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Abstract

An analysis of the error of the upwind scheme for transport equation with discontinuous
coefficients is provided. We consider here a velocity field that is bounded and one-sided Lipschitz
continuous. In this framework, solutions are defined in the sense of measures along the lines
of Poupaud and Rascle’s work. We study the convergence order of the upwind scheme in the
Wasserstein distances. More precisely, we prove that in this setting the convergence order is 1/2.
We also show the optimality of this result. In the appendix, we show that this result also applies
to other ”diffusive” ”first order” schemes and to a forward semi-Lagrangian scheme.
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1 Introduction

This paper is devoted to the numerical analysis of an upwind scheme for the linear transport equation
in conservative form (continuity equation) with discontinuous coefficients. In space dimension d, this
equation reads

∂tρ+ div
(
aρ
)

= 0, t > 0, x ∈ Rd, (1.1)

and is complemented with the initial condition ρ(0, ·) = ρini.
We consider a rather weak regularity of the velocity, bounded and one-sided (right) Lipschitz

continuous (OSL for short):
a ∈ L∞([0,+∞);L∞(Rd))d

and there exists α ∈ L1
loc([0,+∞)) such that

〈a(t, x)− a(t, y), x− y〉 ≤ α(t)|x− y|2, (1.2)

where 〈·, ·〉 stands for the Euclidean scalar product in Rd. Note that, as a is assumed to be bounded,
the right Lipschitz continuity coefficient α(t) is non-negative, for any t > 0.
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Since the velocity a is not assumed Lipschitz continuous, the definition of solutions with the
characteristic curves is not straightforward. In [17], Filippov proposed a notion of solution which
extends the classical one. Using this so-called Filippov flow, Poupaud and Rascle proposed in [26] a
notion of solutions to the conservative linear transport equation (1.1). They are defined as Z#ρ

ini

where Z is the Filippov flow corresponding to the velocity a (note that a stability result of the
flow has been proved recently in [4]). In dimension 1, these solutions are equivalent to the duality
solutions defined in [8, 9]. Duality solutions have also been defined in higher dimensions in [10] but
the theory is still not complete for the conservative transport equation.

In the present setting, solutions to the continuity equation can form Dirac masses and then are
defined in the sense of measures. The numerical approximation of measure valued solutions to (1.1)
requires a particular care. In dimension 1, Gosse & James, [18], proposed a class of finite difference
numerical schemes that includes the one dimensional upwind scheme. Using the setting of duality
solutions, the convergence of these schemes has been obtained in the sense of measures. However no
error estimates are provided. More recently, Bouchut, Eymard & Prignet, in [7], have proposed a
different strategy in any dimension with a finite volume scheme defined by the characteristics (the
flow is assumed to be given). The convergence is proved, on general admissible meshes, in the sense
of measures, but no error estimates are provided.

We here present an error analysis of an upwind scheme for the continuity equation (1.1) when the
coefficient a is one-sided Lipschitz continuous. More precisely, we prove that the order of convergence
of the scheme is 1/2 in Wasserstein distances Wp.

The convergence order of the upwind scheme for transport equations has received a lot of at-
tention. When the velocity field is Lipschitz continuous, this scheme is known to be first order
convergent in the L∞ norm for any smooth initial data in C2(Rd) and for well-suited meshes, pro-
vided a stability (Courant-Friedrichs-Lewy) condition holds: see [5]. However, for non-smooth initial
data or on more general meshes, this order of convergence falls down to 1/2, in Lp norms. This result
has been first proved in the Cartesian framework by Kuznetsov in [20] (this analysis is actually done
for the entropy solutions of scalar (nonlinear) hyperbolic equations). On quite general meshes, for
L1(Rd) ∩ BV (Rd) initial data, the result was tackled in [24] and [12], in quite similar settings but
with very different methods, in the L∞ in time and L1 in space norm (we here will use the formalism
developed in [12]). At last, let us mention that for initial data that are Lipschitz-continuous, the
convergence to the 1/2 − ε order in the L∞ norm (for any ε > 0) is proved in [23] and again in
[12]. We also can mention [15] and [31] for related results. We emphasize that the techniques used
in [23, 24] and [12] are totally different. In the former, the technique is based on entropy estimates,
whereas in the latter, the proof relies on the construction of a stochastic characteristic defined as a
Markov chain.

Up to our knowledge, there are no error estimates for the upwind scheme or, more generally,
finite volume schemes, when the velocity field is less smooth. When the velocity field is given in
L1((0, T ); (W 1,1(Ω))d) for Ω ⊂ Rd, the convergence of numerical solutions, obtained thanks to an
upwind scheme, towards renormalized solutions of the transport equation is studied in [11].

In this work we perform a numerical analysis of the upwind scheme in the weak framework where
the velocity field is one-sided Lipschitz continuous. More precisely, our main result is the following.

Result (see Theorem 4.1 for a precise statement). Let ρini be a probability measure on Rd
such that

∫
Rd |x|pρini(dx) < ∞ for some p ≥ 1. We assume that the velocity field a belongs to

L∞([0,+∞);L∞(Rd))d and satisfies the OSL condition (1.2). Let ρ be the solution of the transport
equation (1.1) with initial datum ρini (whose existence and uniqueness is recalled in Theorem 2.4
below). Let ρ∆x be the numerical approximation computed thanks to the upwind scheme on a
Cartesian grid mesh with space step ∆x. Then, under a (usual) Courant-Friedrichs-Lewy condition
linking the time step ∆t and the cell size ∆x, there exists a constant C ≥ 0, depending only on a,
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p and ρini, such that we have

∀ t ≥ 0, Wp

(
ρ(t), ρ∆x(t)

)
≤ C

(√
∆x
(
t+

∫ t

0
α(s)ds

)
+ ∆x

)
exp

(
(1 + ∆t)

∫ t

0
α(s)ds

)
. (1.3)

In this result, Wp denotes the Wasserstein distance of order p ≥ 1, whose definition will be
recalled below.

Remark 1.1 A natural question is then: equipped with this result, and now assuming that the
solution is, let us say, with bounded variation in space, do we recover a convergence order in a strong
norm such as L1 in space? The answer is yes, thanks to an interpolation estimate by Santambrogio
([28]), which proof is reported in the Appendix: let f , g be two non-negative functions in L1(Rd)
with mass equal to 1. There exists a constant C ∈ R such that

||f − g||L1 ≤ C|f − g|1/2BVW1(f, g)1/2

where | · |BV denotes the total variation semi-norm on Rd. Thus, we recover a 1/4 convergence order
in L1. This is not optimal: it is known that the convergence order is 1/2, but, to reach 1/2, one
should use the additional smoothness of the solution in the W1 estimate to obtain the convergence to
the first order.

The main idea of the proof of the theorem is, in the spirit of [12], to show that, similar to the
exact solution, the numerical solution can be interpreted as the pushforward of the initial condition
by a (numerical) flow. However, this flow is stochastic whilst that associated with the original
equation is obviously deterministic. The numerical (deterministic) solution is then represented as
the expectation of the pushforward of the initial datum by the stochastic flow.

Finally, we emphasize that although our result is fully established for an upwind scheme, the
approach developed in this work can be easily extended to other schemes, as it is explained in the
appendix. Meanwhile, it is worth mentioning that, although our strategy is shown to work on any
general mesh for the semi-Lagrangian scheme discussed in the appendix, it works on a Cartesian
grid only for the upwind scheme under study. This is a major difference with [12], in which the
analysis of the upwind scheme is performed on a general mesh. The rationale for this difference is
as follows: In [12], the strategy for handling the upwind scheme on non-Cartesian grids relies on
a time reversal argument and, somehow, on the analysis of the characteristics associated with the
velocity field −a. Whilst there is no difficulty for doing so in the Lipschitz setting, this is of course
much more challenging under the weaker OSL condition (1.2) since the ordinary differential equation
driven by −a is no more well-posed. We hope to address this question in future works.

