unj−1, u

n
j , u

n
j+1, v

n). Hypothesis (12) on
the monotonicity of the fluxes and the CFL condition (20) ensure that for every v, H is increasing
with respect to its first three arguments. Moreover if j ∈ Z \ {0, 1}, cj−1 = cj = cj+1 and we use
the consistency of the flux away from the particle (11) to write cj = H(cj−1, cj , cj+1, v

n). It follows
that

un+1
j ⊤cj = H(unj−1, u

n
j , u

n
j+1, v

n)⊤H(cj−1, cj, cj+1, v
n)

≤ H(unj−1⊤cj−1, u
n
j⊤cj, u

n
j+1⊤cj+1, v

n),

un+1
j ⊥cj = H(unj−1, u

n
j , u

n
j+1, v

n)⊥H(cj−1, cj, cj+1, v
n)

≥ H(unj−1⊥cj−1, u
n
j⊥cj, u

n
j+1⊥cj+1, v

n),

and that

|un+1
j − cj | ≤ H(unj−1⊤cj−1, u

n
j⊤cj, u

n
j+1⊤cj+1, v

n)−H(unj−1⊥cj−1, u
n
j⊥cj, u

n
j+1⊥cj+1, v

n)

≤ unj⊤cj − unj⊥cj − µ(Gn
j+1/2 −Gn

j−1/2)

≤ |unj − cj | − µ(Gn
j+1/2 −Gn

j−1/2).

Let us now focus on the more complicated case j = 0 (the case j = 1 can be treated in the exact
same way). We denote by (c̃n0 , c̃

n
1 ) a projection of (c−, c+) = (cn0 , c

n
1 ) on Hλ(v

n) for the L1-norm,
and by (c̃nj )j∈Z,n∈N and (G̃n

j+1/2)j∈Z,n∈N the analogues of (cj)j∈Z and (Gn
j+1/2)j∈Z,n∈N constructed

with c̃:

∀j 6= 0, G̃n
j+1/2,− = G̃n

j+1/2,+ = G̃n
j+1/2 = g(unj⊤c̃j , u

n
j+1⊤c̃j+1, v

n)− g(unj⊥c̃j, u
n
j+1⊥c̃j+1, v

n),

G̃n
1/2,± = g±λ (u

n
0⊤c̃0, u

n
1⊤c̃1, v

n)− g±λ (u
n
0⊥c̃0, u

n
1⊥c̃1, v

n).

Let us first remark that

|un+1
0 − c0| − |un0 − c0| ≤ |un+1

0 − c̃n0 |+ |c̃n0 − c0| −
∣

∣|un0 − c̃n−| − |c̃n0 − c0|
∣

∣

≤ |un+1
0 − c̃n0 | − |un0 − c̃n−|+ 2|c̃n0 − c0|.

Thus we have

|un+1
0 − c0| − |un0 − c0|

∆t
+
Gn

1/2,− −Gn
−1/2

∆x

≤
|un+1

0 − c̃n0 | − |un0 − c̃n0 |

∆t
+
Gn

1/2,− −Gn
−1/2

∆x
+

2

∆t
dist1((c−, c+),Hλ(v

n))

≤
Gn

1/2,− −Gn
−1/2

∆x
−
G̃n

1/2,− − G̃n
−1/2

∆x
+

2

∆t
dist1((c−, c+),Hλ(v

n)).

Indeed, as (c̃n0 , c̃
n
1 ) belongs to Hλ(v

n), Hypothesis (15) yields that c̃n0 = Hλ(c̃
n
−1, c̃

n
0 , c̃

n
1 , v

n), and we
obtain as before

|un+1
0 − c̃j | ≤ |unj − c̃j | − µ(G̃n

j+1/2 − G̃n
j−1/2).

We now attempt to bound

Gn
1/2,− − G̃n

1/2,− = g−λ (u
n
0⊤c0, u

n
1⊤c1, v

n)− g−λ (u
n
0⊥c0, u

n
1⊥c1, v

n)

− g−λ (u
n
0⊤c̃

n
0 , u

n
1⊤c̃

n
1 , v

n) + g−λ (u
n
0⊥c̃

n
0 , u

n
1⊥c̃

n
1 , v

n).
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As (vn)n∈Z is bounded (Proposition 3.2), the maximum and minimum over n of c̃n± is a bounded
function of (c−, c+) and ||v||∞. Thus the set

[min(m, c−, c+, c̃
n
−, c̃

n
+),max(M, c−, c+, c̃

n
−, c̃

n
+)]

2 × [v, v̄].

is compact. Therefore, with Lc the Lipschitz constant of g−λ over this set, we have

|g−λ (u
n
0⊤c0, u

n
1⊤c1, v

n)− g−λ (u
n
0⊤c̃

n
0 , u

n
1⊤c̃

n
1 , v

n)|

≤ |g−λ (u
n
0⊤c0, u

n
1⊤c1, v

n)− g−λ (u
n
0⊤c̃

n
0 , u

n
1⊤c1, v

n)|

+ |g−λ (u
n
0⊤c̃

n
0 , u

n
1⊤c1, v

n)− g−λ (u
n
0⊤c̃

n
0 , u

n
1⊤c̃

n
1 , v

n)|

≤ Lc dist1((c−, c+),Hλ(v
n)),

and similarly

|g−λ (u
n
0⊥c0, u

n
1⊥c1, v

n)− g−λ (u
n
0⊤c̃

n
0 , u

n
1⊤c̃

n
1 , v

n)| ≤ Lc dist1((c−, c+),Hλ(v
n)),

which conclude the proof with A = 2Lc +
2∆x
∆t .

We are now in position to obtain a discrete version of (4). Let us first state a lemma which
ensures that the interface is “numerically dissipative”.

Lemma 4.2. If g−λ − g+λ is nondecreasing with respect to its first two arguments then we have the
dissipativity property

Gn
1/2,− −Gn

1/2,+ ≥ 0.

Proof of Lemma 4.2. Let us denote by a = un0⊤c0, ã = un0⊥c0, b = un1⊤c1 and b̃ = un1⊥c1, such
that a ≥ ã and b ≥ b̃. The dissipativity property holds if and only if

g−λ (a, b, v
n)− g−λ (ã, b̃, v

n)) ≥ g+λ (a, b, v
n)− g+λ (ã, b̃, v

n),

which is a straightforward consequence of the monotonicity of g−λ − g+λ with respect to its first two
variables.

