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Abstract

We study a family of non linear schemes for the numerical solution of
linear advection on arbitrary grids in several space dimension. A proof
of weak convergence of the family of schemes is given, based on a new
Longitudinal Variation Diminishing (LVD) estimate. This estimate is to
be a multidimensional equivalent to the well-known TVD estimate in one
dimension. The proof uses a corollary of the Perron-Frobenius theorem
applied to a generalized Harten formalism.
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1 Introduction

We address the numerical solution of linear advection in several space dimen-
sions on triangular or quadrangular arbitrary grids, with either linear or non
linear schemes. This problem relies on the general theory of numerical approx-
imation of scalar linear and non linear hyperbolic equations by means of finite
volume methods. In his seminal work in 1D ([12], [11]), Harten introduced what
is commonly referred to as the Harten formalism. TVD (Total Variation Dimin-
ishing) schemes derived from the Harten formalism for the numerical solution in
1D of various linear and non linear hyperbolic problems are now very popular:
see also [13], [14], [15], [28], [21], [20], [7], [34] and the references therein.

We refer to [18] and [19] for a presentation of major issues about the devel-
opment of non dissipative schemes for linear advection in 2D for discontinuous
flows: see also [29], [20], [7], [30], [31], [2], [32], [33], [35]. We particularly
agree with Roe and Sidilkover ([18]): “Genuinely multidimensional algorithms
are only just beginning to be understood”; see also LeVeque ([7] page 207). To
our opinion this is strongly related to the lack of a general multidimensional
VD (Variation Diminishing) estimate in 2D on arbitrary grids. Deriving gen-
eral VD estimates for genuinely multidimensional schemes for various linear and
non linear problems on arbitrary grids is challenging. This has been reported for
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instance by Lax (in Systems of conservation laws and related topics: a confer-
ence celebrating Burt Wendroff’s birthday): ”Much efforts were spent on trying
to devise TVD schemes for multidimensional conservation laws. The search is,
of course, doomed to failure, since TV does not D in more than one dimension”.

The actual theory of approximation ([1], [5], [36], [3]), also suffers from the
lack of a general BV (Bounded Variation) estimate, at least on general grids. It
has motivated convergence study on arbitrary grids by mean of measure value
solutions [16], [17] at the numerical level, by the so called kinetic formulation [6],
[3], and via Kuznetsov error approximation [5], [1]. Nevertheless BV estimates
exist for Cartesian meshes [9], [10], thus allowing to obtain optimal bounds for
the numerical error on Cartesian meshes.

This work is an attempt to set a convenient framework for the development
and analysis of genuinely multidimensional schemes on arbitrary grids. Our
main result is an extension of TVD schemes and TVD estimate, called in the
following LVD (Longitudinal Variation Diminishing) schemes and LVD estimate.
Note that it does not enter in contradiction with Lax’s remark: T is replaced
by L, V is unchanged, the gain is D. An abstract of the paper is the following.

Let Ω ⊂ R
2 be a bounded domain, and let (Ωj) be an arbitrary mesh of

Ω. For any time evolution equation, consider a finite volume approximation:
αj (resp. αj) is the current (resp. updated) numerical solution in the cell Ωj.
Assume that a scheme allows to compute αj’s from the αj, such that

∀j, ∃γj ∈ [0, 1], αj = (1 − γj)αj + γj

∑

k

pjkαk, (1)

where P = (pjk) is a stochastic matrix (cf. [26]):

∑

k

pjk = 1, ∀j and pjk ≥ 0 ∀j, k.

The dimension of the matrix P is the number of cells, assumed to be finite.

Definition 1 We say that a scheme which may written as (1) satisfies a gen-
eralized Harten formalism.

LVD estimate for generalized Harten formalism. For a scheme (1)
there exists non negative weights Λj ≥ 0 (with at least one which is non zero)
which depend on P and do not depend on the γj’s, αj’s and αj’s, such that the
estimate (2) holds

∑

j

Λj

∣

∣

∣

∣

∣

αj −
∑

k

pjkαk

∣

∣

∣

∣

∣

≤
∑

j

Λj

∣

∣

∣

∣

∣

αj −
∑

k

pjkαk

∣

∣

∣

∣

∣

. (2)

The weights Λ = (Λj) are solution of a global eigenvector problem for the
eigenvalue 1

P tΛ = Λ.
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In the following P is such that (2) is an estimate of the Total Variation Longi-
tudinally to the streamlines. This is the reason why we propose to retain this
LVD (Longitudinal Variation Diminishing) terminology.

LVD estimate for linear advection. Consider 2D linear advection with
periodic boundary conditions

∂tα + ~a.~∇α = 0, (t, x) ∈ [0, T ]× Ωper.

~a is given and constant. Consider the standard finite volume upwind approxi-
mation on arbitrary grid of this problem: αj is the current numerical solution
in the cell Ωj; αj is the updated numerical solution in the same cell. De-
note I−(j) the set of neighboring incoming cells (i.e. k ∈ I−(j) if and only
if mjk = −

∫

Ωj∩Ωk
(~a, ~nj) > 0), and define pjk =

mjk
P

l∈I−(j) mjl
if k ∈ I−(j) and

pjk = 0 if k 6∈ I−(j).
Then a) the upwind scheme may be rewritten as (1) using the matrix P given

above, b) for this particular matrix P the weights Λj (2) are given explicitly

Λj =
∑

l∈I−(j)

mjl.

As a consequence the LVD estimate (2) for the upwind scheme applied to linear
advection may be rewritten as

∑

j

∣

∣

∣

∣

∣

∣

(
∑

k∈I−(j)

mjk)αj −
∑

k∈I−(j)

mjkαk

∣

∣

∣

∣

∣

∣

≤
∑

j

∣

∣

∣

∣

∣

∣

(
∑

k∈I−(j)

mjk)αj −
∑

k∈I−(j)

mjkαk

∣

∣

∣

∣

∣

∣

.

(3)
In 1D one easily checks on simple examples (a > 0) that pjk = δj,j−1 and

Λj = 1. So (2) is in 1D

∑

j

|αj − αj−1| ≤
∑

j

|αj − αj−1| . (4)

It explains why inequality (2) is a multidimensional generalization of the well
known 1D TVD inequality (4). The upwind scheme discussed in the following
is the simplest example of a scheme for which the generalized Harten formalism
(1) is true.