The outline of the paper is the following. Section 2 is devoted to general definitions and notations
that will be used throughout the paper (in particular, we recall the notion of measure solutions to the
transport equation (1.1) as defined in [26]). In Section 3, we define the upwind scheme on a Cartesian
mesh and provide some basic properties for this scheme. Section 4 is devoted to the statement and
the proof of our main result: the convergence with order 1/2 of the upwind scheme on a Cartesian
grid. Finally, in order to illustrate the optimality of this order of convergence, we provide in Section
5 first an explicit computation of the error in a simple case, and then some numerical experiments
in dimension 1. An appendix provides an extension to other numerical (similar) schemes and the
proof of the lemma used in the preceding remark.

2 Measure solutions to the continuity equation

All along the paper, we will make use of the following notations. We denote by Mb(Rd) the space
of finite signed measures on Rd equipped with the Borel σ-field B(Rd). For ρ ∈Mb(Rd), we denote
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by |ρ|(Rd) its total variation, or total mass. The space of measures Mb(Rd) is endowed with the
weak topology σ(Mb(Rd), C0(Rd)), where C0(Rd) is the set of continuous functions on Rd that tend
to 0 at ∞. We then define SM := C([0,+∞);Mb(Rd) − σ(Mb, C0(Rd))) and we equip it with the
topology of uniform convergence on finite intervals of the form [0, T ], with T > 0.

For ρ a measure in Mb(Rd) and Z a measurable map (throughout the paper, measurability is
understood as measurability with respect to the Borel σ-fields when these latter are not specified),
we denote by Z#ρ the pushforward measure of ρ by Z; by definition, it satisfies∫

Rd

φ(x)Z#ρ(dx) =

∫
Rd

φ(Z(x)) ρ(dx) for any φ ∈ C0(Rd),

or, equivalently,
Z#ρ(A) = ρ

(
Z−1(A)

)
for any A ∈ B(Rd).

Moreover, we denote by P(Rd) the subspace ofMb(Rd) made of probability measures on (Rd,B(Rd)).
Also, we let Pp(Rd) the space of probability measures with finite p-th order moment, p ≥ 1:

Pp(Rd) =

{
µ ∈ P(Rd) :

∫
Rd

|x|pµ(dx) <∞
}
.

Finally, for any probability space (Ω,A,P) and any integrable random variable X from (Ω,A) into
(R,B(R)), we denote by E(X) the expectation of X.

2.1 Wasserstein distance

The space Pp(Rd) is endowed with the Wasserstein distance Wp defined by (see e.g. [2, 32, 33])

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

{∫
Rd×Rd

|y − x|p γ(dx, dy)

}1/p

(2.4)

where Γ(µ, ν) is the set of measures on Rd × Rd with marginals µ and ν, i.e.

Γ(µ, ν) =
{
γ ∈ Pp(Rd × Rd); ∀ ξ ∈ C0(Rd),

∫
Rd×Rd

ξ(y1)γ(dy1, dy2) =

∫
Rd

ξ(y1)µ(dy1),∫
Rd×Rd

ξ(y2)γ(dy1, dy2) =

∫
Rd

ξ(y2)ν(dy2)

}
.

It is known that in the definition of Wp the infimum is actually a minimum (see [32, 29]). A measure
that fulfils the minimum in the definition (2.4) of Wp is called an optimal plan. The set of optimal
plans is denoted by Γ0(µ, ν). Thus for all γ0 ∈ Γ0(µ, ν), we have

Wp(µ, ν)p =

∫
Rd×Rd

|y − x|p γ0(dx, dy).

We will make use of the following properties of the Wasserstein distance. Given two measurable
maps X,Y : Rd → Rd, we have the inequality

Wp(X#µ, Y#µ) ≤ ‖X − Y ‖Lp(µ). (2.5)

Indeed, π = (X,Y )#µ ∈ Γ(X#µ, Y#µ) and
∫
Rd |x− y|p π(dx, dy) = ‖X − Y ‖pLp(µ).

More generally, for any probability space (Ω,A,P) and any two random variables X,Y : Ω→ Rd
such that E[|X|p] and E[|Y |p] are finite, we have(

Wp(X#P, Y#P)
)p ≤ E

(
|X − Y |p

)
, (2.6)

where X#P and Y#P denote the respective distributions of X and Y under P. The proof follows from
the same argument as above: π = (X,Y )#P ∈ Γ(X#P, Y#P) and

∫
Rd |x−y|p π(dx, dy) = E[|X−Y |p].

4



2.2 Weak measure solutions for linear conservation laws

We recall in this section some useful results on weak measure solutions to the conservative transport
equation (1.1), when driven by an initial datum ρ(0, ·) = ρini ∈ Mb(Rd) and a vector field a that
satisfies the OSL condition.

We start by the following definition of characteristics [17]:

Definition 2.1 Let us assume that a : [0,+∞)×Rd 3 (t, x) 7→ a(t, x) ∈ Rd is a (measurable) vector
field. A Filippov characteristic Z(·; s, x) stemmed from x ∈ Rd at time s ≥ 0 is a continuous function
[s,+∞) 3 t 7→ Z(t; s, x) ∈ Rd such that Z(s; s, x) = x, ∂

∂tZ(t; s, x) exists for a.e. t ≥ s and

∂

∂t
Z(t; s, x) ∈

{
Convess(a)(t, ·)

}(
Z(t; s, x)

)
for a.e. t ≥ s.

From now on, we will use the notation Z(t, x) = Z(t; 0, x).

In this definition, Convess(E) denotes the essential convex hull of the set E: let us remind briefly
the definition for the sake of completeness (see [17, 3] for more details). We denote by Conv(E) the
classical convex hull of E, i.e., the smallest closed convex set containing E. Given the vector field
a(t, ·) : Rd → Rd, its essential convex hull at point x is defined as{

Convess(a)(t, ·)
}

(x) =
⋂
r>0

⋂
N∈N0

Conv
[
a
(
t, B(x, r) \N

)]
,

where N0 is the set of zero Lebesgue measure sets. Then, we have the following existence and
uniqueness result of Filippov characteristics under the assumption that the vector field a is one-
sided Lipschitz continuous.

Theorem 2.2 ([17]) Let a ∈ L1
loc([0,+∞);L∞(Rd))d be a vector field satisfying the OSL condition

(1.2). Then there exists a unique Filippov flow Z associated with this vector field, meaning that there
exists a unique characteristic for any initial condition (s, x) ∈ [0,+∞) × Rd. This flow does not
depend on the choice of the representative (up to a dt⊗ dx null set) of the velocity field a as long as
this version satisfies the OSL condition pointwise. Moreover, we have the semi-group property: For
any t, τ, s ∈ [0,+∞) such that t ≥ τ ≥ s and x ∈ Rd,

Z(t; s, x) = Z(τ ; s, x) +

∫ t

τ
a(σ, Z(σ; s, x)) dσ.