Proposition 4.3. Let (ϕn
j )j∈Z,n∈N be a compactly supported sequence of nonnegative reals. If (34)

holds for all n in N and j in Z, then

∆t∆x
∑

j∈Z,n∈N

|un+1
j − cj |

ϕn+1
j − ϕn

j

∆t
+∆x

∑

i∈Z

|u0j − cj |ϕ
0
j +∆t∆x

∑

j∈Z∗,n∈N

Gn
j+1/2

ϕn
j+1 − ϕn

j

∆x

+∆t∆x
∑

n∈N

Gn
j+1/2,+

ϕn
1 − ϕn

0

∆x
≥ −A∆t

∑

n∈N

dist1(c,Hλ(v
n))(ϕn

0 + ϕn
1 ).

(35)

Proof. Classically, the starting point is to multiply Equation (34) by ϕn
j and to sum over j ∈ Z and

n ∈ N. Then the different terms are rearranged to bring out discrete time and space derivatives of
ϕ. However, this is not straightforward around the particle, because two different fluxes are used on
its left and on its right. The first term of (34) yields

∑

j∈Z,n∈N

|un+1
j − cj | − |unj − cj |

∆t
ϕn
j =

∑

j∈Z,n∈N

|un+1
j − cj |

ϕn
j − ϕn+1

j

∆t
−

1

∆t

∑

j∈Z

|u0j − cj |ϕ
0
j ,

and the second term yields

∑

j∈Z,n∈N

Gn
j+1/2,− −Gn

j−1/2,+

∆x
ϕn
j =

∑

j∈Z∗,n∈N

Gn
j+1/2

ϕn
j − ϕn

j+1

∆x
+

∑

n∈N

ϕn
0

∆x
Gn

1/2,− −
ϕn
1

∆x
Gn

1/2,+

=
∑

j∈Z∗,n∈N

Gn
j+1/2

ϕn
j − ϕn

j+1

∆x
+

∑

n∈N

ϕn
0

∆x
(Gn

1/2,− −Gn
1/2,+)

+
∑

n∈N

ϕn
0 − ϕn

1

∆x
Gn

1/2,+.
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We almost have a discrete version of (4). Hypothesis (19) exactly says that g−λ −g+λ is nondecreasing
with respect to its first two arguments. Thus we can apply Lemma 4.2 to obtain

∑

j∈Z,n∈N

Gn
j+1/2,− −Gn

j−1/2,+

∆x
ϕn
j ≥

∑

j∈Z∗,n∈N

Gn
j+1/2

ϕn
j − ϕn

j+1

∆x
+

∑

n∈N

ϕn
0 − ϕn

1

∆x
Gn

1/2,+.

Eventually, we have

∑

j∈Z,n∈N

εj
A

∆x
dist1((c−, c+),Hλ(v

n))ϕn
j =

A

∆x

∑

n∈N

dist1((c−, c+),Hλ(v
n))(ϕn

0 + ϕn
1 )

and (35) is obtained by regrouping all the terms and changing their signs, and multiplying by
∆t∆x.

Passing to the limit ∆t→ 0 in Equation (35), we obtain the following proposition.

Proposition 4.4. If u0 belongs to BV (R)∩L1(R), if the CFL condition (20) holds and if Hypothe-
ses (11-19), ( included (15)), are satisfied, then the limit u of (u∆t) satisfies Inequality (4) for any
nonnegative function ϕ in C∞

0 (R+ × R).

Proof. For small enough ∆t, Condition (30) is satisfied. We recall that the ratio ∆t
∆x is fixed, so

the limit ∆t → 0 also reads ∆x → 0 in what follows. Let us fix (c−, c+) in R
2, and prove that

for every nonnegative ϕ in C∞
0 , the discrete inequality (35) converges to the continuous entropy

inequality (4), where the sequence (ϕn
j )j∈Z,n∈N is defined by ϕn

j = ϕ(n∆t, xnj − hn). We recall that
Cn
j is the space-time cell

Cn
j = {(n∆t+ s, xnj−1/2 + y + svn), s ∈ [0,∆t), y ∈ [0,∆x)},

that hn is the discrete position of the particle’s trajectory deduced from its velocity:

hn+1 = hn + vn∆t,

and that the mesh is moving with the particle: xn+1
j = xnj + vn∆t. We first treat the first term

of (35). The sequence of piecewise constant functions (ζ∆t) defined by

ζ∆t(t, x) =
ϕn+1
j − ϕn

j

∆t
if (t, x) ∈ Cn+1

j

converges uniformly to the function (t, x) 7→ (∂tϕ)(t, x−h(t)). Indeed, for every (t, x) ∈ Cn+1
j , there

exists t̃ ∈ [n∆t, (n+ 1)∆t] such that

|ζ∆x(t, x) − (∂tϕ)(t, x − h(t))| =

∣

∣

∣

∣

∣

ϕ((n+ 1)∆t, xn+1
j − hn+1)− ϕ(n∆t, xnj − hn)

∆t
− (∂tϕ)(t, x − h(t))

∣

∣

∣

∣

∣

= |(∂tϕ)(t̃, x
n
j − hn)− (∂tϕ)(t, x − h(t))|

≤ C(|t̃− t|+ |x− xnj |+ |hn − h(t)|)

≤ C(∆t+∆x+ ||h∆t − h||∞).

We used the fact that xn+1
j − hn+1 = xnj − hn. We conclude thanks to Remark 3.5 :

∆t∆x
∑

j∈Z,n∈N

|un+1
j − cj |

ϕn+1
j − ϕn

j

∆t
=

∑

j∈Z,n∈N

∫

Cn+1

j

|u∆t − c∆t|ζ∆tdt dx

=

∫

R

∫

R+

1t≥∆t|u∆t − c∆t|ζ∆tdt dx

−→
∆t→0

∫

R

∫

R+

|u− c|(∂tϕ)(t, x − h(t))dt dx.

On the other hand,

∆t∆x
∑

j<0,n∈N

Gn
j+1/2

ϕn
j+1 − ϕn

j

∆x
=

∫

x<−∆x
2

∫

R+

G∆tξ∆tdt dx
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where for every (t, x) in Cn
j+1/2 = {(n∆t+ s, xj + y + vns), 0 ≤ s < ∆t, 0 ≤ y < ∆x},

G∆t(t, x) = Gj+1/2 =gλ

(

u∆t

(

t, x−
∆x

2

)

⊤c−, u∆t

(

t, x+
∆x

2

)

⊤c−, v∆t(t)

)

− gλ

(

u∆t

(

t, x−
∆x

2

)

⊥c−, u∆t

(

t, x+
∆x

2

)

⊥c−, v∆t(t)

)

and for every (t, x) in Cn
j+1/2,

ξ∆t(t, x) =
ϕn
j+1 − ϕn

j

∆x
.

