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Abstract. We provide a probabilistic analysis of the upwind scheme for d-dimensional
transport equations. We associate a Markov chain with the numerical scheme and then
obtain a backward representation formula of Kolmogorov type for the numerical solution.
We then understand that the error induced by the scheme is governed by the fluctuations
of the Markov chain around the characteristics of the flow. We show, in various situations,
that the fluctuations are of diffusive type. As a by-product, we recover recent results due
to Merlet and Vovelle [13] and Merlet [12]: we prove that the scheme is of order 1/2 in
L∞([0, T ], L1(Rd)) for an integrable initial datum of bounded variation and of order 1/2−ε,
for all ε > 0, in L∞([0, T ] × Rd) for an initial datum of Lipschitz regularity. Our analysis
provides a new interpretation of the numerical diffusion phenomenon.
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1. Introduction

This paper provides a new analysis of the upwind scheme for the transport problem in
dimension d ∈ N \ {0}

(1.1)

{

∂tu(t, x) + 〈a(x),∇u(t, x)〉 = 0, (t, x) ∈ R+ × Rd,
u(0, x) = u0(x), x ∈ Rd.

We assume a to be Lipschitz continuous, so that (1.1) is well-posed. Several different regu-
larity assumptions are made on u0 in the following, among which u0 ∈ L1(Rd)∩BV (Rd) and
u0 ∈ Lip(Rd) (Lip(Rd) being the space of Lipschitz continuous functions on Rd). In any case,
the unique solution to (1.1) is u(t, x) = u0(Z(t, x)) where Z is the backward characteristic,
i.e. the solution of

(1.2)

{

∂tZ(t, x) = −a(Z(t, x)), (t, x) ∈ R+ × Rd,
Z(0, x) = x, x ∈ Rd.

The upwind scheme is a standard method to solve this problem in an approximate way
(see for instance [6]). It is derived and described in Section 2 below.
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In dimension 1, the scheme is known to be first order consistent (with respect to the
maximal cell diameter h) with the transport equation. Thus, it is first order convergent, for
any u0 ∈ C2(Rd), provided that a Courant-Friedrichs-Lewy (CFL) stability condition holds.
For non-smooth initial data, the upwind scheme is just of order 1/2. This loss of convergence
order is traditionally attributed to the dissipative character of the scheme. Up to now, the
use of the word “dissipative” has been justified by the following fact: on a uniform mesh,
the scheme is second order consistent with an advection-diffusion equation, the diffusion
coefficient being first order with respect to h; as a consequence, the numerical error at time
t is proportional to

√
th for a non-smooth initial datum.

In this paper, we provide another explanation of the diffusive behavior, which is valid on
any general mesh in dimension d. We here interpret the numerical diffusion by means of a
stochastic process. Let us briefly describe the basic idea. The approximate value given by
the upwind scheme in a cell K at time step n+1 is a convex combination of the approximate
values at time step n in the cells neighboring K:

un+1
K =

∑

L∈T

pK,Lun
L,

where T is the set of cells, and pK,L ∈ [0, 1] with
∑

L∈T pK,L = 1 (see Section 2 for the
complete definition of the scheme). This convex combination allows a probabilistic interpre-
tation: we can define a random sequence of cells (Kn)n∈N as a Markov chain with probability
transition, from K to L, pK,L. In this framework, the upwind scheme appears as the expec-
tation of a random scheme associated with the chain (Kn)n≥0. Precisely, the value un

K is the
expectation of the value of u0 in the cell Kn when K is chosen as the starting cell of the
chain. In a probabilistic way, we write:

un
K = EK

(

u0
Kn

)

,

the symbol K in the notation EK meaning that K0 = K. (See Theorems 3.1 and 4.1.) In
the theory of stochastic processes, the above identity is a backward Kolmogorov formula: it
is the analogue of the representation formula of the heat equation by the Brownian motion.
We then understand the chain (Kn)n≥0 as a random backward characteristic.

Our main idea consists in analyzing the behavior of the random characteristic according
to the following program. The first point is to show that the mean trend of the random
characteristic coincides with the exact characteristic Z, solution to (1.2). The next step is
to understand that the error of the numerical scheme is governed by the fluctuations of the
random characteristic around the exact one. Heuristically, the order of the fluctuations is
given by the central limit theorem: therefore, we expect them to be controlled, in a suitable
sense, by Ch1/2 where C only depends on the datum a and the time t. The final step is to
derive the 1/2 order of the scheme.

Applying this program, we establish, for any T > 0, the 1/2 order in L∞([0, T ], L1(Rd))
for u0 ∈ L1(Rd) ∩ BV (Rd). (See Theorem 5.10.) For u0 ∈ Lip(Rd), we also prove that the
scheme is of order 1/2 − ε in L∞([0, T ], L∞(Rd)) for all ε > 0. (See Theorem 5.9.) In this
last case, it is clear that 1/2 is an upper bound (see [9], and [19] for the non-linear case),
but the exact convergence order remains unknown. The reason why our estimate is better
in the L1-in space norm may be explained as follows. Estimating the error in L1 amounts to
average the initial cell of the random characteristic. This additional averaging reduces the
weight of the trajectories of the chain that are away from Z.
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Since the pioneering article of Kuznetsov [11], in which the 1/2 order is established in
the Cartesian framework (for linear an non-linear scalar equations), many papers have dealt
with the rate of convergence of the upwind scheme. Let us briefly review them.

For general scalar equations with a datum u0 ∈ L1(Rd) ∩ BV (Rd), Cockburn, Coquel
and Le Floch [4], Vila [21], Bouchut-Perthame [2] and Chainais-Hillairet [3] prove the (non-
optimal) 1/4 order in L∞([0, T ], L1(Rd)) under slightly different hypotheses (and for several
schemes, including the upwind one).

For hyperbolic Friedrichs systems, Vila and Villedieu [22] derive a 1/2 order estimate in
the L2([0, T ] × Rd) norm for H1(Rd) initial data.

In the frame of the linear transport equation, which we are involved in, Després [5] proves
a 1/2 order estimate in the L∞([0, T ], L2(Rd)) norm in the case of H2(Rd) data. His proof
relies on a precise study of the consistency of the scheme after several time steps. (It is
indeed known that the scheme is not consistent at each time step on a general mesh.) For
C2 initial data, Bouche, Ghidaglia and Pascal [1] show the order 1 in the L∞ norm, under a
condition on the mesh that is related to consistency. At last, in recent works,

• for an initial datum in L1(Rd) ∩ BV (Rd), Merlet and Vovelle [13] show the optimal
estimate of order 1/2 in the L∞([0, T ], L1(Rd)) norm,

• for a Lipschitz continuous initial datum, Merlet [12] shows the order 1/2− ε, for any
ε > 0, in the L∞ norm.

It is thus understood that our paper provides a new proof of the results obtained in [13]
and [12]. Actually, our framework is slightly different since we do not assume the velocity
a to be divergence-free, as done therein, but we assume it to be independent of time. We
think that this does not make fundamental differences. Despite the similarity of our results,
we insist on the fact that the arguments here are completely different. As said above, our
proofs rely on the analysis of the stochastic characteristic (Kn)n≥0 (that shall mimic the
exact characteristic Z). In particular, we do not use energy estimates. (Except those of
Després and Bouche et al. based on the consistency of the scheme, all the papers mentioned
above are built on energy or entropy estimates).

Our paper is organized as follows. In Section 2, we state the framework of our analysis.
In Section 3, we focus on the one-dimensional case to introduce, with great care, the notion
of stochastic characteristic. By the way, we establish a refined estimate of the order of the
scheme in the specific case where the velocity is constant and the mesh is regular. (See
Proposition 3.5). In Section 4, we extend the probabilistic interpretation of the upwind
scheme to the higher dimensional setting. We then provide a direct proof of the 1/2 order
in L∞([0, T ], L1(Rd)) in the following simple case: u0 is assumed to be periodic, as well as
the mesh, and Lipschitz continuous. This section is the heart of the paper. Refining the
strategy, we finally obtain in Section 5 the announced results. This last part is a bit more
technical and relies on a concentration inequality for martingales, which is given in Annex,
see Section 6.

2. Framework and useful notations

Let {K}K∈T , the mesh, be a set of closed polygonal subsets of Rd with non-empty disjoint
interiors such that Rd =

⋃

K∈T K. The volume (d-Lebesgue measure) of a given cell K ∈ T
is denoted by |K|. The supremum of the diameters of all the cells is denoted by h, i.e.
h = supK∈T diam(K). Two cells K and L are said adjacent if they aren’t disjoint but have
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disjoint interiors. In this case, we write K ∼ L. We assume that, for all pairs (K, L)
of adjacent cells, the intersection K ∩ L is included in a hyperplane of Rd. The surface
((d − 1)-Lebesgue measure) of the face K ∩ L is then denoted by |K ∩ L|.

Let ∆t > 0 be the time step of the method. The value un
K intends to approximate the

mean value of u(n∆t, ·) in the cell K. The upwind scheme provides a way to compute
such un

K . It is easily obtained by integrating the divergence form of the PDE in (1.1),
∂tu + div(au) − udiv(a) = 0, over [n∆t, (n + 1)∆t] × K. We obtain

(2.1)

∫

K

u((n + 1)∆t, x)dx −
∫

K

u(n∆t, x)dx

+
∑

L∼K

∫

K∩L

∫ (n+1)∆t

n∆t

〈a(x), nK,L〉u(t, x)dtdx −
∫

K

∫ (n+1)∆t

n∆t

u(t, x)div(a)(x)dtdx = 0,

where nK,L is the unit normal vector on K ∩ L outward from K. From a numerical point
of view, it then seems natural to compute both an approximate value un

K of the mean of
u(n∆t, ·) in cell the K, i.e.

un
K ≈ |K|−1

∫

K

u(n∆t, x)dx,

and an approximate value un
K,L of the mean of u on the edge K ∩ L between the time steps

n and n + 1, i.e.

un
K,L ≈ ∆t−1|K ∩ L|−1

∫

K∩L

∫ (n+1)∆t

n∆t

u(t, x)dtdx.

The quantity un
K,L is called the numerical flux. Defining aK,L as the mean value of a on the

edge K ∩ L, i.e.

aK,L = |K ∩ L|−1

∫

K∩L

a(x)dx,

we obtain the following approximate version of (2.1),

|K|u
n+1
K − un

K

∆t
+
∑

L∼K

〈aK,L, nK,L〉 |K ∩ L|un
K,L − un

K

∑

L∼K

〈aK,L, nK,L〉 |K ∩ L| = 0.

The upwind scheme considers the numerical fluxes un
K,L as upwinded: un

K,L = un
K for L ∈ K+

and un
K,L = un

L for L ∈ K− with

K+ = {L ∼ K, 〈aK,L, nK,L〉 > 0} ,
K− = {L ∼ K, 〈aK,L, nK,L〉 < 0} .

This finally gives

(2.2) |K|u
n+1
K − un

K

∆t
+
∑

L∈K−

〈aK,L, nK,L〉|K ∩ L|
(

un
L − un

K

)

= 0, (n, K) ∈ N × T .

The numerical initial condition is usually taken as u0
K = |K|−1

∫

K
u0(x) dx. It is straightfor-

ward that the scheme satisfies the maximum principle under the condition

−
∑

L∈K−

〈aK,L, nK,L〉|K ∩ L|
|K| ≤ 1, K ∈ T .
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This condition is called the Courant-Friedrichs-Lewy (CFL for short) condition and is as-
sumed to be satisfied in all the paper.

3. Analysis in Dimension 1

For pedagogical reasons, we first investigate the one-dimensional framework. As an-
nounced in Introduction, the velocity field a : R → R is assumed to be bounded and to
be κ-Lipschitz continuous. In particular, for any starting point x ∈ R, the characteristic
equation starting from x

(3.1) ∂tZ(t, x) = −a(Z(t, x)), t ≥ 0, Z(0, x) = x,

admits a unique solution. Denoting by u0 the initial condition of the transport equation,
which is assumed to be κ-Lipschitz continuous in the whole section, the solution of the
transport equation rewrites

(3.2) u(t, x) = u0(Z(t, x)), (t, x) ∈ R+ × R.