Importantly, we have the following Lipschitz continuous estimate on the Filippov characteristic:

Lemma 2.3 ([17]) Let a ∈ L1([0,+∞), L∞(Rd))d satisfy the OSL condition (1.2) and Z be the
associated flow. Then, for all t ≥ s in [0,+∞), we have

LZ(t; s) := sup
x,y∈Rd,x 6=y

|Z(t; s, x)− Z(t; s, y)|
|x− y|

≤ e
∫ t
s α(σ) dσ (2.7)

(LZ(t; s) is the Lipschitz constant of the flow Z).

Proof. For x, y ∈ Rd, we compute

d

dt
|Z(t; s, x)− Z(t; s, y)|2 = 2

〈
a(t, Z(t; s, x))− a(t, Z(t; s, y)), Z(t; s, x)− Z(t; s, y)

〉
.
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Using the OSL estimate (1.2), we deduce

d

dt
|Z(t; s, x)− Z(t; s, y)|2 ≤ 2α(s)|Z(t; s, x)− Z(t; s, y)|2.

Thanks to a Grönwall lemma, we get

|Z(t; s, x)− Z(t; s, y)|2 ≤ e
∫ t
s 2α(σ) dσ|x− y|2,

which completes the proof.

An important consequence of this result is the existence and uniqueness of weak measure solutions
for the conservative linear transport equation. This has been obtained by Poupaud & Rascle in [26].

Theorem 2.4 ([26]) Let a ∈ L1
loc([0,+∞), L∞(Rd))d be a vector field satisfying the OSL condition

(1.2). Then, for any ρini ∈ Mb(Rd), there exists a unique measure solution ρ in SM to the conser-
vative transport equation (1.1) with initial datum ρ(0, ·) = ρini such that ρ(t) = Z(t)#ρ

ini, where Z
is the unique Filippov flow, i.e. for any φ ∈ C0(Rd), we have∫

Rd

φ(x)ρ(t, dx) =

∫
Rd

φ(Z(t, x))ρini(dx), for t ≥ 0.

Note that actually, in this result, the expression ρ(t) = Z(t)#ρ
ini is somehow understood as a

definition of solution to the Cauchy problem. From now on, we will interpret the solutions to (1.1)
in this sense.

To conclude this section, we recall the stability estimate of the flow due to Bianchini and Gloyer
[4, Theorem 1.1]. This estimate reads as a bound for the difference between the flows Z1 and Z2

associated with two velocity fields a1 and a2 in L1([0,∞), L∞(Rd))d satisfying the OSL condition
(1.2). For any r > 0 any x ∈ B(0, r), it holds that

|Z1(t; s, x)− Z2(t; s, x)|2 ≤ C
∫ t

s
‖a1(σ, .)− a2(σ, .)‖1/d

L1(B(0,2R))
dσ, (2.8)

where R = r + a∞T , and a∞ = max{‖a1‖∞, ‖a2‖∞} and C is a constant that only depends on the
dimension.

Remark that this estimate, which is also proved in the same paper to be optimal, is a bad hint
to obtain a result as the one we will prove here, because the stability of the characteristics with
respect to perturbations of the velocity field decreases as the space dimension increases. Based on
this estimate, one could imagine that a similar phenomenon should occur when estimating the error
of a numerical scheme for (1.1). Indeed (as it will be the case in the next section), the analysis of the
scheme should consist in regarding the numerical solution as the solution of an equation of the same
type as (1.1) but driven by an approximating velocity field. Then, it would be tempting to compare
both solutions by means of (2.8). However, our result shows that this strategy is non-optimal, at
least for the scheme studied in the paper. Our analysis exploits the fact that, in our case, the
structure of the approximating velocity is actually very close to that of the original velocity field.

3 Definition of the scheme and basic properties

3.1 Numerical discretization

From now on, we consider a velocity field a ∈ L∞([0,+∞), L∞(Rd))d and we choose a representative
â in the equivalence class of a in L∞([0,+∞), L∞(Rd))d: â is defined everywhere and is jointly
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measurable in time and space; it is dt ⊗ dx a.e. equal to a; and, it satisfies the condition (1.2)
everywhere. In order to simplify the presentation, we will keep the notation a instead of â and we
write a = (a1, . . . , ad).

We denote by ∆t > 0 the time step and consider a Cartesian grid with step ∆xi > 0 in the
ith direction, i = 1, . . . , d, and ∆x = maxi ∆xi. For i = 1, . . . , d, we note ei the ith vector of
the canonical basis of Rd. We define the multi-indices J = (J1, . . . , Jd) ∈ Zd, the space cells CJ =
[(J1− 1

2)∆x1, (J1+ 1
2)∆x1)×. . . [(Jd− 1

2)∆xd, (Jd+ 1
2)∆xd) and their center xJ = (J1∆x1, . . . , Jd∆xd).

Finally, we set tn = n∆t.
For a given non-negative measure ρini ∈ P(Rd), we define for J ∈ Zd,

ρ0
J =

∫
CJ

ρini(dx) ≥ 0, (3.9)

which actually is to be understood as ρ0
J = ρini(CJ). Since ρini is a probability measure, the total

mass of the system is
∑

J∈Zd ρ0
J = 1. We denote by ρnJ an approximation of the value ρ(tn)(CJ), for

J ∈ Zd, and we propose to compute this approximation by using an upwind-typed scheme (see for
example [21, 22] for general considerations on schemes for transport equations): more precisely, we
let by induction

ρn+1
J = ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)+ρnJ − (ai

n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei + (ai
n
J)−ρnJ

)
,

n ∈ N, J ∈ Zd. (3.10)

The notation (a)+ = max{0, a} stands for the positive part of the real number a and (a)− =
max{0,−a} for the negative part. Remark that this scheme can also be viewed as an Engquist-
Osher-typed scheme (although this scheme was developped in an homogeneous in space non-linear
frame, in [16]). The numerical velocity is defined, for i = 1, . . . , d, by

ai
n
J =

1

∆t

∫ tn+1

tn
ai(s, xJ) ds. (3.11)

Remark 3.1 There is at least one other traditional upwind scheme, for which the velocity is to be
computed at the interface: ani+1/2. The difficulty with this one is explained at the end of Section 1 in
the appendix. The question of the convergence of this other upwind scheme remains an open problem
when d > 1).

Remark 3.2 The discretization of the velocity requires the computation of the mean value in time
of the velocity field in formula (3.11). However, if one assumes the velocity field to be Lipschitz
continuous in time, uniformly in space, then ai

n
J can be replaced by ai(t

n, xJ). We refer to Remark
4.7 below for a short account on the new form of the main estimate (1.3).

Remark 3.3 In dimension 1, Scheme (3.10) reads

ρn+1
j = ρnj −

∆t

∆x

(
(anj )+ρnj − (anj+1)−ρnj+1 − (anj−1)+ρnj−1 + (anj )−ρnj

)
.

We will make use of the following interpretation of this scheme. Defining ρn∆x =
∑

j∈Z ρ
n
j δxj , we

construct the approximation at time tn+1 with the following two steps:
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• The Dirac mass ρnj , located at position xj, moves with velocity anj to the position xj + anj ∆t.
Assuming a Courant-Friedrichs-Lewy condition ||a||∞∆t ≤ ∆x, the point xj +anj ∆t belongs to
the interval [xj , xj+1] if anj ≥ 0, or to the interval [xj−1, xj ] if anj ≤ 0.

• Then we split the mass ρnj between xj and xj+1 if anj ≥ 0 or between xj−1 and xj if anj ≤ 0.
We use a linear splitting rule: say whenever anj ≥ 0, the mass ρnj × anj ∆t/∆x is sent to grid
point xj+1 whereas ρnj × (1− anj ∆t/∆x) is sent to grid point xj. We let the reader verify that
this gives the scheme defined above.

