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Abstract We present a non-diffusive and contact discontinuity capturing scheme for
linear advection and compressible Euler system. In the case of advection, this scheme is
equivalent to the Ultra-Bee limiter of [20], [24]. We prove for the Ultra-Bee scheme a property
of exact advection for a large set of piecewise constant functions. We prove that the numerical
error is uniformly bounded in time for such prepared (i.e. piecewise constant) initial data,
and state a conjecture of non-diffusion at infinite time based on some local over-compressivity
of the scheme for general initial data. We generalize the scheme to compressible gas dynamics
and present some numerical results.
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1 Introduction

This work deals with non-dissipative schemes for hyperbolic equations. For sake
of simplicity we restrict theoretical developments to one dimensional hyperbolic
problems, both in the linear and non linear ranges. Linear advection is the basic
model that will serve to present the analysis.

Linear advection : let us consider in one dimension (x ∈ R, t ∈ R
+) a

constant velocity a > 0. The unknown is u(x, t), solution of the equation

∂tu + a∂xu = 0, (1)

with a given initial value

u(x, 0) = u0(x) ∀x ∈ R. (2)

Recall that the solution of this problem is

u(x, t) = u0(x − at). (3)
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The question of non-dissipative schemes in conjunction with high order lim-
ited schemes has been extensively studied in the past ([20], [24], [25], [21]).
Nowadays many researchers still investigate that question (cf. [2], [10], [15],
[1],[19], [5], [12] and references therein); see also in the context of Discontinuous
Galerkin Methods [4], [8], [3] and references therein.

This problem is a basic one, with no satisfactory general solution. It is an
understatement to claim that the question of non-dissipative schemes has the
greatest importance in numerical simulation and scientific computing. We take
as a general rule that a numerical scheme should ideally respect two points which
may be viewed as incompatible : a) a numerical method must have enough dissi-
pation in order to be stable and to capture discontinuous solutions when applied
to non-linear hyperbolic problems; b) on the other hand it is important to use
a numerical method with as low numerical dissipation as possible, at least one
order of magnitude below the real physical dissipation. To our opinion, a con-
sequence of our work is that it is possible to design one order stable schemes,
stable enough to capture discontinuous solutions with in some sense zero diffu-
sion. In fact we will prove that for linear advection a particular scheme is exact
for a “dense” set of discrete profiles. These discrete profiles consist essentially
on piecewise constant functions, step functions (the minimum size of the step
is three mesh points). Moreover the scheme is a one order scheme: the flux is
chosen as close as possible to the downwind value of the numerical unknown.
In the case of linear advection, this scheme is equivalent to the so called Ultra-
Bee limiter (see [20] and [24]). Nevertheless we propose a constructive way for
the derivation of the scheme: this derivation is different from the classical one
(presented for instance in ([24])).

The paper is organized as follows. In section 2 we present a stability and
consistency analysis for linear advection with constant velocity. We prove that
it is equivalent to the limiter analysis and that the particular scheme we choose
is the Ultra-Bee limiter. In section 3 we prove for this scheme a property of
exact advection of a “dense” in L1 set of functions, and propose a conjecture of
convergence at infinite time. Numerical examples sustain the theoretical results.
We generalize the scheme to compressible Euler system, in section 4, and explain
why the scheme exactly captures contact discontinuities, what is visible on some
numerical results. Finally we propose an extension of this analysis to dimension
2 in section 5 and conclude in section 6.

2 Linear advection

In order to present the main ingredient of our study let us consider a general
scheme for the discretization of (1). We use the standard finite-volume-like
discretization

un+1
j = un

j − a
∆t

∆x
(un

j+ 1
2

− un
j− 1

2

). (4)
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Here ∆t and ∆x are the time step and cell size. The value of the numerical
solution at step n (time n∆t, n ∈ N) and in cell j (abscissa j∆x, j ∈ Z) is
denoted as un

j and the updated value in the same cell is denoted as un+1
j . We

assume that the initial condition is given by the constant mass approximation

u0
j =

1

∆x

∫ x
j+ 1

2

x
j− 1

2

u0(x)dx

(we assume that u0 ∈ L1
loc(R)).

Using simplified notations, we rewrite (4) as

ūj = uj − a
∆t

∆x
(uj+ 1

2
− uj− 1

2
). (5)

2.1 L∞ and TVD stability requirements

We look at some values of the fluxes such that the following L∞ stability con-
dition and TVD (Total Variation Diminishing) condition is fulfilled (recall that
a > 0)

mj = min(uj , uj−1) ≤ ūj ≤ Mj = max(uj , uj−1). (6)

It is straightforward to check that (6) may be rewritten as

ūj = αjuj + (1 − αj)uj−1 = uj − Dj+ 1
2
(uj − uj−1)

where 0 ≤ αj ≤ 1 and 0 ≤ Dj+ 1
2

= 1 − αj ≤ 1. Using this formulation we

recover the Harten criterion for L∞ stability and TVD (see [13]). It proves the

Lemma 1 A scheme as (5) which satisfies (6) is L∞ stable and TVD.

However the updated value ūj depends on the fluxes uj+ 1
2

and uj− 1
2

: so we

need to study some conditions on the fluxes uj+ 1
2

such that (6) is true. In our
opinion the main difficulty is to obtain the values of the fluxes in a somewhat
constructive way. Next we present what we think to be such a constructive way.

An equivalent condition to (6) is

mj ≤ uj − a
∆t

∆x
(uj+ 1

2
− uj− 1

2
) ≤ Mj ,

that is

uj− 1
2

+
∆x

a∆t
(uj − Mj) ≤ uj+ 1

2
≤ uj− 1

2
+

∆x

a∆t
(uj − mj), ∀j. (7)

This inequality is of no use for practical computation since all fluxes are coupled
with these inequalities for j − 1, j, j + 1, ... The idea is then to derive some
sufficient conditions (also written in inequality form) such that (7) is true. We
propose to base these sufficient conditions on (8) and (9)

mj+1 ≤ uj+ 1
2
≤ Mj+1, ∀j ∈ Z, (8)
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Mj +
∆x

a∆t
(uj − Mj) ≤ uj+ 1

2
≤ mj +

∆x

a∆t
(uj − mj), ∀j ∈ Z. (9)

The first inequality, (8), is simply the flux counterpart of (6) (a consistency
condition), while we have just eliminated uj− 1

2
in the second. This simple

manipulation is a constructive way for the derivation the fluxes. It is straight-
forward to check that (8) and (9) imply (7). The question now is “are (8) and
(9) compatible ?” In other terms, “is this possible to take fluxes verifying the
two inequalities (8) and (9) ?”. The answer, positive, is given in the following
theorem.