In this section devoted to dimension 1, for every cell K ∈ T , the volume (length) of K
is denoted ∆xK . The edge value of a is defined as aK,L = a(K ∩ L). The constants “C”
and “c” used below only depend on ‖a‖∞ and κ. They are always independent of ∆t, of
h = supK∈T ∆xK , of the time index n and of the random outcome ω. In particular, the
notation O(x), for a given variable x, denotes a quantity bounded by Cx for some constant
C only depending on ‖a‖∞ and κ.

3.1. Probabilistic Interpretation. In the one-dimensional framework, the scheme has the
form

u0
K =

1

∆xK

∫

K

u0(x)dx, K ∈ T ,

un+1
K = −

∑

L∈K−

aK,L∆t

∆xK
un

L +
(

1 +
∑

L∈K−

aK,L∆t

∆xK

)

un
K , n ≥ 0, K ∈ T ,

(3.3)

and the following CFL condition is assumed to be in force

(3.4) −
∑

L∈K−

aK,L∆t

∆xK

≤ 1, K ∈ T .

The geometry of the mesh is simple: each cell K has two neighbors. When the velocity field
a is non-zero in the cell K, there is one and only one cell L in K− . If a is positive in K, it
is the left one; of course, if a is negative, it is the right one.

We focus for a while on a given cell K. By the CFL condition (3.4), all the coefficients

pK,L = −aK,L∆t

∆xK
for L ∈ K−,

pK,K = 1 +
∑

L∈K−

aK,L∆t

∆xK

,

pK,L = 0 for L ∈ T \
(

K− ∪ {K}
)

,
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are non-negative and may be seen as probability weights. Henceforth, for a given time step
n ≥ 0, the right-hand side in (3.3) may be interpreted as an expectation with respect to
these weights:

un+1
K =

∑

L∼K

pK,Lun
L.

Intuitively, this means that we are choosing one cell among {K} ∪ {L ∼ K}, K being
fixed, with the probability weights pK,K and pK,L for L ∼ K. To make this idea rigorous, we
introduce a probability space (Ω,A, P) as well as a random variable ξ : Ω → {K}∪{L ∼ K}
such that P{ξ = L} = pK,L for any L ∼ K and P{ξ = K} = pK,K. Then, the (n + 1)th step
of the numerical scheme on the cell K can be written in the following way:

(3.5) un+1
K =

∑

L∼K

pK,Lun
L = E

[

un
ξ

]

.

This relationship provides a probabilistic interpretation for the one step dynamics of the
numerical scheme. We are to iterate this procedure.

The probabilistic dynamics between times n and n + 1 just depend on the starting cell
K. In the theory of stochastic processes, this property is typical of Markovian dynamics.
Indeed, the family of probability weights (pK,L)K,L∈T defines a stochastic matrix of infinite
dimension (all the entries of the matrix are non-negative and the sums of the entries of a
same line are all equal to 1). This stochastic matrix corresponds to the transition matrix
of a Markov chain. Up to a modification of the underlying probability space, there exists a
sequence (Kn)n≥0 of random variables taking values into the set of cells as well as a collection
of probability measures (PK)K∈T , indexed by the cells, such that, under each PK , (Kn)n≥0

is a Markov chain with rates (pK,L)K,L∈T starting from K0 = K. In other words,

∀n ≥ 0, PK{Kn+1 = L|Kn = J} = pJ,L, PK{K0 = K} = 1.

The behavior of the chain (Kn)n≥0 is as follows: if the velocity is positive in the cell Kn,
then the probability pKn,L vanishes if L is the right neighbor of Kn, so that the chain can
either stay in Kn or jump to the left.

Now, we can interpret (3.5) in a different way:

un+1
K = EK

[

un
K1

]

,

where EK denotes the expectation associated with PK . This means that un+1
K is the expec-

tation of un in the random cell K1 occupied by the Markov chain, which started one time
step before in K. We can also write for any integer i ≥ 0

un+1
Ki

= EK

[

un
Ki+1

|K0, . . . , Ki

]

PK−almost surely.

(When conditioning with respect to K0, . . . , Ki, the past before i − 1 doesn’t play any role,
and the chain restarts, afresh, at time i from Ki.) In what follows, we denote the conditional
expectation EK [·|K0, . . . , Kn] by En

K [·]. We also omit to specify that such a conditional
expectation is computed under PK . Now, we are able to iterate the procedure in (3.5):

un+1
K = EK

[

un
K1

]

= EK

[

E1
K

[

un−1
K2

]

]

= · · · = EK

[

E1
K

[

· · ·En
K

[

u0
Kn+1

]]]

= EK

[

u0
Kn+1

]

.

We have proved the following representation for the numerical solution un:
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Theorem 3.1. Under the above notations, the numerical solution un
K at time n and in the

cell K has the form:
un

K = EK

[

u0
Kn

]

.

The representation given by Theorem 3.1 is a backward Kolmogorov formula for the nu-
merical scheme. Generally speaking, the backward Kolmogorov formula provides a represen-
tation for the solution of the heat equation in terms of the mean value of the initial condition
computed with respect to the paths of the Brownian motion (or of a diffusion process). In
this framework, the paths of the Brownian motion appear as random characteristics. In our
own setting, the Markov chain (Kn)n≥0 almost plays the same role.

We say “almost plays” because the sequence (Kn)n≥0 is not a sequence of points as the
Brownian motion is. Actually, we have to associate with each random cell Kn a random
point Xn (Xn being ideally in Kn) to obtain a random characteristic (Xn)n≥0.

The choice of these points is crucial. In what follows, we choose Xn as the entering point
in the cell Kn. This means that

Xn = Xn−1 if Kn = Kn−1, Xn = Kn ∩ Kn−1 if Kn 6= Kn−1.

The above definition holds for n ≥ 1. The position of the initial point X0 inside K0 has to be
specified. If a(x) > 0 for all x ∈ K0, we choose X0 as the right boundary of K0. (Indeed, the
right boundary plays in this case the role of the entering point since the velocity is positive.)
If a(x) < 0 for all x ∈ K0, we choose X0 as the left boundary. If there exists x ∈ K0 such
that a(x) = 0, we choose X0 as the middle of K0.

What is important is that the sequence (Xn)n≥0 is adapted to the filtration generated by
(Kn)n≥0, i.e. (σ(K0, . . . , Kn))n≥0: knowing the paths (K0, . . . , Kn), one knows the positions
of the points (X0, . . . , Xn).

The reader may wonder about this specific choice for the sequence (Xn)n≥0. Assume that
the velocity a is non-zero, say for example positive, in the cell Kn. By continuity, it is
positive in the neighborhood of Kn: the chain goes from the right to the left in this area of
the space. As a by-product, the entering point in the cell Kn is the right boundary of Kn.
In this case, Xn+1 is either Xn itself or the left boundary of Kn, which is the right boundary
of K−n (this set of cells is in the present case a singleton and we identify it with its element,
as well as for K+

n in the following when the velocity is away from 0), so that

En
K

[

Xn+1 − Xn

]

= −∆xKnpKn,K−n
= −aKn,K−n

∆t.

(Indeed, the probability that Xn+1 is the right boundary of K−n is given by the probability of
jumping from Kn to K−n .) In other words, the mean displacement from Xn to Xn+1, knowing
the past, is exactly driven by the velocity field −a. This is very important: loosely speaking,
the speed of the random characteristic is given by the velocity field of the characteristic
equation itself. Here is a more precise statement.

Proposition 3.2. For every n ≥ 0,

En
K

[

Xn+1 − Xn

]

= −a(Xn)∆t + O(h∆t).

(We recall that the term O(h∆t) is uniform with respect to the starting cell K, to the time
index n and to the underlying random outcome ω ∈ Ω.)

Proof. If a(x) > 0 for all x ∈ Kn, then Xn has to be the right boundary of Kn. (By
definition of X0, this is true until the first jump of the chain. After the first jump, this is
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still true since the chain cannot come from the left by positivity of a.) Moreover, starting
from Kn, the chain cannot move to the right since aKn,K+

n
= a(Xn) > 0. Hence, Xn+1 has

to be either Xn or the left boundary of Kn. As done above,

En
K

[

Xn+1 − Xn

]

= −∆xKnpKn,K−n
= −aKn,K−n

∆t = −a(Xn)∆t + O(h∆t)

by the Lipschitz property of a. The same argument holds when a(x) < 0 for all x ∈ Kn.
If a(x) = 0 for some x ∈ Kn, then a(Xn) = O(h∆t) by the Lipschitz property of a. More-

over, the probability of moving to the right is equal to max(aKn,K+
n
, 0)×∆t/∆xKn = O(∆t).

The same holds for the probability of moving to the left. When moving, the displacement is
bounded by h so that the result is still true. �

Remark. The necessity of choosing the point Xn as the entering point in the cell Kn is
related to the well-known fact that the upwind scheme is consistent (in the finite difference
sense) with the transport equation provided that the control points for every cell are chosen
on the right if the velocity is positive and, conversely, on the left if the velocity is negative:
see [6].

3.2. A First Example: a and ∆x constant. To explain our strategy, we first focus on the
very simple case where both a and ∆x are constant: a(x) = a for all x ∈ R and ∆xK = h for
all K ∈ T . Without loss of generality, we can assume that a is positive so that the random
characteristic goes from the right to the left. In this setting, the transition probabilities are
of the form

∀K ∈ T , pK,K− =
a∆t

h
, pK,K = 1 − a∆t

h
.

The probability of jumping from one cell to another doesn’t depend on the current state of
the random walk. From a probabilistic point of view, this amounts to say that the sequence
(Xn+1 − Xn)n≥0 (with X0 equal to the right boundary of the initial cell) is a sequence of
Independent and Identically Distributed (IID in short) random variables under PK , whatever
K is. The common law of these variables is given by

PK{Xn+1 − Xn = −h} = 1 − P{Xn+1 − Xn = 0} =
a∆t

h
.

In particular, we recover a stronger version of Proposition 3.2 (“stronger” means that there
is no O(h∆t)):

EK

[

Xn+1 − Xn

]

= −a∆t.

In particular, the mean trend of the random characteristic is exactly driven by the velocity
−a. It thus coincides with the mapping t 7→ X0−at, which corresponds to the characteristic
of the transport equation with X0 as initial condition, i.e. Z(t, X0) (see (3.1)). At this
stage, we understand that the order of the numerical scheme is deeply related to the fluctu-
ations of the random characteristic around its mean trend, that is around the deterministic
characteristic. Indeed, for any starting cell K, we have

un
K = EK

[

u0
Kn

]

= EK

[

u0(Xn)
]

+ O(h),

where O(h) only depends on the Lipschitz constant of the initial condition u0 and is inde-
pendent of the initial cell K. Thus

(3.6) un
K = EK

[

u0
(

X0 − an∆t +
n−1
∑

k=0

(Xk+1 − Xk + a∆t)
)]

+ O(h).
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By (3.2), for all x ∈ K,

un
K − u(n∆t, x) = EK

[

u0
(

X0 − an∆t +
n−1
∑

k=0

(Xk+1 − Xk + a∆t)
)]

− u(n∆t, x) + O(h)

= EK

[

u0
(

X0 − an∆t +
n−1
∑

k=0

(Xk+1 − Xk + a∆t)
)

− u(n∆t, X0)
]

+ O(h)

= EK

[

u0
(

X0 − an∆t +
n−1
∑

k=0

(Xk+1 − Xk + a∆t)
)

− u0(X0 − an∆t)
]

+ O(h).

Using again the Lipschitz continuity of u0, we deduce by the Cauchy-Schwarz inequality
that,

|un
K − u(n∆t, x)| ≤ κEK

[
∣

∣

n−1
∑

k=0

(Xk+1 − Xk + a∆t)
∣

∣

]

+ O(h)

≤ κEK

[
∣

∣

n−1
∑

k=0

(Xk+1 − Xk + a∆t)
∣

∣

2]1/2
+ O(h)

for all x ∈ K. The last expectation is nothing but the variance of the sum of the random
variables (Xk+1 − Xk)0≤k≤n−1 under PK , i.e.

