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NUMERICAL SCHEMES FOR THE AGGREGATION EQUATION WITH

POINTY POTENTIALS ∗

Benôıt Fabrèges1, Hélène Hivert2, Kevin Le Balc’h3, Sofiane Martel4,
Francois Delarue5, Frédéric Lagoutière2 and Nicolas Vauchelet6

Abstract. The aggregation equation is a nonlocal and nonlinear conservation law commonly used
to describe the collective motion of individuals interacting together. When interacting potentials are
pointy, it is now well established that solutions may blow up in finite time but global in time weak
measure valued solutions exist. In this paper we focus on the convergence of particle schemes and finite
volume schemes towards these weak measure valued solutions of the aggregation equation.

Résumé. L’équation dite d’agrégation est une loi de conservation nonlocale et nonlinéaire fréquemment
utilisée pour décrire le comportement collectif d’individus en interacton. Quand le potentiel d’interaction
est singulier, il est dorénavant bien connu que les solutions de l’équation d’agrégation explosent en temps
fini. Cependant l’existence de solutions globales en temps à valeurs mesures a été établie. Dans ce
travail, nous étudions la convergence de schémas particulaires et de schémas de volumes finis vers les
solutions faibles de l’équation d’agrégation.

Introduction

This work is devoted to the numerical approximation of measure valued solutions to the so-called aggregation
equation in Rd. This is a nonlinear and nonlocal conservation law that is commonly used to model the dynamics
of (a density of) individuals interacting together through an interaction potential. Denoting byW the interaction
potential, its gradient ∇xW (x− y) measures the relative force exerted by a unit mass located at a point y onto
a unit mass located at a point x, and the aggregation equation reads

∂tρ = div
(
(∇xW ∗ ρ)ρ

)
, t > 0, x ∈ Rd. (1)

We complement this system with the initial condition ρ(0, ·) = ρini.
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The aggregation equation is the subject of several studies since it has many applications in physics and in
biology (see e.g. [23] and references therein). For instance, it may be used to describe crowd motion [15, 37],
biological swarming [30, 36], granular media dynamics [14, 35], evolution of vortex densities in superconductors
[3, 22,31], aggregative phenomena in bacterial chemotaxis [21,26], animal aggregation [12].

When considering fully attractive potentials, ∇W may have some discontinuities. This is the case, for
instance, for potentials of the type W (x) = w(|x|) whose gradient may have a singularity in 0 even for smooth
w. It is known that in this situation, Lp weak solutions may blow up in finite time, in the sense that the Lp

norm, for p > 1, blows up in finite time (see e.g. [4–6]). Since the aggregation equation is conservative, a notion
of solutions in the sense of measures has been developped, for which global-in-time existence may be obtained.
Two different approaches may be found in the literature. On one side, weak measure valued solutions have been
defined in [11] thanks to the theory of gradient flows for a Wasserstein metric [2]. On the other side, based
on the theory of Filippov [24], weak measure valued solutions have been defined as a pushforward by a flow
in [13] (see also [27] for the one dimensional case). In this latter approach, the aggregation equation is seen as a
transport equation with a velocity field ∇xW ∗ ρ which satisfies a one-sided Lipschitz-continuity condition (see
(5) below for the definition of one-sided Lipschitz-continuity condition). It has been also proved in [13] that
both approaches are equivalent (and there is also an equivalence with entropy solution to conservation law in
the one dimensional case as stated in [8, 27]).

In this work, we are interested in the numerical treatment of the aggregation equation (1) with pointy
potential. Numerical investigations of regular solutions of the aggregation equation, i.e. before the blow-up
time, may be found for instance in [10, 16]. However, there are no convergence results towards weak measure
valued solutions after blow-up time. Based on the approach using Filippov flows, convergence towards weak
measure valued solutions has been proven in [28] for one-dimensional numerical solutions constructed by a
finite volume scheme. It has been extended in higher dimension for some finite volume schemes on structured
meshes [13]. Moreover, a precise error estimate has been obtained recently by some of the authors in [19] showing
that the convergence of an upwind numerical scheme is of order 1/2 in Wasserstein distance. The obtention
of this convergence order relies on the construction of a stochastic characteristics thanks to a probabilistic
interpretation of the numerical scheme in the spirit of [17,18].

One aim of this work is to provide some numerical illustrations of this latter convergence result and to
investigate convergence on unstructured meshes. In particular, we will observe that on unstructured meshes,
numerical solutions to (1), when computed by some standard finite volume schemes, do not converge towards
weak measure valued solutions of (1). Note that this is in contrast with the result proven in [19]; there, it is
shown that forward semi-lagrangian schemes (of upwind type) do converge at the order 1/2; of course, the latter
schemes are conceptually very different from the finite volume typed schemes that we are handling here.

This paper is organized as follows. Section 1 is devoted to a brief summary of the existence and uniqueness
result of weak measure valued solutions to the aggregation equation, and recalls and summarizes some material
already presented in [13, 19]. A consequence of this existence result is the convergence of a particle scheme in
which a finite number of particles is considered and its dynamics is discretized thanks to a Euler scheme. A proof
of the convergence at the order 1/2 is provided in section 2 (a weak convergence proof, without rate, was already
provided in [11,13]). In section 3, we provide some illustration of the convergence order for some finite volume
schemes in dimension 1. The results show a convergence order that is better than expected when the potential is
pointy. Finally, section 4 provides finite volume numerical results in higher dimension on unstructured meshes.