Theorem 1 The following two properties hold.

a) Assume the CFL condition

0 < a
∆t

∆x
≤ 1; (10)

then

uj ∈ [mj+1, Mj+1] ∩

[

Mj +
∆x

a∆t
(uj − Mj), mj +

∆x

a∆t
(uj − mj)

]

6= ∅.

Therefore it is possible to find a value of the flux uj+ 1
2

such that (8) and

(9) are true.

b) Inequalities (8) and (9) imply inequality (7) and (8).

Proof: it is obvious that uj ∈ [mj+1, Mj+1] (from the definition of mj+1

and Mj+1). Thus we have only to prove that

uj ∈

[

Mj +
∆x

a∆t
(uj − Mj), mj +

∆x

a∆t
(uj − mj)

]

.

We here prove that uj ≤ mj + ∆x
a∆t (uj − mj), the other inequality uj ≥ Mj +

∆x
a∆t(uj − Mj) can be proved with the same arguments.

We know that uj ≥ mj = min(uj−1, uj). Under the CFL condition a ∆t
∆x ≤ 1,

we have a ∆t
∆x − 1 ≤ 0, so that

uj(a
∆t

∆x
− 1) ≤ mj(a

∆t

∆x
− 1).

This leads to

uja
∆t

∆x
≤ mja

∆t

∆x
+ uj − mj ,

and, provided that a ∆t
∆x > 0, to

uj ≤ mj +
uj − mj

a∆t/∆x
,

which is the expected upper bound. The second point, b), is straightforward.
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The consistency inequality (8) implies that the fluxes define what is called an
essentially three points scheme (see [11]): an essentially three points schemes is
such that if uj = uj+1 then uj+ 1

2
= uj = uj+1. As a consequence of theorem 1,

lemma 1 and a standart convergence result for L∞ stable and TV D schemes
(see [11]), we have

Corollary 1 Under the CFL condition (10), a scheme satisfying (8) and (9) is
essentially three points, L∞ stable and TVD. Assume moreover that the fluxes
are locally Lipschitz-continuous functions of their arguments (uj)j∈Z. Then the
numerical solution converges in L1 to the unique solution of (1).

It turns out that it is possible to base the derivation of the fluxes for practical
computations on formulae (8) and (9) since the inequalities for the fluxes are
now decoupled.

2.2 Choice of the fluxes

We are interested mainly in non-dissipative schemes and we are not satisfied
with the classical upwind scheme. In order to understand what this requirement
implies let us look at the very simple situation where the initial solution u0 is a
Heavyside function

u0
l = 1, ∀l ≤ j, and u0

l = 0, ∀l > j. (11)

Let us consider the situation where the time step is not the maximal time step.
For example

a
∆t

∆x
=

1

3
< 1. (12)

The initial condition is plotted on figure 1.

j

exact and numerical initial condition

Figure 1: Initial condition.

For the initial condition (11), the exact solution at the first time step is
u0(x − ∆x

3 ). After projection on the grid, it is

u1
l =

1

∆x

∫ x
l+1

2

x
l− 1

2

u0(x −
∆x

3
)dx,
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that is






u1
l = 1, ∀l ≤ j,

u1
j+1 = 1

3 ,
u1

l = 0, ∀l > j + 1,
(13)

represented on figure 2.

exact solution

projected exact solution

j

Figure 2: First time step.

At the second time step, the exact solution is u0(x− 2∆x
3 ) while the projected

exact solution is

u2
l =

1

∆x

∫ x
l+1

2

x
l− 1

2

u0(x −
2∆x

3
)dx,

that is






u2
l = 1, ∀l ≤ j,

u2
j+1 = 2

3 ,
u2

l = 0, ∀l > j + 1,
(14)

which is represented in figure 3.

exact solution

projected exact solution

j

Figure 3: Second time step.

After a third time step, the exact solution is u0(x − ∆x). Its projection on
the grid is

u3
l = 1, ∀l ≤ j + 1, and u3

l = 0, ∀l > j + 1, (15)

and is again equal to the exact solution 4.
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j

exact and numerical solution

Figure 4: Third time step.

Now we forget that (11), (13), (14) and (15) are some cell-averages of the
exact solution, and consider that these numerical profiles are given by a scheme
as (4). If we try to define some numerical fluxes such that the scheme (4) applied
to the initial condition (11) (resp. (13) or (14)) gives (13) (resp. (14) or (15)),
a solution for the cell j is

u0,1,2

j− 1
2

= 1 and u0,1,2

j+ 1
2

= 0.

Indeed it implies
u1

j = 1
3 , u1

j+1 = 0,
u2

j = 2
3 , u2

j+1 = 0,
u3

j = 2
3 , u3

j+1 = 0.

So we arrive at the conclusion that in this situation the “exact numerical flux”,
between cell j and cell j + 1, is equal to the down-winded value of the exact
solution, that is u1,2

j+ 1
2

= u1,2
j+1 = 0.

Now we raise this simple fact is a general principle for the choice of the
numerical flux. The numerical flux will be chosen as closed as possible to the
down-winded value of the numerical solution.

Gathering previous discussions of stability and consistency requirements we
arrive at the following definition of the flux : uj+ 1

2
is the closest value to the

downwind value uj+1, subjected to the upwind stability constraints (8) and (9):














mj+1 ≤ uj+ 1
2
≤ Mj+1, ∀j ∈ Z,

Mj +
∆x

a∆t
(uj − Mj) ≤ uj+ 1

2
≤ mj +

∆x

a∆t
(uj − mj), ∀j ∈ Z,

|uj+1 − uj+ 1
2
| is minimum, ∀j ∈ Z.

(16)

Of course this definition is of practical use since the choice of the value of the flux
is now decoupled from one interface to the other. Moreover, the minimization
problem reduces to the explicit formula (17). Note

{

bj = max(mj+1, Mj + ∆x
a∆t(uj − Mj)),

Bj = min(Mj+1, mj + ∆x
a∆t(uj − mj)).

uj+ 1
2

=







bj if uj+1 < bj ,
uj+1 if bj ≤ uj+1 ≤ Bj ,
Bj if Bj < uj+1.

(17)
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The scheme defined with this formula and all the schemes derived from it will
be called limited downwind schemes, or, more simply, downwind schemes.

The scheme defined in (17) is not monotone neither linear. Nevertheless we
can very easily state a first result, lemma 2.