EK

[
∣

∣

n−1
∑

k=0

(Xk+1 − Xk + a∆t)
∣

∣

2]
= VK

[

n−1
∑

k=0

(Xk+1 − Xk)
]

.

It is well-known that the variance of the sum of independent random variables is equal to
the sum of the variances of the variables. We deduce that, for all x ∈ K,

|un
K − u(n∆t, x)| ≤ κ

[

nVK(X1 − X0)
]1/2

+ O(h).

The common variance is equal to

VK(X1 − X0) = h2pK,K− − a2∆t2 = a∆t
(

h − a∆t
)

.

Note that the CFL condition guarantees that the right-hand side above is non-negative,
which ensures that the equality is meaningful. We thus recover a well-known estimate for
the L∞-error induced by the upwind scheme:

Proposition 3.3. Assume that a(x) = a and ∆xK are constant and that u0 is bounded and
κ-Lipschitz continuous. Then, at any time n ≥ 0,

sup
K∈T

||un
K − u(n∆t, ·)||L∞(K) ≤ κ

(

na∆t(h − a∆t)
)1/2

+ O(h).

3.3. General Case: a(x) and ∆xK non constant. Our strategy is sharp enough to obtain
the analogue of Proposition 3.3 when a does depend on x and ∆xK on K. The main difference
here is that X0 can be either the right boundary of K0 or the left boundary or the barycenter
of K0, according to the sign of the velocity in K0. Following the previous subsection, the
difference between the numerical and the true solutions at time n ≥ 0 on a cell K is given
by

un
K − u(n∆t, x) = EK

[

u0
Kn

]

− u0(Z(n∆t, x)) = EK

[

u0
Kn

− u0(Z(n∆t, x))
]

9



for all x ∈ K. As above, the Lipschitz property yields

u0
Kn

= u0(Xn) + O(h).

By Gronwall’s lemma, we control the distance between Z(n∆t, x) and Z(n∆t, X0), so that

|un
K − u(n∆t, x)| ≤ κEK

[

|Xn − Z(n∆t, x)|
]

+ O(h)

= κEK

[

|Xn − Z(n∆t, X0)|
]

+ O(h) exp(κn∆t).
(3.7)

We have

(3.8) Xn − Z(n∆t, X0) = Xn − X0 +

n−1
∑

k=0

∫ (k+1)∆t

k∆t

a
(

Z(s, X0)
)

ds.

By Proposition 3.2,

(3.9) Xn − X0 =

n−1
∑

k=0

(

Xk+1 − Xk

)

= −∆t

n−1
∑

k=0

a(Xk) + Mn + O(nh∆t),

with

(3.10) Mn =

n−1
∑

k=0

(

Xk+1 − Xk − Ek
K(Xk+1 − Xk)

)

(M0 = 0).

By the boundedness and the Lipschitz continuity of a,

(3.11)

n−1
∑

k=0

∫ (k+1)∆t

k∆t

a(Z(s, X0))ds = ∆t

n−1
∑

k=0

a
(

Z(k∆t, X0)
)

+ O(n∆t2).

Plugging (3.9) and (3.11) into (3.8), we obtain

|Xn − Z(n∆t, X0)| ≤ κ∆t
n−1
∑

k=0

|Xk − Z(k∆t, X0)| + |Mn| + O(nh∆t + n∆t2).

Taking the expectation of each term and applying Gronwall’s lemma,

(3.12) EK

[

|Xn − Z(n∆t, X0)|
]

≤
[

EK [|Mn|] + O(nh∆t + n∆t2)
]

exp(κn∆t).

As in the case where both the velocity and the spatial step are constant, the process
(Mn)n≥0 represents the fluctuations of the random characteristic around a discretized version
of the deterministic characteristic. (See (3.9).) In the probabilistic theory, it is a martingale
on (Ω,A, PK), i.e., at any time n ≥ 0, Mn is σ(K0, . . . , Kn)-measurable and En

K [Mn+1] = Mn.
This property just follows from (3.10).

Since M0 = 0, the expectation of Mn, for n ≥ 1, is given by EK [Mn] = EK [En−1
K (Mn)] =

EK [Mn−1] = · · · = M0 = 0. The mean trend of a martingale starting from zero is null. To
estimate the fluctuations, we compute the second order moment. Setting ∆Mj = Mj+1−Mj

10



for all j ≥ 0, the martingale property yields E
j
K [∆Mj ] = 0, so that, for all n ≥ 1,

EK(M2
n) =

n−1
∑

k=0

EK

[

∆M2
k

]

+ 2
∑

0≤i<j≤n−1

EK

[

∆Mi∆Mj

]

=

n−1
∑

k=0

EK

[

∆M2
k

]

+ 2
∑

0≤i<j≤n−1

EK

[

E
j
K(∆Mi∆Mj)

]

=
n−1
∑

k=0

EK

[

∆M2
k

]

+ 2
∑

0≤i<j≤n−1

EK

[

∆MiE
j
K(∆Mj)

]

=
n−1
∑

k=0

EK

[

∆M2
k

]

.

(3.13)

It remains to compute the expectation of the increments (∆M2
k )k≥1.

We first prove that Ek
K [∆M2

k ] = O(h∆t). Since ∆Mk = Xk+1 −Xk − Ek
K(Xk+1 −Xk), we

have (Vk
K denotes the conditional variance knowing K0, . . . , Kk under PK)

Ek
K [∆M2

k ] = Vk
K [Xk+1 − Xk] = Ek

K [(Xk+1 − Xk)
2] −

(

Ek
K [Xk+1 − Xk]

)2

≤ Ek
K

[

(Xk+1 − Xk)
2
]

.
(3.14)

Knowing the position of the chain at time step k, the conditional probability of jumping
is bounded by (max(aKk,K−k

, 0) + max(aKk,K+

k
, 0))∆t/∆xKn . When jumping, the distance

between Xk and Xk+1 is always bounded by ∆xKk
. Hence, Ek

K [(Xk+1 − Xk)
2] = O(h∆t).

Taking the expectation, we deduce that EK [∆M2
k ] = O(h∆t).

By (3.13), we deduce

EK(M2
n) = O(nh∆t).

By (3.7) and (3.12) and by the Cauchy-Schwarz inequality, we deduce

Proposition 3.4. Under the assumptions introduced in the beginning of Section 3, there
exists a constant C ≥ 0, such that at any time n ≥ 0,

sup
K∈T

||un
K − u(n∆t, ·)||L∞(K) ≤ C

(

(nh∆t)1/2 + nh∆t + n∆t2 + h
)

exp(κn∆t).

3.4. Interpretation by the Central Limit Theorem. This section only concerns the
special case with constant velocity on a uniform mesh. It provides a finer result in this
simplified case, by the use of the central limit theorem. This analysis will not be performed
in higher dimension. We again assume that a(x) = a > 0 and ∆xK is constant. We also
reinforce the CFL condition, asking a∆t < h. (This is not a restriction. When a∆t = h,
the term of order 1/2 vanishes in Proposition 3.3 and the error is of order 1: this case is
trivial.) As explained above, the order of the numerical scheme is given by the order of
the fluctuations of the random characteristic around its mean trend. In the specific setting
where both a and ∆x are constant, the random characteristic corresponds to a random walk
with IID increments: by the elementary theory of stochastic processes, we know that the
fluctuations of the walk around its mean trend are governed by the Central Limit Theorem
(CLT in short). (See [18, Chapter III, §3] for the standard version of the CLT and [10,
Chapter 2, Theorem 4.20] for the functional version in the case of a simple random walk.)
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We deduce that the fluctuations are of diffusive type, that is they correspond, asymptotically,
to the fluctuations of a Brownian motion around the origin. This means that the random
characteristics can be seen, asymptotically, as the paths of a Brownian motion, with a non-
standard variance. (That is, the variance of the Brownian motion at time t isn’t equal to
t, but to a constant times t, the constant being independent of t. In our framework, the
constant is proportional to h.) From an analytical point of view, we are saying that the
numerical solution is very close to the solution of a second order parabolic equation: this is
nothing but the numerical diffusive effect.

We specify this idea. The variables (Xn+1 −Xn + a∆t)n≥0 are IID, with zero as mean and
a∆t(h − a∆t) as variance. By the CLT, we know that

(3.15)
(

na∆t(h − a∆t)
)−1/2

n−1
∑

k=0

(Xk+1 − Xk + a∆t) ⇒ N (0, 1) as n → +∞,

on each (Ω,A, PK), K ∈ T . The notation ⇒ stands for the convergence in distribution. (In
short, for a family of random variables (Wn)n∈{0,...,+∞} on (Ω,A, P), we say that Wn ⇒ W∞
if E[ϕ(Wn)] → E[ϕ(W∞)] for any bounded continuous function ϕ.) The notation N (0, 1)
stands for the reduced centered Gaussian law.

Plugging (3.15) into (3.6), we deduce that

un
K ≈ EK

[

u0
(

X0 − an∆t + (na∆t(h − a∆t))1/2W
)]

+ O(h)

for n large. Above, W denotes a reduced centered Gaussian random variable. The symbol
≈ means that both sides are close. This point will be specified below.

Expliciting the density of the Gaussian law, we can write

EK

[

u0
(

X0 − an∆t + (na∆t(h − a∆t))1/2W
)]

=

∫

R

u0(xK,K+ − y) exp
[

−
(

y − an∆t)2

2a(h − a∆t)n∆t

] dy

[2πa(h − a∆t)n∆t]1/2
,

(3.16)

where xK,K+ stands for the unique point in the intersection of K and K+, i.e. the right
boundary of the cell K when a > 0. According to [8, Chapter 1] (with a = 0, the general-
ization to a 6= 0 being trivial), we recognize the value at time n∆t and at point xK,K+ of the
solution v to the Cauchy problem:

(3.17) ∂tv + a∂xv − a(h − a∆t)

2
∂2

x,xv = 0, t ≥ 0, x ∈ R,

with u0 as initial condition. Finally, we can say that un
K is close to v(n∆t, ·) in the cell K.

Of course, we have to say what “close” means. This question is related to the rapidity of
convergence in the CLT, that is the rapidity of convergence in (3.15). The main result in
this direction is the Berry-Esseen Theorem. (See [18, Chapter III, §11].) In what follows,
we use a refined version of it. (See [16, Chapter V, §4, Theorem 14].) Denoting by Fn the
cumulative distribution function

∀z ∈ R, Fn(z) = PK

{(

na∆t(h − a∆t)
)−1/2

n−1
∑

k=0

(Xk+1 − Xk + a∆t) ≤ z
}

,

and by Φ the cumulative distribution function of the N (0, 1) law, we have, for all z ∈ R,

|Fn(z) − Φ(z)| ≤ Cn−1/2
(

a∆t(h − a∆t)
)−3/2

EK

[

|X1 − X0 + a∆t|3
]

(1 + |z|)−3,
12



for some universal constant C > 0. The moment of order three is given by

EK

[

|X1 − X0 + a∆t|3
]

=
a∆t

h
(h − a∆t)3 +

(

1 − a∆t

h

)

(a∆t)3

= a∆t
(

1 − a∆t

h

)[

(h − a∆t)2 + (a∆t)2
]

.

Hence, for all z ∈ R,

(3.18) |Fn(z) − Φ(z)| ≤ C
(

na∆t(h − a∆t)
)−1/2

h−1
[

(h − a∆t)2 + (a∆t)2
]

(1 + |z|)−3.

By (3.6),

un
K =

∫

R

u0
(

xK,K+ − an∆t + (na∆t(h − a∆t))1/2y
)

dFn(y) + O(h),

where the integral in the right-hand side is a Lebesgue-Stieltjes integral. (See [18, Chapter
II, §6].)