1. Existence result of weak measure valued solutions

In this section, we summarize the existence and uniqueness result for the aggregation equation (1) that may
be found in [13] (see also [19], and [29], in which some slight generalizations are proposed). We first start by
setting our assumptions on the interaction potential W and some useful notations.
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1.1. Assumptions and notations

We may always assume, up to a rescaling, that the total mass of the system is 1. Then the inital data is
assumed to be a probability measure. Moreover, we may assume, up to a translation, that the center of mass
is 0, i.e.

∫
Rd xρ

ini(dx) = 0.

The interaction potential W : Rd → R is assumed to satisfy the following properties:

(A0) W (x) = W (−x) and W (0) = 0;
(A1) W is λ-convex for some λ ∈ R, i.e. W (x)− λ

2 |x|
2 is convex;

(A2) W ∈ C1(Rd \ {0});
(A3) W is Lipschitz-continuous.

Such a potential will be referred to as a pointy potential. Typical examples are the fully attractive potentials
W (x) = 1− e−|x|, which is −1-convex, and W (x) = |x|, which is 0-convex. Notice that the Lipschitz-continuity
of the potential allows to bound the velocity field: there exists a nonnegative constant a∞ such that for all
x 6= 0,

|∇W (x)| ≤ a∞. (2)

Remark also that (A3) implies that λ ≤ 0 in (A1). In the following, we may avoid assumption (A3) to allow
λ > 0 and get better estimates, but in this case we make the further assumption that the initial datum of the
Cauchy problem has a compact support. In this case, a∞ will be a bound for |∇W (x)| on the support of ρini.

We denote by Mb(Rd) the space of Borel signed measures whose total variation is finite. For ρ a measure
in Mb(Rd) and Z a measurable map, we denote Z#ρ the pushforward measure of ρ by Z; it satisfies, for any
continuous function φ, ∫

Rd

φ(x)Z#ρ(dx) =

∫
Rd

φ(Z(x)) ρ(dx).

We call P(Rd) the subset ofMb(Rd) made of probability measures. For p ≥ 1, we define the space of probability
measures with finite pth order moment by

Pp(Rd) :=

{
µ ∈ P(Rd),

∫
Rd

|x|pµ(dx) <∞
}
.

Here and in the following, | · | stands for the Euclidean norm in Rd, and 〈·, ·〉 for the Euclidean inner product.
The space Pp(Rd) is equipped with the Wasserstein distance dp defined by (see e.g. [2, 33,38])

dp(µ, ν) := inf
γ∈Γ(µ,ν)

{∫
Rd×Rd

|y − x|p γ(dx, dy)

}1/p

, (3)

where Γ(µ, ν) is the set of measures on Rd × Rd with marginals µ and ν, i.e.

Γ(µ, ν) =
{
γ ∈ Pp(Rd × Rd); ∀ ξ ∈ C0(Rd),

∫
ξ(y1)γ(dy1, dy2) =

∫
ξ(y1)µ(dy1),∫

ξ(y2)γ(dy1, dy2) =

∫
ξ(y2)ν(dy2)

}
.

By a weak compactness argument, we know that the infimum in the definition of dp is actually a minimum.
A measure that realizes the minimum in the definition (3) of dp is called an optimal plan, the set of which is
denoted by Γ0(µ, ν). Then, for all γ0 ∈ Γ0(µ, ν), we have

dp(µ, ν)p =

∫
Rd×Rd

|y − x|p γ0(dx, dy).



4 ESAIM: PROCEEDINGS AND SURVEYS

1.2. Filippov flow for linear transport equation

Let us first consider the linear conservative transport equation

∂tρ+ div
(
bρ
)

= 0, ρ(t = 0) = ρ0. (4)

We assume that the velocity field has a weak regularity, more precisely b ∈ L∞([0,+∞);L∞(Rd))d satisfies an
OSL estimate, i.e.

∀x, y ∈ Rd, t ≥ 0, 〈b(t, x)− b(t, y), x− y〉 ≤ α(t)|x− y|2, (5)

for α ∈ L1
loc([0,+∞)). It has been established in [24] that a Filippov characteristic flow could be defined.

For s ≥ 0 and x ∈ Rd, a Filippov characteristic starting from x at time s is defined as a continuous function
Y (·; s, x) ∈ C([s,+∞);Rd) such that ∂

∂tY (t; s, x) exists for a.e. t ∈ [s,+∞) and satisfies Y (s; s, x) = x together
with the differential inclusion

∂

∂t
Y (t; s, x) ∈

{
Convess

(
b
)}

(Y (t; s, x)), for a.e. t ≥ s.