Lemma 2 Let (uj)j∈Z and (vj)j∈Z be two discrete functions and let us apply
the limited downwind scheme (4), (17) to these functions.

Assume vj = cuj + d ∀j ∈ Z (with c ∈ R, d ∈ R); then vj+ 1
2

= cuj+ 1
2

+ d
∀j ∈ Z, and so v̄j = cūj + d ∀j ∈ Z.

The proof is obvious, the relations between the bounds for uj+ 1
2

and vj+ 1
2

being straightforward.

2.3 Link with limiters

It is interesting to make the link with the classical theory of limiters (in [13],
[18], [20], [23], see also [24] and [11]).

Let us recall some basic facts about numerical schemes with limiters for the
discretization of (1). In the limiter framework a general scheme is rewritten as

ūj = uj − ν(uj − uj−1)−
ν(1 − ν)

2
(ϕj+ 1

2
(uj+1 − uj)−ϕj− 1

2
(uj − uj−1)), (18)

where ν is the Courant number, ν = a ∆t
∆x . In the classical theory (cf. [23])

the coefficient ϕj+ 1
2

is a function of the rate of increase rj+ 1
2

and the Courant
number ν

rj+ 1
2

= (uj − uj−1)/(uj+1 − uj),

ϕj+ 1
2

= ϕ(rj+ 1
2
, ν).

(19)

Function ϕ is either subjected to the following limitations (if we allow the
Courant number to enter the definition of ϕ)

{

ϕ(r, ν) = 0 for r ≤ 0,
0 ≤ ϕ(r, ν) ≤ min( 2

1−ν , 2r
ν ),

(20)

or subjected to the following restrictions (if we do not want that the Courant
number enters the definition of ϕ)







ϕ(r, ν) = ϕ(r),
ϕ(r) = 0 for r ≤ 0,
0 ≤ ϕ(r) ≤ min(2, 2r).

A standard result of Sweby proves the following stability result (see [23]).

Theorem 2 The scheme (18), (19), (20) is L∞ stable and TV D under the
condition: 0 < ν ≤ 1.
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Let us recall briefly that the proof is based on a Harten reformulation

ūj = uj − Dj+ 1
2
(uj − uj−1)

with 0 ≤ Dj+ 1
2
≤ 1.

Simple manipulations of our inequalities prove that our scheme is equivalent
to the upper bound of (20)

ϕ(r, ν) = minmod(
2r

ν
,

2

1 − ν
) = max(0, min(

2r

ν
,

2

1 − ν
)). (21)

Lemma 3 Let us consider linear advection at constant velocity a > 0. The
scheme (5) defined by (16) is the same scheme than the Ultra-Bee scheme (18),
(19), (21).

Proof: We here do not report the whole proof (see in [16]). It is only a
matter of obvious calculus, which may be split in two steps.

• The Ultra-Bee scheme is a finite volume scheme in the form (4) with flux

uj+ 1
2

= uj + (uj+1 − uj) max(0, min((
1

a∆t/∆x
− 1)

uj − uj−1

uj+1 − uj
), 1),

so that it verifies

uj+ 1
2
− uj

uj+1 − uj
= max(0, min((

1

a∆t/∆x
− 1)

uj − uj−1

uj+1 − uj
), 1).

• The limited downwind fluxes verifies too

uj+ 1
2
− uj

uj+1 − uj
= max(0, min((

1

a∆t/∆x
− 1)

uj − uj−1

uj+1 − uj
), 1).

Theorem 2 is equivalent to our corollary 1.

3 An optimal property of the downwind scheme

It may appear as striking that we propose to take the Ultra-Bee scheme as a
“good” scheme, since it is well known that the Ultra-Bee scheme is a first order
scheme subjected to the over-compressive pathology, as it is the case for the
Super-Bee scheme reported for example in [24].

Being first order means in the limiter framework that ϕ(1, ν) 6= 1, while being
over-compressive means that if we take, say, a Gaussian as initial solution, then
after a “long” time (that is if we look at the numerical solution for large n) then
the Gaussian is squared off. A square numerical profile has taken place of the
initial Gaussian function.

In the following we would like to present a somewhat different discussion
of this point. The conclusions that we will draw from the analysis will be
completely different. We claim that on the contrary the downwind scheme is a
very good scheme.
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3.1 Exact advection of “piecewise constant” functions

The following result (new to our knowledge) states that the downwind scheme
is an exact scheme for a “dense” in L1 set of functions.

Theorem 3 Let us assume that the discrete function (uj)j∈Z is such that
∃α ∈ [0, 1[ such that ∀j ∈ Z,

{

u3j+1 = u3j

u3j+2 = αu3j+1 + (1 − α)u3j+3.

Then

• either 0 ≤ α + ν < 1 and for all j

{

ū3j+1 = ū3j = u3j

ū3j+2 = (ᾱ)ū3j+1 + (1 − ᾱ)ū3j+3

with 0 ≤ ᾱ = α + ν ≤ 1 ;

• or 1 ≤ α + ν < 2 and for all j

{

ū3j+2 = ū3j+1 = u3j+1

ū3j+3 = (ᾱ)ū3j+2 + (1 − ᾱ)ū3j+4

with 0 ≤ ᾱ = α + ν − 1 ≤ 1.

The set of functions verifying hypothesis of theorem (3) is a set of step functions.
Proof: For sake of simplicity, we only prove the result for a one-step

function:






ul = 1 ∀l ≤ j,
uj+1 = α with 0 ≤ α ≤ 1,
ul = 0 ∀l ≥ j + 2.

We need to prove that

• either 0 ≤ α + ν < 1, then







ūl = 1 ∀l ≤ j,
ūj+1 = ᾱ,
ūl = 0 ∀l ≥ j + 2.

with 0 ≤ ᾱ = α + ν ≤ 1 ;

• or 1 ≤ α + ν < 2, then







ūl = 1 ∀l ≤ j + 1,
ūj+2 = ᾱ,
ūl = 0 ∀l ≥ j + 3.

with 0 ≤ ᾱ = α + ν − 1 ≤ 1.
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Firstly remark that the stability constraint impose that ūl = 1 ∀l ≤ j and ūl = 0
∀l ≥ j + 2.

Let us compute the flux uj+ 1
2
. We have

{

mj = 1,
Mj = 1

so that
{

mj +
uj−mj

ν = 1,

Mj +
uj−Mj

ν = 1

and necessarily
uj+ 1

2
= 1.