In section 2, we introduce some notations: linear advection is, in this work,
the model problem. In section 3 we propose a 2D generalization on arbitrary
grids of TVD schemes, based on an extension of the formalism [22], [24]. These
schemes are non linear in the general case and satisfy a generalized Harten
formalism. In section 4 we derive a natural Variation Diminishing estimate
(2) for this family of schemes on arbitrary grids. We propose to call it LVD
estimate due to the presence of various weights. The proof of the LVD estimate
relies on essentially three points: a) rewriting the generalized Harten formalism
with a stochastic matrix P ; b) the Perron-Frobenius theorem for the study
in the general case of the maximal left eigenvector of this matrix; c) explicit
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calculation of the maximal left eigenvector for the matrix P defined by the
numerical approximation of linear advection. Simple examples on square grids
show that the LVD estimate is a natural extension on arbitrary grids of the
TVD estimate. Finally in section 5 and for sake of completeness, a simple
consequence of the LVD estimate on arbitrary grids is WBV (Weak Bounded
Variation) estimates [1] with better constants (see also [36]). It gives a proof
of weak convergence on 2D arbitrary uniformly regular triangular mesh for all
linear non linear LV D schemes defined in section 3.

It is worthwhile to notice that the standard proof of convergence via WBV
estimates assumes enough dissipation of the scheme: see [1] for a complete
discussion. Our proof does not assume such a dissipation process: it is an im-
portant advantage of LVD estimates. It leaves place for the study of convergent
non linear and non dissipative schemes for linear advection and transport equa-
tion on arbitrary grids (recent progress has been made on finite difference grids
[24], [22]). We delay to a forthcoming work the question of finding optimal non
dissipative LVD schemes for “real computations”.

2 Notations and model problem

We consider the following linear advection model problem

{

∂tα + ~a.~∇α = 0, (t, x) ∈ [0, T ]× Ω,
α(t = 0, x) = α0(x), x ∈ Ω.

(5)

For sake of simplicity we consider the 2D case

Ω = [0, 1]× [0, 1] ⊂ R
2, (6)

assume that ~a 6= 0 is constant in space and time, and supplement (5) with
periodic boundary conditions

{

α(t, 0, x2) = α(t, 1, x2), (t, x2) ∈ [0, T ]× [0, 1],
α(t, x1, 0) = α(t, x1, 1), (t, x1) ∈ [0, T ]× [0, 1].

(7)

Let (Ωj)j∈J be a finite mesh of Ω

{

Ωj ∩ Ωk = ∅, ∀j, k, j 6= k,

∪j∈JΩj = Ω = Ω.
(8)

The shape of any cell is arbitrary. Most usual cases are square cells (finite
difference) or triangle cells (finite volume).

Two cells are neighboring cells if and only if they have an edge in common
(taking in account periodic boundary conditions). Each cell has a finite number
of neighbors: I(j) is the set of indices of the neighbors of cell j. The outgoing
normal from Ωj on the edge Ωj ∩ Ωk is denoted as ~njk. Of course the outgoing
normal from Ωj is the opposite of the outgoing normal from Ωk for k ∈ I(j)

~njk + ~nkj = 0. (9)
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Figure 1: I+(j) = {k2, k3}, I−(j) = {k1}

We introduce some very natural notations
{

ljk = lkj = R-Lebesgue measure of Ωj ∩ Ωk, a length,
sj = R

2-Lebesgue measure of Ωj , a surface.
(10)

We also define






I+(j) = {k ∈ I(j); (~a, ~njk) > 0},
I0(j) = {k ∈ I(j); (~a, ~njk) = 0},
I−(j) = {k ∈ I(j); (~a, ~njk) < 0}.

(11)

and
mjk = mkj = ljk|(~a, ~njk)|. (12)

I+(j) (resp. I−(j)) is the set of outgoing (resp. incoming) cells from Ωj . An
example on triangle is given in figure 1. With all these notations a standard
finite volume like method may be defined as

sj

αj − αj

∆t
+

∑

k∈I+(j)

mjkαjk −
∑

k∈I−(j)

mjkαjk = 0, ∀j ∈ J, (13)

where mjkαjk is the flux value integrated along the edge Ωj ∩ Ωk, to be deter-
mined. In order to save notations the index of iteration n has been omitted: αj

stands for the current value in the cell Ωj , αj = αn
j ; αj stands for the updated

value in the same cell, αj = αn+1
j ; since we study explicit schemes, αjk stands

for αn
jk. In the following we consider symmetric values of the fluxes

αjk = αkj for k ∈ I(j), (14)

thus the scheme (13) is conservative.
Of course the standard upwind value of the flux

αjk = αk for k ∈ I−(j) (15)

gives the well known upwind scheme

sj

αj − αj

∆t
+

∑

k∈I+(j)

mjkαj −
∑

k∈I−(j)

mjkαk = 0, ∀j ∈ J. (16)
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The following formula will play an important role in the analysis.

Lemma 1 One has the equality
∑

k∈I+(j)

mjk =
∑

k∈I−(j)

mjk, ∀j. (17)

It is a well-known consequence of the divergence theorem

0 =

∫

Ωj

div ~a =

∫

∂Ωj

(~a, ~njk) =
∑

k∈I+(j)

mjk −
∑

k∈I−(j)

mjk.

Here (., .) denotes the standard scalar product.
It is straightforward to check that the upwind scheme (16) may be rewritten

as
αj = (1 − γj)αj + γj

∑

k

pjkαk, (18)

with

γj =
∆t
∑

k∈I−(j) mjk

sj

and
{

pjk =
mjk

P

k∈I−(j) mjk
, ∀k ∈ I−(j),

pjk = 0, ∀k 6∈ I−(j).

Assuming a CFL condition, then 0 ≤ γj ≤ 1 for all j. It is clear from intuitive
geometrical reasons that

∑

k∈I−(j) mjk > 0, so the definition of pjk makes sense.

See (65) in the appendix for a rigorous proof.

3 Some non linear schemes

In this section we propose other values of the fluxes than the upwind ones (15).
Our purpose is to show that the LVD estimate, consequence (next section) of
the generalized Harten formalism (18), is not restricted to the upwind scheme.
These new fluxes define non linear schemes, even if linear advection is a linear
equation: it is already the case in the 1D TVD theory [20].

The construction is an extension on arbitrary grids of the recent work [24],
[22] about non dissipative TVD schemes on regular grids. We assume that
the fluxes αjk have to satisfy a compatibility principle for all k ∈ I+(j), a
compatibility principle for all k ∈ I−(j), plus a kind of L∞ estimate.

3.1 Compatibility principle for all k ∈ I+(j)

We impose to the flux αjk to be a convex combination of αj and αk. The
compatibility principle means that the combination coefficient is the same for
all k ∈ I+(j)

αjk = (1 − βj)αj + βjαk, βj ∈ [0, 1], ∀k ∈ I+(j), ∀j ∈ J. (19)
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3.2 Compatibility principle for all k ∈ I−(j)

We assume that the fluxes satisfy




∑

k∈I−(j)

mjk



min

(

αj ,
∑

k

pjkαk

)

≤
∑

k∈I−(j)

mjkαjk (20)

≤





∑

k∈I−(j)

mjk



max

(

αj ,
∑

k

pjkαk

)

,

where
{

pjk =
mjk

P

k∈I−(j) mjk
, ∀k ∈ I−(j),

pjk = 0, ∀k 6∈ I−(j).
(21)

We will see in the following what this assumption means.
Since pjk = 0 ∀k 6∈ I−(j), then the sum in (20) is restricted to k ∈ I−(j).