Assume for a while that the support of u0 is compact. Performing an integration by parts
(see [18, Chapter II, §6, Theorem 11]), we obtain (since u0 is Lipschitz continuous)

un
K = (na∆t(h − a∆t))1/2

∫

R

du0

dy

(

xK,K+ − an∆t + (na∆t(h − a∆t))1/2y
)

Fn(y)dy + O(h),

Plugging (3.18) in this equality, we obtain

∣

∣un
K − (na∆t(h − a∆t))1/2

∫

R

du0

dy

(

xK,K+ − an∆t + (na∆t(h − a∆t))1/2y
)

Φ(y)dy
∣

∣

≤ Cκh−1
[

(h − a∆t)2 + (a∆t)2
]

∫

R

(1 + |y|)−3dy + O
(

h).

Performing a new integration by parts and then a change of variable, we see that the left-
hand side is equal to |un

K − v(n∆t, xK,K+)|, where v is the solution of the Cauchy problem
(3.17). Using a standard truncation argument, we can easily get rid of the assumption made
on the support of u0. We finally claim

Proposition 3.5. Assume that a(x) and ∆xK are constant and that u0 is κ-Lipschitz con-
tinuous. Then, there exists a constant C > 0 such that, at time any time n ≥ 0,

sup
K∈T

||un
K − v(n∆t, ·)||L∞(K) ≤ Ch,

where v stands for the solution of the Cauchy problem (3.17) with u0 as initial condition.

It is remarkable that the bound doesn’t depend on (n, ∆t). The result is still true for
a∆t = h. (See Proposition 3.3.)

4. Principle of the Analysis in higher dimension. Application to a Simple
Case

We here present the basic ingredients for the analysis in dimension d greater than two.
As above, the velocity field a is assumed to be bounded and κ-Lipschitz continuous. The

regularity of the initial condition u0 will be specified below.
The characteristics of the transport equation are still denoted by (Z(t, x))t≥0, x ∈ Rd, see

Equation (1.2).
13



As in [13], the cells are assumed to be uniformly non flat, i.e. they satisfy, in a strong
sense, the converse of the isoperimetric inequality:

(4.1) ∃α > 0, ∀K ∈ T ,
∑

L∼K

|K ∩ L| ≤ α|K|h−1.

By the standard isoperimetric inequality, this is equivalent to the existence of β > 1 such
that |K| ≥ β−1hd and

∑

L∼K |K ∩ L| ≤ βhd−1 for all K ∈ T .
The mean velocity on a cell K is denoted by

aK = |K|−1

∫

K

a(x)dx.

The constants “C” and “c” below may depend on ‖a‖∞, α, β, κ and d. As in dimension
1, they are always independent of ∆t, of h, of the current time index n and of the random
outcome ω.

4.1. Stochastic Representation of the Scheme. The expression of un+1
K given by the

upwind scheme is (see (2.2))

un+1
K = −

∑

L∈K−

〈aK,L, nK,L〉∆t|K ∩ L|
|K| un

L +

(

1 +
∑

L∈K−

〈aK,L, nK,L〉∆t|K ∩ L|
|K|

)

un
K ,

where K− = {L ∼ K, 〈aK,L, nK,L〉 < 0}, u0
K being given by

u0
K = |K|−1

∫

K

u0(x)dx.

In this framework, the CFL condition has the form

∀K ∈ T , −
∑

L∈K−

〈aK,L, nK,L〉∆t|K ∩ L|
|K| ≤ 1

and is assumed to be satisfied in all the following.
As in dimension 1, the coefficients

pK,L = −〈aK,L, nK,L〉∆t|K ∩ L|
|K| for L ∈ K−,

pK,K = 1 +
∑

L∈K−

〈aK,L, nK,L〉∆t|K ∩ L|
|K| ,

pK,L = 0 for L ∈ T \
(

K− ∪ {K}
)

,

can be interpreted as the probability transitions of a Markov chain with values in the set
of cells. Again, we can find a measurable space (Ω,A), a sequence (Kn)n≥0 of measurable
mappings from (Ω,A) into T as well as a family (PK)K∈T of probability measures on (Ω,A),
indexed by the cells, such that, for every cell K ∈ T , (Kn)n≥0 is a Markov chain with K
as initial condition and (pK,L)K,L∈T as transition probabilities. As in dimension 1, the chain
(Kn)n≥0 goes against the velocity field a: for n ≥ 0, either Kn+1 is equal to Kn or Kn+1

belongs to K−n . Similarly, for n ≥ 1, either Kn−1 is equal to Kn or Kn−1 belongs to K+
n .

Following the analysis performed in dimension 1, we can prove the backward Kolmogorov
formula:
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Theorem 4.1. Under the above notations, the numerical solution un
K at time n and in the

cell K has the form:

un
K = EK

[

u0
Kn

]

.

Due to the strong similarity with the one-dimensional frame, we do not repeat here the
proof.

In what follows, for K ∈ T , we denote by En
K the conditional expectation EK [·|K0, . . . , Kn].

4.2. Random Characteristics. To follow the one-dimensional strategy, we have to as-
sociate a sequence (Xn)n≥0 of (random) points with each path of the Markov chain. In
dimension 1, the point Xn is defined as the entering point in the cell Kn. Two points may
play this role in the higher dimensional setting: either the barycenter of the entering face
Kn−1 ∩ Kn or the barycenter, with suitable weights, of all the possible entering faces in the
cell Kn. For a given cell K, we thus define xK,L as the barycenter of the face K ∩ L if K
and L are adjacent:

(4.2) xK,L = |K ∩ L|−1

∫

K∩L

xdx,

and eK as the following convex combination of (xK,J)J∈K+:

(4.3) eK =

(

∑

J∈K+

qK,J

)−1
∑

J∈K+

qK,JxK,J ,

with

qK,J =
〈aK,J , nK,J〉∆t|K ∩ J |

|K| for J ∈ K+,

qK,K = 1 −
∑

J∈K+

〈aK,J , nK,J〉∆t|K ∩ J |
|K| ,

qK,J = 0 for J ∈ T \
(

K+ ∪ {K}
)

.

(4.4)

We emphasize that the (qK,J)J∈T are, at least in a formal way, the weights associated with
the scheme for the velocity −a. We will specify this correspondence below. We also notice
that eK might be outside K if K is not convex. This does not matter for the analysis.

With these notations at hand, we define the random characteristic Xn as

X0 = eK0
,

Xn = eKn if Kn = Kn−1, n ≥ 1

Xn = xKn−1,Kn if Kn 6= Kn−1, n ≥ 1.

(4.5)

This definition is quite natural. When n = 0 or Kn = Kn−1, n ≥ 1, Xn is chosen as a
remarkable point of the cell Kn, independently of the past before n. When Kn 6= Kn−1, the
choice of Xn expresses the jump from Kn−1 to Kn.

4.3. Green’s Formula. The result given below explains why the barycenters of the faces
are involved in our analysis. The main argument of the proof relies on the Green formula,
which has a crucial role in the whole story, as easily guessed from the specific form of the
transition probabilities. (See also [1, Proposition 3.1].)

15



Proposition 4.2. Consider a cell K. For any point x0 in the convex envelope of the cell
(we say convex envelope because of eK , defined as a barycenter),

aK∆t = −
∑

L∈K−

pK,L

(

xK,L − x0

)

+
∑

J∈K+

qK,J

(

xK,J − x0

)

+ O(h∆t).

Proof. For an index 1 ≤ i ≤ d, the Green formula, see [14, Chapter 3, (3.54)], yields (ai

and xi stand for the ith coordinate of a and x).

(4.6)

∫

K

ai(x)dx = −
∫

K

(xi − (x0)i)div(a)(x)dx +
∑

L∼K

∫

K∩L

(xi − (x0)i)〈a(x), nK,L〉dx.

The left-hand side is equal to |K|(aK)i. By the regularity of a, the first term in the right-hand
side is bounded by O(h|K|). Similarly, the last term in the right-hand side writes

∑

L∼K

∫

K∩L

(xi − (x0)i)〈a(x), nK,L〉dx

=
∑

L∼K

〈aK,L, nK,L〉
∫

K∩L

(xi − (x0)i)dx +
∑

L∼K

∫

K∩L

(xi − (x0)i)〈a(x) − aK,L, nK,L〉dx

=
∑

L∼K

〈aK,L, nK,L〉
∫

K∩L

(xi − (x0)i)dx + O(h2)
∑

L∼K

|K ∩ L|.

With (4.1) and (4.2) at hand, we deduce that

∑

L∼K

∫

K∩L

(xi − (x0)i)〈a(x), nK,L〉dx

=
∑

L∼K

〈aK,L, nK,L〉|K ∩ L|
[

xK,L − x0

]

i
+ O(h|K|).

(4.7)

From (4.6) and (4.7), we claim

aK∆t =
∑

L∼K

〈aK,L, nK,L〉∆t|K ∩ L|
|K|

(

xK,L − x0

)

+ O(h∆t).

This completes the proof. �

The following corollary is the multi-dimensional counterpart of Proposition 3.2:

Corollary 4.3. For any starting cell K ∈ T (so that we work under PK) and any n ≥ 0,

En
K

[

Xn+1 − eKn

]

= −a(Xn)∆t + O(h∆t).

As a simple consequence, when the cell Kn has only one possible entering face (entering
means entering for the random characteristic), as it is the case in dimension 1 with a > 0,
eKn = Xn and the conditional expectation of the mean displacement Xn+1 − Xn knowing
the past before n is driven by −a, as stated in Proposition 3.2.

Proof. For K ∈ T and n ≥ 0,

(4.8) En
K

[

Xn+1 − eKn

]

=
∑

L∈K−n

pKn,L

(

xKn,L − eKn

)

.
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(Indeed, if Kn+1 = Kn, Xn+1 = eKn.) Applying Proposition 4.2 with x0 = eKn , we obtain

(4.9) aKn∆t = −
∑

L∈K−n

pKn,L

(

xKn,L − eKn

)

+
∑

J∈K+
n

qKn,J

(

xKn,J − eKn

)

+ O(h∆t).

By the very definition of eKn , the second sum in the above right-hand side is zero. Identifying
(4.8) and (4.9), we complete the proof. �

4.4. Set of Problems. Keeping the one-dimensional strategy in mind, we understand that
the whole problem now consists in estimating the gap eKn − Xn for n ≥ 1. (For n = 0, it is
zero.)

As said above, eKn − Xn vanishes when the cell Kn admits only one entering face.
Unfortunately, there is no hope to obtain a similar result, or an estimate of the form
eKn − Xn = O(h∆t), for a cell Kn of general shape.

The reason is purely geometric and is well-understood on a two-dimensional triangular
mesh. Except specific cases, the cardinality of K+, K being a triangle, is either one or two.
(See Figure 1 below.)

a

Xn = xK,J1

K

J1

J2

L

eK

xK,J2

xK,L

gap

Figure 1. Example for the gap eKn − Xn

In this picture, the velocity a is constant, oriented from the top to the bottom. The
triangles J1, J2 and L have only one entering edge and the triangle K has two entering
edges. By Corollary 4.3, the mean displacements in the triangles J1, J2 and L are driven by
−a. The story is different for K.

The position of eK is determined in the following way: eK belongs to the segment
[xK,J1

, xK,J2
] and, by Proposition 4.2, xK,L − eK is parallel to a (the term O(h∆t) in Propo-

sition 4.2 is zero since a is constant). Assuming that at time n − 1, Kn−1 = J1 and that, at
time n, Kn = K, Xn is the middle of the edge K ∩ J1. We understand that, in this case,
eKn − Xn is of the same order as h.

The key point in our analysis follows from a simple observation: when reversing the velocity
field a in Figure 1, i.e. when changing a into −a, the triangles with one entering edge turn
into triangles with two entering edges and the triangle with two entering edges turns into a
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triangle with one entering edge. Said in a very naive way, the bad triangle K for a becomes
a good triangle for −a.

Here is another simple fact: the deterministic characteristics for −a correspond to the
characteristics for a, but reversed in time.

These two observations lead to the following idea: in what follows, we hope to get rid of
the remaining gaps (eKn − Xn)n≥1 by reversing the random characteristics.