In this definition, Convess(E) denotes the essential convex hull of the set E. We remind briefly the definition
for the sake of completeness (see [1,24] for more details). We denote by Conv(E) the classical convex hull of E,
i.e., the smallest closed convex set containing E. Given the vector field b(t, ·) : Rd → Rd, its essential convex
hull at point x is defined as{

Convess
(
b
)
(t, ·)

}
(x) =

⋂
r>0

⋂
N∈N0

Conv
[
b
(
t, B(x, r) \N

)]
,

where N0 is the set of zero Lebesgue measure sets and B(x, r) is the ball of center x and radius r > 0. Moreover,
we have the semi-group property: for any t, τ, s ∈ [0,+∞) such that t ≥ τ ≥ s and x ∈ Rd,

Y (t; s, x) = Y (τ ; s, x) +

∫ t

τ

b
(
σ, Y (σ; s, x)

)
dσ. (6)

From now on, we will make use of the notation Y (t, x) = Y (t; 0, x), for a Filippov characteristic.
Since characteristics may be constructed, then solutions to the conservative transport equation (4) with a

given bounded and one-sided Lipschitz-continuous velocity field could be defined as the pushforward of the
initial condition by the Filippov characteristic flow, i.e. ρ(t) = Y (t)#ρ

0. The well-posedness of this solution
has been established in [32]. Moreover stability properties have been recently established in [7].

1.3. Existence and uniqueness of a Filippov flow

We are now in position to state an existence result of a Filippov flow for the aggregation equation (1). For
ρ ∈ C([0, T ],P2(Rd)), we define the velocity field âρ by

âρ(t, x) := −
∫
Rd

∇̂W (x− y)ρ(t, dy) , (7)

where we have used the notation

∇̂W (x) :=

{
∇W (x), for x 6= 0,
0, for x = 0.

Due to the λ-convexity of W , see (A2), we deduce that, for all x, y in Rd \ {0},

〈∇W (x)−∇W (y), x− y〉 ≥ λ|x− y|2. (8)
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Moreover, since W is even, ∇W is odd and by taking y = −x in (8), we deduce that inequality (8) still holds

for ∇̂W , even when x or y vanishes:

∀x, y ∈ Rd, 〈∇̂W (x)− ∇̂W (y), x− y〉 ≥ λ|x− y|2. (9)

This latter inequality provides an one-sided Lipschitz-continuity (OSL) estimate for the velocity field âρ defined
in (7), i.e. we have

∀x, y ∈ Rd, t ≥ 0,
〈
âρ(t, x)− âρ(t, y), x− y

〉
≤ −λ|x− y|2.

As a consequence, we are in the framework to construct a Filippov flow for this velocity field. Such construc-
tion has been established in [13]. More precisely the statement reads:

Theorem 1.1. [13, Theorem 2.5 and 2.9] [19, Theorem 2.1] Let W satisfy assumptions (A0)–(A3) and let
ρini be given in P2(Rd). Then, there exists a unique solution ρ ∈ C([0,+∞);P2(Rd)) satisfying, in the sense of
distributions, the aggregation equation

∂tρ+ div
(
âρρ
)

= 0, ρ(0, ·) = ρini, (10)

where âρ is defined by (7). This solution may be represented as the family of pushforward measures (ρ(t) :=
Zρ(t, ·)#ρ

ini)t≥0 where (Zρ(t, ·))t≥0 is the unique Filippov characteristic flow associated to the velocity field âρ.
Moreover, the flow Zρ is Lipschitz-continuous and we have

sup
x,y∈Rd, x 6=y

|Zρ(t, x)− Zρ(t, y)|
|x− y|

≤ e−λt, t ≥ 0. (11)

At last, if ρ and ρ′ are the respective solutions of (10) with ρini and ρini,′ as initial conditions in P2(Rd), then

d2(ρ(t), ρ′(t)) ≤ e|λ|td2(ρini, ρini,′), t ≥ 0.

This existence result also holds true when we assume that W only satisfies assumptions (A0)–(A2) and
ρini ∈ P2(Rd) is compactly supported (see [19, Theorem 2.1]).

1.4. Upwind discretization

We denote by ∆t the time step and consider a Cartesian grid with step ∆xi in the ith direction, i = 1, . . . , d;
we then let ∆x := maxi ∆xi. We also introduce the following notations. For a multi-index J = (J1, . . . , Jd) ∈ Zd,
we call CJ := [(J1− 1

2 )∆x1, (J1 + 1
2 )∆x1)× . . .× [(Jd− 1

2 )∆xd, (Jd + 1
2 )∆xd) the corresponding elementary cell.

The center of the cell is denoted by xJ := (J1∆x1, . . . , Jd∆xd). Also, we let ei := (0, . . . , 1, . . . , 0) be the ith
vector of the canonical basis, for i ∈ {1, . . . , d}, and we expand the velocity field in the canonical basis under
the form a = (a1, . . . , ad).