3.2 Properties of the scheme

Throughout the analysis, a∞ stands for ||a||L∞(R×Rd) whenever a ∈ L∞([0,+∞), L∞(Rd))d. We will
assume further that ∆x ≤ 1.

The following lemma states a Courant-Friedrichs-Lewy-like (CFL) condition ensuring that the scheme
preserves nonnegativity:

Lemma 3.4 Let a ∈ L∞([0,+∞), L∞(Rd))d and let (ρ0
J)J∈Zd be defined by (3.9) for some ρini ∈

Pp(Rd), p ≥ 1. Assume further that the following CFL condition holds:

a∞

d∑
i=1

∆t

∆xi
≤ 1. (3.12)

Then the sequence (ρnJ)n,J computed thanks to the scheme defined in (3.10)–(3.11) is non-negative:
for all J ∈ Zd and n ∈ N, ρnJ ≥ 0.

Proof.
We can rewrite equation (3.10) as

ρn+1
J = ρnJ

[
1−

d∑
i=1

∆t

∆xi

∣∣ainJ ∣∣
]

+
d∑
i=1

ρnJ+ei

∆t

∆xi
(ai

n
J+ei)

− +
d∑
i=1

ρnJ−ei
∆t

∆xi
(ai

n
J−ei)

+. (3.13)

From definition (3.11), we have |ainJ | ≤ a∞ for i = 1, . . . , d. Thus assuming Condition (3.12), we de-
duce that in (3.13) all the coefficients in front of ρnJ , ρnJ−ei and ρnJ+ei

, i = 1, . . . , d, are non-negative.

By a straightforward induction argument, as ρ0
J ≥ 0 for all J ∈ Zd, ρn+1

J ≥ 0 for all J ∈ Zd.

In the next lemma, we collect some useful properties of the scheme, among which mass conser-
vation and finiteness of the pth order moment:

Lemma 3.5 Let a ∈ L∞([0,+∞), L∞(Rd))d and let (ρ0
J)J∈Zd be defined by (3.9) for some ρini ∈

Pp(Rd), p ≥ 1. Let us assume that the CFL condition (3.12) is satisfied. Then the sequence
(ρnJ)n∈N,J∈Zd given by the numerical scheme (3.10)–(3.11) satisfies:

(i) Conservation of the mass: for all n ∈ N∗, we have∑
J∈Zd

ρnJ =
∑
J∈Zd

ρ0
J = 1.

(ii) Bound on the pth moment: there exists a constant Cp > 0, only depending on a∞, the
dimension d and the exponent p, such that, for all n ∈ N, we have

Mn
1 :=

∑
J∈Zd

|xJ |ρnJ ≤M0
1 + C1t

n, when p = 1,

Mn
p :=

∑
J∈Zd

|xJ |pρnJ ≤ eCptn
(
M0
p + Cp

)
, when p > 1,
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where we recall that tn = n∆t.
(iii) Support: let us define λi = ∆t/∆xi. If ρini has a bounded support then the numerical

approximation at finite time T has a bounded support too. More precisely, assuming that ρ0
∆x is

compactly supported in B(0, R), then for any T ≥ 0, for any integer n ≤ T/∆t, we have

ρnJ = 0 for any J ∈ Zd such that xJ /∈ B
(

0, R+
T

mini=1,...,d{λi}

)
.

Proof. According to Lemma 3.4, the weights ((ρnJ)J∈Zd)n∈N are non-negative.
(i) The mass conservation is directly obtained by summing equation (3.10) over J .
(ii) Let p ≥ 1. By a discrete integration by parts on (3.10), we get

∑
J∈Zd

|xJ |pρn+1
J =

∑
J∈Zd

|xJ |pρnJ −
d∑
i=1

∆t

∆xi

∑
J∈Zd

(ai
n
J)+

(
|xJ |p − |xJ+ei |p

)
ρnJ

+
d∑
i=1

∆t

∆xi

∑
J∈Zd

(ai
n
J)−
(
|xJ |p − |xJ−ei |p

)
ρnJ .

(3.14)

Letting cp = p2p−1, one has∣∣∣|x|p − |x±∆xiei|p
∣∣∣ ≤ cp(∆xi|x|p−1 + ∆xpi

)
. (3.15)

Indeed, thanks to the convexity of x 7→ |x|p, we have{
|x|p ≥ |x±∆xiei|p ∓ p|x±∆xiei|p−2〈x±∆xiei,∆xiei〉,
|x±∆xiei|p ≥ |x|p ± p|x|p−2〈x,∆xiei〉.

(3.16)

Above, |x ±∆xiei|p−2〈x ±∆xiei,∆xiei〉 is understood as 0 when x ±∆xiei = 0, and similarly for
|x|p−2〈x,∆xiei〉.

Now, the first line in (3.16), yields

|x±∆xiei|p − |x|p ≤ p∆xi|x±∆xiei|p−1 ≤ p2p−1
(
∆xi|x|p−1 + ∆xpi

)
(actually true with 2p−2 instead of 2p−1), whilst the second line gives

|x±∆xiei|p − |x|p ≥ −p|x|p−1∆xi ≥ −p2p−1
(
∆xi|x|p−1 + ∆xpi

)
.

We easily get (3.15).
Then, using inequality (3.15) together with the mass conservation and the fact that ∆x ≤ 1, we

deduce from (3.14):

∑
J∈Zd

|xJ |pρn+1
J ≤

∑
J∈Zd

|xJ |pρnJ + cp∆t

d∑
i=1

∑
J∈Zd

(
|xJ |p−1 + ∆xp−1

i

)
ρnJ |ainJ |

≤
∑
J∈Zd

|xJ |pρnJ + cpd∆ta∞

(∑
J∈Zd

|xJ |p−1 ρnJ + 1

)
,

which may be rewritten as
Mn+1
p ≤Mn

p + cpd∆ta∞
(
Mn
p−1 + 1

)
,
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where, by mass conservation, Mn
0 = 1. For p = 1, we get the result with C1 = 2cpda∞ = 2da∞

by a straightforward induction. For p > 1, thanks to Hölder’s inequality, Mn
p−1 ≤ (Mn

p )(p−1)/p ≤
(Mn

p + 1)(p−1)/p ≤Mn
p + 1 and, we get

Mn+1
p ≤Mn

p + cpd∆ta∞
(
Mn
p + 2

)
≤ (1 + Cp∆t)M

n
p + Cp∆t

with Cp = 2cpda∞. We conclude the proof using a discrete Grönwall lemma.
(iii) By definition of the numerical scheme (3.10), we clearly have that the support increases

of only one cell in each direction at each time step. Therefore, after n iterations, the support has
increased of less than

n× max
i=1,...,d

{∆xi} =
n∆t

mini=1...,d{λi}
≤ T

mini=1,...,d{λi}
,

provided that T ≥ n∆t.

3.3 Probabilistic interpretation

Following the idea in [12], we associate random characteristics with the here above upwind scheme
3.10. The construction of these characteristics is based upon the trajectories of a Markov chain
admitting Zd as state space. Here the random characteristics will be forward characteristics whilst
they are backward in [12]. The rationale for considering forward characteristics lies in the fact that
the equation is conservative; subsequently, the expression of the solution provided by Theorem 2.4 is
based upon a forward flow. On the opposite, the equation considered in [12] is of the non-conservative
form ∂tρ+ a · ∇ρ = 0 and the expression of the solution involves backward characteristics.