Note the interesting property

∑

k

pjk = 1 ∀j, pjk ≥ 0 ∀j, k.

A rigorous proof of
∑

k∈I−(j) mjk > 0 is given in section A, formula (65).

If ever only one index is in I−(j) (in other words I−(j) = {k0}), then
pjk0 =

mjk0

mjk0
= 1. In this case (20) may be rewritten as

min(αj , αk0) ≤ αjk ≤ max(αj , αk0),

and is a direct consequence of (19). Thus the constraint (20) is active only if
card(I−(j)) > 1.

A simple manner to enforce (20) is to adopt the convention:

if





∑

k∈I−(j)

mjk(αk − αj)



 (αk′ − αj) < 0 for some k′ ∈ I−(j), (22)

then we impose
βk = 0 ∀k ∈ I−(j). (23)

A simple interpretation of (20) is the following: if the upwind scheme (16)
predicts an increasing (resp. decreasing) value of αj then all the incoming fluxes
have to follow this prediction.

3.3 L∞ estimate

We would like to impose the following L∞ estimate

min

(

αj ,
∑

k

pjkαk

)

≤ αj ≤ max

(

αj ,
∑

k

pjkαk

)

. (24)
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Inequality (24) is indeed a L∞ stability estimate, since it implies

min

(

αj , min
k∈I−(j)

αk

)

≤ αj ≤ max

(

αj , max
k∈I−(j)

αk

)

. (25)

A simple way to enforce (24) for a general scheme (13) is to impose some con-
straints on the fluxes. We do this with the help of the formalism developed in
[22]. First of all we use (13) and rewrite (24) as

∑

k∈I−(j)

mjkαjk +
sj

∆t

(

αj − max

(

αj ,
∑

k

pjkαk

))

≤
∑

k∈I+(j)

mjkαjk, (26)

and

∑

k∈I+(j)

mjkαjk ≤
∑

k∈I−(j)

mjkαjk +
sj

∆t

(

αj − min

(

αj ,
∑

k

pjkαk

))

. (27)

The compatibility principle (20) allows to eliminate incoming fluxes in (26-
27). We derive a sufficient double inequality





∑

k∈I−(j)

mjk



max

(

αj ,
∑

k

pjkαk

)

+
sj

∆t

(

αj − max

(

αj ,
∑

k

pjkαk

))

≤
∑

k∈I+(j)

mjkαjk, (28)

and
∑

k∈I+(j)

mjkαjk ≤





∑

k∈I−(j)

mjk



min

(

αj ,
∑

k

pjkαk

)

(29)

+
sj

∆t

(

αj − min

(

αj ,
∑

k

pjkαk

))

.

We thus have

Lemma 2 If (20) and (28-29) are true then (26-27) is true so the L∞ estimate
(25) is true.

Note that (28-29) is an inequality only for the βj variable, due the compat-
ibility principle (19) for k ∈ I+(j)

∑

k∈I+(j)

mjkαjk =
∑

k∈I+(j)

mjkαj + βj

∑

k∈I+(j)

mjk(αk − αj).
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Figure 2: Example of monotone profile on a cartesian mesh

We rewrite (28-29) as





sj

∆t
−

∑

k∈I−(j)

mjk





(

αj − max

(

αj ,
∑

k

pjkαk

))

≤ βj

∑

k∈I+(j)

mjk (αk − αj)

(30)
and

βj

∑

k∈I+(j)

mjk (αk − αj) ≤





sj

∆t
−

∑

k∈I−(j)

mjk





(

αj − min

(

αj ,
∑

k

pjkαk

))

(31)
(recall lemma 1:

∑

k∈I+(j) mjk =
∑

k∈I−(j) mjk, ∀j).

The following result states that at least βj = 0 (i.e. the upwind scheme) is a
solution of (19), (20) and (30-31). In other terms all inequalities are compatible.

Theorem 1 Assume that the CFL condition
∑

k∈I+(j) mjk

sj

∆t ≤ 1, ∀j ∈ J (32)

is satisfied. Then βj = 0 solves the inequalities (19), (20) and (30-31) for all
j ∈ J .

Due to the CFL condition the left hand side of (30) is non positive and the
right hand side of (31) is non negative. So βj = 0 is a solution.

However the upwind scheme (βj = 0 ∀j) is not the only solution of inequal-
ities (19), (20) and (30-31).
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For sake of simplicity consider a cartesian mesh (figure 2) and assume that
a given numerical profile (αj)j is monotone, in the sense that

αk < αj , ∀j, ∀k ∈ I−(j). (33)

One is frequently faced with this monotone situation in applications (or with the
revers situation: αk > αj). In this case (22) is never true: in other words, (20)
is automaticly true. So it is sufficient to consider only (30) and (31). Now the
term βj

∑

k∈I+(j) mjk (αk − αj) is the product of βj with a positive coefficient
∑

k∈I+(j) mjk (αk − αj). Thanks to a strict CFL condition

∑

k∈I+(j) mjk

sj

∆t < 1

and to (33), the left hand side of (30) is negative and the right hand side of (31)
is positive. We deduce that all βj in the interval

{

βj ∈ [0, βmax
j ],

βmax
j =

(

sj

∆t
−∑k∈I−(j) mjk

)

αj−min(αj ,
P

k
pjkαk)

P

k∈I+(j) mjk(αk−αj)
> 0,

(34)

are other values such that (19), (20) and (30-31) are true. As a consequence the
L∞ estimate (24) is true for this choice of βj . We have proved

Corollary 1 There exists other fluxes and other schemes than the upwind scheme
such that (24) is true. In the monotone situation (33), formula (34) is an ex-
ample.

We stop here this discussion and prefer to concentrate on the consequences
of (24).

4 Longitudinal Variation Diminishing estimate

Now we derive the LVD estimate for all schemes (13) such that the L∞ estimate
(24) is true. Necessarily αj is a convex combination of the upper and lower
bounds of (24).

∀j, ∃γj ∈ [0, 1], αj = (1 − γj)αj + γj

∑

k

pjkαk. (35)

This is the generalized Harten formalism. In dimension 1, (35) implies the TVD
estimate (4).