For a given nonnegative measure ρini ∈ P2(Rd), we put, for any J ∈ Zd,

ρ0
J :=

∫
CJ

ρini(dx) ≥ 0. (12)

Since ρini is a probability measure, the total mass of the system is
∑
J∈Zd ρ0

J = 1. We then construct iteratively
the collection ((ρnJ)J∈Zd)n∈N, each ρnJ being intended to provide an approximation of the value ρ(tn, xJ), for
J ∈ Zd. Assuming that the approximating sequence (ρnJ)J∈Zd is already given at time tn := n∆t, we compute
the approximation at time tn+1 by:

ρn+1
J := ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)+ρnJ − (ai

n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei + (ai
n
J)−ρnJ

)
. (13)
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The notation (a)+ = max{0, a} stands for the positive part of the real a and respectively (a)− = max{0,−a}
for the negative part. The macroscopic velocity is defined by

ai
n
J := −

∑
L∈Zd

ρnLDiW
L
J , where DiW

L
J := ∂̂xi

W
(
xJ − xL

)
. (14)

Since W is even, we also have:

DiW
L
J = −DiW

J
L . (15)

Based on a probabilistic approach, it has been proved in [19] that the above upwind scheme converges at
order 1/2 in the Wasserstein distance d2. More precisely the convergence result reads:

Theorem 1.2. [19, Theorem 2.2] Assume that W satisfies hypotheses (A0)–(A3) and that the so-called CFL
condition holds:

a∞

d∑
i=1

∆t

∆xi
≤ 1, (16)

with a∞ as in (2).
For ρini ∈ P2(Rd), let ρ = (ρ(t))t≥0 be the unique measure solution to the aggregation equation with initial

datum ρini, as given by Theorem 1.1. Define ((ρnJ)J∈Zd)n∈N as in (12)–(13)–(14) and let

ρn∆x :=
∑
J∈Zd

ρnJδxJ
, n ∈ N.

Then, there exists a nonnegative constant C, only depending on λ, a∞ and d, such that, for all n ∈ N∗,

d2(ρ(tn), ρn∆x) ≤ C e|λ|(1+∆t)tn
(√
tn∆x+ ∆x

)
. (17)

Note that one has
∑
J ρ

0
J = ρ(Rd) = 1 because the datum is a probability measure, but of course all the

results of this paper remain true when the initial mass is any finite positive real number (in that case it suffices
to rescale the datum by dividing it by the initial mass, then perform the computation, and at last multiply the
result by the initial mass).

2. Particle scheme

In this section, we address another scheme than the upwind discretization introduced in Subsection 1.4.
Convergence at order 1/2 is proven in Theorem 2.1 below. Numerical examples are given in Section 3.

2.1. Definition of the scheme

Let ρini ∈ P2(Rd) be the initial datum for (1), and (ρ0
J)J∈Zd be a discrete version of ρ0 defined for every

J = (Ji)
d
i=1 ∈ Zd on a uniform grid of Rd with step ∆x as

ρ0
J :=

∫
MJ

ρini(dx) = ρini (MJ) , J ∈ Zd, (18)

where MJ = Πd
i=1[(Ji − 1/2)∆x, (Ji + 1/2)∆x[, so that we can define an approximation

ρ0
∆x =

∑
J∈Zd

ρ0
JδxJ

∈ P2(Rd)
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for ρ, with xJ = ∆x × J . The solution to (1) with this discrete datum, denoted by ρ∆x(t), satisfies ρ∆x(t) =
Z(t)#ρ0

∆x, where Z is the associated characteristic flow. From the stability property (see Theorem 1.1), one
has

d2(ρ(t), ρ∆x(t)) ≤ e|λ|td2(ρini, ρ0
∆x),

and, as d2(ρini, ρ0
∆x) ≤ C∆x for a certain constant C,

d2(ρ(t), ρ∆x(t)) ≤ Ce|λ|t∆x, (19)

In the flow Z(t), each characteristic starts from a point xJ , J ∈ Zd, and transports a particle of mass ρ0
J .

Denoting by (YJ(t))t≥0 the trajectory of the characteristic starting from xJ , the Filippov flow reduces to the
sticky particles dynamics (see [9]) 

ẎJ(t) = −
∑
K∈Zd

ρ0
K∇̂W (YJ(t)− YK(t)),

YJ(0) = xJ = ∆x× J.
(20)

This is a direct consequence of the fact that (10) is satisfied in the sense of distributions. Since we are in the
aggregative case, two particles may collide in finite time. If for instance the particle I (that is to say, the one
associated with ρ0

I) collides with the particle K, then they form a bigger particle with mass mI +mK and the
dynamics continues with one particle less.

In order to approximate (1) in a discrete way, we propose the explicit Euler type scheme for (20):
Xn+1
J = Xn

J −∆t
∑
K∈Zd

ρ0
K∇̂W (Xn

J −Xn
K),

X0
J = xJ ∈ Rd,

(21)

for every J ∈ Zd. The corresponding approximation of ρ(tn) is then defined as

ρn∆x :=
∑
K∈Zd

ρ0
KδXn

K
= Xn#ρ0

∆x. (22)

Theorem 2.1. Let ρini ∈ P2(Rd). Let ρ∆x be defined as in (22) thanks to the particle scheme (21), (18).

(i) Assume that W satisfies (A0), (A1), (A2) and (A3) (in this case, λ ≤ 0). Then there exists C ∈ R+

such that for any ∆t ∈ (0, 1] one has

d2 (ρn∆x, ρ(tn)) ≤ Ce(1+∆t)|λ|tn(
√
tn∆t+ ∆x), n ∈ N.

(ii) Assume that W satisfies (A0), (A1) with λ > 0, and (A2). Assume also that ρini is compactly
supported. Then there exists C ∈ R+ such that for any ∆t ∈ (0,min(1, 1/(2λ))] one has

d2 (ρn∆x, ρ(tn)) ≤ C(
√

∆t+ ∆x), n ∈ N.