The sequence (ξ∆t) converges uniformly to (t, x) 7→ ∂xϕ(t, x − h(t)). By continuity of translations
in L1, the sequences (u∆t(t, · +

∆x
2 ))∆t and (u∆t(t, · −

∆x
2 ))∆t converge in L1

loc and therefore, up
to extraction almost everywhere, toward u. On the other hand, (v∆t) converges almost everywhere
toward h′. The consistency of the germ implies that G∆t converges almost everywhere to

g(u⊤c−, u⊤c−, h
′)− g(u⊥c−, u⊥c−, h

′) = sgn(u− c−)

((

u2

2
− h′u

)

−

(

c2−
2

− h′c−

))

.

As (u∆t) and (v∆t) are uniformly bounded in L∞, the dominated convergence theorem yields

∆t∆x
∑

j<0,n∈N

Gn
j+1/2

ϕn
j+1 − ϕn

j

∆x
−→
∆t→0

∫

R−

∫

R+

Φh′(t)(u(t, x), c−)∂xϕ(t, x− h(t))dt dx.

The second and fourth terms of (35) are easily treated:

∆x
∑

i∈Z

|u0j − cj |ϕ
0
j −→

∆x→0

∫

R

|u0 − c|ϕ(0, x)dx

and

∆t∆x
∑

n∈N

Gn
j+1/2,+

ϕn
1 − ϕn

0

∆x
−→
∆t→0

0.

Eventually, we study the convergence of

∆t
∑

n∈N

dist1(c,Hλ(v
n))(ϕn

0 + ϕn
1 ) = 2

∫

R+

dist1(c,Hλ(v∆t))
ϕ∆t(t,−

∆x
2 ) + ϕ∆t(t,

∆x
2 )

2
dt.

Clearly,
ϕ∆x(t,−

∆x
2

)+ϕ∆x(t,
∆x
2

)

2 converges uniformly to ϕ(·, 0). Moreover,

| dist1(c,Hλ(v∆t))− dist1(c,Hλ(h
′))| = | dist1(c, (v∆t − h′, v∆t − h′) +Hλ(h

′))− dist1(c,Hλ(h
′))|

= | dist1(c− (v∆t − h′, v∆t − h′),Hλ(h
′))− dist1(c,Hλ(h

′))|

≤ |v∆t − h′|

and

∆t
∑

n∈N

dist1(c,Hλ(v
n))(ϕn

0 + ϕn
1 ) −→

∆t→0
2

∫

R+

dist1(c,Hλ(h
′))ϕ(t, 0)dt,

which concludes the proof.

Remark 4.5. In [CS12], the authors are able to derive error estimates for the Godunov scheme
adapted to a conservation law with a discontinuous flux (with respect to the space variable). The
jump in such a flux can be related to the presence of the particle in our case, and a treatment
partially consistent with the interface is also proposed in this paper. A careful investigation of the
interface enables the authors to prove adapted BV bounds, which are one of the main difficulties
for obtaining error estimates. Due to the particular fluxes we use around the particle, we can also
prove here BV bounds, see Proposition 3.1, and one may expect to adapt the proof of [CS12] and
thus obtain error estimates for our numerical methods. △
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4.2 Convergence of the particle’s part

We now prove that the limit h of (h∆t) satisfies (5). To begin with, we prove that a discrete version
of (5) holds.

Proposition 4.6. Let (unj )n∈N,j∈Z and (vn)n∈N be given by Scheme (6). Then, for every compactly
supported sequences (ξn)n∈N and (ψn

j )n∈N,j∈Z such that ψn
0 = ψn

1 = 1 for all integrer n,

−m∆t
∑

n∈N∗

vn
ξn − ξn−1

∆t
= mv0ξ0 +∆x∆t

∑

n∈N∗,j∈Z

unj
ψn
j ξ

n − ψn−1
j ξn−1

∆t

+∆x
∑

j∈Z

u0jξ
0ψj +∆t∆x

∑

n∈N,j 6=0

fn
j+1/2ξ

n
ψn
j+1 − ψn

j

∆x
.

(36)

Proof. We write

m
∑

n∈N

vn+1ξn = m
∑

n∈N

vnξn +∆t
∑

n∈N

(fn
1/2,− − fn

1/2,+)ξ
n

+∆x
∑

n∈N

∑

j /∈{0,1}

[

(unj − un+1
j )− µ(fn

j+1/2 − fn
j−1/2)

]

ξnψn
j

+∆x
∑

n∈N

[

(un0 − un+1
0 )− µ(fn

1/2,− − fn
−1/2)

]

ξn

+∆x
∑

n∈N

[

(un1 − un+1
1 )− µ(fn

3/2 − fn
1/2,+)

]

ξn.

This comes from the fact that the sum of the last three lines is zero. We now rearrange the different
terms. On the one hand we have:

∑

n∈N,j≤−1

(fn
j+1/2 − fn

j−1/2)ξ
nψn

j =
∑

n∈N,j≤−1

fn
j+1/2ξ

n(ψn
j − ψn

j+1) +
∑

n∈N

ξnfn
−1/2,

and on the other hand we have:
∑

n∈N,j≥2

(fn
j+1/2 − fn

j−1/2)ξ
nψn

j =
∑

n∈N,j≥1

fn
j+1/2ξ

n(ψn
j − ψn

j+1)−
∑

n∈N

ξnfn
3/2.

It follows

m
∑

n∈N

vn+1ξn = m
∑

n∈N

vnξn +∆x
∑

n∈N,j∈Z

(unj − un+1
j )ξnψn

j −∆t
∑

n∈N,j 6=0

fn
j+1/2ξ

n(ψn
j − ψn

j+1).

To conclude, we just have to rearrange the sum over n. Being careful with n = 0 we obtain

∑

n∈N

(vn+1 − vn)ξn =
∑

n∈N∗

vn(ξn−1 − ξn)− v0ξ0

and
∑

n∈N,j∈Z

(unj − un+1
j )ξnψn

j =
∑

n∈N∗,j∈Z

unj (ψ
n
j ξ

n − ψn−1
j ξn−1) +

∑

j∈Z

u0jξ
0ψ0

j ,

and the result follows by regrouping all the terms.

We can now pass to the limit ∆t→ 0 in Proposition 4.6 to prove that h satisfies (5).

Proposition 4.7. Assume that Hypotheses (11-19) hold, and that the CFL condition (20) is satis-
fied. For all test functions ξ and ψ such that ψ(0) = 1, the limit h of (h∆t) satisfies Inequality (5).

Proof. Define
ψn
j = ψ(xnj − hn) and ξn = ξ(n∆t).