11



Let us gather all these quantities using some vector and matrix notations















































P = (pjk), a square matrix,
I = diag(1), the identity matrix,
D = diag(γj), a diagonal matrix,
X = (αj), a vector,
X = (αj), a vector,

Y =
(∣

∣

∣((I − P )X)j

∣

∣

∣

)

, a vector,

Y =
(

|
(

(I − P )X
)

j

)

, a vector.

All these objects are of dimension cardJ , number of cells. As already mentioned
a matrix P such that pjk ≥ 0, ∀j, k, and

∑

k pjk = 1, ∀j is called a stochastic
matrix [26].

We rewrite (35) as
X = X − D(I − P )X.

Thus

(I−P )X = (I−P )X−(I−P )D(I−P )X = (I−D)(I−P )X+PD(I−P )X. (36)

Now we introduce the natural vector ordering

∀ vectors (X, Y ), X ≤ Y if and only if Xj ≤ Yj ∀j,

and the natural matricial ordering

∀ matrices (P, Q), P ≤ Q if and only if Pjk ≤ Qjk ∀j, k.

Taking the absolute value of each coefficient of the vector equation (36) we
obtain

Y ≤ (I − D)Y + PDY.

We have used the positivity of P and the very important property 0 ≤ D ≤ I,
which is a consequence of its definition. In summary we have

Y ≤ Y + (P − I)DY. (37)

4.1 Basic properties of the matrix P

Since P is a matrix with non negative coefficients such that
∑

k pjk = 1, ∀k,
then

‖P‖∞ = 1 (38)

for the induced matrix l∞ norm

||PX ||∞ = max
X 6=0

||PX ||∞
||X ||∞

, where ||X ||∞ = max
j

|Xj |.
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Since

E =









1
1
...
1









(39)

is clearly a right eigenvector of the matrix P (indeed, PE = E), we know that
there exists at least one left eigenvector of the matrix P , for the same eigenvalue.
We denote this left eigenvector as Λ,

ΛtP = Λt. (40)

If we assume that all the components of Λ are non negative,

Λj ≥ 0,

then we deduce from (37)

(Λ, Y ) ≤ (Λ, Y ) + ((P t − I)Λ, DY ) = (Λ, Y ), (41)

where (., .) denotes the standard l2 scalar product. This is exactly what we call
the Longitudinal Variation Diminishing estimate. Note that Λ depends only on
P and not on (αj). It depends only on ~a and on the mesh. In particular it is
constant in time.

4.2 More properties of the matrix P

So the key point is to prove that the left eigenvector Λ is indeed a non nega-
tive vector. Reminiscence of the Krein-Rutman [25] theorem or of the Perron-
Frobenius theorem [25], [26] gives some hints that this property is true. Let us
recall the following result which is a corollary of the Perron-Frobenius theorem
[26].

Theorem 2 Let A 6= 0 be a non negative square matrix with non negative
coefficients

Ajk ≥ 0, ∀j, k.

Then there exists one maximal real eigenvalue

λ = ρ(A) > 0,

associated with a non negative eigenvector Λ 6= 0

Λj ≥ 0 ∀j,

such that
AΛ = λΛ.

13



Applying this theorem to A = P t and since ρ(P t) = ρ(P ) = 1, it explains
why Λj ≥ 0, Λ 6= 0, is true (Λ being defined by (40) and λ = 1). If we assume
moreover that the matrix A is irreducible, the Perron-Frobenius theorem states
that Λ > 0, i.e. Λj > 0 for all j.

With straightforward notations we denote Xn = (αn
j ) the numerical solution

of the scheme (13) at the nth time step. We assume it enters the generalized
Harten formalism:

∀n, ∀j, ∃γn
j ∈ [0, 1], αn+1

j = (1 − γn
j )αn

j + γn
j

∑

k

pjkαn
k . (42)

Y n = |(I − P )Xn| is defined by

Y n
j = |

∑

k

pjk(αn
j − αn

k )|

Iterating in time (41) and since Λ depends only on the constant matrix P , we
get

Theorem 3 A numerical solution of any scheme verifying (42) satisfies the
LVD (Longitudinal Variation Diminishing) estimate

(Λ, Y n) ≤ (Λ, Y n−1) ≤ ... ≤ (Λ, Y 0) (43)

that is
∑

j

Λj |
∑

k

pjk(αn
j − αn

k )| ≤
∑

j

Λj|
∑

k

pjk(α0
j − α0

k)|. (44)

4.3 More about the left eigenvector

Thus the previously cited corollary of the Perron-Frobenius theorem gives an
abstract framework such that a generic diminishing estimate holds for every
scheme which may be rewritten as (42). Hopefully it is possible, in the case of
linear advection, to give the exact value of the weights.

Theorem 4 Consider the matrix P given by (21). Then a solution of (40) is

Λj =
∑

k∈I−(j)

mjk > 0. (45)

All Λj’s defined by (45) are positive due to (64). The equation P tΛ = Λ
means that

∑

k

pkjΛk = Λj , ∀j,

that is
∑

k∈I+(j)

(

mjk
∑

r∈I−(k) mkr

)

Λk = Λj, ∀j (46)
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Define

µj =
Λj

∑

r∈I−(j) mjr

, ∀j.

Then we rewrite (46) as

∑

k∈I+(j)

(mkj)µk =





∑

r∈I−(j)

mjr



µj , ∀j. (47)

Due to the divergence identity (17) one has
∑

r∈I−(j)

mjr =
∑

r∈I+(j)

mjr =
∑

k∈I+(j)

mkj .

Thus (47) is

∑

k∈I+(j)

(mkj)µk =





∑

k∈I+(j)

mkj



µj , ∀j. (48)

Finally µj = 1 for all j is a solution. It proves (45).

Corollary 2 Consider a numerical solution of the scheme (13) such that (35)
is true (assuming a CFL condition, the upwind scheme is an example of such a
scheme). Then the following diminishing estimate holds

∑

j

∣

∣

∣

∣

∣

∣





∑

k∈I−(j)

mjk



αj −
∑

k∈I−(j)

mjkαk

∣

∣

∣

∣

∣

∣

(49)

≤
∑

j

∣

∣

∣

∣

∣

∣





∑

k∈I−(j)

mjk



αj −
∑

k∈I−(j)

mjkαk.

∣

∣

∣

∣

∣

∣

The proof is by direct calculation: consider (44), use (45) and combine with
the definition (21) of P .

At this point we would like to make a comment: at first sight (49) may be

considered as a numerical approximation of the L1 norm of div(α~a) = ~a.~∇α. It
would be elegant to find a continuous definition of the same quantity, such that
both definitions (the discrete one and the continuous one) give the same result
(as it is the case in 1D). Actually it is not so clear for us how to find this kind
of continuous definition in the multi-D case.