4.5. Reversing the Markov Chain in the Divergence-Free Setting. As announced
above, the weights (qK,J)K,J∈T in (4.4) correspond, at least in a formal sense, to the scheme
associated with the velocity field −a. We say “formally” because the CFL condition for the
field −a may fail: as shown below, the term qK,K may be negative.

However, when a is divergence-free, the CFL condition holds for −a and q is the analogue
of p for the field −a:

Proposition 4.4. Assume that a is divergence-free. Then,

∀K ∈ T ,
∑

J∼K

qK,J =
∑

L∼K

pK,L,

so that qK,K = pK,K for every cell K. In particular, the CFL condition holds for −a and q
is a Markovian kernel, i.e. qK,J ≥ 0 for all K, J ∈ T and

∑

J∈T qK,J = 1.

Proof. The proof follows again from Green’s formula. Indeed, for every cell K,

(4.10) 0 =

∫

K

div(a)(x)dx =
∑

L∼K

|K ∩ L|〈aK,L, nK,L〉.

The terms in the right-hand side are equal to −pK,L|K|/∆t if L ∈ K− and qK,L|K|/∆t if
L ∈ K+. This completes the proof. �

In the rest of this section, we assume a to be divergence-free. The point is to understand the
connection between the original Markov chain (Kn)n≥0, associated with a, and the Markovian
kernel (qK,J)K,J∈T . In what follows, we show that, under suitable conditions, the random
process obtained by reversing the chain (Kn)n≥0 is a Markov chain with (qK,J)K,J∈T as
probability transitions.

Reversing a Markov chain is a standard procedure in probability theory. (See e.g. [15,
Section 1.9].) The reversed process is always a Markov chain, but the transition probabilities
may be highly non trivial and do depend, in almost every case, on time. Anyhow, the law
of the reversed chain is easily computable when the chain is initialized with an invariant
probability.

Assume for the moment that the chain (Kn)n≥0 admits an invariant probability ν, i.e.
there exists a probability ν on the set of cells such that

∀K ∈ T , ν(K) =
∑

J∈T

ν(J)pJ,K ,

and pick the initial cell of the Markov chain randomly, with respect to the probability measure
ν. We then denote the corresponding probability measure on (Ω,A) by Pν as we did for a
deterministic starting cell. Under Pν , K0 is random and its distribution is given by ν itself.
The measure Pν may be decomposed along the measures (PK)K∈T according to the formula
Pν =

∑

K∈T ν(K)PK . By invariance of ν, Kn follows, for each n ≥ 0, the law ν, i.e.

∀n ≥ 0, ∀K ∈ T , Pν{Kn = K} = ν(K).
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(See [15, Section 1.7].) Denoting by (
←

K
N

0 , . . . ,
←

K
N

N) = (KN , . . . , K0) the reversed chain from
time N to time 0, we have, for K, J ∈ T and 0 ≤ n ≤ N − 1,

(4.11) Pν{
←

K
N

n+1 = J |
←

K
N

n = K} =
Pν{KN−n−1 = J, KN−n = K}

Pν{KN−n = K} =
ν(J)

ν(K)
pJ,K ,

so that the reversed chain is homogeneous (i.e. the transition probabilities don’t depend on
time).

Since the velocity field a is divergence-free, the transport equation conserves the mass with
respect to the Lebesgue measure. In this framework, the Lebesgue measure is invariant for
the Markov chain (Kn)n≥0:

Proposition 4.5. Assume that a is divergence-free. Then, the Lebesgue measure is invariant
for the Markov chain, i.e.

∀K ∈ T , |K| =
∑

J∈T

|J |pJ,K.

Proof. For a given cell K, we have
∑

J∈T

|J |pJ,K =
∑

J∈K+

〈aJ,K , nJ,K〉∆t|J ∩ K| + |K| +
∑

J∈K−

〈aJ,K, nJ,K〉∆t|J ∩ K|.(4.12)

By (4.10),
∑

J∼K

|K ∩ J |〈aJ,K , nJ,K〉 = 0,

since a is divergence-free. Returning to (4.12), we obtain
∑

J∈T |J |pJ,K = |K|. �

4.6. Analysis in the Divergence-Free and Periodic Setting. The Lebesgue measure
is not of finite mass on Rd, but it is a probability measure on the torus Rd/Zd.

To explain how we make use of time reversal, we thus assume, for the moment, that the
problem is periodic, of period one in each direction. (Since the transport is of finite speed,
this is not a big deal. Anyhow, the proofs of the main results of the paper, given in the next
section, are performed without any periodicity assumption. The current paragraph is purely
pedagogical.) This means that both the velocity a and the mesh are periodic, of period one
in each direction of the space.

As a consequence, we can see the Markov chain (Kn)n≥0 as a Markov chain with values in
the set T /Zd, i.e. in the space of classes of cells for the equivalence relation induced by the
periodicity. The probability of jumping from the class of the cell K to the class of the cell
L is given by the rate pK,L: by periodicity, this rate doesn’t depend on the choices of K and
L.

Proposition 4.6. Assume that a is divergence-free and that both a and the mesh are periodic
of period one in each direction of the space, then the Lebesgue measure on the torus induces
an invariant probability for the Markov chain, i.e.

∀K ∈ T /Zd, |K| =
∑

J∈T /Zd, J∼K

|J |pJ,K.

(For J ∈ T /Zd, we denote by |J | the common volume of all the cells of J .)
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In particular, by (4.11), the reversed chain has the following transition probabilities

Pµ

{
←

K
N

n+1 = J |
←

K
N

n = K
}

= qK,J .

(In the above equality, µ denotes the Lebesgue measure on the torus. Under Pµ, the starting
class of cells of the chain is chosen according to the Lebesgue measure.)

Proof. To check the last assertion, we note that, for two adjacent cells J and K, pJ,K > 0
if and only if K ∈ J−, that is J ∈ K+. Hence, pJ,K > 0 ⇔ qK,J > 0 and in this case

(4.13) qK,J =
|J |
|K|pJ,K ,

so that the relation is always true (even if one term vanishes). �

We recall the interpretation of Proposition 4.6: the reversed chain (seen as a chain with
values in T /Zd), when the chain (Kn)n≥0 is initialized with the Lebesgue measure, is nothing
but the chain associated with −a.

Before applying Proposition 4.6 to the analysis of the numerical scheme, we have to specify
the construction of the random characteristic (Xn)n≥0 in the periodic setting. In this case,
(Xn)n≥0 is seen as a path in Rd and not in Rd/Zd. This amounts to consider a sequence

of representatives (K̂n)n≥0 for the chain (Kn)n≥0. We choose K̂0 as the only representative

K0
0 of K0 such that eK0

0
has coordinates in [0, 1), that is K̂0 = K0

0 (and X0 = eK0
0
). For

any n ≥ 0, K̂n+1 is the unique representative of Kn+1 such that K̂n+1 ∈ (K̂n)−. With this
sequence of representatives at hand, we can build up the sequence (Xn)n≥0 according to
(4.5). We are now in position to estimate the gap eK̂n

− Xn, n ≥ 1:

Proposition 4.7. Under the assumptions of Proposition 4.6, for any N ≥ 0 and any n ∈
{0, . . . , N},

Eµ

[

eK̂n
− Xn|Kn, . . . , KN

]

= 0,

Eµ denoting the expectation under Pµ. In particular, under Pµ, the sequence (
←

M
N

n )0≤n≤N ,
given by

←

M
N

0 =
←

M
N

1 = 0,
←

M
N

n =
N−1
∑

k=N−n+1

(

eK̂k
− Xk

)

, 2 ≤ n ≤ N,

is a martingale for the backward filtration (σ(KN−n, . . . , KN) = σ(
←

K
N

0 , . . . ,
←

K
N

n ))0≤n≤N .

Proof. We can assume that 1 ≤ n ≤ N , since eK̂0
− X0 = 0. We then emphasize that K̂n

isn’t measurable with respect to σ(Kn, . . . , KN). This is the main difficulty of the proof.

Indeed, K̂n depends both on Kn and on the initial representative of K0. Anyhow, the
difference eK̂n

− Xn doesn’t depend on the representatives chosen for Kn−1 and Kn.
Indeed, recalling that K0

n is the unique representative of Kn such that eK0
n

has coordinates
in [0, 1) , we can always write

(4.14) eK̂n
− Xn =

∑

J∈(K̂n)+

(

eK̂n
− xK̂n,J

)

1{K̂n−1=J} =
∑

J∈(K0
n)+

(

eK0
n
− xK0

n,J

)

1{Kn−1∋J}.
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(Above, Kn−1 ∋ J means that J is a representative of Kn−1.) Hence,

Eµ

[

eK̂n
− Xn|Kn, . . . , KN

]

=
∑

J∈(K0
n)+

(

eK0
n
− xK0

n,J

)

Pµ

{

Kn−1 ∋ J |Kn, . . . , KN

}

.

The probability Pµ{Kn−1 ∋ J |Kn, . . . , KN} is also Pµ{
←

K
N

N−n+1 ∋ J |
←

K
N

0 , . . . ,
←

K
N

N−n}. By
Proposition 4.6, it is equal to qK0

n,J . By (4.3), we deduce that Eµ[eK̂n
−Xn|Kn, . . . , KN ] = 0.

By (4.14), we know that eK̂n+1
−Xn+1 is σ(Kn, . . . , KN)-measurable for 0 ≤ n ≤ N − 1. We

easily deduce the martingale property. �

Following (3.12), (3.13) and (3.14), we complete the analysis by estimating, under Pµ, the
fluctuations of the random characteristic around the deterministic characteristic.

Proposition 4.8. There exists a constant C ≥ 0 such that, for any N ≥ 1,

Eµ

[

|XN − Z(N∆t, X0)|
]

≤ C
[

(Nh∆t)1/2 + Nh∆t + N∆t2
]

exp(κN∆t).

Proof. Following the proof of (3.12) and keeping the identity eK̂0
− X0 = 0 in mind, it is

sufficient to focus on

XN − X0 +
N−1
∑

k=0

a(Xk)∆t =
N−1
∑

k=0

(Xk+1 − eK̂k
+ a(Xk)∆t) +

N−1
∑

k=1

(eK̂k
− Xk).

It is plain to see that Corollary 4.3 is still true under Pµ (and not under PK), so that

XN −X0 +
N−1
∑

k=0

a(Xk)∆t =
N−1
∑

k=0

(

Xk+1 − eK̂k
−Ek

µ(Xk+1 − eK̂k
)
)

+
N−1
∑

k=1

(eK̂k
−Xk)+O(Nh∆t).

(Above, Ek
µ[·] = Eµ[·|K0, . . . , Kk].) Setting, for all 0 ≤ n ≤ N , Mn =

∑n−1
k=0(Xk+1 − eK̂k

−
Ek

µ(Xk+1 − eK̂k
)) (with M0 = 0), and using the notation introduced in Proposition 4.7, we

write

XN − X0 +

N−1
∑

k=0

a(Xk)∆t = MN +
←

M
N

N + O(Nh∆t).

We let the reader check that (Mn)0≤n≤N is a martingale with respect to the (forward) filtra-

tion (σ(K0, . . . , Kn))0≤n≤N . By Proposition 4.7, (
←

M
N

n )0≤n≤N is a martingale with respect to
the backward filtration.

Following (3.13), we have

Eµ

[

|MN |2
]

=
N−1
∑

n=0

Eµ

[

|Mn+1 − Mn|2
]

, Eµ

[
∣

∣

←

M
N

N

∣

∣

2]
=

N−1
∑

n=0

Eµ

[

|
←

M
N

n+1 −
←

M
N

n |2
]

.

Following (3.14), we have, for all 0 ≤ n ≤ N − 1,

Eµ

[

|Mn+1 − Mn|2
]

≤ Eµ

[

|Xn+1 − eK̂n
|2
]

≤ Eµ

[

∑

L∈(K̂n)−

pK̂n,L|xK̂n,L − eK̂n
|2
]

≤ h2 sup
K

∑

L∼K

pK,L ≤ ‖a‖∞ sup
K

[

|K|−1
∑

L∼K

|K ∩ L|
]

h2∆t.