Now we compute the flux on the interface j + 3/2. We have

{

mj+1 = α,
Mj+1 = 1

and
{

mj+1 +
uj+1−mj+1

ν = α,

Mj+1 +
uj+1−Mj+1

ν = 1 + α−1
ν ,

and
{

mj+2 = 0,
Mj+2 = α.

So
{

bj+1 = max(0, 1 + α−1
ν ),

Bj+1 = α.

So

• either 0 ≤ α + ν < 1, then bj+1 = 0, uj+3/2 = 0 (recall formula (17)), so
that ūj+1 = uj+1 − ν(0 − 1) = α + ν = ᾱ and ūj+2 = 0;

• or 1 ≤ α + ν < 2, then bj+1 = 1 + α−1
ν , uj+3/2 = 1 + α−1

ν , so that

ūj+1 = uj+1 − ν((1 + α−1
ν ) − 1) = α − ν − α + 1 − ν = 1 and ¯αj+2 =

0 − ν(0 − (1 + α−1
ν )) = α + ν − 1 = α.

The result is proved for this simple step from 1 to 0. Now, using the lemma 2,
and the fact that the scheme is essentially three-point (this property leading to
the fact that there are no interactions between steps of two or more cells), we
can extrapolate the result of the theorem. A complete and detailed proof can
be found in [16].

Remark 1 Iterating this result on many time steps, we see that the steps
(u3j+1 = u3j) are perfectly transported at the right velocity (refer to [16] for
a comprehensive proof, or remember the example of the Heavyside function in
subsection 2.2).
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Remark 2 In theorem 3, α is the same between each three points step. It
is possible to replace three points steps (u3j+1 = u3j , u3j+2 = αu3j+1 + (1 −
α)u3j+2), by four (or more) points steps with non-constant α (u3j+2 = u3j+1 =
u3j , u3j+3 = α3j+2u3j+2 + (1 − α3j+2)u3j+4).

3.2 Uniform bounds on the numerical error

Let un
j be a given numerical profile. We define un(x) the function equal to un

j

in each cell, that is un(x) =
∑

j∈Z
un

j 1[x
j− 1

2

,x
j+1

2

[.

Theorem 4 Consider an initial condition u0(x) ∈ L1(R)
⋂

BV (R) such that
the discrete initial condition verifies

{

u0
3j+1 = u0

3j ,
u0

3j+2 = αu0
3j+1 + (1 − α)u0

3j+3, for some 0 ≤ α < 1,
(22)

Then, assuming the CFL condition a∆t/∆x ≤ 1, one has

‖un(·) − u(·, n∆t)‖L1(R) ≤ 3∆xTV (u0)

where TV (u0) is the total variation of u0.

This result means that the numerical error is bounded uniformly in time. It can
be viewed as an infinite time error estimate. For all other known finite volume
schemes, the bound 3∆xTV (u0) is multiplied by an increasing function of the
time (or of the number of iterates).

Idea of the proof This non-classical result relies essentially on theorem 3
and remark 1. It consists in remarking that from theorem 3, the step values are
conserved for all time. Thus the error estimate can consist only in a shift between
the exact and the numerical solution, and an additional term for the error in
the intermediate values (linear combinations). This additional term is of course
bounded by a constant multiplied by ∆x. Then we have to evaluate the error due
to the shift. A short analysis reveals that the numerical result does not depend
on the time steps, that is, in particular, that the semi-continuous (continuous
in time) scheme associated to (17) is equivalent to (17) (for a prepared datum).
This leads to the fact that the shift is of less than one cell. The associated error
is then bounded by a constant multiplied by ∆x. All the details of the proof
are reported in [16].

After many numerical experiments and theoretical investigations, we think
that the following conjecture, dealing with non-prepared data, is true. For a
given ∆x we consider both the discrete numerical solution (u∆x)n

j and the as-
sociate functions (u∆x)n(x) =

∑

j∈Z
(u∆x)n

j 1[x
j− 1

2

,x
j+ 1

2

[, for each n (these func-

tions are constant in every cell).
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Conjecture 1 For all initial condition u0(x) ∈ L1(R)∩BV (R), let us consider
a sequence of initial approximation (u∆x)0 with

lim
∆x→0

‖(u∆x)0 − u0‖L1(R) = 0. (23)

Then,

lim
∆x→0

(

lim sup
n→∞

‖(u∆x)n(·) − u(·, n∆t)‖L1(R)

)

= 0

(under CFL condition 0 < a∆t/∆x ≤ 1, and adding a supplementary con-
dition a∆t/∆x 6= 1/2).

Remark 3 Of course if (u∆x)0 is chosen in a set of numerical profiles satisfying
the hypothesis of theorem 3, it is straightforward to prove the result. Moreover,
it is always possible to chose a sequence (u∆x)0 verifying both (22) and (23).
This comes from the fact that every L1 function can be approached by such a
prepared discrete function. Step functions are in this meaning a dense set of L1

(see [16] for a rigorous proof of this density result).

This is an infinite time convergence conjecture. In other words, the error for
infinite time tends to 0 with the mesh size ∆x, whatever the initial approxima-
tion is (even if unprepared). Note that the limit in time is before ∆x → 0. This
result is false for all known classical methods. At present time we do not have
a comprehensive proof of that conjecture. However it is possible to understand
what is going on combining the results of theorems 3 and 5.

Let us consider for instance a smooth initial condition, that is rj+ 1
2
≈ 1.

Due to theorem 5 (see in appendix A) the scheme is linearly unstable around
all smooth profiles if ν 6= 1/2. Linear instability appears and the smooth initial
profile is replaced after a few time steps by a profile such that either rj+ 1

2
≈ 0 or

rj+ 1
2
≈ ±∞. We have observed that the number of time steps is approximatively

30 or 40. In fact the numerical solution is then very close to a “piecewise
constant” discrete profile described in theorem 3. Then the piecewise constant
profile is perfectly transported.

So in some sense the scheme approximates the initial smooth profile by a
piecewise constant approximation. It produces an error C1∆x in L1 norm, where
C1 is function of the number of time steps needed by the scheme to replace the
initial smooth profile by the piece-wise constant profile: this number of time
steps seems to be more or less independent of ∆x. Then the piecewise constant
profile is perfectly transported with null error (C2∆x where C2 = 0). So the
total error at time T is C(T )∆x with C(T ) = C1 + C2 = C1. The total error at
time T is now independent of T !