4.4 The matrix P for square cells

Here we discuss the simple example where the cells are squares. In some sense
this example corresponds to finite differences. It is clear that in this case Λj =
Λk for all j, k (see (45)). So the diminishing inequality simplifies into

∑

j

|
∑

k

pjk(αn
j − αn

k )| ≤
∑

j

|
∑

k

pjk(α0
j − α0

k)|. (50)
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k
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a

Figure 3: Example: ~a = (
√

2/2,
√

2/2)

We consider two cases.

a) Assume that ~a = (
√

2/2,
√

2/2). So

pjk =
1

2
∀k ∈ I−(j), pjk = 0 otherwise.

pjk is non zero if and only if the cell k is immediately under or on the left
of the cell j. In the example of figure 3

pjk1 = pjk2 =
1

2
and pjk3 = pjk4 = 0.

By summation we thus obtain

∑

j

∣

∣

∣

∣

∣

∣

αn
j − 1

2

∑

k∈I−(j)

αn
k

∣

∣

∣

∣

∣

∣

≤
∑

j

∣

∣

∣

∣

∣

∣

α0
j −

1

2

∑

k∈I−(j)

α0
k

∣

∣

∣

∣

∣

∣

. (51)

b) Assume that ~a = (1, 0). So

pjk = 1 k ∈ I−(j), pjk = 0 otherwise.

pjk is non zero if and only if the cell k is immediately on the left of the
cell j. In the example of figure 4

pjk2 = 1 and pjk1 = pjk3 = pjk4 = 0.

We thus obtain

∑

lines





∑

j,k neighboring on the line

|αn
j − αn

k |





≤
∑

lines





∑

j,k neighboring on the line

|α0
j − α0

k|



 . (52)

In this case LVD is TVD only line by line.
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1
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j

a

Figure 4: Example: ~a = (1, 0)

Here we see that LVD is TVD longitudinally to the streamlines due to the weights
pjk and |(~a, ~njk)|. This is the reason why we propose to retain this LVD (Lon-
gitudinal Variation Diminishing) terminology.

5 A proof of weak convergence for LVD schemes

A LVD scheme refers to a scheme (13) which satisfies the LVD estimates of
theorem 3, consequence of (42). Proving strong convergence with optimal rate
of convergence for these kind of non linear schemes on arbitrary grids is still
an open problem nowadays. Many researchers have stressed that non optimal
bounds for the error are probably due to the lack of a BV estimate. Since
the core of our work is precisely the derivation of such a LVD estimate for
arbitrary grids, there is some hope that optimal bounds will take advantage
of the approach developed in this work. Moreover optimal error estimates for
monotone schemes need Kruzkov entropy inequalities ([9], [10], [1], [5]), which
are far from the scope of this paper.

From both examples on square grids (51-52) it is clear that LVD does not
imply TVD: at most TVD line by line in the case (52). As a consequence it is
not possible to rely on Helly’s theorem (compact embedding of BV ∩ L1 ⊂ L1,
see [20]) in order to prove strong convergence for general grids.

So we delay the question of strong convergence, and rely on an analysis of
[1] in order to simply prove weak convergence via Weak Bounded Variations
estimates.

An interest of the following proof is that we do not assume that the scheme
is monotone as in [1]. The LVD estimate and α0 ∈ L∞(Ω)∩BV (Ω) is sufficient.

More precise definition of uniformly regular meshes could be found in [27].
For the sake of simplicity, we consider in the following only meshes with triangle
cells or quadrilateral cells.

Theorem 5 Be Ω = [0, 1]×[0, 1] ⊂ R
2. Let us consider a sequence of triangular

or quadrangular meshes with ∆x → 0: ∆x is a characteristic length of the mesh.
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We assume that the sequence of meshes is uniformly regular in the sense that

∃(c1, c2, c3) ∈
(

R
+,∗
)3

,

such that for every mesh in the sequence

ljk ≤ c1∆x, c2∆x2 ≤ sj ≤ c3∆x2, ∀j, k. (53)

Let α0 ∈ L∞(Ω) ∩ BV (Ω). Let α∆x be a sequence of numerical solutions, such
that

a) the initial value is given by the total mass approximation

α∆x
0
j =

1

sj

∫

Ωj

α0 (54)

(note that sj and Ωj depend on ∆x),

b) for each ∆x, αn
∆x is given by the scheme (13-14),

c) the flux is a convex combination of the unknowns on both sides

min(αj , αk) ≤ αjk ≤ max(αj , αk),

as in (19),

d) equality (42) is true for all j and n.

The upwind scheme (15-54) together with the CFL condition (32) is an example
of such a sequence of numerical solutions. Another non linear example is given
in corollary 1.

Let us define

α∆x =
∑

j,n

α∆x
n
j × 1n

j ∈ L∞([0, T ]× Ω),

that is
α∆x(x, t) = α∆x

n
j ∀(x, t) ∈ Ωj×]n∆t, (n + 1)∆t[.

Let α ∈ L∞([0, T ]× Ω) be the solution of

{

∂tα + ~a.∇α = 0,
α(0, x) = α0(x),

(55)

with periodic boundary conditions: α(x, t) = α0(t− (~a, x)). Then α∆x converges
in L∞,∗([0, T ]× Ω) to α, that is,

∀ϕ ∈ L1([0, T ]× Ω), lim
∆x→0

(

∫

[0,T ]×Ω

(α∆x − α)ϕdxdt

)

= 0. (56)
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In [1] the previous result of convergence is based on the first of these two
following WBV estimates

p=Q
∑

p=0

∆t
∑

j

∑

k∈I−(j)

mjk|α∆x
p
j − α∆x

p
k| ≤

C

∆x
1
2

, Q∆t = T, (57)

and
p=Q
∑

p=0

∑

j

sj |α∆x
p+1
j − α∆x

p
j | ≤

C

∆x
1
2

. (58)

The constant C > 0 depends only on α0, ~a, T = Q∆t and on (c1, c2, c3) charac-
terizing the regularity of the mesh. In fact in [1] C depends also on an additional
parameter which states that the CFL number must be strictly less than one.
Moreover it is possible for the upwind scheme (15) to replace the bound C

∆x
1
2

in

(58) by C. Thus the constant in our WBV estimates (57-58) is slightly better
than in the original work [1]. Note that we impose α0 ∈ L∞(Ω)∩BV (Ω) in our
hypothesis while [1] needs only α0 ∈ L∞(Ω): it is a consequence of the use of
the LVD estimate.

Lemma 3 Assume all the hypothesis of the previous theorem. Then the WBV
estimates (57-58) are true with a bound C > 0 which depends only on α0, ~a,
T = Q∆t and (c1, c2, c3).

To prove the WBV estimates it is sufficient to consider the LVD estimate
(44) which is a consequence of (19) (see theorem 3).