Remark that in the case where λ > 0, the estimate is uniform in time.

Proof. We first notice the fact that the function |∇̂W | is bounded on the support of the solution by a∞ in
both cases (i) and (ii). Indeed, it is obvious for (i), and for (ii) we use Lemma 2.2 below which states that the
numerical solution is compactly supported.

Thanks to (19) and the triangle inequality, in order to prove the estimate, we only have to estimate the term

d2(ρn∆x, Z(tn, ·)#ρ0
∆x) = d2(Xn#ρ0

∆x, Z(tn, ·)#ρ0
∆x).
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We know that

d2(Xn#ρ0
∆x, Z(tn, ·)#ρ0

∆x) ≤

∑
J∈Zd

ρ0
J |Xn

J − YJ(t)|2
1/2

.

(this can be shown by choosing an appropriate coupling measure). Now we can follow the arguments given
in [19] for the convergence of the upwind scheme and replace them in the present framework of deterministic
characteristics. We have

|Xn+1
J − YJ(tn+1)|2 =

∣∣∣∣∣∣Xn
J − YJ(tn)−

∫ tn+1

tn

∑
K∈Zd

ρ0
K

(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
ds

∣∣∣∣∣∣
2

= |Xn
J − YJ(tn)|2 +

∣∣∣∣∣∣
∫ tn+1

tn

∑
K∈Zd

ρ0
K

(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
ds

∣∣∣∣∣∣
2

− 2

∫ tn+1

tn
〈(Xn

J − YJ(tn)),
∑
K∈Zd

ρ0
K

(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds. (23)

Since |∇̂W | is bounded by the constant a∞, the second term in (23) is bounded by 4a2
∞∆t2. Also, in the third

term of (23), YJ(tn) can be reajusted to YJ(s) with the expansion

− 2

∫ tn+1

tn

∑
K∈Zd

ρ0
K〈(Xn

J − YJ(tn)),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds

= −2

∫ tn+1

tn

∑
K∈Zd

ρ0
K〈(Xn

J − YJ(s)),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds

− 2

∫ tn+1

tn

∑
K∈Zd

ρ0
K〈(YJ(s)− YJ(tn)),

(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds

≤ −2

∫ tn+1

tn

∑
K∈Zd

ρ0
K〈(Xn

J − YJ(s)),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds+ 2a2

∞∆t2

where we used the fact that |YJ(s) − YJ(tn)| ≤ a∞|s − tn|, thanks to the boundedness of ∇̂W . Injecting this
estimate in (23), we get

|Xn+1
J − YJ(tn+1)|2 ≤ |Xn

J − YJ(tn)|2 + 6a2
∞∆t2

− 2

∫ tn+1

tn

∑
K∈Zd

ρ0
K〈(Xn

J − YJ(s)),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds.
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Multiplying by ρ0
J and summing over J ∈ Zd gives∑

J∈Zd

ρ0
J |Xn+1

J − YJ(tn+1)|2 ≤
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 + 6a2
∞∆t2

− 2

∫ tn+1

tn

∑
J,K∈Zd

ρ0
Jρ

0
K〈(Xn

J − YJ(s)),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds.

(24)

Since ∇̂W is odd, we can write, by exchanging the roles of J and K,∫ tn+1

tn

∑
J,K∈Zd

ρ0
Jρ

0
K〈(Xn

J − YJ(s)),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds

=

∫ tn+1

tn

∑
J,K∈Zd

ρ0
Jρ

0
K〈(YK(s)−Xn

K),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds

so that we have

2

∫ tn+1

tn

∑
J,K∈Zd

ρ0
Jρ

0
K〈(Xn

J − YJ(s)),
(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds

=

∫ tn+1

tn

∑
J,K∈Zd

ρ0
Jρ

0
K〈(Xn

J − YJ(s)−Xn
K + YK(s)),

(
∇̂W (Xn

J −Xn
K)− ∇̂W (YJ(s)− YK(s))

)
〉ds

≥ λ
∫ tn+1

tn

∑
J,K∈Zd

ρ0
Jρ

0
K |Xn

J − YJ(s)−Xn
K + YK(s)|2 ds

where the last inequality stems from the λ-convexity of the potential W (assumption (A1)).
Injecting this last bound in (24) yields

∑
J∈Zd

ρ0
J |Xn+1

J − YJ(tn+1)|2 ≤
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 + 6a2
∞∆t2 − λ

∫ tn+1

tn

∑
J,K∈Zd

ρ0
Jρ

0
K |Xn

J − YJ(s)−Xn
K + YK(s)|2 ds

=
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 + 6a2
∞∆t2 − 2λ

∫ tn+1

tn

∑
J∈Zd

ρ0
J |Xn

J − YJ(s)|2 ds+ 2λ

∫ tn+1

tn

∑
J∈Zd

ρ0
J (Xn

J − YJ(s))

2

ds.