Nevertheless the reader must be convinced that, even if we think this argu-
ment is correct, it is not at all a proof. For example we have observed that the
Courant number ν has to be different from one half for the scheme to be able
to locally and rapidly project smooth profiles on piece-wise constant profiles. If
ν = 1

2 the scheme projects globally and slowly smooth profiles on piecewise con-
stant profiles : we recover the squaring effect already reported for the Super-Bee
scheme. We do not know the reason of that necessary condition ν 6= 1

2 .
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We may sum up this discussion considering two cases

a) If a∆t/∆x 6= 1
2 , the scheme is in some sense locally over-compressive :

the conjecture seems to be true and all smooth smooth initial profiles are
approximated by piecewise constant functions.

b) If a∆t/∆x = 1
2 , many numerical experiments show that the conjecture is

not true. Global over-compressivity is present (like with the Super-Bee
limiter).

3.3 Numerical results

We here present a few numerical results. They have been computed on the
interval [0, 1] with periodic boundary conditions in order to be able to observe
the result at a very long time. We took for Courant number ν = 0.1. The first
one is the result for an indicatrix function. It illustrates the theorem of exact
advection, and we see that this initial condition is not at all dissipated (figure 5).
The second gives an idea why we conjecture the infinite-time convergence result
(figure 6): the initial Gaussian has been transformed into a step Gaussian in
a few time steps, and after has been exactly computed. Here, the result is
given after 1000 periods, it is only indicative, the result being the same after
any number of periods. It can be here compared to the result given by the
Super-Bee scheme, showing its global over-compressive property.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

initial condition
limited downwind

Super-Bee limiter
upwind scheme

Figure 5: Initial condition and results for t = 5.3 (after 5.3 periods).
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Super-Bee limiter

Figure 6: Initial condition and results for t = 1000 (after 1000 periods).

Remark 4 • All what we did here is for a non-negative velocity. Of course,
a limited downwind scheme can be written equivalently for non-positive
velocities.

• Furthermore, the formalism is able to treat of non-conservative non-constant
velocity advection

∂tu + a(t, x)∂xu = 0,

discretized as follows :

un+1
j = un

j − an
j

∆t

∆x
(un

j+ 1
2

− un
j− 1

2

)

Because of theoretical difficulties about this kind of equations (existence
of solutions...), we did not discuss about it and restricted ourselves to con-
stant velocity advection. Nevertheless the following sections on compress-
ible gas dynamics will show how to deal with this non-constant velocity
transport.

4 Compressible gas dynamics

Now we discuss some application of the formalism previously introduced to
compressible gas dynamics (Euler equations)







∂tρ + ∂x(ρu) = 0,
∂tρu + ∂x(ρu2 + p) = 0,
∂tρue + ∂x(ρue + pu) = 0.

(24)

The system is closed with a perfect gas law p = (γ−1)
(

ρe − 1
2ρu2

)

, with γ > 1.
It is not simple to apply the non-dissipative approach to truly non-linear

equations: the reason is the necessity of including some entropy constraints (see
for example the approach developed in [17] for Burgers equation). So in the
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following we would like to introduce a simplified approach. The non-dissipative
scheme is applied only to the linearly degenerate part of (24). Let us lay stress
on the fact that we do not know how to derive an Ultra-Bee limited scheme
(see equation (21)) for such non-linear systems. The scheme we present in the
following is not based on the Ultra-Bee formalism (21), but on the downwind
formalism (17). We think that this new formalism is much more adapted to such
non-trivial cases. The limited downwind scheme has the advantage of giving a
contact-discontinuity-capturing scheme.

It is well known that (24) is made of 2 truly non-linear fields and one linear
degenerate field. We would like to apply the very strong anti-dissipative scheme
only to the degenerate linear field, and to apply another scheme (a diffusive one)
to the truly non-linear part of the system. The hope is that the very strong
anti-dissipative features of the scheme for the linear degenerate part will not
interact with the truly non-linear part. It is important, since strong interaction
might result in the capture of wrong shock rarefaction profiles.

Let us emphasize that there is a priori many solutions to numerically split
(24) between truly non-linear parts and a linearly degenerate part : for example
it is possible to use a Roe scheme as in [24]. However all our efforts to incorporate
the previously discussed non-dissipative transport scheme in the Roe scheme
failed, in the sense that it leaded to a very oscillating scheme, even for the
calculation of pure contact discontinuities.

The approach that we present has the advantage of being “exact” and non-
oscillating at contact discontinuities, at least for perfect gas laws.

Let us now present the scheme, which is split between 2 parts, one Lagrange
part and one re-map part.

4.1 Lagrange part

Is is straightforward to prove that (24) is, for smooth solutions, equivalent to
(25)







ρDtτ − ∂xu = 0,
ρDtu + ∂xp = 0,
ρDte + ∂xpu = 0

(25)

where Dt = ∂t + u∂x is the convective derivative, and τ = 1/ρ is the specific
volume.

This is not exactly what is called the Lagrange reformulation of (24), but is
quite similar to (see [12]).

So let us consider (25) and the following numerical scheme (26) of order one
in time and space (introduced in [6] and [9])















ρj
τ̃j−τj

∆t −
u

j+ 1
2

−u
j− 1

2

∆x = 0,

ρj
ũj−uj

∆t +
p

j+ 1
2

−p
j− 1

2

∆x = 0,

ρj
ẽj−ej

∆t +
p

j+ 1
2

u
j+ 1

2

−p
j− 1

2

u
j− 1

2

∆x = 0.

(26)
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The values of pj+ 1
2

and uj+ 1
2

are given by







pj+ 1
2

=
pj+pj+1

2 +
(ρc)

j+ 1
2

2 (uj − uj+1),

uj+ 1
2

=
uj+uj+1

2 + 1
2(ρc)

j+ 1
2

(pj − pj+1),
(27)

where (ρc)j+ 1
2

is some local approximation of the density multiplied by the

(local) sound velocity. In the following we will take

(ρc)j+ 1
2

=
√

max(ρjcj
2, ρj+1cj+1

2) min(ρj , ρj+1).

Recall that this scheme, as the following lemma says, is entropy increasing.

Lemma 4 There exists constants cj > 0 such that if cj∆t ≤ ∆x for all j, we

have S̃j ≥ Sj for all j.

See [9] for the proof.