(4.15)
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By (4.1), we deduce Eµ[|Mn+1 − Mn|2] ≤ α‖a‖∞h∆t. By a similar argument, we obtain

Eµ[|
←

M
N

n+1 −
←

M
N

n |2] ≤ α‖a‖∞h∆t. We deduce

Eµ

[

|MN |2
]

= O(hN∆t), Eµ

[
∣

∣

←

M
N

N

∣

∣

2]
= O(hN∆t).

We then complete the proof as in the one-dimensional case. �

4.7. L1-Error in the Divergence-Free and Periodic Setting with u0 Lipschitz con-

tinuous. As a by-product, we obtain the following estimate for the error of the numerical
scheme when u0 is Lipschitz continuous:

Theorem 4.9. Assume that the hypotheses of the beginning of Section 4 are satisfied. As-
sume moreover that a is divergence-free and that both the velocity a and the mesh are periodic
of period one in each direction of the space. Assume also that u0 is κ-Lipschitz continuous.
Then, there exists a constant C ≥ 0 such that

∑

K∈T /Zd

∫

K

|uN
K − u(N∆t, x)|dx ≤ C

(

(hN∆t)1/2 + hN∆t + N∆t2
)

exp(κN∆t).

Proof. Consider a cell K. We know that uN
K is nothing but

uN
K = EK

[

u0
KN

]

= EK

[

u0(XN)
]

+ O(h).

Moreover, for all x ∈ K, |X0 − x| ≤ h with probability one under PK . By stability of the
solutions of (1.2), |Z(N∆t, x) − Z(N∆t, X0)| ≤ h exp(κN∆t) under PK . We deduce

∀x ∈ K, u(N∆t, x) = u0
(

Z(N∆t, x)
)

= EK

[

u0
(

Z(N∆t, X0)
)]

+ O
(

h exp(κN∆t)
)

.

Hence,

∑

K∈T /Zd

∫

K

|uN
K − u(N∆t, x)|dx ≤ κ

∑

K∈T /Zd

|K|EK

[

|XN − Z(N∆t, X0)|
]

+ O
(

h exp(κN∆t)
)

≤ κEµ

[

|XN − Z(N∆t, X0)|
]

+ O
(

h exp(κN∆t)
)

.

This completes the proof. �

5. Analysis in the General Setting

We now turn to the general case and analyze the error of the numerical scheme, both in
the L1 sense and in the L∞ sense, u0 being respectively of bounded variation and Lipschitz
continuous. We thus forget the periodic setting and the divergence-free condition. Anyhow,
for technical reasons explained below, the time step ∆t is required to be small when the
divergence of a is large, i.e.

(5.1) ∃η ∈ (0, 1), ‖div(a)‖∞∆t < 1 − η.

We keep the notations of Section 4. To simplify the form of the final bounds, we assume
that h ≤ 1 and that ∆t ≤ θh for some θ > 0. The constants C, C ′ and c below may depend
on the parameters specified in Section 4, on η and on θ. The values of these “constants”
may vary from line to line.
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5.1. Strategy. In dimension 1, we were able to analyze the error in the L∞ sense by inves-
tigating the distance between XN and X0 − ∆t

∑N−1
n=0 a(Xn) for any arbitrary initial cell K

of the mesh. In the previous section, the result was given in the L1 norm since the chain
was initialized with the Lebesgue measure. In what follows, the approach is halfway.

The idea is the following. We pick up the starting cell of the chain with respect to the
Lebesgue measure among the cells included in a ball of radius h1/2 and centered at the origin
(or at any other arbitrarily prescribed point). The bounds we then obtain for the error of the
numerical scheme hold in the L1 sense, but locally in the ball. In other words, we manage
to bound

h−d/2 sup
x∈Rd

∫

B(x,h1/2)

|uN(y) − u(N∆t, y)|dy

by a constant times h1/2 (up to remaining terms in N and ∆t), u0 being Lipschitz continuous.
(In the above expression, uN(y) stands for uN

K when y belongs to the interior of K.) By an
approximation procedure, we deduce that the scheme is of order 1/2 for the (global) L1 norm
when u0 is of bounded variation.

Actually, we can perform the same analysis by replacing the local L1 norm by the local Lp

norm, p being greater than one. We then derive that, for any small positive ε, the scheme is
of order 1/2 − ε for the L∞ norm when u0 is Lipschitz continuous.

By translation, it is in fact sufficient to investigate h−d/2
∫

B(0,h1/2)
|uN(y)− u(N∆t, y)|pdy,

N, p ≥ 1. For this reason, the quantities of interest are

QN
p = hd/2

∑

K∈T0

EK

[
∣

∣XN − X0 + ∆t
N−1
∑

n=0

a(Xn)
∣

∣

p]
, N, p ≥ 1,

where T0 stands for the set of cells K such that |eK | ≤ h1/2. By (4.1), the cardinality of T0

is bounded by Ch−d/2 for some positive constant C.
For given N, p ≥ 1, we are going to decompose QN

p along all the possible paths of the
chain. To do so, we distinguish the paths according to their fluctuations around the velocity
field −a. We write

QN
p ≤ h(d+p)/2

∑

K∈T0

∑

k≥0

(k + 1)pPK

{

kh1/2 ≤ sup
1≤n≤N

∣

∣Xn − X0 + ∆t
n−1
∑

i=0

a(Xi)
∣

∣ < (k + 1)h1/2
}

.

To estimate the above right-hand side, we will use a time reversal argument, as in Section
4. Therefore, we are mainly interested in the location of the arrival cell KN on the event
{kh1/2 ≤ sup1≤n≤N |Xn − X0 + ∆t

∑n−1
i=0 a(Xi)| < (k + 1)h1/2}. Thus, for any k ≥ 0, we

denote by T N
k the set of cells JN such that there exists an N -tuple (J0, . . . , JN−1), with

J0 ∈ T0, satisfying, for all i ∈ {0, . . . , N − 1}, either Ji+1 = Ji or Ji+1 ∈ J−i , and

(5.2) kh1/2 ≤ sup
1≤n≤N

|yJn−1,Jn − eJ0
+ ∆t

n−1
∑

i=0

a(yJi−1,Ji
)| < (k + 1)h1/2,

with yJi,Ji+1
= eJi

= eJi+1
if Ji = Ji+1 and yJi,Ji+1

= xJi,Ji+1
if Ji+1 ∈ J−i (and yJ−1,J0

= eJ0
).

Under PK , for K ∈ T0, we have KN ∈ T N
k on the event {kh1/2 ≤ sup1≤n≤N |Xn − X0 +

∆t
∑n−1

i=0 a(Xi)| < (k + 1)h1/2}.
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Thus,

QN
p ≤ h(d+p)/2

∑

k≥0

∑

K∈T0

∑

L∈T N
k

[

(k + 1)p

× PK

{

kh1/2 ≤ sup
1≤n≤N

∣

∣Xn − X0 + ∆t

n−1
∑

i=0

a(Xi)
∣

∣ < (k + 1)h1/2, KN = L
}]

.

(5.3)

In the next lemma, we estimate the cardinality of T N
k . Because of the translation action

of the transport equation, ♯[T N
k ] is of the same order as ♯[T0]:

Lemma 5.1. There exists a constant C > 0 such that, for all k ≥ 0,

♯[T N
k ] ≤ C exp(CN∆t)(k + 1)dh−d/2.

Proof. We fix k ≥ 0 and we consider a sequence of cells (J0, . . . , JN), J0 ∈ T0, satisfying
(5.2). Setting (y0, . . . , yN) = (eJ0

, yJ0,J1
, . . . , yJN−1,JN

),

sup
1≤n≤N

∣

∣yn − y0 + ∆t

n−1
∑

i=0

a(yi)
∣

∣ ≤ (k + 1)h1/2.

Plugging the characteristic of the transport equation (see (1.2)), we deduce (recall that h ≤ 1
and ∆t ≤ θh by assumption)

sup
1≤n≤N

∣

∣yn − Z(n∆t, y0) + ∆t
n−1
∑

i=0

[

a(yi) − a
(

Z(i∆t, y0)
)]
∣

∣

≤ (k + 1)h1/2 + CN∆t2 ≤ (k + 1)h1/2(1 + CN∆t),

for some constant C > 0. By the Lipschitz property of a and the Gronwall lemma, it is plain
to deduce (up to a new value of C)

∣

∣yN − Z(N∆t, y0)
∣

∣ ≤ C exp(CN∆t)(k + 1)h1/2.

Since |y0| ≤ h1/2 (J0 ∈ T0), we deduce, by stability of the solutions to (1.2), that
∣

∣yN − Z(N∆t, 0)
∣

∣ ≤ C exp(CN∆t)(k + 1)h1/2.

Every point x ∈ JN satisfies the same property since the diameter of JN is bounded by h. We
deduce that there exists a constant C such that JN is included in the ball of center Z(N∆t, 0)
and of radius C exp(CN∆t)(k + 1)h1/2. In other words, all the cells in T N

k are included in
this ball. Up to a modification of C, the volume of the ball is C exp(CN∆t)(k + 1)dhd/2.
Since the volume of a given cell is greater than β−1hd (see Assumption (4.1)), the cardinality
of T N

k is bounded by C exp(CN∆t)(k + 1)dh−d/2 for a new value of the constant C. �

5.2. Application of Section 4. In light of Section 4, we introduce the following decompo-
sition

XN − X0 + ∆t
N−1
∑

n=0

a(Xn) = SN + RN ,

with

S0 = R0 = 0, Sn =
n−1
∑

i=0

[

Xi+1 − eKi
+ ∆t a(Xi)

]

, Rn =
n−1
∑

i=0

[

eKi
− Xi

]

, n ≥ 1.
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On the event {kh1/2 ≤ sup1≤n≤N |Xn − X0 + ∆t
∑n−1

i=0 a(Xi)| < (k + 1)h1/2}, we have

sup1≤n≤N |Sn| ≥ (k/2)h1/2 or sup1≤n≤N |Rn| ≥ (k/2)h1/2. By (5.3), we obtain

h−(d+p)/2QN
p ≤

∑

k≥0

∑

K∈T0

∑

L∈T N
k

(k + 1)pPK

{

sup
0≤n≤N

|Sn| ≥
k

2
h1/2, KN = L

}

+
∑

k≥0

∑

K∈T0

∑

L∈T N
k

(k + 1)pPK

{

sup
0≤n≤N

|Rn| ≥
k

2
h1/2, KN = L

}

.

(5.4)

We wish to apply Corollary 4.3 to treat the first term in the above right-hand side. Since
♯[T0] ≤ Ch−d/2, we have

∑

k≥0

∑

K∈T0

∑

L∈T N
k

(k + 1)pPK

{

sup
0≤n≤N

|Sn| ≥
k

2
h1/2, KN = L

}

=
∑

k≥0

∑

K∈T0

(k + 1)pPK

{

sup
0≤n≤N

|Sn| ≥
k

2
h1/2, KN ∈ T N

k

}

≤ Ch−d/2
∑

k≥0

(k + 1)p sup
K

PK

{

sup
0≤n≤N

|Sn| ≥
k

2
h1/2

}

≤ Ch−d/2

[

(1 + CN∆t)p+1 +
∑

k≥0

(k + 1)p
[

exp
(

− k2

CN∆t

)

+ exp
(

− k

Ch1/2

)]

]

,

(5.5)

the last line following from the inequality h ≤ 1 and from

Lemma 5.2. There exists a constant C > 0 such that, for k > CN∆t h1/2,

sup
K∈T

PK

{

sup
0≤n≤N

|Sn| ≥
k

2
h1/2

}

≤ C
[

exp
(

− k2

CN∆t

)

+ exp
(

− k

Ch1/2

)]

.

Proof of Lemma 5.2. We fix the starting cell K ∈ T . (We thus work under PK .) Following
the proof of Proposition 4.8, we introduce the sequence

M0 = 0, Mn =

n−1
∑

i=0

(

Xi+1 − eKi
− Ei

K [Xi+1 − eKi
]
)

, n ≥ 1.