(25)

This last term is actually equal to 0. Indeed, since ∇̂W is odd, we have, for any n ∈ N and for any t > 0,∑
J,K∈Zd

ρ0
Jρ

0
K∇̂W (Xn

J −Xn
K) =

∑
J,K∈Zd

ρ0
Jρ

0
K∇̂W (YJ(t)− YK(t)) = 0.

Hence, introducing these equalities into (21) and (20), we get, for any n ∈ N and for any t > 0,∑
J∈Zd

ρ0
JX

n
J =

∑
J∈Zd

ρ0
JX

0
J =

∑
J∈Zd

ρ0
JYJ(0) =

∑
J∈Zd

ρ0
JYJ(t).
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Thus (25) becomes

∑
J∈Zd

ρ0
J |Xn+1

J − YJ(tn+1)|2 ≤
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 + 6a2
∞∆t2 − 2λ

∫ tn+1

tn

∑
J∈Zd

ρ0
J |Xn

J − YJ(s)|2 ds. (26)

Case (i): λ ≤ 0.
We use Young’s inequality to readjust the YJ(s) in the last term of (26) into YJ(tn):

∑
J∈Zd

ρ0
J |Xn

J − YJ(s)|2 ≤ (1 + ε)
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 +

(
1 +

1

ε

) ∑
J∈Zd

ρ0
J |YJ(tn)− YJ(s)|2

≤ (1 + ε)
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 +

(
1 +

1

ε

)
a2
∞∆t2.

Injecting this bound in (26), we get

∑
J∈Zd

ρ0
J |Xn+1

J − YJ(tn+1)|2 ≤ (1 + 2(1 + ε)|λ|∆t)
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 + 6a2
∞∆t2 + 2|λ|∆t3

(
1 +

1

ε

)
a2
∞.

Applying a discrete Gronwall lemma, we end up with∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 ≤ e2n(1+ε)|λ|∆tn

(
6a2
∞∆t2 + 2|λ|∆t3

(
1 +

1

ε

)
a2
∞

)
.

Taking ε = ∆t, we obtain∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 ≤ e2n(1+∆t)|λ|∆tn
(
6a2
∞∆t2 + 2|λ|∆t2 (∆t+ 1) a2

∞
)

≤ e2n(1+∆t)|λ|∆ttn
(
(6 + 4|λ|)a2

∞∆t
)

as soon as ∆t ≤ 1.
Case (ii): λ > 0.
We use Young’s inequality to readjust the YJ(s) in the last term of (26) into YJ(tn), in a slightly different

way: one has ∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 ≤ (1 + ε)
∑
J∈Zd

ρ0
J |Xn

J − YJ(s)|2 +

(
1 +

1

ε

)
a2
∞∆t2,

which implies

−
∑
J∈Zd

ρ0
J |Xn

J − YJ(s)|2 ≤ − 1

1 + ε

∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 +
1

ε
a2
∞∆t2

≤ −(1− ε)
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 +
1

ε
a2
∞∆t2.

Injecting this latter inequality in (26), we get∑
J∈Zd

ρ0
J |Xn+1

J − YJ(tn+1)|2 ≤ (1− 2λ(1− ε)∆t)
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 + 6a2
∞∆t2 + 2λ∆t3

1

ε
a2
∞,
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which writes, taking ε = ∆t,∑
J∈Zd

ρ0
J |Xn+1

J − YJ(tn+1)|2 ≤ (1− 2λ(1−∆t)∆t)
∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 + (6a2
∞ + 2λ)∆t2.

As assumed in the theorem, we choose ∆t small enough to ensure ∆t < 1 and ∆t < 1/(2λ). In this way, one
has 2λ(1−∆t)∆t < 1, and we get by induction

∑
J∈Zd

ρ0
J |Xn

J − YJ(tn)|2 ≤
(
(6 + 2λ)a2

∞∆t2
) n−1∑
k=0

(1− 2λ(1−∆t)∆t)k

=
(
(6 + 2λ)a2

∞∆t2
) 1− (1− 2λ(1−∆t)∆t)n

2λ(1−∆t)∆t

≤ (6 + 2λ)a2
∞

2λ(1−∆t)
∆t

�

In the above proof we have used the following Lemma to guarantee the boundedness of the velocity:

Lemma 2.2. Let W satisfy (A0), (A1) with λ > 0 and (A2). Assume that ρini is compactly supported such
that the set {X0

J 6= 0, J ∈ Zd} ⊂ B(0, R) for some R > 0. We consider also, up to a translation, that the center
of mass is 0, i.e.

∫
Rd xρ

ini(dx) = 0. Let Xn
J be defined by the induction (21). Then, there exists ζ0 such that if

∆t ≤ ζ0 then for all n ∈ N∗, the set {Xn
J 6= 0, J ∈ Zd} ⊂ B(0, R).

Proof. • We first verify easily that the center of mass is conserved. Indeed, thanks to (21), we have∑
J

ρ0
JX

n+1
J =

∑
J

ρ0
JX

n
J −∆t

∑
J,K

ρ0
Jρ

0
K∇̂W (Xn

J −Xn
K).

By symmetry of W (assumption (A0)) we deduce that
∑
J,K ρ

0
Jρ

0
K∇̂W (Xn

J −Xn
K) = −

∑
J,K ρ

0
Jρ

0
K∇̂W (Xn

K −
Xn
J ). Then this latter sum vanishes. Hence, by induction we obtain that for any n ∈ N,

∑
J ρ

0
JX

n
J = 0.