4.2 Transport part

In some sense solving the quasi-Lagrangian system (25) means solving (24) in
a referential which moves with the matter. It is therefore easy to derive the
discrete equations in the transport part. We first recall the upwind transport
part proposed in [6]: in a second stage we will abandon it. For sake of simplicity,
we assume here that the velocities are positive uj+ 1

2
> 0 ∀j ∈ Z. We obtain











ρj = ρ̃j −
∆t
∆xuj− 1

2
(ρ̃j − ρ̃j−1) ,

ρjuj = ρ̃j ũj −
∆t
∆xuj− 1

2
(ρ̃j ũj − ρ̃j−1ũj−1) ,

ρjej = ρ̃j ẽj −
∆t
∆xuj− 1

2
(ρ̃j ẽj − ρ̃j−1ẽj−1) ,

(28)

where ρ̃j = 1
tildeτj

, ũj and ẽj are given by (26). After little algebra we combine

(26) and (28) to obtain the global scheme


















ρj = ρj −
∆t
∆x

(

ρ̃juj+ 1
2
− ρ̃j−1uj− 1

2

)

,

ρjuj = ρjuj −
∆t
∆x

(

ρ̃jũjuj+ 1
2
− ρ̃j−1ũj−1uj− 1

2
+ pj+ 1

2
− pj− 1

2

)

,

ρjej = ρjej −
∆t
∆xuj+ 1

2

(

ρ̃j ẽjuj+ 1
2
− ρ̃j−1ẽj−1uj+ 1

2
+ pj+ 1

2
uj+ 1

2
− pj− 1

2
uj− 1

2

)

.

(29)

Remark 5 System (29) is conservative.

Numerical system (29) is formally consistent with (24). Be careful that we
have assumed that the velocities uj+ 1

2
are positive for all j : it is the reason of the

up-winding ρ̃jũjuj+ 1
2

and not ρ̃j+1ũj+1uj+ 1
2
. Considering (28), the transport

part may be reinterpreted as pure transport (as in (5)) with velocities given
at the interfaces uj+ 1

2
> 0. And we have an entropy property for this upwind

transport (see [7]):
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Lemma 5 If 0 < uj+ 1
2
∆t ≤ ∆x for all j, we have Sj ≥ min

(

S̃j , S̃j−1

)

.

Even if this scheme has the advantage of being entropy consistent, it has the
drawback of being extremely diffusive. So we now introduce another possibility
for the transport part, based on the general non-diffusive transport scheme.
Instead of (26) we consider the more general scheme



















ρj = ρ̃j −
∆t
∆xuj− 1

2

(

ρ̃j+ 1
2
− ρ̃j− 1

2

)

,

ρjuj = ρ̃j ũj −
∆t
∆xuj− 1

2

(

ρ̃j+ 1
2
ũj+ 1

2
− ρ̃j− 1

2
ũj− 1

2

)

,

ρjej = ρ̃j ẽj −
∆t
∆xuj− 1

2

(

ρ̃j+ 1
2
ẽj+ 1

2
− ρ̃j− 1

2
ẽj− 1

2

)

,

(30)

where the fluxes are to be defined. The idea here is to find some L∞ stability
and TV D conditions on these fluxes and to down-wind all fluxes in (30) as much
as possible, as we did for linear advection. A problem here is the correlation
between ρ, ρu and ρe, leading to tricky computations. In order to deal with a
simpler de-correlated problem, we impose that the the three fluxes are linked
by







ρ̃j+ 1
2

= αj+ 1
2
ρ̃j + (1 − αj+ 1

2
)ρ̃j+1,

ρ̃j+ 1
2
ũj+ 1

2
= αj+ 1

2
ρ̃j ũj + (1 − αj+ 1

2
)ρ̃j+1ũj+1,

ρ̃j+ 1
2
ẽj+ 1

2
= αj+ 1

2
ρ̃j ẽj + (1 − αj+ 1

2
)ρ̃j+1ẽj+1.

(31)

In this system αj+ 1
2

is a linear combination coefficient, the same for each
of the three quantities ρ, ρu and ρe. It remains to define 0 ≤ αj+ 1

2
≤ 1

(this constraint being equivalent to consistency). Of course (28) corresponds
to αj+ 1

2
= 0 for all j. We choose this coefficient to be the largest as possible,

provided that (16) is true for all variables, that is for u in (16) being replaced
by ρ, ρu and ρe.

We do not write the complete algorithm, leaving all straightforward calculus
to the reader, but prefer to explain what it consists in. We take the first equation
of (28), and, as for advection equation, find a stability condition on ρ:

{

mρ
j = min(ρ̃j−1, ρ̃j),

Mρ
j = max(ρ̃j−1, ρ̃j),

and
ρ̃j − mρ

j

uj− 1
2
∆t/∆x

+ ρ̃j− 1
2
≤ ρ̃j+ 1

2
≤

ρ̃j − Mρ
j

uj− 1
2
∆t/∆x

+ ρ̃j− 1
2
.

Now, adding a consistency condition mρ
j−1 ≤ ρ̃j− 1

2
≤ Mρ

j ∀j ∈ Z, we obtain
a sufficient condition,

ρ̃j − mρ
j

uj− 1
2
∆t/∆x

+ mρ
j ≤ ρ̃j+ 1

2
≤

ρ̃j − Mρ
j

uj− 1
2
∆t/∆x

+ Mρ
j .

We do the same for each quantity, ρu and ρe. All inequalities (two for ρ, two
for ρu and two for ρe) have their equivalent form on αj+ 1

2
thanks to (31) (the
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consistency conditions leading to the only equation 0 ≤ αj+ 1
2
≤ 1). Thus we

can prove a result which is a generalization of theorem 1. This result states
that there exists a non-empty interval Ij+ 1

2
, containing 0, such that all fluxes

in the interval αj+ 1
2
∈ Ij+ 1

2
define new values with mρ

j ≤ ρj ≤ Mρ
j (with

similar inequalities for ρuj and ρej). Of course a necessary condition is the
CFL condition maxj∈Z uj+ 1

2
∆t ≤ ∆x, as in theorem 1. Now that the stability

interval is found, we take the nearest value to 1 in this interval, that is we choose
the largest αj+ 1

2
(following the idea of down-winding fluxes as most as possible).

For perfect gas law, the following result explains why this is a very attractive
procedure.

Lemma 6 Assume that there exists 2 constants u ∈ R and p ∈ R
+? such that

uj = u and pj = p (it means that the fluid has a constant pressure and a constant
velocity), and that ρj > 0 ∀j ∈ Z. Assume the CFL condition |u|∆t/∆x ≤ 1 is
verified.

Then whatever 0 ≤ αj+ 1
2
≤ 1 is, the numerical solution of the scheme (26),

(30) satisfies










ρj = ρj −
∆t
∆xu

(

ρj+ 1
2
− ρj− 1

2

)

,

uj = ũj = u,
pj = p̃j = p.