Throughout the analysis, we will denote by Ω = (Zd)N the canonical space for the Markov chain.
The canonical process is denoted by (Kn)n∈N (namely Kn maps ω = (ωn)n∈N ∈ Ω onto the nth

coordinate ωn of ω): Kn must be understood as the nth site occupied by a random process taking
values in Zd. Notice that we here adopt a non-standard notation for the time index as we put it in
superscript instead of subscript; although it does not fit the common habit, we feel it more consistent
with the notation used above for defining the numerical scheme.

We equip Ω with the standard Kolmogorov σ-field A generated by sets of the form
∏
n∈NA

n,
with An ⊂ Zd for all n ∈ N and, for some integer n0 ≥ 0, An = Zd for n ≥ n0. In other words,
A is the smallest σ-field that renders each Kn, n ∈ N, measurable. Indeed, for any integer n0 ≥ 0
and any subsets A0, . . . , An0 ⊂ Zd, the pre-image (K0, . . . ,Kn0)−1(A0 × · · · × An0) is precisely the
cylinder A0 × · · · × An0 ×

∏
n>n0

Zd. The canonical filtration generated by (Kn)n∈N is denoted by
F = (Fn = σ(K0, · · · ,Kn))n∈N. For each n ≥ 0, Fn is the sub-σ-field of A containing events of
the form A(n) ×

∏
k>n Zd, with A(n) ⊂ (Zd)n+1. Informally, Fn stands for the information that an

observer would collect by observing the random characteristic up until time n (or equivalently the
realizations of K0, . . . ,Kn).

We then endow the pair (Ω,A) with a collection of probability measures (Pµ)µ∈P(Zd), P(Zd)
denoting the set of probability measures on Zd, such that, for all µ ∈ P(Zd), (Kn)n∈N is a time-
inhomogeneous Markov chain under Pµ with initial law µ, namely K0

#Pµ = µ (i.e. Pµ(K0 =
J) = µ(J), which means that the initial starting cell is picked at random according to the law µ;
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sometimes, we will also write K0 ∼ µ), and with transition matrix at time n ≥ 0:

PnJ,L =



1−
d∑
i=1

∆t

∆xi

∣∣ainJ ∣∣ when L = J,

∆t

∆xi
(ai

n
J)+ when L = J + ei, for i = 1, . . . , d,

∆t

∆xi
(ai

n
J)− when L = J − ei, for i = 1, . . . , d,

0 otherwise,

(3.17)

where we used (3.11) under the assumption that a ∈ L∞([0,+∞), L∞(Rd))d satisfies the CFL
condition (3.12) (we assume it to be in force throughout the section).

For any µ ∈ P(Zd), we write Eµ for the expectation under Pµ. Also, for any µ ∈ P(Zd) and
any n ∈ N, the conditional probability Pµ(·|Fn) is just denoted by Pnµ(·); similarly, the conditional
expectation Eµ(·|Fn) is denoted by Enµ(·). Moreover, in statements that are true independently of

the initial distribution µ ∈ P(Zd), we often drop the index µ in the symbols Pµ and/or Eµ. For
instance, we may write:

∀n ∈ N, ∀L ∈ Zd, Pn
(
Kn+1 = L

)
= PnKn,L.

Whenever µ is the Dirac mass at some J ∈ Zd, namely µ = δJ , we write PJ instead of Pµ and
similarly for E. Notice that, for any µ ∈ P(Zd), Pµ is entirely determined by µ and the collection
(PJ)J∈Zd :

Pµ(·) =
∑
J∈Zd

µJPJ(·).

In most cases, it thus suffices to restrict the analysis of the Markov chain to the cases when µ = δJ ,
for J ∈ Zd.

The following lemma gives the connection between the sequence of weights ((ρn)J∈Zd)n∈N intro-
duced in the previous section (defined by the upwind scheme) and the Markov chain with transition
matrix P :

Lemma 3.6 Given an initial distribution ρ0 = (ρ0
J)J∈Zd ∈ P(Zd), define, for any n ∈ N, ρn =

(ρnJ)J∈Zd through the scheme (3.10), namely

ρn+1
J = ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)+ρnJ − (ai

n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei + (ai
n
J)−ρnJ

)
= ρnJP

n
J,J +

d∑
i=1

(
ρnJ−eiP

n
J−ei,J + ρnJ+eiP

n
J+ei,J

)
.

Then, for any n ∈ N, one has ρn = Kn
#Pρ0 (equivalently ρn is the law of Kn when the chain is

initialized with ρ0).

Proof. For any µ ∈ P(Zd), we have

Kn+1
#Pµ =

∑
L∈Zd

δLPµ
(
Kn+1 = L

)
=
∑
L∈Zd

∑
J∈Zd

δLPµ
(
Kn = J

)
PnJ,L.
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Therefore,

Kn+1
#Pµ =

∑
L∈Zd

δL

(
Pµ
(
Kn = L

)
PnL,L

+
d∑
i=1

(
Pµ
(
Kn = L− ei

)
PnL−ei,L + Pµ

(
Kn = L+ ei

)
PnL+ei,L

))
.

Choosing µ = ρ0, the result follows from a straightforward induction.

Now that we have associated a Markov chain with the weights involved in the definition of the
upwind scheme, we can define, as announced, the corresponding random characteristics. A random
characteristic consists of a sequence of random variables (Xn)n∈N from (Ω,A) into Rd:

∀n ∈ N, ∀ω ∈ Ω, Xn(ω) = xKn(ω), (3.18)

where we recall that xJ = (J1∆x1, . . . , Jd∆xd) whenever J = (J1, . . . , Jd) ∈ Zd.

Proposition 3.7 Let Xn be the random variable defined by (3.18) through the Markov chain ad-
mitting P in (3.17) as transition matrix.

(i) For all J ∈ Zd, we have, with probability one under PJ ,

EnJ(Xn+1 −Xn) =

∫ tn+1

tn
a(s,Xn) ds. (3.19)

(ii) Defining ρn∆x =
∑
J∈Zd

ρnJδxJ , we have ρn∆x = Xn
#Pρ0

∆x
.

Proof. (i) For J ∈ Zd, we compute the conditional expectation given the trajectory of the Markov
chain up until time n:

EnJ(Xn+1 −Xn) =
d∑
i=1

(
∆xiei(ai

n
Kn)+ ∆t

∆xi
−∆xiei(ai

n
Kn)−

∆t

∆xi

)
.

We deduce (3.19) by using definition (3.11).
(ii) For any µ ∈ P(Zd), we have, for all n ∈ N,

Xn
#Pµ =

∑
L∈Zd

δxLPµ
(
Kn = L

)
=
∑
L∈Zd

δxL
(
Kn

#Pµ
)
L
.

The claim follows from Lemma 3.6.

4 Order of convergence

This section is devoted to the proof of the main result of our paper, that is the 1/2 order of
convergence of the numerical approximation constructed by the upwind scheme (3.10). The precise
statement of the result is:
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Theorem 4.1 Let ρini ∈ Pp(Rd), for some p ≥ 1. Let us assume that a ∈ L∞([0,∞), L∞(Rd))d and
satisfies the one-sided Lipschitz continuity condition (1.2). Let ρ = Z#ρ

ini be the unique measure
solution in the sense of Poupaud and Rascle to the conservative transport equation (1.1) with initial
datum ρini given by Theorem 2.4. Let us define

ρn∆x =
∑
J∈Zd

ρnJδxJ ,

where the approximation sequence ((ρnJ)J∈Zd)n∈N is computed thanks to the scheme (3.9)–(3.10)–
(3.11). We assume that the CFL condition (3.12) holds. Then, there exists a non-negative constant
C, depending upon p, ρini and a∞ only, such that, for all n ∈ N∗,

Wp

(
ρ(tn), ρn∆x

)
≤ C e(1+∆t)

∫ tn

0 α(s) ds

[√
∆x

(
tn +

∫ tn

0
α(s)ds

)
+ ∆x

]
.