Proposition 4.6 applies if ψn
0 = ψn

1 = 1. Here, we only have

∀j ∈ {0, 1},
∣

∣ψn
j − 1

∣

∣ ≤ C∆x.
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The equality (36) holds up to the following corrections appearing in the left hand side:

∆x∆t
∑

n∈N∗,j∈{0,1}

unj
(1 − ψn

j )ξ
n − (1− ψn−1

j )ξn−1

∆t
+∆x

∑

j∈{0,1}

u0jξ
0(1− ψ0

j )

+ ∆x∆t
∑

n∈N

(

fn
−1/2ξ

n (1− ψn
0 )

∆x
− fn

1/2ξ
n (1 − ψn

1 )

∆x

)

,

which all tend to zero since ψn
0 − 1 = O(∆x) and ψn

1 − 1 = O(∆x). The sequence

ζ∆t(t, x) =
ψn
j ξ

n − ψn−1
j ξn−1

∆t
if (t, x) ∈ Cn

j

converges uniformly to the function (t, x) 7→ ψξ′. Indeed, by definition of the moving mesh, xnj −h
n =

xn−1
j − hn−1. Therefore, ψn

j = ψn−1
j and

ψn
j ξ

n − ψn−1
j ξn−1

∆t
= ψn

j

ξn − ξn−1

∆t

which converges uniformly toward the expected function. Now, define F∆t by

F∆t(t, x) = gλ

(

u∆t

(

t, x−
∆x

2

)

, u∆t

(

t, x+
∆x

2

)

, v∆t(t)

)

in such a way that for all (t, x) in Cn
j+1/2,

F∆t(t, x) = fn
j+1/2.

By continuity of translations in L1, the sequences (u∆t(t, ·+
∆x
2 ))∆t and (u∆t(t, ·−

∆x
2 ))∆t converge

in L1
loc, and therefore, up to extraction, almost everywhere, toward u. On the other hand, (v∆t)

converges almost everywhere toward h′. The consistency of the flux (11) implies that F∆t converges
almost everywhere to

g(u, u, h′) =
u2

2
− h′u.

4.3 A family of schemes consistent with a definite part of the germ

In this section we exhibit a family of schemes that satisfies the set of Assumptions (11-19). Let us
clarify which definite subset of Gλ is used.

Proposition 4.8. The part Hλ(v) = G1
λ ∪ G2

λ(v) is a definite subset of the germ.

Proof. Following [AS12] (see Equations (13) and (14) in this reference), it suffices to show that if

Ξv((u−, u+), (v−, v+)) ≥ 0 for any (v−, v+) ∈ G2
λ(v), (37)

then the stronger following property holds

Ξv((u−, u+), (v−, v+)) ≥ 0 for any (v−, v+) ∈ G1
λ ∪ G2

λ(v).

In the sequel we assume that v = 0. The general case follows by translation. The two main arguments
are, first, that Proposition 1.4 implies that this is automatically satisfied if (u−, u+) belongs to the

germ, and, second, that for all (v−, v+) in G2
λ,

∣

∣

∣

v2
−
−v2

+

2

∣

∣

∣
≤ λ2

2 . In the sequel, (v−, v+) always denotes

an element of G2
λ. We proceed by a tedious, but not difficult, disjunction of cases.

• If u− ≥ λ and u+ ≥ 0, then we want to prove that

u2− − v2−
2

−
u2+ − v2+

2
≥ 0.

If we apply Equation (37) to (λ, 0), we obtain that

u2− − u2+
2

≥
λ2

2

and the result follows.
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• If 0 ≤ u− ≤ λ and u+ ≥ 0, then (u−, u+) belongs to the germ. Indeed, Equation (37) applied

to (u−, 0) yields −
u2
+

2 ≥ 0 and therefore, u+ = 0.

• If u− ≤ 0 and u+ ≥ 0, then (u−, u+) belongs to the germ. Indeed, Equation (37) applied to
(0, 0) yields

−
u2−
2

−
u2+
2

≥ 0

and therefore, u− = u+ = 0.

• If u− ≤ 0 and −λ ≤ u+ ≤ 0, then (u−, u+) belongs to the germ. Indeed, Equation (37) applied

to (0, u+) yields −
u2
−

2 ≥ 0 and therefore, u− = 0.

• If u− ≤ 0 and ≤ u+ ≤ −λ, then we want to prove that

−
u2− − v2−

2
+
u2+ − v2+

2
≥ 0.

If we apply Equation (37) to (0,−λ), we obtain

−
u2−
2

+
u2+ − λ2

2
≥ 0.

and the result follows.

• If 0 ≤ u− ≤ λ and u+ ≤ −λ, let us first assume that u− ≥ v−. We have to prove that

u2− − v2−
2

+
u2+ − v2+

2
≥ 0.

But 0 ≤ v− ≤ u− and 0 ≥ v+ ≥ u+, and we have the result:

v2− + v2+
2

≤
u2− + v2+

2
≤
u2− + u2+

2
.

We now assume that u− ≤ v−. We want to prove that

−
u2− − v2−

2
+
u2+ − v2+

2
≥ 0.

Moreover, (u−, u+) does not belong to the germ Gλ, and therefore u+ ≤ −u− − λ and

u2+ − u2−
2

≥
2u−λ+ λ2

2
≥
λ2

2
≥
v2+ − v2−

2
.

• If λ ≤ u− and u+ ≤ −λ, the result

u2− − v2−
2

+
u2+ − v2+

2
≥ 0

is a straightforward consequence of

u2− + u2+
2

≥ λ2 ≥
v2− + v2+

2
.

• Eventually, if λ ≤ u− and −λ ≤ u+ ≤ 0, let us first assume that u+ ≤ v+ and prove

u2− − v2−
2

+
u2+ − v2+

2
≥ 0.

It follows from
v2+ + v2−

2
≤
u2+ + v2−

2
≤
u2+ + u2−

2
.

Assume now that u+ > v+ and u+ ≥ −u− + λ. The result

u2− − v2−
2

−
u2+ − v2+

2
≥ 0

comes from
u2− − u2+

2
≥

−2λu+ + λ2

2
≥
λ2

2
≥
v2− − v2+

2
.
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It is possible to find fluxes that satisfy (15) with Hλ = G1
λ ∪ G2

λ and (18).

Proposition 4.9. If g verify the monotonicity assumption (12), the family of finite volume schemes
defined by

{

g−λ (u−, u+, v) = g(u−,min(u+ + λ,max(u−, v)), v),

g+λ (u−, u+, v) = g(max(u− − λ,min(u+, v)), u+, v),
(38)

is consistent with G1
λ ∪ G2

λ(v) and satisfies the monotonicity assumptions ∂1g
±
λ ≥ 0 and ∂2g

±
λ ≤ 0.

Proof. The proof consists in a simple verification. We first check that for all u− and u+ in R,

g−λ (u−, u− − λ, v) = g(u−,min(u−,max(u−, v)), v) = g(u−, u−, v)

and
g+λ (u+ + λ, u+, v) = g(max(u+,min(u+, v)), u+, v) = g(u+, u+, v).