∑

j

|
∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )| ≤

∑

j

|
∑

k∈I−(j)

mjk(α∆x
0
j − α∆x

0
k)|

≤ |~a|





∑

j

∑

k∈I−(j)

ljk|α∆x
0
j − α∆x

0
k|



 = |~a|‖α∆x
0‖BV (Ω).

We have used the definition of the BV norm, true for a piecewise constant
function (see [8])

‖α∆x‖BV (Ω) =
∑

j

∑

k∈I−(j)
S

I0(j)

ljk|α∆xj − α∆xk|.

Here we use the continuity of the L2 projection on arbitrary uniformly regular
grids in BV space (see appendix C):

∃C > 0, ‖α∆x
0‖BV (Ω) ≤ C‖α0‖BV (Ω), ∀∆x > 0. (59)

Thus
∑

j

|
∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )| ≤ C (60)
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(here and in the following C denotes an undefined constant).
Now let us define

αn
∆x =

∑

n

α∆x
n
j × 1j ∈ L∞(Ω),

that is
αn

∆x(x, t) = α∆x
n
j ∀x ∈ Ωj .

Then we use ‖αn
∆x‖L∞ ≤ ‖α0‖L∞ (which is a consequence of (25) and (54)) and

a discrete integration by part (see formula (67) in appendix B) to obtain

∑

j

∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )2 = 2

∑

j

∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )α∆x

n
j

≤ 2‖α∆x
n‖L∞

∑

j

|
∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )| ≤ C.

From the Cauchy-Schwarz inequality one has

∑

j

∑

k∈I−(j)

mjk|α∆x
n
j − α∆x

n
k |

≤





∑

j

∑

k∈I−(j)

mjk





1
2




∑

j

∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )2





1
2

.

Inequality (66) of the appendix, true for a triangular or quadrangular uniformly
regular mesh, gives

∑

j

∑

k∈I−(j)

mjk|α∆x
n
j − α∆x

n
k | ≤

C

∆x
1
2

. (61)

After summation in time we obtain (57).
Concerning (58): it is a direct consequence of (60), (61), and the definition

of the scheme

sj(α∆x
n+1
j − α∆x

n
j ) = −∆t

∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )

−∆t
∑

k∈I+(j)

mjk(α∆x
n
jk − α∆x

n
j ) + ∆t

∑

k∈I−(j)

mjk(α∆x
n
jk − α∆x

n
k ).

The first right hand side contribution is bounded by (60). Since the flux is a
convex combination of the upwind and downwind values (compatibility princi-
ple (19)), the second and third right hand side contributions are bounded thanks
to (61). It gives

∑

j

sj |α∆x
n+1
j − α∆x

n
j | ≤ 3∆t

∑

j

∑

k∈I−(j)

mjk|α∆x
n
j − α∆x

n
k | ≤

C

∆x
1
2

∆t.

20



After summation in time it gives (58). Considering the upwind scheme the
second and third right hand side contributions vanish: it gives for the upwind
scheme only

∑

j

sj |α∆x
n+1
j − α∆x

n
j | ≤ ∆t

∑

j

∣

∣

∣

∣

∣

∣

∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )

∣

∣

∣

∣

∣

∣

≤ C∆t,

which gives a sharper estimate (C instead of C

∆x
1
2
) in (58). This ends the proof

of lemma 3.
Final proof of theorem 5
Since α0 ∈ L∞(Ω) then the approximation α∆x is uniformly bounded in

L∞([0, T ]× Ω)
∃C > 0, ‖α∆x‖L∞([0,T ]×Ω) ≤ C.

It implies the existence of α ∈ L∞([0, T ] × Ω) such that α∆x converges to α in
the L∞,∗([0, T ] × Ω) sense (up to an extracted subsequence). Now essentially
copying the proof in [1] it gives the result (55). Let ϕ ∈ C1([0, T ] × Ω) be a
smooth test function. We assume that ϕ(x, T ) = 0 ∀x ∈ Ω. We multiply (13)
by ∆t

sj
ϕ(x, (n + 1)∆t), integrate over x ∈ Ωj and sum for all j and for all

0 ≤ n ≤ Q = T
∆t

. It gives

A∆x + B∆x + D∆x = 0,

where

A∆x =
∑

n

∑

j

(α∆x
n+1
j − α∆x

n
j )

∫

Ωj

ϕ(x, (n + 1)∆t)dx,

B∆x =
∑

n

∑

j

∆t

sj





∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )





∫

Ωj

ϕ(x, (n + 1)∆t)dx,

and

D∆x =
∑

n

∑

j





∑

k∈I+(j)

mjk(α∆x
n
jk − α∆x

n
j ) −

∑

k∈I−(j)

mjk(α∆x
n
jk − α∆x

n
k )





(62)

×∆t

sj

∫

Ωj

ϕ(x, (n + 1)∆t)dx.

Following [1] we note that

A∆x = −
∫

[0,T ]

∫

Ω

α∆x(x, t)∂tϕ(x, t)dxdt −
∫

Ω

α0(x)ϕ(x, 0)dx

+
∑

j

∫

Ωj

α0(x)

(

ϕ(x, 0) − 1

sj

∫

Ωj

ϕ(y, 0)dy

)

dx.
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Since α∆x converges to α in the L∞,∗([0, T ]× Ω) sense, we get

A∆x → −
∫

[0,T ]

∫

Ω

α(x, t)∂tϕ(x, t)dxdt −
∫

Ω

α0(x)ϕ(x, 0)dx as ∆x → 0

(recall that ∂tϕ ∈ L1). Similarly we have

B∆x = −
∑

n

∫ (n+1)∆t

n∆t

∫

Ω

α∆x(x, t)~a.~∇ϕ(x, t)dxdt

+
∑

n

∑

j

∆t





∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )

×
(

1

sj

∫

Ωj

ϕ(x, (n + 1)∆t)dx − 1

ljk∆t

∫ (n+1)∆t

n∆t

∫

Ωj∩Ωk

ϕ(x, t)dldt

))

.

Since ϕ is smooth there exists C > 0 such that

∣

∣

∣

∣

∣

1

sj

∫

Ωj

ϕ(x, (n + 1)∆t)dx − 1

ljk∆t

∫ (n+1)∆t

n∆t

∫

Ωj∩Ωk

ϕ(x, t)dldt

∣

∣

∣

∣

∣

≤ C∆x, ∀j, k.

Thus using (60)

∣

∣

∣

∣

∣

∣

∑

n

∑

j

∆t





∑

k∈I−(j)

mjk(α∆x
n
j − α∆x

n
k )

×
(

1

sj

∫

Ωj

ϕ(x, (n + 1)∆t)dx − 1

ljk∆t

∫ (n+1)∆t

n∆t

∫

Ωj∩Ωk

ϕ(x, t)dldt

))∣

∣

∣

∣

∣

≤ C

∆x
1
2

C∆x ≤ C∆x
1
2 .