The proof of this theorem is postponed to Section 4.3. We need first to establish some useful
estimates on the distance between the Filippov characteristics generated by a one sided Lipschitz
continuous velocity field and the approximated characteristics.

4.1 Approximation of the flow

In the following lemma, we provide an estimate for the distance between the exact Filippov flow and
an approximating flow computed through an explicit Euler discretization:

Lemma 4.2 Let a ∈ L∞([0,∞), L∞(Rd))d satisfying Condition (1.2). Let us consider Z the Filippov
flow associated to the velocity field a and define by induction

Y n+1 = Y n +

∫ tn+1

tn
a(s, Y n) ds,

with the initial condition Y 0 = Z(0). There exists a universal constant C such that, for all n ∈ N,

|Y n − Z(tn)| ≤ Ca∞e(1+∆t)
∫ tn

0 α(s) ds

√
∆t

(
tn + (1 + ∆t)

∫ tn

0
α(s) ds

)
.

Remark 4.3 The order 1/2 in this estimate may not be optimal, but it is sufficient for our purpose.

Proof. For a given value of n ∈ N, let us define, for t ∈ [tn, tn+1], Y (t) = Y n +
∫ t
tn a(s, Y n) ds. By

definition of the characteristics, we have, for any t ∈ [tn, tn+1],

|Y (t)− Z(t)|2 =

∣∣∣∣Y n − Z(tn) +

∫ t

tn

(
a(s, Y n)− a(s, Z(s))

)
ds

∣∣∣∣2 .
Expanding the right hand side, we get

|Y (t)− Z(t)|2 ≤ |Y n − Z(tn)|2 + 2

∫ t

tn

〈
Y n − Z(s), a(s, Y n)− a(s, Z(s))

〉
ds

+ 2

∫ t

tn

〈
Z(s)− Z(tn), a(s, Y n)− a(s, Z(s))

〉
ds+ (2a∞∆t)2.

(4.20)
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Using condition (1.2), we deduce

|Y (t)− Z(t)|2 ≤ |Y n − Z(tn)|2 + 2

∫ t

tn
α(s)|Y n − Z(s)|2 ds

+2

∫ t

tn

〈
Z(s)− Z(tn), a(s, Y n)− a(s, Z(s))

〉
ds+ (2a∞∆t)2.

Moreover, since the field a is bounded, we have |Z(s) − Z(tn)| ≤ a∞|s − tn| and so
∫ t
tn |Z(s) −

Z(tn)|ds ≤ a∞(t− tn)2/2. Thus,

|Y (t)− Z(t)|2 ≤ |Y n − Z(tn)|2 + 2

∫ t

tn
α(s)|Y n − Z(s)|2 ds+ 6a2

∞∆t2,

and, as we also have |Y (s)− Y n| ≤ a∞|s− tn|, we get, for any ε > 0,

|Y (t)− Z(t)|2 ≤ |Y n − Z(tn)|2

+ 2(1 + ε)

∫ t

tn
α(s)|Y (s)− Z(s)|2 ds+ 6a2

∞∆t2 + 2(1 +
1

ε
)a2
∞∆t2

∫ t

tn
α(s) ds,

(4.21)

where we used the standard Young inequality (|Y (s)−Z(s)|+|Y n−Y (s)|)2 ≤ (1 + ε)|Y (s)−Z(s)|2+
(1 + 1/ε)|Y n − Y (s)|2.

Thanks to a continuous Grönwall lemma, the two characteristics thus satisfy

|Y n+1 − Z(tn+1)|2 ≤
[
|Y n − Z(tn)|2 + 2a2

∞∆t2
(

3 +
(
1 +

1

ε

) ∫ tn+1

tn
α(s) ds

)]
e2(1+ε)

∫ tn+1

tn α(s) ds.

As Y 0 = Z(0), a discrete Grönwall lemma leads to

|Y n − Z(tn)|2 ≤ 2a2
∞∆t2

(
3n+

(
1 +

1

ε

) ∫ tn

0
α(s) ds

)
e2(1+ε)

∫ tn

0 α(s) ds.

By taking ε = ∆t, we deduce,

|Y n − Z(tn)|2 ≤ 2a2
∞∆t

(
3tn + (∆t+ 1)

∫ tn

0
α(s) ds

)
e2(1+∆t)

∫ tn

0 α(s) ds.

This completes the proof.

Remark 4.4 Whenever a is L-Lipschitz in time (uniformly in space) and a(s, Y n) is replaced by
a(tn, Y n) in the recursive definition of the sequence (Y n)n∈N in the statement of Lemma 4.2, there
is an additional term in (4.20), coming from the time discretization of the velocity field. This term
has the form:

2

∫ t

tn

〈
Y n − Z(s), a(tn, Y n)− a(s, Y n)

〉
ds, (4.22)

which is less than 2L∆t
∫ t
tn |Y

n − Z(s)|ds. By Young’s inequality, we get

2

∫ t

tn

〈
Y n − Z(s), a(s, Y n)− a(tn, Y n)

〉
ds ≤ L∆t

∫ t

tn
|Y n − Z(s)|2ds+ L∆t2.

This gives a similar inequality to (4.21) but with α replaced by α+L∆t and a∞ replaced by a∞+L.
The corresponding version of Lemma 4.2 is easily derived.
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Alternatively, we may perform all the above computations with respect to the OSL constant of
a(tn, ·) instead of a(s, ·). Instead of (4.22), we then focus on

2

∫ t

tn

〈
Y n − Z(s), a(tn, Z(s))− a(s, Z(s))

〉
ds.

Then we obtain the same conclusion, with α replaced by α + L∆t and a∞ replaced by a∞ + L, but
also the integral

∫ tn
0 α(s)ds in the statement has to be replaced by the Riemann sum ∆t

∑n−1
k=0 α(tk).

4.2 Distance between the Euler scheme and the random characteristics

Lemma 4.5 Under the CFL condition (3.12), consider the random characteristics (Xn)n∈N defined
in (3.18). Then, for any initial condition µ ∈ P(Zd), it holds that, with probability 1 under Pµ, for
all n ∈ N,

Xn+1 = Xn +

∫ tn+1

tn
a(s,Xn) ds+ hn, (4.23)

where hn is an Fn+1-measurable Rd-valued random variable that satisfies

Enµ(hn) = 0 ; |hn| ≤ 2∆x ; ∀p ≥ 1, Enµ
(
|hn|p

)
≤ 2pda∞∆t∆xp−1. (4.24)

In particular, if we define iteratively the following sequence of random variables (Ŷ n)n∈N (con-
structed on the space (Ω,A) that supports the random characteristics):

Ŷ n+1 = Ŷ n +

∫ tn+1

tn
a(s, Ŷ n) ds,

with the (random) initial datum Ŷ 0 = X0 = xK0, then, provided that ∆x ≤ 1, there exists, for any
p ≥ 1, a non-negative constant Cp, only depending on p, d and a∞, such that

∀n ∈ N, Eµ
(
|Xn − Ŷ n|p

)1/p ≤ Cp e∫ tn

0 α(s) ds
(√
tn∆x+ ∆x

)
. (4.25)

Proof. The expansion (4.23), with hn satisfying Enµ(hn) = 0 for each n ∈ N, is a direct consequence
of (i) in Proposition 3.7. By construction, we can write hn = Xn+1 −Xn − Enµ(Xn+1 −Xn). Since
|Xn+1 −Xn| ≤ ∆x, we deduce that |hn| ≤ 2∆x. Moreover, for any p ≥ 1,

Enµ
(
|hn|p

)
≤ 2p−1

[
Enµ
(
|Xn+1 −Xn|p

)
+ Enµ

(
|Enµ(Xn+1 −Xn)|p

)]
≤ 2pEnµ

(
|Xn+1 −Xn|p

)
.