It is a martingale with respect to the filtration (σ(K0, . . . , Kn))n≥0 (under PK). By Corollary
4.3, we have

sup
0≤n≤N

|Mn − Sn| ≤ CN∆t h,

for a positive constant C. Thus, on the event {sup0≤n≤N |Sn| ≥ (k/2)h1/2}, sup0≤n≤N |Mn| ≥
(k/4)h1/2 or CNh∆t ≥ (k/4)h1/2. The latter is impossible if k > 4CNh1/2∆t. We deduce
that

PK

{

sup
0≤n≤N

|Sn| ≥
k

2
h1/2

}

≤ PK

{

sup
0≤n≤N

|Mn| ≥
k

4
h1/2

}

,

for k > 4CN∆t h1/2. As in (4.15), the conditional variance of the martingale (Mn)n≥0 may
be bounded by C∆t h for a possibly new value of C:

∀n ≥ 0, En
K

[

|Mn+1 − Mn|2
]

≤ C∆t h.
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Moreover, the jumps of the martingale are bounded by h, i.e. |Mn+1−Mn| ≤ h for all n ≥ 0.
Applying Proposition 6.1 given in Annex to (h−1Mn)n≥0, we obtain

PK

{

sup
0≤n≤N

|Mn| ≥
k

4
h1/2

}

≤ C
[

exp
(

− k2

CN∆t

)

+ exp
(

− k

Ch1/2

)]

.

(Pay attention, the value of v in Proposition 6.1 is v = C∆t h−1 since we divide (Mn)n≥0 by
h.)

5.3. Time Reversal. To treat the gap term RN in (5.4), we are to reverse the chain (Kn)n≥0

as done in Section 4 and then to compare the law of the reversed chain with the law of the
chain associated with −a.

Because of (4.10), we emphasize that the CFL condition may fail for −a, so that we cannot
associate a Markov chain with the weights (qK,J)K,J∈T . The following proposition says how
to modify them to obtain a Markovian kernel:

Proposition 5.3. Set

∀K ∈ T , δK = |K|−1

∫

K

div(a)(x)dx.

Then, under Condition (5.1), the kernel

γK,J = (1 + δK∆t)−1qK,J for J ∈ K+,

γK,K = 1 −
∑

J∈K+

(1 + δK∆t)−1qK,J ,

γK,J = 0 for J ∈ T \
(

K+ ∪ {K}
)

,

satisfies γK,K = (1 + δK∆t)−1pK,K. In particular, it is Markovian, i.e. γK,J ≥ 0 for all
K, J ∈ T and

∑

J∈T γK,J = 1.

By (5.1), we emphasize that γK,J ≤ η−1qK,J for J ∈ K+ and γK,K ≤ η−1pK,K.

Proof. Consider a cell K. By (5.1), we have 1 + δK∆t > 0. We compute γK,K. By
integrating by parts the expression of δK , as in (4.10), we obtain

−
∑

L∼K

pK,L +
∑

J∼K

qK,J = δK∆t,

that is pK,K−1+(1+δK∆t)(1−γK,K) = δK∆t. We deduce that γK,K = (1+δK∆t)−1pK,K. �

The chain associated with the kernel γ is denoted by the pair ((QK)K∈T , (Γn)n≥0): (Γn)n≥0

is a sequence of measurable mappings from (Ω,A) into the set of cells and (QK)K∈T is a
family of probability measures on (Ω,A), such that (Γn)n≥0 is, under QK , a Markov chain

with K as initial condition and γ as kernel. The expectation under QK is denoted by E
Q
K .

The link between the chain (Γn)n≥0 and the reversed chain (
←

K
N

n = KN−n)0≤n≤N is given
by
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Proposition 5.4. There exists a constant C > 1, such that, for any pair of cells (K, L) and
any function Ψ : T N+1 → R+,

C−1
[

1 − ‖div(a)‖∞∆t
]N

E
Q
L

[

Ψ(Γ0, . . . , ΓN)1{ΓN=K}

]

≤ EK

[

Ψ(
←

K
N

0 , . . . ,
←

K
N

N)1{KN=L}

]

≤ C
[

1 + ‖div(a)‖∞∆t
]N

E
Q
L

[

Ψ(Γ0, . . . , ΓN)1{ΓN=K}

]

.

Of course, Proposition 5.4 is weaker than Proposition 4.6. Above, we are just able to
compare the law of (Γ0, . . . , ΓN) under the measure 1{ΓN =K}·QL with the law of (KN , . . . , K0)
under the measure 1{KN=L} · PK . They are equivalent and the resulting density is bounded
from above and from below by positive deterministic constants.

Proof. Without loss of generality, we can assume that Ψ = 1(J0,...,JN ), with (J0, . . . , JN) ∈
T N+1, J0 = L and JN = K. Then,

EK

[

Ψ(
←

K
N

0 , . . . ,
←

K
N

N )1{KN=L}

]

= PJN
{
←

K
N

0 = J0, . . . ,
←

K
N

N−1 = JN−1,
←

K
N

N = JN}
= PJN

{K0 = JN , K1 = JN−1, . . . , KN = J0}
= pJN ,JN−1

pJN−1,JN−2
. . . pJ1,J0

.

(5.6)

By Proposition 5.3 and (4.13), we know that

γJn,Jn+1
=

|Jn+1|
|Jn|(1 + δJn∆t)

pJn+1,Jn, 0 ≤ n ≤ N − 1,

even if Jn = Jn+1. Plugging this relationship in (5.6), we deduce that

EK

[

Ψ(
←

K
N

0 , . . . ,
←

K
N

N )1{KN=L}

]

=
[

N−1
∏

n=0

(1 + δJn∆t)
] |J0|
|JN |

γJ0,J1
. . . γJN−1,JN

=
[

N−1
∏

n=0

(1 + δJn∆t)
] |J0|
|JN |

E
Q
L

[

Ψ(Γ0, . . . , ΓN)1{ΓN=K}

]

.

By (5.1) and (4.1) (recall that (4.1) implies β−1hd ≤ |J | ≤ hd for all J ∈ T and for some
β > 1), we complete the proof. �

5.4. Analysis of the Gap. Using the previous subsection, we analyze the term RN in (5.4).
For N ≥ 1, we emphasize that

sup
1≤n≤N

|Rn| = sup
1≤n≤N

∣

∣

n−1
∑

i=1

[

(eKi
− xKi−1,Ki

)1{Ki−1 6=Ki}

]
∣

∣

≤ 2 sup
1≤n≤N

∣

∣

N
∑

i=n

[

(eKi
− xKi−1,Ki

)1{Ki−1 6=Ki}

]
∣

∣

= 2 sup
1≤n≤N

∣

∣

n−1
∑

i=0

[

(e←
KN

i

− x←
KN

i ,
←

KN
i+1

)1
{
←

KN
i+1
6=
←

KN
i }

]
∣

∣.
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Keeping Proposition 5.4 in mind, we define the analogue, but for the chain (Γn)n≥0, that is

Ξ0 = 0, Ξn =
n−1
∑

i=0

[

(eΓi
− xΓi,Γi+1

)1{Γi+1 6=Γi}

]

, n ≥ 1,

By Proposition 5.4, we deduce that, for any starting cell K, for any terminal cell L and for
any k ≥ 0,

(5.7) PK

{

sup
1≤n≤N

|Rn| ≥
k

2
h1/2, KN = L

}

≤ C(1+C∆t)NQL

{

sup
1≤n≤N

∣

∣Ξn

∣

∣ ≥ k

4
h1/2, ΓN = K

}

.

Here is the main argument of the analysis.

Proposition 5.5. For a given cell L ∈ T , the process (Ξn)n≥0 is a martingale under QL

with respect to the filtration (σ(Γ0, . . . , Γn))n≥0.

Proof. The proof is quite obvious. For each n ≥ 0, Ξn is measurable with respect to
σ(Γ0, . . . , Γn) and

E
Q
L

[

eΓn − xΓn+1,Γn |Γ0, . . . , Γn

]

=
∑

J∈Γ+
n

γΓn,J(eΓn − xJ,Γn)

= (1 + δΓn∆t)−1
∑

J∈Γ+
n

qΓn,J(eΓn − xJ,Γn) = 0. �

Following the proof of Lemma 5.2 and making use of (5.1) to bound the conditional
variances of the increments of (Ξn)n≥0, we deduce

Lemma 5.6. There exists a constant C > 0 such that for any k ≥ 0

sup
L

QL

{

sup
0≤n≤N

|Ξn| >
k

4
h1/2

}

≤ C
[

exp
(

− k2

CN∆t

)

+ exp
(

− k

Ch1/2

)]

.

Gathering (5.7) and Lemmas 5.1 and 5.6, we deduce (by modifying if necessary the con-
stant C from line to line)

∑

k≥0

∑

K∈T0

∑

L∈T N
k

(k + 1)pPK

{

sup
0≤n≤N

|Rn| ≥
k

2
h1/2, KN = L

}

≤ C(1 + C∆t)N
∑

k≥0

∑

L∈T N
k

∑

K∈T0

(k + 1)pQL

{

sup
1≤n≤N

|Ξn| ≥
k

4
h1/2, ΓN = K

}

≤ C(1 + C∆t)N
∑

k≥0

♯[T N
k ](k + 1)p sup

L
QL

{

sup
1≤n≤N

|Ξn| ≥
k

4
h1/2

}

≤ Ch−d/2 exp(CN∆t)
∑

k≥0

(k + 1)d+p
[

exp
(

− k2

CN∆t

)

+ exp
(

− k

Ch1/2

)]

.

By (5.4) and (5.5), we deduce (up to a new value of C)

QN
p ≤ Chp/2(1 + CN∆t)p+1

+ Chp/2 exp(CN∆t)
∑

k≥0

(k + 1)d+p
[

exp
(

− k2

CN∆t

)

+ exp
(

− k

Ch1/2

)]

.
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Keeping the inequality h ≤ 1 in mind and comparing the left-hand side below to an integral,
there exists a positive constant Cp, only depending on p and on the same parameters as C,
such that

∑

k≥0

(k + 1)d+p
[

exp
(

− k2

CN∆t

)

+ exp
(

− k

Ch1/2

)]

≤ Cp(1 + N∆t)(p+d+1)/2.

Finally,

Theorem 5.7. Assume (4.1), (5.1), h ≤ 1 and ∆t ≤ θh. Then, for any p ≥ 1, there exists
a constant Cp > 0, only depending on ‖a‖∞, α, d, κ, η, θ and p, such that, for all N ≥ 1,

hd/2
∑

K∈T0

EK

[
∣

∣XN − X0 + ∆t

N−1
∑

n=0

a(Xn)
∣

∣

p] ≤ Cph
p/2 exp(CpN∆t).

5.5. Analysis of the Numerical Scheme. We now prove the main results of the paper.

Proposition 5.8. In addition to the assumptions of Theorem 5.7, assume that u0 is κ-
Lipschitz continuous. Then, for any p ≥ 1, there exists a constant Cp > 0, only depending
on ‖a‖∞, α, d, κ, η, θ and p, such that, for all N ≥ 1,

sup
x∈Rd

[

h−d/2
∑

K:|eK−x|≤h1/2

‖uN
K − u(N∆t, ·)‖p

Lp(K)

]1/p ≤ Cph
1/2 exp(CpN∆t).

Proof. By translation, it is sufficient to prove the bound for x = 0. To simplify the
notations, we set for any random variable Y with values in Rd:

‖Y ‖p,T0 =
[

hd/2
∑

K∈T0

EK

[

|Y |p
]]1/p

.