• By induction, let us assume that for some n ∈ N, the set {Xn
J 6= 0, J ∈ Zd} ⊂ B(0, R). Then we compute,

|Xn+1
J |2 = |Xn

J |2 − 2∆t〈Xn
J ,
∑
K∈Zd

ρ0
K∇̂W (Xn

J −Xn
K)〉+ ∆t2|

∑
K∈Zd

ρ0
K∇̂W (Xn

J −Xn
K)|2.

By conservation of the mass and of the center of mass, we have

〈Xn
J ,
∑
K∈Zd

ρ0
K∇̂W (Xn

J −Xn
K)〉 =

∑
K∈Zd

ρ0
K〈Xn

J −Xn
K , ∇̂W (Xn

J −Xn
K)〉 ≥ λ

∑
K∈Zd

ρ0
K |Xn

J −Xn
K |2,

where we use the λ-convexity of W for the last inequality (see (8)). By conservation of the mass and of the
center of mass, we also have ∑

K∈Zd

ρ0
K |Xn

J −Xn
K |2 = |Xn

J |2 +
∑
K∈Zd

ρ0
K |Xn

K |2 ≥ |Xn
J |2

Finally, we arrive at

|Xn+1
J |2 ≤ |Xn

J |2(1− 2λ∆t) + ∆t2|
∑
K∈Zd

ρ0
K∇̂W (Xn

J −Xn
K)|2.
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Since W belongs to C1(Rd \ {0}), we may define wR = maxB(0,2R) |∇̂W |. Hence, by induction,

|Xn+1
J |2 ≤ R2(1− 2λ∆t) + ∆t2w2

R ≤ R2,

provided ∆t ≤ 2λR2/w2
R. �

2.2. Numerical examples

Implementing the scheme (21), we can observe the trajectories of the particles for typical potentials. Figures
1 and 2 show the trajectories of 20 particles where the initial datum is a standard gaussian law truncated and
renormalized over the interval [−3, 3]. On figure 1, we observe the positions of the particles with respect to
time, with the smooth potential W (x) = x2 (this illustrates the fact that no collisions occur). Figure 2 show the
results with the pointy potential W (x) = |x|. We can note that despite the previously established convergence
of the scheme, the numerical aggregation does not correspond to a ”proper” gluing of the particles. Indeed, the
time discretization makes possible the crossing of the different trajectories. This explains the oscillations with
small amplitude observed in this latter figure.

Figure 1. Trajectories of particles for
the potential W (x) = x2

Figure 2. Trajectories of particles for
the potential W (x) = |x|

A more precise analysis of the results is provided in the next Section.

3. Numerical illustration of the convergence order results in dimension 1

In this section, we numerically illustrate the convergence order results obtained in Theorems 2.1 and 1.2 on
one dimensional test cases.

3.1. Particle scheme: numerical illustration of theorem 2.1

To numerically validate the results of Theorem 2.1, we consider the agregation equation in the domain [−1, 1]
with initial distribution,

ρini(x) =
1

m

(
e−
|x−0.6|2

0.1 + e−
|x+0.6|2

0.1

)
,

where m is computed in such a way that the integral of the initial condition over (−1, 1) is equal to 1. Actually,
the numerical initial condition is computed in a slightly different way than announced in (18): one takes
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ρ0
J = ρini(xJ) where ρini is identified to its density function, and, moreover, the normalizing coefficient m is

computed in such a way that
∑
J ρ

0
J = 1.

Following the particle scheme (21), we run simulations with 2k particles, for k in the set {6, . . . , 12} and for
two different potentials: the pointy potential W (x) = |x|, and the smooth potential W (x) = |x|2/2.

The errors in the Wasserstein distances d1 and d2 are computed at time T = 1 for each solution, relatively
to the next one. That is, the error for a solution with 2k particles at time T = 1 is computed using the solution
with 2k+1 particles.

In a one dimensional setting, the Wasserstein distances have an explicit expression. Here we choose to
compute it with the help of the Python package POT [39], since we are also using it later in two dimensions.

On Figure 3, one can see the convergence curves obtained for the two potentials.
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Figure 3. Order of convergence of the particle scheme for the smooth potential W (x) = x2/2
(left) and for the pointy potential W (x) = |x| (right).

Theorem 2.1 states a convergence order for the particle scheme of 1/2 in time and 1 in space for the Wasserstein
distance d2. For the simulations, we choose a time step of the same order as the space step, meaning that an
order 1/2 is expected numerically. The results clearly show a better order. For both potentials and both
distances, the order is 1. This suggests that our estimate in Theorem 2.1 might not be optimal, at least for
smooth initial conditions.

3.2. Finite volume scheme: illustration of Theorem 1.2

The one dimensional problem presented here consists in two Dirac masses of weight 0.5 at a distance of 1
from each other at initial time. We are again considering the pointy and the smooth potential of Section 3.1:

(1) for the pointy potential W (x) = |x|, given the initial condition, the exact solution can be computed.
The two Dirac masses move toward each other, both at constant velocity 0.5, to merge at time 1 and
form a single Dirac masse with a weight of 1.

(2) for the smooth potential W (x) = x2

2 , the exact solution is also known. The two Dirac masses move
toward each other but will never merge. The distance between the two Dirac masses is indeed e−t in
this case.