Then, the bound for Enµ(|hn|p) follows from the fact that:

Enµ
(
|Xn+1 −Xn|p

)
= Enµ

(
|Xn+1 −Xn|p1{Kn+1 6=Kn}

)
≤

d∑
i=1

∆xpiP
n
µ

(
Kn+1
i 6= Kn

i

)
≤

d∑
i=1

∆xpi
(
PnKn,Kn+ei + PnKn,Kn−ei

)
≤ da∞∆xp−1∆t.

We split the proof of the second claim (4.25), into two steps. In the first step, we will estimate
E(|Xn − Ŷ n|p)1/p, for p ∈ [1, 2]. The second step is devoted to the analysis of E(|Xn − Ŷ n|p)1/p

when p > 2. This step is rather more technical. Indeed, the case p = 2 is more natural because it
corresponds to the use of the scalar product, involved in the one-sided Lipschitz continuity.
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First step. From definition (4.23), we obtain, after an obvious expansion,

|Xn+1 − Ŷ n+1|2 ≤ |Xn − Ŷ n|2 + 2

∫ tn+1

tn

〈
Xn − Ŷ n, a(s,Xn)− a(s, Ŷ n)

〉
ds

+ 2〈Xn − Ŷ n, hn〉+ |hn|2 + 4a∞
(
a∞∆t2 + ∆t∆x

)
,

(4.26)

using the fact that a is bounded and that |hn| ≤ 2∆x, see (4.24).
Using the CFL condition (3.12) in order to bound a∞∆t2 by ∆t∆x/d, we get

|Xn+1 − Ŷ n+1|2 ≤ |Xn − Ŷ n|2 + 2

∫ tn+1

tn

〈
Xn − Ŷ n, a(s,Xn)− a(s, Ŷ n)

〉
ds

+ 2〈Xn − Ŷ n, hn〉+ |hn|2 + Ca∞∆t∆x,

for a constant C that only depends on d and whose value is allowed to increase from line to line.
Since a satisfies the one-sided Lipschitz continuity condition (1.2), we get that, with probability 1
under Pµ, for all n ∈ N,

|Xn+1 − Ŷ n+1|2

≤
(

1 + 2

∫ tn+1

tn
α(s) ds

)
|Xn − Ŷ n|2 + 2〈Xn − Ŷ n, hn〉+ |hn|2 + Ca∞∆t∆x.

(4.27)

Recalling that Enµ(hn) = 0 and noticing that Xn − Ŷ n is Fn is measurable, we have

Enµ
(
〈Xn − Ŷ n, hn〉

)
=
〈
Xn − Ŷ n,Enµ(hn)

〉
= 0. (4.28)

Now taking the conditional expectation Enµ in (4.27) and recalling from the preliminary step of the
proof that Enµ(|hn|2) ≤ Ca∞∆t∆x (with C = 4d), we obtain

Enµ
(
|Xn+1 − Ŷ n+1|2

)
≤
(

1 + 2

∫ tn+1

tn
α(s) ds

)
|Xn − Ŷ n|2 + Ca∞∆t∆x,

for a new value of C.
Taking the expectation Eµ (using the projective property of the conditional expectation Eµ[·] =

Eµ[Enµ(·)]), applying a discrete version of Grönwall’s lemma, and using also the fact that the initial

datum verify X0 = Ŷ 0, we deduce

∀n ∈ N, Eµ
(
|Xn − Ŷ n|2

)
≤ Ca∞e2

∫ tn

0 α(s) dsn∆t∆x. (4.29)

Therefore, for p ∈ [1, 2], we have, thanks to Hölder’s inequality,(
Eµ
(
|Xn − Ŷ n|p

))1/p
≤
(
Eµ
(
|Xn − Ŷ n|2

))1/2
≤ e

∫ tn

0 α(s) ds
√
Ca∞tn∆x, (4.30)

which concludes the proof when p ∈ [1, 2].
Second step. In order to handle the case p ≥ 2, we use an induction. We assume that, for

some p ∈ N \ {0, 1}, there exists a constant c, only depending on p, d and a∞, such that, for all
1 ≤ m ≤ 2(p− 1), for all n ∈ N,

Eµ(|Xn − Ŷ n|m)1/m ≤ ce
∫ tn

0 α(s) ds
(√

tn∆x+ ∆x
)
, (4.31)
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which is obviously true when p = 2 thanks to (4.30). From (4.27), we get

|Xn+1 − Ŷ n+1|2p ≤
(
e2

∫ tn+1

tn α(s) ds|Xn − Ŷ n|2 + 2〈Xn − Ŷ n, hn〉+ |hn|2 + Ca∞∆t∆x

)p
.

Expanding the right hand side, we obtain

|Xn+1 − Ŷ n+1|2p ≤ e2p
∫ tn+1

tn α(s) ds|Xn − Ŷ n|2p

+ pe2(p−1)
∫ tn+1

tn α(s) ds|Xn − Ŷ n|2(p−1)
(

2〈Xn − Ŷ n, hn〉+ |hn|2 + Ca∞∆t∆x
)

+

p∑
k=2

(p
k

)
e2(p−k)

∫ tn+1

tn α(s) ds|Xn − Ŷ n|2(p−k)
(

2〈Xn − Ŷ n, hn〉+ |hn|2 + Ca∞∆t∆x
)k
.

(4.32)

By the same token as in (4.28), notice that (the constant C being allowed to increase from line to
line as long as it only depends on d)

Enµ
[
|Xn − Ŷ n|2(p−1)

(
2〈Xn − Ŷ n, hn〉+ |hn|2 + Ca∞∆t∆x

)]
= Enµ

[
|Xn − Ŷ n|2(p−1)

(
Ca∞∆t∆x+ |hn|2

)]
≤ Ca∞∆t∆x |Xn − Ŷ n|2(p−1),

where we used the last estimate of (4.24) for the last inequality.
We proceed in a similar way with the last term in (4.32). Allowing the constant C to depend

upon p, we have, for all k ∈ {2, . . . , p},

Enµ
[
|Xn − Ŷ n|2(p−k)

(
2〈Xn − Ŷ n, hn〉+ |hn|2 + Ca∞∆t∆x

)k]
≤ CEnµ

[
|Xn − Ŷ n|2p−k|hn|k + |Xn − Ŷ n|2(p−k)|hn|2k

]
+ Cak∞∆tk∆xk|Xn − Ŷ n|2(p−k)

≤ C∆t∆xk−1|Xn − Ŷ n|2p−k + C∆t∆x2k−1|Xn − Ŷ n|2(p−k),

where, once again, we used (4.24) together with the CFL condition to pass from the second to the
third line. In the last line, we allowed C to depend on d and p, but also on a∞.