Then, we verify that for all u+ in [v − λ, v],

g−λ (v, u+, v) = g(u−,min(u+ + λ,max(v, v)), v) = g(v, v, v)

and
g+λ (v, u+, v) = g(max(v − λ,min(u+, v)), u+, v) = g(u+, u+, v)

while for every u− in [v, v + λ],

g−λ (u−, v, v) = g(u−,min(v + λ,max(u−, v)), v) = g(u−, u−, v)

and
g+λ (u−, v, v) = g(max(u− − λ,min(v, v)), v, v) = g(v, v, v).

Eventually, the monotonicity properties are implied by those on g as soon as the first component
is not u+ and the second is not u−. But if the first component is u+, then u+ < v and ∂2g

+
λ =

u+ − v ≤ 0, while if the second component is u−, then u− > v and ∂2g
−
λ = u− − v ≥ 0.

It remains to prove that Assumption (19) holds. This is not the case for every choice of flux g
(a counterexample can be found in [AS12]), but we can check it for three classical fluxes.

Proposition 4.10. The family of finite volume schemes (38) satisfies that g−λ − g+λ is nondecreas-
ing with respect to its first two variables if g is the Godunov, the Rusanov or the Engquist–Osher
numerical flux.

Proof. Let us divide the phase space (u−, u+) in six zones, depending on which values are taken by
g− and g+:

g−λ (u−, u+, v) =







g(u−, u−, v) if v ≤ u− ≤ u+ + λ zone I,
g(u−, v, v) if u− ≤ v ≤ u+ + λ zone II,
g(u−, u+ + λ, v) if u+ + λ ≤ max(u−, v) zone III,

while

g+λ (u−, u+, v) =







g(u+, u+, v) if u− − λ ≤ u+ ≤ v zone 1,
g(v, u+, v) if u− − λ ≤ v ≤ u+ zone 2,
g(u− − λ, u+, v) if min(u+, v) ≤ u− − λ zone 3.

These zones are depicted on Figure 8. If u+ belongs to zones 1 or 2, g+ does not depend on u− and
g−λ − g+λ is nondecreasing with respect to its first argument. Similarly, if u− belongs to zones I or
II, g−λ − g+λ is nondecreasing with respect to its second argument. We focus on the case where u−
belongs to zone III or u+ belongs to zone 3. Let us first remark that the case where u− belongs to
zone III and u+ is in zone 3 reduces to the choice of flux studied in [AS12], where the monotonicity
property has been proven for the Godunov, Rusanov and Engquist–Osher scheme. Assume that case
u− is in zone I and u+ is in zone 3. Then we have

(g−λ − g+λ )(u−, u+, v) = g(u−, u−, v)− g(u− − λ, u+, v).

For the sake of simplicity we assume that v = 0.
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u−

u+

v

v

v − λ

v + λ

I/1

I/2

I/3

II/1

III/1 III/3

II/2

Figure 8: Choice of the fluxes in the family of finite volume schemes (38).

• If g is the Godunov flux, as u+ + λ ≥ u− ≥ λ, the Riemann problem between u− − λ and u+
is a shock traveling faster than v. It follows that

(g−λ − g+λ )(u−, u+, 0) =
(u−)

2

2
−

(u− − λ)2

2
= λu− −

λ2

2

is nondecreasing toward its first two arguments.

• If g is the Rusanov flux,

(g−λ − g+λ )(u−, u+, 0) =
(u−)

2

2
−

(

(u− − λ)2 + u2+
4

− (u− − λ)
u+ − (u− − λ)

2

)

and we have

∂1(g
−
λ − g+λ )(u−, u+, 0) = u− −

(

u− − λ

2
−
u+ − (u− − λ)

2
+
u− − λ

2

)

=
−u− + 3λ+ u+

2
.

As u− belongs to zone I, u+ + λ ≥ u−, and the last quantity is larger than λ. On the other
hand,

∂2(g
−
λ − g+λ )(u−, u+, 0) = −

u+ − (u− − λ)

2

and this last quantity is nonnegative because u+ belongs to zone 3.

• Eventually, if g is the Engquist–Osher scheme, the fact that 0 ≤ u− − λ ≤ u+ implies

(g−λ − g+λ )(u−, u+, 0) =
(u−)

2

2
−

(u− − λ)2

2
= λu− −

λ2

2

is once again nondecreasing with respect to its first two arguments. The case where u− is in
zone III while u+ is in zone 1 can be treated in a symmetrical way.
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5 Convergence of schemes only consistent with G1
λ

In this section, we no longer require Hypothesis (15) to be satisfied, and prove convergence of a
family of finite volume schemes that satisfies only (14). The difficulty is that G1

λ is not a definite
part of the germ, and we cannot prove a discrete version of (4) directly. The key point is to study the
convergence of the solution of Scheme (6) for initial data in the definite subset of the germ G1

λ ∪ G2
λ.

We then extend the comparison argument of [AS12] to prove convergence for arbitrary initial data.
Our aim is to prove the following theorem (we do not provide a rigorous statement, the details of
the convergence results are stated in Theorem 1.9).

Theorem 5.1. If the numerical fluxes around the particle are given by
{

fn
1/2,−(u

n
0 , u

n
1 , v

n) = g(un0 , u
n
1 + λ, vn),

fn
1/2,+(u

n
0 , u

n
1 , v

n) = g(un0 − λ, un1 , v
n),

where g is a numerical flux satisfying (11-14) and (16-19), and if the CFL condition (20) holds,
Scheme (6) converges toward the solution of (1).

Proof. Let us first remark that Proposition 3.1 and Proposition 3.2 did not use Hypothesis (15),
thus we can extract converging subsequences as we did in the previous Section. Now, consider a test
function ϕ supported in {x < 0} or {x > 0}, we have ϕn

0 = ϕn
1 = 0 for small enough ∆x. We easily

obtain, as in Proposition 4.1, that for all c in R, for all j ≤ −1,

|un−1
j − c| − |unj − c|

∆t
+
Gn

j+1/2 −Gn
j−1/2

∆x
≤ 0.

Multiplying by ∆t∆xϕn
j and summing over n ∈ N and j ≤ −1, we obtain as in Proposition 4.3

∆t∆x
∑

j∈Z,n≤−1

|un+1
j − c|

ϕn+1
j − ϕn

j

∆t
+∆x

∑

i∈Z

|u0j − c|ϕ0
j +∆t∆x

∑

j∈Z∗,n≤−1

Gn
j+1/2

ϕn
j+1 − ϕn

j

∆x
≥ 0

and we straightforwardly obtain that the limit u of the scheme is an entropy solution of the Burgers
equation on the sets {x < h} (and similarly on {x > h}). It remains to prove that the traces around
the particle belong to the germ for almost every time. Let us fix a time t0 such that h′ and the
traces u−(t0) and u+(t0) exist. Fix (c−, c+) in Hλ(h

′(t0)). Our aim is to prove a discrete version
of (4). Let us first assume that (c−, c+) belongs to the straight line G1

λ but not to the closed square

G2
λ(h

′(t0)). By continuity of h′, there exists δ > 0 such that,

∀t ∈ (t0 − δ, t0 + δ), dist1((c−, c+),G
1
λ) = dist1((c−, c+),H

1
λ(h

′(t)))

(see Figure 1). Up to taking a smaller δ, this equality is also true at the numerical level for small
enough ∆t, since from Proposition 3.4, (vn)n∈N converges. Therefore, passing to the limit in (35)
with ϕ supported in time in (t0 − δ, t0 + δ), we directly obtain (4).