Since α∆x converges to α in the L∞,∗([0, T ]× Ω) sense, we get

B∆x → −
∫

[0,T ]

∫

Ω

α(x, t)~a.~∇ϕ(x, t)dxdt as ∆x → 0.

If we assume that lim∆x→0 D∆x = 0, then

−
∫

[0,T ]

∫

Ω

α(x, t)∂tϕ(x, t)dxdt −
∫

Ω

α0(x)ϕ(x, 0)dx

−
∫

[0,T ]

∫

Ω

α(x, t)~a.~∇ϕ(x, t)dxdt = 0,

∀ϕ ∈ C1([0, T ]× Ω), ϕ(T ) = 0.
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Thus it proves that α is the weak solution of (55).
So it remains to prove that the extra term D∆x tends to 0. We sum (62) by

part

D∆x =
∑

n

∆t
∑

k∈I+(j)

mjk(α∆x
n
jk − α∆x

n
j )

×
(

1

sj

∫

Ωj

ϕ(x, (n + 1)∆t)dx − 1

sk

∫

Ωk

ϕ(x, (n + 1)∆t)dx

)

.

Since ϕ is smooth

∃C > 0,

∣

∣

∣

∣

∣

1

sj

∫

Ωj

ϕ(x, (n + 1)∆t)dx − 1

sk

∫

Ωk

ϕ(x, (n + 1)∆t)dx

∣

∣

∣

∣

∣

≤ C∆x.

Combining with (60) we get

|D∆x| ≤
Q
∑

p=0

∆t
C

∆x
1
2

C∆x ≤ C∆x
1
2 .

It implies lim∆x→0 D∆x = 0 and ends the proof of theorem 5.
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A Regular grids

For sake of completeness, we prove here some elementary properties about uni-
formly regular triangular or quadrangular grids. More precise definition of uni-
formly regular meshes may be found in [27].

Let us consider a sequence of meshes with ∆x → 0: ∆x is a characteristic
length of the mesh. We assume that the sequence of meshes is uniformly regular
in the sense that

∃(c1, c2, c3) ∈
(

R
+,∗
)3

, such that ljk ≤ c1∆x, c2∆x2 ≤ sj ≤ c3∆x2, ∀j, k.
(63)

First we prove that such meshes satisfy

0 < C1

∑

l∈I−(k)

mkl ≤
∑

l∈I−(j)

mjl ≤ C2

∑

l∈I−(k)

mkl, ∀j, k, (64)

with C1 and C2 independent of the characteristic length of the mesh ∆x.
Let ~fj(x) = (x − xj ,~a)~a ∈ R

2 be a linear vectorial function of x ∈ R
2.

Here xj ∈ R
2 is the coordinate of any point inside the triangle Ωj . From the

divergence theorem we get
∫

Ωj

div~fj =

∫

∂Ωj

~fj.~nj ,

where ~nj is the outgoing normal. It is equivalent to

sj(~a,~a) =
∑

k∈I(j)

(~a, ~njk)

∫

∂Ωj

(x − xj ,~a).

Due to the various constants in (53) or (63) we obtain

c2∆x2(~a,~a) ≤





∑

k∈I(j)

|(~a, ~njk)|ljk



 max
x∈∂Ωj

|(x − xj ,~a)|

≤ C∆x
∑

k∈I(j)

|(~a, ~njk)|ljk

(recall that the number of faces for each cell is less than 4).
Since

2
∑

k∈I−(j)

|(~a, ~njk)|ljk =
∑

k∈I+(j)

|(~a, ~njk)|ljk +
∑

k∈I−(j)

|(~a, ~njk)|ljk

=
∑

k∈I(j)

|(~a, ~njk)|ljk,

we deduce
∃c4 > 0, 0 < c4∆x ≤

∑

k∈I−(j)

|(~a, ~njk)|ljk, ∀j. (65)
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On the other hand
∑

k∈I−(j) |(~a, ~njk)|ljk is bounded from above

∃c5 > 0,
∑

k∈I−(j)

|(~a, ~njk)|ljk ≤ c5∆x, ∀j.

It proves (64) with uniform constants C1 = c4

c5
and C2 = c5

c4
.

For a uniformly regular triangular or quadrangular mesh, we bound the
number of cells

card(J) ≤ mes(Ω)

c2∆x2
≤ C

∆x2
.

It implies that





∑

j

∑

k∈I−(j)

mjk





1
2

≤





C

∆x2
max
j∈J

∑

k∈I−(j)

mjk





1
2

≤
(

C

∆x2
|~a|Uc1∆x

)
1
2

,

where U is 3 (resp. 4) for triangular (resp. quadrangular) meshes. Thus





∑

j

∑

k∈I−(j)

mjk





1
2

≤ C

∆x
1
2

. (66)

Here the constant C depends on mes(Ω), ~a and C1.

B A discrete integration by part formula

Here we need to prove

∑

j

∑

k∈I−(j)

mjk(xj − xk)2 = 2
∑

j

∑

k∈I−(j)

mjk(xj − xk)xj (67)

which is used in the proof of lemma 3. One has

∑

j

∑

k∈I−(j)

mjk(xj − xk)xj =
∑

j

∑

k∈I−(j)

mjkx2
j −

∑

j

∑

k∈I−(j)

mjkxkxj

=
∑

j

∑

k∈I−(j)

mjkx2
j −

∑

j

∑

k∈I−(j)

mjk

(

1

2
x2

j − 1

2
(xj − xk)2 +

1

2
x2

k

)

=
1

2

∑

j

∑

k∈I−(j)

mjkx2
j +

1

2

∑

j

∑

k∈I−(j)

mjk(xj − xk)2 − 1

2

∑

j

∑

k∈I−(j)

mjkx2
k.
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Once more due to the divergence lemma

1

2

∑

j

∑

k∈I−(j)

mjkx2
k =

1

2

∑

k

∑

j∈I−(k)

mjkx2
j =

1

2

∑

j

∑

k∈I+(j)

mjkx2
j =

1

2

∑

j

∑

k∈I−(j)

mjkx2
j .

Finally we obtain after simplification

∑

j

∑

k∈I−(j)

mjk(xj − xk)xj =
1

2

∑

j

∑

k∈I−(j)

mjk(xj − xk)2

which is (67).

C Continuity of the L2 projection into BV space

Here we have to prove (59).
This is a standard property, well known in finite element space, see [4] and

references therein. However and since most of previous proof of convergence for
finite volume approximations avoided the BV framework [1], [3], [5], we give
here a simple proof.