(Above, T0 is the set of cells K such that |eK | ≤ h1/2.) Of course, ‖ · ‖p,T0 is a (semi-)norm
on the space of Rd-valued random variables with a finite moment of order p under every PK ,
K ∈ T0. By Theorem 5.7 and by the properties h ≤ 1 and ∆t ≤ θh, we have

∀N ≥ 1,
∥

∥XN −Z(N∆t, X0) + ∆t

N−1
∑

n=0

[

a(Xn)− a(Z(n∆t, X0))
]
∥

∥

p,T0
≤ Cph

1/2 exp
(

CpN∆t
)

,

up to a new value of Cp. Following the proof of Proposition 3.4, Gronwall’s lemma yields

(5.8) ∀N ≥ 1,
∥

∥XN − Z(N∆t, X0)
∥

∥

p,T0
≤ Cph

1/2 exp
(

CpN∆t
)

,

again for a new value of the constant Cp. Following the proof of Theorem 4.9,

[

h−d/2
∑

K∈T0

‖uN
K − u(N∆t, ·)‖p

Lp(K)

]1/p ≤ κ
∥

∥XN − Z(N∆t, X0)
∥

∥

p,T0
+ C exp(CN∆t)h,

for some C > 0. This completes the proof. �

As a by-product, we obtain the L∞ estimate announced in Introduction:
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Theorem 5.9. In addition to the assumptions of Theorem 5.7, assume that u0 is κ-Lipschitz
continuous. Then, for any p ≥ 1, there exists a constant Cp > 0, only depending on ‖a‖∞,
α, d, κ, η, θ and p, such that, for all N ≥ 1,

sup
K∈T

sup
x∈K

|uN
K − u(N∆t, x)| ≤ Cph

(1−1/p)/2 exp(CpN∆t).

Proof. Consider a given cell K. By Proposition 5.8, for any p ≥ 1,

hd/2p inf
y∈K

|uN
K − u(N∆t, y)| ≤

[

βh−d/2‖uN
K − u(N∆t, ·)‖p

Lp(K)

]1/p ≤ Cph
1/2 exp(CpN∆t).

Since u(N∆t, ·) is Lipschitz continuous with κ exp(κN∆t) as Lipschitz constant, we obtain
the desired estimate with (1 − d/p)/2 as exponent (instead of (1 − 1/p)/2 as required in
the statement). Since the result holds for any p ≥ 1, we can turn p into d × p, up to a
modification of the constant Cp. �

By a regularization argument, we manage to weaken the required assumption on u0 in
Proposition 5.8:

Theorem 5.10. In addition to the assumptions of Theorem 5.7, assume that u0 belongs to
L1(Rd) ∩ BV (Rd). Then, there exists a constant C > 0, only depending on ‖a‖∞, α, d, κ,
η, θ and the BV semi-norm of u0, such that, for all N ≥ 1,

∑

K∈T

‖uN
K − u(N∆t, ·)‖L1(K) ≤ Ch1/2 exp(CN∆t).

We emphasize that the constant C above doesn’t depend on ‖u0‖L1(Rd).

Proof. The parameters h and N are fixed for the whole proof (with h ≤ 1). The constants
“C” and “C ′” appearing below may depend on the BV semi-norm of u0. By [23, Chapter
5], we know that the semi-norm BV , denoted by ‖ · ‖BV (Rd), decreases by convolution. In

particular, we can find a smooth function u0
h : Rd → R, such that ‖u0 −u0

h‖L1(Rd) ≤ h1/2 and

‖∇u0
h‖L1(Rd) ≤ ‖u0‖BV (Rd). We then set, for all x ∈ Rd, ū0(x) = |B(0, h1/2)|−1

∫

B(0,h1/2)
u0

h(x−
y)dy. We let the reader check that

(5.9) ‖u0 − ū0‖L1(Rd) ≤ h1/2
(

1 + ‖u0‖BV (Rd)

)

, ‖∇ū0‖L1(Rd) ≤ ‖u0‖BV (Rd).

The reason why we introduce ū0 is the following: the gradient of ū0 may be locally bounded,
in the L∞ sense, by local L1 norms of ∇u0

h. Indeed, for any x ∈ Rd and R > 0,

(5.10) sup
y∈B(x,R)

|∇ū0(y)| ≤ |B(0, h1/2)|−1‖∇u0
h‖L1(B(x,R+h1/2)).

We denote by ū(t, x) = ū0(Z(t, x)) the solution, at (t, x), of the transport problem with ū0

as initial condition and by ūN
K = EK(ū0

KN
) the corresponding approximate solution at time

step N in cell K. It is clear that there exists a constant C > 0 such that

(5.11) ∀t ≥ 0, ‖ū(t, ·) − u(t, ·)‖L1(Rd) ≤ exp(Ct)‖ū0 − u0‖L1(Rd).

Similarly, with Proposition 5.3 at hand,
∑

K∈T

|K||u1
K − ū1

K | ≤
∑

K∈T

|K|
∑

L∈T

pK,L|u0
L − ū0

L|

=
∑

L∈T

|L|(1 + δL∆t)
∑

K∈T

γL,K |u0
L − ū0

L| ≤ (1 + C∆t)
∑

L∈T

|L||u0
L − ū0

L|.
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Iterating the procedure, we obtain

(5.12)
∑

K∈T

|K||uN
K − ūN

K | ≤ (1 + C∆t)N
∑

K∈T

|K||u0
K − ū0

K | ≤ (1 + C∆t)N‖u0 − ū0‖L1(Rd).

By (5.9), (5.11) and (5.12), it is sufficient to investigate
∑

K∈T ‖ūN
K − ū(N∆t, ·)‖L1(K). For

a cell K, we obtain by (5.10) and by stability of the solutions to (1.2), for all y ∈ K,

|ū(N∆t, y) − ū(N∆t, eK)| = |ū0(Z(N∆t, y)) − ū0(Z(N∆t, eK))|
≤ C exp(CN∆t)h sup

|z−Z(N∆t,eK)|≤C exp(CN∆t)h

|∇ū0(z)|

≤ C exp(CN∆t)h1−d/2‖∇u0
h‖L1(B(Z(N∆t,eK ),C exp(CN∆t)h1/2)),

for some C > 0 (which may vary from line to line). Integrating with respect to y, we have
by inversion of the flow Z(N∆t, ·)

∑

K∈T

‖ū(N∆t, ·) − ū(N∆t, eK)‖L1(K)

≤ C exp(CN∆t)h1+d/2

∫

Rd

[

|∇u0
h(z)|

∑

K∈T

1{|z−Z(N∆t,eK)|≤C exp(CN∆t)h1/2}

]

dz

≤ C ′ exp(C ′N∆t)h‖∇u0
h‖L1(Rd).

It is thus sufficient to analyse
∑

K∈T |K||ūN
K − ū(N∆t, eK)|. In what follows, we fix a point

x ∈ Rd and we consider a cell K ∈ Tx, the set of cells L such that |eL − x| ≤ h1/2. The
triangular inequality yields (remind that X0 = eK under PK)

|ūN
K − ū(N∆t, eK)|
≤
∑

k≥0

EK

[

|ū0
KN

− ū0(Z(N∆t, X0))|1{kh1/2≤|XN−Z(N∆t,X0)|<(k+1)h1/2}

]

.(5.13)

We are to bound, under PK , the difference |ū0
KN

−ū0(Z(N∆t, X0))| on the set {kh1/2 ≤ |XN−
Z(N∆t, X0)| < (k+1)h1/2} by the gradient of ū0 and by (k+2)h1/2. (On this set, every point
in KN is at distance less than (k+1)h1/2 +h ≤ (k+2)h1/2 from Z(N∆t, X0).) We thus need
to bound the gradient of ū0 on B(Z(N∆t, X0), (k+2)h1/2). To do so, we aim to apply (5.10):
it is enough to bound ∇u0

h on B(Z(N∆t, X0), (k+3)h1/2). Since X0 = eK under PK , we know
by stability of the solutions to (1.2) that |Z(N∆t, X0)−Z(N∆t, x)| ≤ C exp(CN∆t)h1/2 for
some constant C > 0. Therefore, by modifying twice the constant C if necessary, the ball
B(Z(N∆t, X0), (k + 3)h1/2) is included in the ball B(Z(N∆t, x), C exp(CN∆t)(k + 4)h1/2)
and thus in the ball Bk

x = B(Z(N∆t, x), C exp(CN∆t)(k+1)h1/2) (k+4 is less than c(k+1)
for c ≥ 4). By (5.10), we obtain (under PK)

(5.14) sup
|z−Z(N∆t,X0)|≤(k+2)h1/2

|∇ū0(z)| ≤ Ch−d/2‖∇u0
h‖L1(Bk

x ).
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By (5.13) and (5.14),
∑

K∈Tx

|K||ūN
K − ū(N∆t, eK)|

≤ Ch(1+d)/2
∑

k≥0

[

(k + 2)‖∇u0
h‖L1(Bk

x)

∑

K∈Tx

PK

{

|XN − Z(N∆t, X0)| ≥ kh1/2
}

]

.

Recall the Markov inequality: for a nonnegative random variable Y and two reals a, p > 0,
PK{Y > a} ≤ a−pEK [Y p]. Choosing Y = h−1/2|XN − Z(N∆t, X0)|, a = k and p = d + 3,
and referring to the proof of Proposition 5.8 (see (5.8)), we obtain for k ≥ 1:
∑

K∈Tx

PK

{

|XN − Z(N∆t, X0)| ≥ kh1/2
}

≤ k−(d+3)
∑

K∈Tx

EK

[(

h−1/2|XN − Z(N∆t, X0)|
)d+3]

= k−(d+3)h−d/2‖h−1/2(XN − Z(N∆t, X0)) ‖d+3
d+3,Tx

≤ C(k + 1)−(d+3)h−d/2 exp(CN∆t).

The modification of k into k + 1 in the last line permits to recover the case k = 0. Finally,
∑

K∈Tx

|K||ūN
K − ū(N∆t, eK)| ≤ Ch1/2 exp(CN∆t)

∑

k≥0

[

(k + 2)(k + 1)−(d+3)‖∇u0
h‖L1(Bk

x)

]

.

When integrating the left-hand side with respect to x over Rd, we obtain by Fubini’s Theorem
a term equal to a constant times hd/2

∑

K∈T |K||ūN
K − ū(N∆t, eK)|. When integrating the

right-hand side, we have by inversion of the flow Z(N∆t, ·)
∫

Rd

‖∇u0
h‖L1(Bk

x)dx =

∫

Rd

∫

B(Z(N∆t,x),C exp(CN∆t)(k+1)h1/2)

|∇u0
h|(z)dzdx

≤ C ′ exp(C ′N∆t)

∫

Rd

∫

B(x,C exp(CN∆t)(k+1)h1/2)

|∇u0
h|(z)dzdx

≤ C ′(k + 1)dhd/2 exp(C ′N∆t)‖∇u0
h‖L1(Rd).

This completes the proof. �

6. Annex

We now show the concentration inequality used to prove Lemmas 5.2 and 5.6.

Proposition 6.1. Let (Ω,A, P) be a probability space and d ∈ N \ {0}. Then, there exists a
constant c > 0, only depending on d, such that, for any Rd-valued martingale (Yn)n≥0 with
respect to a given filtration (Hn)n≥0, satisfying Y0 = 0 and, for all n ≥ 0, |Yn+1 − Yn| ≤ 1
and E[|Yn+1 − Yn|2|Hn] ≤ v for a deterministic real v > 0, the following holds for all n ≥ 0:

∀u > 0, P
{

sup
0≤k≤n

|Yk| ≥ u
}

≤ c
[

exp
(

− u2

cnv

)

+ exp
(

−u

c

)]

.

Proof. Without loss of generality, we can assume that d = 1. Indeed,

∀u > 0, P
{

sup
0≤k≤n

|Yk| ≥ u
}

≤
d
∑

i=1

P
{

sup
0≤k≤n

|(Yk)i| ≥ ud−1/2
}

.
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In the one-dimensional case, it is sufficient to investigate P{sup0≤k≤n Yk ≥ u}, the lower
bound following from an obvious change of sign. We then apply [7, Proposition 1.6] (choose
Xk = 0 for k > n, a = u and b = nv in the statement of [7, Proposition 1.6])

P
{

sup
0≤k≤n

Yk ≥ u
}

≤ exp
(

− u2

2(u + nv)

)

.

There are two cases: either u ≤ nv or u > nv. We obtain

P
{

sup
0≤k≤n

Yk ≥ u
}

≤ exp
(

− u2

4nv

)

+ exp
(

−u

4

)

.

This completes the proof. �
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