We now treat the case where (c−, c+) belongs to the interior of G2
λ(h

′(t0)). The principle of the
proof is to compare the numerical solution with another one, for which the initial data is much
simpler as it corresponds to an element of G2

λ(h
′(t0)). Since h′ is continuous, there exists δ such that

∀t ∈ (t0 − δ, t0 + δ), (c−, c+) ∈ G2
λ(h

′(t))

and on the time interval (t0 − δ, t0 + δ), (4) becomes
∫

R+

∫

R

|u− c|(s, x)∂tϕ(s, x − h(s)) + Φh′(t)(u, c)(s, x)∂xϕ(s, x− h(s))dx ds ≥ 0. (39)

Up to reducing δ and for small enough ∆t, this is also true at the numerical level. Now, for
(unj )j∈Z,n∈N and (vn)n∈N given by the fully coupled scheme (6), consider (cnj )j∈Z,n∈N∗ the sequence
given by the scheme











cn+1
j = cnj − µ(g(cnj , c

n
j+1, v

n)− g(cnj−1, c
n
j , v

n)) for j /∈ {0, 1},

cn+1
0 = cn0 − µ(g(cn0 , c

n
1 + λ, vn)− g(cn−1, c

n
0 , v

n)),

cn+1
1 = cn1 − µ(g(cn1 , c

n
2 , v

n)− g(cn0 − λ, cn1 , v
n)),

(40)
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with initial data

c0j =

{

c− if j ≤ 0,

c+ if j > 0.
(41)

We recall that (c−, c+) belongs to G2
λ(h

′(t0)). Simple modifications of Propositions 4.1 and 4.3 yield

∆t∆x
∑

j∈Z,n∈N

|un+1
j − cn+1

j |
ϕn+1
j − ϕn

j

∆t
+∆x

∑

i∈Z

|u0j − c0j |ϕ
0
j

+∆t∆x
∑

j∈Z∗,n∈N

Gn
j+1/2

ϕn
j+1 − ϕn

j

∆x
+∆t∆x

∑

n∈N

Gn
j+1/2,+

ϕn
1 − ϕn

0

∆x
≥ 0.

Assume that (cnj )j∈Z,n∈N converges to c(t, x) = c−1x<h(t)+ c+1x>h(t) on the interval (t0 − δ, t0+ δ).
Then with ϕn

j = ϕ(tn, xnj ) where ϕ is a test function supported in (t0 − δ, t0 + δ), we obtain (39) by
passing to the limit. We now study this convergence.

Lemma 5.2. Assume that at iteration n, the sequence (cnj )j∈Z given by the scheme (40) is nonde-
creasing on j ≤ 0 and on j ≥ 1, and such that

∀j ≤ 0, c− ≤ cnj ≤ c− + λ and ∀j ≥ 1, c+ − λ ≤ cnj ≤ c+

and
cn0 − cn1 ≤ λ,

then the same holds at iteration n+ 1.

Proof. The monotonicity of (cn+1
j )j≤0 follows from the monotonicity of Hλ under the CFL condi-

tion (20). For j ≤ −2, we have

cn+1
j = Hλ(c

n
j−1, c

n
j , c

n
j+1) ≤ Hλ(c

n
j , c

n
j+1, c

n
j+2) = cn+1

j+1 .

As cn0 ≤ cn1 + λ, we also have

cn+1
−1 = Hλ(c

n
−2, c

n
−1, c

n
0 ) ≤ Hλ(c

n
−1, c

n
0 , c

n
1 + λ) = cn+1

0 .

Moreover, for j ≤ −1, both cnj−1, c
n
j and cnj+1 are between c− and c− + λ, thus the same holds at

iteration n + 1. For j = 0, as c+ ≤ c− (because (c−, c+) belongs to G2
λ(h

′(t0))), we conclude by
remarking that

c− ≤ cn0 ≤ cn1 + λ ≤ c+ + λ ≤ c− + λ.

The results for positive integers j are obtained in a similar way. Let us now prove that un+1
0 −un+1

1 ≤
λ. We have

cn+1
0 − cn+1

1 = Hλ(c
n
−1, c

n
0 , c

n
1 + λ)−Hλ(c

n
0 − λ, cn1 , c

n
2 )

≤ Hλ(c
n
0 , c

n
0 , c

n
1 + λ)−Hλ(c

n
0 − λ, cn1 , c

n
1 )

≤ cn0 + µL|cn0 − (cn1 + λ)| − cn1 + µL|(cn0 − λ)− cn1 |

≤ cn0 − cn1 + (cn1 + λ− cn0 )

≤ λ.

For (c−, c+) in the open subset G2
λ(h

′(t0)), there exists a positive δ such that h′(t) stays in the
interval (c+, c−) on the time interval (t0 − δ, t0 + δ). For small enough ∆t, it is also true at the
numerical level. Up to reducing slightly δ, (c−, c+) belongs to G2

λ(v
n) for small enough ∆t and for

all iteration in time such that tn belongs to (t0 − δ, t0 + δ), and in particular c+ ≥ vn ≥ c−.
Thus the limit c of the scheme (40) with initial data (41) at time t0 − δ is such that c is larger

than h′ on x < h and smaller on x > h. It allows to prove that c is, on {(t, x) : x < h(t)}, the
solution of











∂tu+ ∂x
u2

2 = 0 ∀t ∈ (t0 − δ, t0 + δ), ∀x < h(t),

u(t0 − δ, x) = c− ∀x < h(0),

u(t, h(t)) = h′(t) ∀t ∈ (t0 − δ, t0 + δ).

(42)
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As c− is larger than h′ on the whole time interval, the boundary condition is inactive and the
solution is u = c−. Let us recall the definition given by Bardos, LeRoux and Nedelec in [BLN79] of
this conservation law on a bounded domain. A function u in L∞ is a solution of











∂tu+ ∂xf(u) = 0 ∀t > 0, ∀x < h(t),

u(t = 0, x) = u0(x) ∀x < h(0),

u(t, h(t)) = ub(t) ∀t > 0,

if for all real κ and for all nonnegative function ϕ ∈ C∞
0 (R+ × R), the following inequality holds:

∫

t>0

∫

x<h(t)

|u(t, x)− κ|∂tϕ(t, x− h(t)) + Φh′(t)(u(t, x), κ)∂xϕ(t, x− h(t))dx dt

+

∫

x<h(0)

|u0(x)− κ|ϕ(0, x)dx +

∫

t>0

sgn(κ− ub(t)){f(u(t, h(t)
−))− f(κ)}ϕ(t, 0) ≥ 0.