(32)

It means that if the initial condition corresponds to pure transport, then the
numerical scheme (26)-(28) reduces to pure transport. Furthermore, in this case,
the stability conditions on ρj+ 1

2
uj+ 1

2
and ρj+ 1

2
ej+ 1

2
are automatically verified

if the conditions on ρj+ 1
2

are, so that the resulting scheme is the same as the
one presented for advection at constant velocity. Consequently theorems 3 and
4 are valid.

In the case of a contact discontinuity characterized by equality of velocity and
pressure from one side to the other of the discontinuity, it explains why contact
discontinuities are not smeared over more than one cell by the downwind scheme
proposed in this work. Note that one cell is of course the optimum.

Proof: the proof of lemma 6 is split in two steps.
Concerning the Lagrange step (26) there is no difficulty, since formulae (27)

give pj+ 1
2

= p and uj+ 1
2

= u.

The second step is the transport part (28). For sake of simplicity we assume
that u > 0 as in the preceding. Of course the result is true even if u ≤ 0.

Firstly let us prove that uj = u. We assumed that

{

ρ̃j+ 1
2

= αj+ 1
2
ρ̃j + (1 − αj+ 1

2
)ρ̃j+1,

ρ̃j+ 1
2
ũj+ 1

2
= αj+ 1

2
ρ̃j ũj + (1 − αj+ 1

2
)ρ̃j+1ũj+1.

As a consequence of this,

ũj+ 1
2

=
[αj+ 1

2
ρ̃j ]ũj + [(1 − αj+ 1

2
)ρ̃j+1]ũj+1

[αj+ 1
2
ρ̃j ] + [(1 − αj+ 1

2
)ρ̃j+1]

,
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and this means that ũj+ 1
2

is a linear combination of ũj and ũj+1, so that in
the case of pure transport, ũj+ 1

2
= u. Now taking the numerical transport

equation (28), we write

uj(ρ̃j − u∆t/∆x(ρ̃j+ 1
2
− ρ̃j− 1

2
)) = u(ρ̃j − u∆t/∆x(ρ̃j+ 1

2
− ρ̃j− 1

2
)),

or
ujρj = uρj . (33)

Under the hypothesis that ρj > 0 ∀j ∈ Z, we have ρj > 0 ∀j ∈ Z and then (33)
reduces to

uj = u.

Now, to prove that pj = p, we recall that

pj = (γ − 1)ρj(ej − uj
2/2) = (γ − 1)ρj(ej − u2/2).

It implies that

pj = (γ − 1)(ρjej − u∆t/∆x(ρ̃j+ 1
2
ẽj+ 1

2
− ρ̃j− 1

2
ẽj− 1

2
)

− u2/2(ρj − u∆t/∆x(ρ̃j+ 1
2
− ρ̃j− 1

2
)))

= (γ − 1)(ρj(ej − u2/2)
− u∆t/∆x(ρ̃j+ 1

2
(ẽj+ 1

2
− u2/2) − ρ̃j− 1

2
(ẽj− 1

2
− u2/2)))

= p − (γ − 1)u∆t/∆x(ρ̃j+ 1
2
(ẽj+ 1

2
− u2/2)− ρ̃j− 1

2
(ẽj− 1

2
− u2/2)).

With the linear combination hypothesis this means

pj = p − (γ − 1)u∆t/∆x(αj+ 1
2
(ρ̃j ẽj − u2/2) + (1 − αj+ 1

2
)(ρ̃j+1ẽj+1 − u2/2)

− αj− 1
2
(ρ̃j−1ẽj−1 − u2/2) + (1 − αj− 1

2
)(ρ̃j ẽj − u2/2)),

and finally

pj = p − (γ − 1)u∆t/∆x(αj+ 1
2
p + (1 − αj+ 1

2
)p − αj− 1

2
p − (1 − αj− 1

2
)p) = p

as expected.

Remark 6 In this section as in the section for advection, we make the assump-
tion that uj+ 1

2
> 0 ∀j ∈ Z. Of course it is possible to derive an equivalent

algorithm in the case uj+ 1
2

< 0 ∀j ∈ Z. Furthermore, the stability constraints
are local, and consequently it is possible to define the fluxes for every velocity
repartition (even of non-constant sign).

4.3 Numerical results

We here give two numerical results, obtained for Riemann problems. In all cases
we use a perfect gas law p = (γ−1)ρε with γ = 1.4. Numerical results in 1D are
computed with two meshes, the first one is a 100-cell mesh, the other is 500-cell
mesh. The space interval is [0, 1].
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The first test case is the so-called Sod shock tube, with a discontinuous initial
condition







ρ0(x) = 1 if x ≤ 0.5, 0.125 otherwise,
p0(x) = 1 if x ≤ 0.5, 0.1 otherwise,
u0(x) = 0 ∀x.

The time is t = 0.14.
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Figure 7: Density for Sod tube, with 100 cells.
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Figure 8: Pressure for Sod tube, with
100 cells.
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Figure 9: Velocity for Sod tube, with
100 cells.
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Figure 10: Density for Sod tube, with 500 cells.
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Figure 11: Pressure for Sod tube, with
500 cells.
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Figure 12: Velocity for Sod tube, with
500 cells.

We see (figures 7, 8 and 9 for upwind scheme and limited downwind scheme
in the transport part) that the downwind scheme (αj+ 1

2
= max) “exactly” prop-

agates the contact discontinuity; this discontinuity is located on one cell only
and does not create velocity neither pressure oscillations. On the contrary the
numerical results obtained with the upwind scheme (that is the Lagrange+re-
map scheme with upwind re-mapping αj+ 1

2
= 0) is smeared at the contact

discontinuity. This is a well known numerical diffusion phenomenon. To our
knowledge almost all high order schemes also give this smearing effect. What is
remarkable here with the downwind scheme is that the contact discontinuity is
optimal and also that it remains optimal for t ≥ .14. This optimality result is
of course a consequence of lemma 6.

On the other hand, the shock is a little dissipated. The reason of this is that
it is transported by a truly non-linear field, and the truly non-linear fields are
solved with a classical algorithm (in the Lagrange part).

However we note here that the rarefaction is quite perturbed, being approx-
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imatively turned into a step function. Recall that for this scheme we do not
have any entropy property in the transport part.

On the figures 10, 11 and 12, we have the same quantities but on a refined
mesh. It shows that the scheme seems to converge (even in the rarefaction
wave), the contact discontinuity is optimal, with very few oscillations, for ρ.
There are absolutely no oscillations for p and u. Most of oscillations in the
rarefaction fan disappear with this refined mesh.