We consider the domain [−0.75, 0.75] and set the two initial masses at the points −0.5 and 0.5. Following
the notation of Section 1.4, the values ρ0

J are thus all zeros, except for the two cells J− and J+ containing the
points −0.5 and 0.5 respectively. For these two cells, we set ρ0

J−
= ρ0

J+
= 0.5/∆x. Using the expression of the

velocity given by (14) and the upwind scheme of (13), we compute both the Wasserstein distances d1 and d2

between the numerical and the exact solution at time t = 0.75.
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To study the convergence order of the upwind scheme, we run, for the two potentials, several simulations
with a number of discretization points of 2k for k in the set {6, . . . , 12}. Because the exact solution is known,
we compute the Wasserstein errors with respect to this exact solution.

Figure 4 shows the results obtained for the two Wasserstein distances d1 and d2.
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Figure 4. Order of convergence for the smooth potential W (x) = x2/2 (left) and for the
pointy potential W (x) = |x| (right).

The numerical order of convergence in the case of the smooth potential is rather clearly 0.5 for both d1

and d2. Recalling estimate (17) of Theorem 1.2, this is the expected result in distance d2. However, for the
non-smooth pointy potential, it seems that we recover a first order of convergence. This difference can be
explained by how two close Dirac masses interact with each other through the potential. Indeed, the velocity
depends on the gradient of the potential. For the smooth potential, when two masses are close to each other,
this gradient is close to zero. Compared to the numerical diffusion of the scheme, the agregation phenomenon
is less important and the order 0.5 is obtained. On the contrary, the pointy potential has a constant gradient
that does not depend on the distance between the two masses. Even at close range, the agregation phenomenon
is important in this case. Moreover, it is acting as the opposite of the numerical diffusion and counter balanced
it. This seems to lead to a better order of convergence (what would need a rigorous proof). Note that the link
with the Burgers equation with decreasing initial datum when the potential is |x|, made in [27], makes it clear
that this superconvergence phenomenon is linked with the same superconvergence for the Burgers equation with
standard finite volume schemes, see [20], and also [34] for the viscous Burgers equation.

4. Numerical results on unstructured meshes in dimension 2

It has already been proved and numerically checked that the upwind scheme (13) converges on Cartesian
meshes for these aggregation equations (see [18]). It is easy to extend this result to another diffusive scheme
such as the Rusanov scheme. We are interested here in their behaviors when used with non-Cartesian meshes.

We first recall briefly the definition of the upwind and finite volume schemes on general meshes, for more
details we refer to [25]. Let us consider an admissible finite volume mesh of Rd denoted T (see Definition 6.1
in [25]). For an element K ∈ T , we denote |K| the measure of K and V(K) the set of its neighbours. For
L ∈ V(K), we denote L∩K the common interface between K and L and by νKL the unit normal oriented from
K to L.



ESAIM: PROCEEDINGS AND SURVEYS 15

We introduce the following explicit in time finite volume scheme

ρn+1
K = ρnK −

∆t

|K|
∑

L∈V(K)

|L ∩K|g(ρnK , ρ
n
L, νKL). (27)

This scheme is initiated by the condition ρ0
K = 1

|K|
∫
K
ρini(dx). The function g allows to define the numerical

flux. In this part we will consider the two following numerical methods :

• Rusanov

g(ρnK , ρ
n
L, νKL) =

1

2
(ρnKa

n
K · νKL + ρnLa

n
L · νKL + a∞(ρnL − ρnK)) . (28)

• Upwind
g(ρnK , ρ

n
L, νKL) = (anK · νKL)+ρnK − (anL · νKL)−ρnL.

We use a two dimensional version of the toy problem of Section 3 to evaluate the numerical order of conver-
gence. The triangular mesh is made of one line of squares, all cut in two along the same diagonal. Thus, the
domain is the set [−0.75, 0.75]× [−∆x,∆x], where ∆x is the mesh step size. The initial condition is the same as
in Section 3. We identify the two cells J− and J+ whose center is the closest to the points (−0.5, 0) and (0.5, 0)
respectively. For these two cells, we set ρ0

J−
= ρ0

J+
= 0.5/A, where A is the area of a cell. Everywhere else, the

initial condition is zero. The exact solution remains the same as this problem is essentially a one dimensional
problem.

Considering again the pointy and the smooth potential, we run the simulations for several mesh step size and
compute both the Wasserstein errors d1 and d2. In order to compare these results, we run the same simulations
with the Rusanov scheme. Figure 5 shows the results obtained with the two schemes.
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Figure 5. Order of convergence for the smooth potential W (x) = x2/2 (left) and for the
pointy potential W (x) = |x| (right).

In the case of the smooth potential, the schemes behave nicely and we recover the order 0.5 that we had in
the one dimensional setting. Concerning the pointy potential, however, some remarks are necessary:

(1) The upwind scheme seems not to converge to the correct solution, while the Rusanov scheme does.
The solution with the upwind scheme is not blowing up but the velocity at wich the two Dirac masses
are getting close to each other is higher than the exact one. Some tests have been run to understand
precisely the reason of this non-convergence but no convincing results have been reached.

(2) The order at which the Rusanov scheme is converging is 1. The same explanation as the one in Section
3 about the numerical diffusion being counter balanced by the non-smooth gradient might apply here.
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