(43)

The convergence of finite volume schemes for scalar conservation laws in a bounded domain has been
proven in [Vov02] for instance. We are here in a favorable case: we can obtain a discrete version
of (43) by summing (34) multiplied by ∆t∆xϕn

j over n ≥ 0 and j ≤ −1. We obtain

∆t∆x
∑

n≥0,j≤−1

|cn+1
j − κ|

ϕn+1
j − ϕn

j

∆t
+∆x

∑

j≤−1

|c0j − κ|ϕ0
j

+∆t∆x
∑

n≥0,j≤−1

Gn
j+1/2

ϕn
j+1 − ϕn

j

∆x
−∆t

∑

n≥0

Gn
−1/2ϕ

n
0 ≤ 0.

Passing to the limit yields
∫

t>0

∫

x<h(t)

|c(t, x)− κ|∂tϕ(t, x − h(t)) + Φh′(t)(c(t, x), κ)∂xϕ(t, x − h(t))dx dt

+

∫

x<h(0)

|c− − κ|ϕ(0, x)dx +

∫

t>0

sgn(κ− c(t, h(t))){f(c(t, h(t)−))− f(κ)}ϕ(t, 0) ≥ 0.

To conclude we check that

sgn(κ− h′(t)){f(c(t, h(t)−))− f(κ)} ≥ − sgn(c(t, h(t) − κ)){f(c(t, h(t)−))− f(κ)}.

This relies strongly on the fact that c remains larger than h′.

• If h′ ≤ κ ≤ c, the inequality reduces to

{f(c(t, h(t)−))− f(κ)} ≥ −{f(c(t, h(t)−))− f(κ)}

which holds because f is increasing on (0,+∞).

• If h′ ≤ c ≤ κ or κ ≤ h′ ≤ c the inequality reduces to

{f(c(t, h(t)−))− f(κ)} ≥ {f(c(t, h(t)−))− f(κ)}

or
−{f(c(t, h(t)−))− f(κ)} ≥ −{f(c(t, h(t)−))− f(κ)},

which are both trivial.

This ends the proof.

Remark 5.3. Of course, Theorem 5.1 applies when the initial data is

u0(x) = c−1x<0 + c+1x≥0,

with (c−, c+) ∈ G2
λ(v

0). In Appendix A, we prove the convergence for this specific initial data
directly, without using the local in time comparison with the one-way scheme (40) in which the
velocity of the particle is fixed.

△
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Appendices

A Detailed analysis when the initial data belongs to G2
λ(v

0)

Our aim in this section is to prove directly that if

u0(x) = u−1x<0 + u+1x≥0 and h0 = 0, (44)

with (u−, u+) in G2
λ(v

0), Scheme (6) converges toward the exact solution, which in that case is given
by







h(t) = u−+u+

2 t+
(

v0 − u−+u+

2

)

mp

u−−u+

(

1− e
−

u
−

−u+

mp
t
)

,

u(t, x) = u−1x<h(t) + u+1x≥h(t).

In this section only and for technical reasons, we consider a finite volume scheme on a bounded
space domain [−a, a], subdivided with 2Mc cells and with periodic boundary conditions. The scheme
under consideration writes







































un+1
j = unj − µ(g(unj , u

n
j+1, v

n)− f(unj−1, u
n
j , v

n)) for j ∈ {−Mc + 1, · · · ,Mc} \ {0, 1},

un+1
0 = un0 − µ(g(un0 , u

n
1 + λ, vn)− f(un−1, u

n
0 , v

n)),

un+1
1 = un1 − µ(g(un1 , u

n
2 , v

n)− g(un0 − λ, un1 , v
n)),

un−Mc
= unMc

and unMc+1 = un−Mc+1,

vn+1 = vn + ∆t
mp

(g(un0 , u
n
1 + λ, vn)− g(un0 − λ, un1 , v

n),

xn+1
j = xnj + vn∆t.

(45)

We recall that the ratio of the time step ∆t and the cell size ∆x is equal to µ. We fix the final
time T . At each time step, four new cells (one of both part of the particle and one of each extremities
of the interval because of the periodic boundary conditions) are influenced by Scheme (45), in the
sense that their values were constant equal to u− or u+ before. We take a large enough so that the
influence of the particle does not interact with the influence of the boundary condition, and stays
in the interval [−a/3, a/3] during the time interval [0, T ] (see Figure 9 below). This is achieved by
taking a larger than 3T

µ . The next proposition states that Scheme (45) converges toward the solution

Mc

3 cells influenced

by the boundary

Mc

3 cells influenced by the

particle on each side

−a a

u−

u+

Figure 9: Shape of the numerical solution at time T . If a is large enough, the contribution of the
particle and of the boundary conditions remain separated.

of the fully coupled problem (1).

Proposition A.1. Assume that the numerical flux g satisfies (11-14) and (16-19), that

∀A ∈ R, ∀B ∈ R, g(v −A, v −B, v) = g(v +B, v +A, v), (46)

and that ∂3g is decreasing with respect to its first two arguments. Under Condition (20) and for the
initial data (44), Scheme (45) converges toward the solution of (1) on

{(t, x) : t < T and − a/3 + h(t) < x < a/3 + h(t)}.
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Proof. We prove, as we did in Section 5, that (unj )−Mc/3≤j≤0 converges toward the solution of (42).
The key point is to prove that vn remains smaller than u− on the whole time interval [0, T ], in
which case the boundary condition is inactive and we obtain the result. Similarly on the right of
the particle, the boundary condition is inactive if vn remains larger than u+. It can be seen on
Figure 9: if the solution has the shape depicted on this Figure, the part of the solution on the left of
the particle has a speed larger than u−, thus if the particle’s velocity is smaller than u−, this “wave”
is entering inside the particle and is indeed a boundary layer. This intuition was made rigorous in
Section 5.

To prove that u+ ≤ vn ≤ u−, we apply the Crandall–Tartar lemma [CT80] to the application

T : S −→ S
((u0j )−Mc+1≤j≤Mc , v

0) 7−→ ((unj )−Mc+1≤j≤Mc , v
n).

where

S = {((bj)j∈{−Mc+1,··· ,Mc}, v) : v ∈ R, b1 ≤ b2 ≤ · · · ≤ bMc ≤ b−Mc+1 ≤ b−Mc+2 ≤ · · · ≤ b−1 ≤ b0 ≤ b1+λ}.