We assume all the hypothesis of section A and split the proof in three steps.

a) Let us consider a given mesh in a sequence of uniformly regular meshes. For
a given M = (x, y) ∈ Ω and a given R ∈ R

+, we denote as N (M, R) the
number of cells Ωj in the mesh such that Ωj ⊂ B(M, R) where B(M, R)
stands for the ball centered at M with radius R. We claim that

∀C′ > 0, ∃C(C′) > 0 independent of the mesh size ∆x

such that ∀M ∈ Ω, we have N (M, C′∆x) ≤ C(C′). (68)

It is due to

meas(B(M, R)) = π(C′∆x)2 ≥
∑

Ωj⊂B(M,C′∆x)

meas(Ωj)

≥
∑

Ωj⊂B(M,C′∆x)

c2∆x2 = N (M, C′∆x)c2∆x2

Thus

N (M, C′∆x) ≤ π(C′)2

c2
.

b) Now for two given adjacent cells Ωj and Ωk, we define C(Ωj , Ωk) as the
smallest rectangle such that Ωj ⊂ C(Ωj , Ωk) and Ωk ⊂ C(Ωj , Ωk). That
is

C(Ωj , Ωk) = [ajk, bjk] × [cjk, djk]
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with
ajk = min

(x,y)∈Ωj

S

Ωk

x, bjk = max
(x,y)∈Ωj

S

Ωk

x,

cjk = min
(x,y)∈Ωj

S

Ωk

y, djk = max
(x,y)∈Ωj

S

Ωk

y.
(69)

It is clear that there exists C > 0 such that for all adjacent cells (Ωj , Ωk)

∀(M, M ′) ∈ C(Ωj , Ωk), |M − M ′| ≤ C∆x. (70)

Indeed, since ∃c > 0 such that the diameter of each cell is smaller than
c∆x, then (70) holds with C = 2c (the mesch is assumed to be triangular
or quadrangular). As a consequence of this we have

meas(C(Ωj , Ωk)) = (bjk − ajk) × (cjk − djk) ≤ (C∆x)2,

and, because of the hypothesis (63), ∃C̃ such that

meas(C(Ωj , Ωk)) = (bjk − ajk) × (cjk − djk) ≤ C̃ max(sj , sk). (71)

c) Let us now consider f ∈ L∞(Ω)∩BV (Ω) and f∆x given by the standard L2

projection

f∆x =
∑

j

(

1

sj

∫

Ωj

f

)

1Ωj
. (72)

Then

||f∆x||BV =
∑

j

∑

k∈I−(j)
S

I0(j)

ljk|
1

sj

∫

Ωj

f − 1

sk

∫

Ωk

f |

=
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

∣

∣

∣

∣

∣

∫

M ′∈Ωj

∫

M∈Ωk

f(M) − f(M ′) dM dM ′

∣

∣

∣

∣

∣

≤
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

∫

M ′∈Ωj

∫

M∈Ωk

|f(M) − f(M ′)| dM dM ′

≤
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

∫

M ′∈C(Ωj ,Ωk)

∫

M∈C(Ωj ,Ωk)

|f(M) − f(M ′)| dM dM ′.

(73)
For M = (x, y) and M ′ = (x′, y′) we bound

|f(M) − f(M ′)| =

∣

∣

∣

∣

∣

∫ x′

x

∂xf(s, y) ds +

∫ y′

y

∂yf(x′, s) ds

∣

∣

∣

∣

∣

≤
∫ x′

x

|∂xf(s, y)| ds +

∫ y′

y

|∂yf(x′, s)| ds

≤
∫ x′

x

||∇f(s, y)|| ds +

∫ y′

y

||∇f(x′, s)|| ds
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that is (using notations (69)

|f(M) − f(M ′)| ≤
∫ bjk

ajk

||∇f(s, y)|| ds +

∫ djk

cjk

||∇f(x′, s)|| ds.

Next we incorporate this expression in (73) and get

||f∆x||BV ≤
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

×
∫

M ′∈C(Ωj ,Ωk)

∫

M∈C(Ωj ,Ωk)

(

∫ bjk

ajk

||∇f(s, y)|| ds +

∫ djk

cjk

||∇f(x′, s)|| ds

)

dM dM ′

=
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

×
∫ bjk

x′=ajk

∫ djk

y′=cjk

∫ bjk

x=ajk

∫ djk

y=cjk

(

∫ bjk

ajk

||∇f(s, y)|| ds +

∫ djk

cjk

||∇f(x′, s)|| ds

)

dy dx dy′ dx′.

This can be written as

||f∆x||BV ≤
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

×
(

∫ bjk

x′=ajk

∫ djk

y′=cjk

∫ bjk

x=ajk

(

∫ djk

y=cjk

∫ bjk

ajk

||∇f(s, y)|| ds dy

)

dx dy′ dx′

+

∫ djk

y′=cjk

∫ bjk

x=ajk

∫ djk

y=cjk

(

∫ bjk

x′=ajk

∫ djk

cjk

||∇f(x′, s)|| ds dx′

)

dy dx dy′

)

.

Thus we have

||f∆x||BV ≤
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

(bjk − ajk + djk − cjk)

×(bjk − ajk)(djk − cjk)

∫

C(Ωj ,Ωk)

|∇f(M)| dM,

and, using (71),

||f∆x||BV ≤
∑

j

∑

k∈I−(j)
S

I0(j)

ljk

sjsk

(bjk − ajk + djk − cjk)

×max(sj , sk)

∫

C(Ωj ,Ωk)

|∇f(M)| dM.
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Due to the uniform regularity of the grid and (70) there exists C > 0 such
that

ljk

sjsk

(|bjk − ajk| + |djk − cjk|)max(sj , sk) ≤ C, ∀j, k and ∀∆x.

Thus we obtain

||f∆x||BV ≤ C
∑

j

∑

k∈I−(j)
S

I0(j)

∫

C(Ωj ,Ωk)

|∇f(M)| dM.

We rewrite this as

||f∆x||BV ≤ C

∫

Ω

|





∑

j,k such that M∈C(Ωj ,Ωk)

1



∇f(M)| dM.

Now we use (70): if (x, y) ∈ C(Ωj , Ωk) then

Ωj ⊂ B(M, diameter(C(Ωj , Ωk))) ⊂ B(M, C∆x).

Inequality (70) implies that the number of such cells is bounded

∃C′′ > 0,
∑

j,k such that M∈C(Ωj ,Ωk)

1 ≤ C′′.

What is important is that C′′ is independent of the size of the mesh ∆x.
So finally

||f∆x||BV ≤ (CC′′)

∫

Ω

|∇f(M)| dM = (CC′′)||f ||BV .

Since all constants are independent of the mesh size it proves the continuity
of the L2 projection in BV. The constant given here is sufficient for our
purposes, but is probably far from being optimal.
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