The second case we propose is the Lax shock tube:







ρ0(x) = 0.445 if x ≤ 0.5, 0.5 otherwise,
p0(x) = 3.528 if x ≤ 0.5, 0.571 otherwise,
u0(x) = 0.698 if x ≤ 0.5, 0. otherwise.

The time is t = 0.15.
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Figure 13: Density for Lax tube, with 100 cells.
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Figure 14: Pressure for Lax tube, with
100 cells.
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Figure 15: Velocity for Lax tube, with
100 cells.
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Figure 16: Density for Lax tube, with 500 cells.
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Figure 17: Pressure for Lax tube, with
500 cells.
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Figure 18: Velocity for Lax tube, with
500 cells.

We observe the same type of result. The contact discontinuity is well created
and then exactly advected in the projection steps. The shock is here very fine
and the rarefaction is quite good.

The results presented in this section for 1-D Euler equations are quite sim-
ilar to those of Harten and Hyman in [14]. Using subcell computations they
obtained for test cases exact contact discontinuities and shocks, but discontinu-
ities in rarefaction profiles. The entropy modifications they proposed then has
the drawback of spreading the contact discontinuity. Furthermore the present
downwind scheme, as a finite-volume one, is much more simple, and very easy
to transpose in 2-D.
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5 Extension in dimension two

It is possible to derive 2-D algorithms from the previous 1D schemes very simply,
using an alternating direction method (cf. [22]). We here do not report theory
neither numerics for advection equation in 2-D but only present one numerical
result for a divergent Sod tube for compressible Euler equations in 2-D,















∂tρ + ∂x(ρu) + ∂y(ρv) = 0,
∂tρu + ∂x(ρu2 + p) + ∂y(ρuv) = 0,
∂tρv + ∂x(ρuv) + ∂y(ρv2 + p) = 0,
∂tρue + ∂x(ρue + pu) + ∂y(ρve + pv) = 0,

(34)

the system being closed with a perfect gas law p = (γ − 1)ρ
(

e − 1
2u2 − 1

2v2
)

,
with γ = 1.4.

We do not write the scheme, which is a straightforward alternating direction
extension of the one given in the previous section.

The considered test is a divergent Sod shock tube with circular initial dis-
continuity in [0, 1]× [0, 1]:







ρ0(x) = 1 if r ≤ 0.5, 0.125 otherwise,
p0(x) = 1 if r ≤ 0.5, 0.1 otherwise,
u0(x) = 0 ∀r,

with r =
√

x2 + y2. The time is t = 0.2. We compare (on figure 19 and 20)
the results given by the upwind and the limited downwind discretizations of the
re-map part and observe the same behavior as in 1-D. The mesh is of 50 × 50
cells.
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Figure 19: Density with upwind re-map
part.
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Figure 20: Density with downwind re-
map part.
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Figure 21: Pressure with downwind re-
map part (different view angle than
for ρ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 22: Velocity with downwind re-
map part (same view angle as for p).

While there is no oscillations on pressure and velocity, we note that, as
in 1-D, the contact-discontinuity is optimal, in the sense that in every radial
direction, it is spread on only one cell.

6 Conclusion

This work deals with numerical dissipation, an important question in general nu-
merics for time-evolution problems. We proposed a new formalism giving some
very natural and explicit conditions for a finite-volume scheme to be stable and
convergent in the linear case of advection. Among all the convergent schemes
that are taken into account in this formalism, we proposed to take the closest to
the downwind scheme. We then analyze this given scheme, highlighting a very
unusual property: an exact computation of advection for a set of initial condi-
tion that is dense in L1 functions. What is even more amazing is the behavior
of this scheme for any initial condition: the scheme seems to project this initial
condition on that set of function, and then to advect it exactly. That is why we
conjecture a result of infinite-time convergence.

Then we evaluate the possibility of transposing this analysis to any non-linear
hyperbolic system. We here took the case of Euler equations for an ideal gas.
We proposed a way to re-derive the same type of scheme, extracting the linear
effects (due to the linearly degenerate field) with a Lagrange-projection splitting
and state some good properties of this scheme, including the exact advection
of (non-stationary) contact discontinuities. These results are illustrated on two
classical shock tubes computations: the Sod and the Lax test cases.

The present analysis seems to us to be powerful. Extension of this approach
to linear systems, multi-fluid flows and kinetic equations are in progress: see
[16] for preliminary results on multi-fluids with interfaces.
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A Linear instability of the Ultra-Bee scheme

The scheme (16) is not linearly stable. In order to state such a property we
consider an initial condition such that rj+ 1

2
≈ 1 or rj+ 1

2
= 1 (recall definitions

introduced in subsection 2.3 for the limiters approach). This correspond to an
almost affine initial condition.

Theorem 5 Consider the scheme (16), equivalent to the Ultra-Bee limiter. The
following properties hold

Let us assume that ν < 1
2 . Let us consider the linear scheme defined by ϕj+ 1

2
=

2
1−ν which is approximatively the value of the Ultra-Bee limiter for rj+ 1

2
≈

1,
ūj = uj − ν(uj − uj−1) − ν((uj+1 − uj) − (uj − uj−1)). (35)

This scheme (35) is linearly unstable.

Let us assume that ν > 1
2 . Let us consider the linear scheme defined by ϕj+ 1

2
=

2r
j+ 1

2

ν which is approximatively the value of the Ultra-Bee limiter for
rj+ 1

2
≈ 1,

ūj = uj − ν(uj − uj−1) − (1 − ν)((u1 − uj−1) − (uj−1 − uj−2)). (36)

This scheme (36) is linearly unstable.

In other words the scheme is linearly unstable around all smooth profiles char-
acterized by rj+ 1

2
≈ 1.

Proof: In the first case (ν < 1
2 ), the scheme reduces (straightforward

manipulations) to
ūj = uj − ν(uj+1 − uj),

what is the non-limited downwind scheme, and what is well-known to be unsta-
ble.
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In the second case (ν > 1
2 ), the scheme reduces to

ūj = uj−1 + (1 − ν)(uj−1 − uj−2).

This scheme can be viewed as a 2-step scheme, the first step being up-winded
with a Courant number ν1 = 1, what is known to be an exact scheme (the
solution is right-shifted of one cell at every time step); the second step being a
non-limited downwind scheme with Courant number ν2 = −ν (with a negative
velocity), this step is of course highly linearly unstable.

29