Lemma A.2 (Crandall–Tartar). Let (Ω, µ) be a measured space, and let S be a subset of L1(Ω)
stable by sup:

∀(u, v) ∈ S2, max(u, v) ∈ S.

Consider a function T : S → S such that the integral is preserved

∀u ∈ S,

∫

Ω

T (u) =

∫

Ω

u.

Then, if T is order preserving,

||T (u)− T (v)||L1 ≤ ||u − v||L1 .

In our case, Ω = R
2Mc × R,

∫

Ω

((bj)j∈{−Mc+1,··· ,Mc}, v) = ∆x

Mc
∑

j=−Mc+1

bj +mv

and

||(bj)j∈{−Mc+1,··· ,Mc}, v||L1 = ∆x

Mc
∑

j=−Mc+1

|bj |+m|v|.

It is straightforward to verify that Scheme (45) preserves the norm || · ||L1 . The fact that T takes
its values in S is proven exactly as in the proof of Lemma 5.2. We prove in Lemma A.4 that T is
order preserving. Applying the Crandall–Tartar lemma to ((u0j), v

0) and (ū0j , v̄) = ((u0j ),
u−+u+

2 ),
we obtain

∆x

Mc
∑

j=−Mc+1

|ūj
n+1 − un+1

j |+m|v̄n+1 − vn+1| ≤ m

∣

∣

∣

∣

v0 −
u− + u+

2

∣

∣

∣

∣

.

The result follows since v̄n+1 = u−+u+

2 (see Lemma A.3 below).

Lemma A.3. If g satisfies (46) and if the initial data is











u0j = u− for j ≤ 0,

u0j = u+ for j ≥ 1,

v0 = u−+u+

2 ,

then Scheme (45) satisfies vn = v0 for all integer n.
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Proof. We prove by induction the following stronger result:

∀n ∈ N, ∀j ≤ 0, vn =
u− + u+

2
and un−j − vn = vn − unj+1.

The symmetry of the initial data ensures that this is satisfied for n = 0. Assume that this holds
true for some n ≥ 0. Hypothesis (46) on the flux and the induction hypothesis yield

g(un0 , u
n
1 + λ, vn) = g(vn − (un1 + λ− vn), vn − (un0 − vn), vn)

= g(un0 − λ, un1 , v
n).

Hence, the velocity remains constant. A similar reasoning can be applied to the fluid velocity. Let
us give some details for j ≤ −1:

un+1
−j = un−j − µ(g(un−j, u

n
−(j−1), v

n)− g(un−(j+1), u
n
−j, v

n))

= 2vn − unj+1 − µ
[

g(vn − (vn − un−j), (v
n − (vn − un−(j−1)), v

n))

−g(vn − (vn − un−(j+1)), v
n − (vn − un−j), v

n)
]

= 2vn −
[

unj+1 + µ[g(2vn − un−(j−1), 2v
n − un−j, v

n)

−g(2vn − un−j, 2v
n − un−(j+1), v

n)
]

= 2vn −
(

unj+1 − µ
[

g(unj+1, u
n
j+2, v

n)− g(unj , u
n
j+1, v

n)
])

= 2vn+1 − un+1
j+1 ,

and for j = 0:

un+1
0 = un0 − µ(g(un0 , u

n
0 − λ, vn)− g(un−1, u

n
0 , v

n)

= 2vn − un1 − µ [g(vn − (vn − un0 ), (v
n − (vn − un0 + λ), vn))

−g(vn − (vn − un−1), v
n − (vn − un0 ), v

n)
]

= 2vn − [un1 + µ[g(2vn − un0 + λ, 2vn − un0 , v
n)

−g(2vn − un0 , 2v
n − un−1, v

n)
]

= 2vn − (un1 − µ [g(un1 , u
n
2 , v

n)− g(un1 + λ, un1 , v
n)])

= 2vn+1 − un+1
1 .

We now prove that if two initial data of S are ordered, this order is conserved after one iteration
of the scheme.

Lemma A.4. Let [(unj )j∈Z, v
n] and [(ūnj )j∈Z, v̄

n] be two elements of S such that

∀j ∈ Z, unj ≤ ūnj and vn ≤ v̄n.

If the time step satisfy the additional condition

2∆t

mp
max |∂3g| < 1, (47)

then
∀j ∈ Z, un+1

j ≤ ūn+1
j and vn+1 ≤ v̄n+1.

Proof. The case where vn is equal to v̄n is a straightforward. On the one hand the monotonicity
assumption (12) on g and the CFL condition (20) yield as usual

un+1
j = Hλ(u

n
j−1, u

n
j , u

n
j+1, v

n) ≤ Hλ(ū
n
j−1, ū

n
j , ū

n
j+1, v

n) = ūn+1
j .

On the other hand,

v̄n+1 − vn+1 =
∆t

mp

(

(g−λ − g+λ )(ū
n
0 , ū

n
1 , v

n)− (g−λ − g+λ )(u
n
0 , u

n
1 , v

n)
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is nonnegative by Hypothesis (19).
We now focus on the case where (unj )j∈Z is equal to (ūnj )j∈Z and vn ≤ v̄n. For j ≤ −1 and j ≥ 2,

a straightforward computation gives that there exists anj+1/2 ∈ [unj , u
n
j+1] and bnj−1/2 ∈ [unj−1, u

n
j ]

such that

un+1
j − ūn+1

j = µ

∫ 1

0

∂tg(u
n
j , u

n
j+1, v

n + t(v̄n − vn))− ∂tg(u
n
j−1, u

n
j , v

n + t(v̄n − vn))dt

= µ

∫ 1

0

(v̄n − vn)
[

∂3g(u
n
j , u

n
j+1, v

n + t(v̄n − vn))

−∂3g(u
n
j−1, u

n
j , v

n + t(v̄n − vn))
]

dt

= µ

∫ 1

0

(v̄n − vn)
[

∂23g(u
n
j , a

n
j+1/2, v

n + t(v̄n − vn))(unj+1 − unj )

+∂13g(b
n
j−1/2, u

n
j , v

n + t(v̄n − vn))(unj − unj−1)
]

.

Moreover, unj−1 ≤ unj ≤ unj+1 because we are considering elements of S, thus if ∂3g is decreasing with

respect to its first two variables, un+1
j ≤ ūn+1

j . The same reasoning extends to j ∈ {0, 1} because
un0 − un1 ≤ λ. Eventually,

v̄n+1 − vn+1 = v̄n − vn +
∆t

mp
(g(un0 , u

n
1 + λ, v̄n)− g(un0 , u

n
1 + λ, vn))

−
∆t

mp
(g(un0 − λ, un1 , v̄

n)− g(un0 − λ, un1 , v
n))

≥

(

1−
2∆t

mp
max |∂3g|

)

(v̄n − vn),

which is nonnegative if (47) holds.
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