Returning to (4.32) and taking the expectation therein (using the fact that Eµ[·] = Eµ[Enµ(·)]),
we finally get that:

Eµ
[
|Xn+1 − Ŷ n+1|2p

]
≤ e2p

∫ tn+1

tn α(s) dsEµ
[
|Xn − Ŷ n|2p

]
+ Ce2(p−1)

∫ tn+1

tn α(s) ds
2p∑
k=2

(
Eµ
[
|Xn − Ŷ n|2p−k

]
∆t∆xk−1

)
.

Pay attention that sum above runs from 2 to 2p instead of 2 to p in the original inequality (4.32).
Plugging the induction property (4.31), we get, for all n ∈ N,
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Eµ
[
|Xn+1 − Ŷ n+1|2p

]
≤ e2p

∫ tn+1

tn α(s) dsEµ
[
|Xn − Ŷ n|2p

]
+ Ce2p

∫ tn+1

0 α(s) ds
2p∑
k=2

∆t∆xk−1
(√

tn∆x+ ∆x
)2p−k

≤ e2p
∫ tn+1

tn α(s) dsEµ
[
|Xn − Ŷ n|2p

]
+ Ce2p

∫ tn+1

0 α(s) ds∆t

(
∆x2p−1 +

2p∑
k=2

(tn)p−k/2∆xp+k/2−1

)
,

(4.33)

where we used the bound (
√
tn∆x+ ∆x)2p−k ≤ C[(tn)p−k/2∆xp−k/2 + ∆x2p−k] in order to pass from

the second to the third line. Notice now that

2p∑
k=2

(tn)p−k/2∆xp+k/2−1 = ∆xp
2p∑
k=2

√
tn

2p−k√
∆x

k−2

≤ ∆xp
(√

tn +
√

∆x
)2p−2

≤ C∆xp
(
(tn)p−1 + ∆xp−1

)
.

Plugging into (4.33), we get

Eµ
[
|Xn+1 − Ŷ n+1|2p

]
≤ e2p

∫ tn+1

tn α(s) dsEµ
[
|Xn − Ŷ n|2p

]
+ Ce2p

∫ tn+1

0 α(s) ds∆t∆xp
(
(tn)p−1 + ∆xp−1

)
.

Iterating over n and recalling that X0 = Ŷ 0 and n∆t = tn, we deduce that, for all n ∈ N,

Eµ
[
|Xn − Ŷ n|2p

]
≤ Ce2p

∫ tn

0 α(s) dstn∆xp
(
(tn)p−1 + ∆xp−1

)
.

We finally obtain, for all n ∈ N,

Eµ
[
|Xn − Ŷ n|2p

]
≤ Ce2p

∫ tn

0 α(s) ds∆xp
(
tn + ∆x

)p
,

where we used Young’s inequality to bound tn∆x2p−1 by C((tn)p∆xp + ∆x2p). Then,

Eµ
[
|Xn − Ŷ n|2p

]1/2p ≤ Ce∫ tn

0 α(s) ds
(√

tn∆x+ ∆x
)
,

By Hölder’s inequality, we conclude that (4.31) holds for 2(p−1) ≤ m ≤ 2p. By induction, (4.31)
is satisfied for all p ∈ N∗.

Conclusion. Finally, from (4.30) and (4.31), we conclude the proof.

Remark 4.6 In full analogy with Remark 4.4, we may discuss the case when a is L-Lipschitz in
time (uniformly in space) and a(s, ·) is replaced by a(tn, ·) in the recursive definitions of the sequences
(Xn)n∈N and (Ŷ n)n∈N in the statement of Lemma 4.2. Then, the final result is the same provided
that the integral

∫ tn
0 α(s)ds is replaced by ∆t

∑n−1
k=0 α(tk).
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4.3 Proof of Theorem 4.1

Let ρn∆x =
∑

J∈Zd ρnJδxJ be the measure associated to the numerical solution given by the scheme
(3.9)–(3.10)–(3.11) at time tn. Since ρini ∈ Pp(Rd), we first notice from Lemma 3.5 that ρn∆x ∈
Pp(Rd). By Proposition 3.7, we have ρn∆x = Xn

#Pρ0
∆x

where Xn is defined in (3.18) and ρ0
∆x =∑

J∈Zd ρ0
JδxJ , with ρ0 defined in (3.9). Let ρ be the exact solution of Theorem 2.4, ρ(t) = Z(t)#ρ

ini

where Z is the Filippov flow associated to the one-sided Lipschitz continuous velocity field a.
Consider now the two sequences (Y n)n∈N and (Ŷ n)n∈N respectively defined in Lemmas 4.2 and

4.5. Each Y n is regarded as a mapping from Rd into itself: the initial condition Y 0 (also equal to
Z(0)) in the statement of Lemma 4.2 is given by the identity mapping Rd 3 x 7→ x ∈ Rd, that is
Y 0(x) = x for all x ∈ Rd. We then call Y n(x) the value of Y n in the statement of Lemma 4.2 when
Y 0(x) = x. When Rd is equipped with the distribution ρ0

∆x, the distribution of Y n writes Y n
#ρ

0
∆x.

In comparison with, each Ŷ n is a random variable from Ω to Rd: when Ŷ 0 (also equal to X0) has the
distribution ρ0

∆x, the distribution of Ŷ n writes Ŷ n
#Pρ0 . It is then crucial to observe that Ŷ n(ω) may

be regarded as Y n(X0(ω)). In particular, if both Y 0 and Ŷ 0 have ρ0
∆x as common law (although

the mappings are constructed on different spaces), then Y n and Ŷ n also have the same distribution,
namely Y n

#ρ
0
∆x = Ŷ n

#Pρ0 .
As a consequence of the above discussion, we deduce from the triangle inequality:

Wp

(
ρn∆x, ρ(tn)

)
≤ Wp

(
Xn

#Pρ0 , Ŷ n
#Pρ0

)
+Wp

(
Y n

#ρ
0
∆x, Z(tn)#ρ

0
∆x

)
+Wp

(
Z(tn)#ρ

0
∆x, Z(tn)#ρ

ini
)
.

(4.34)

We will bound each term of the right hand side separately.
Initial datum. Let us first consider the last term in the right hand side of (4.34). We have

Wp(Z(tn)#ρ
0
∆x, Z(tn)#ρ

ini) ≤ LZ(tn; 0)Wp(ρ
0
∆x, ρ

ini).

Indeed, let π be an optimal map in Γ0(ρ0
∆x, ρ

ini), i.e.

Wp(ρ
0
∆x, ρ

ini)p =

∫
Rd×Rd

|x− y|pπ(dx, dy).

Then γ = (Z(tn), Z(tn))#π is a map with marginals Z(tn)#ρ
0
∆x and Z(tn)#ρ

ini. It implies

Wp

(
Z(tn)#ρ

0
∆x, Z(tn)#ρ

ini
)p ≤ ∫

Rd×Rd

|x− y|pγ(dx, dy) =

∫
Rd×Rd

|Z(tn, x)− Z(tn, y)|pπ(dx, dy).

From Lemma 2.3, we know that the flow Z is Lipschitz continuous with Lipschitz constant LZ(tn; 0).
Thus

Wp

(
Z(tn)#ρ

0
∆x, Z(tn)#ρ

ini
)
≤ LZ(tn; 0)

(∫
Rd×Rd

|x− y|pπ(dx, dy)

)1/p

.

Precisely, using inequality (2.7) in Lemma 2.3, we deduce

Wp

(
Z(tn)#ρ

0
∆x, Z(tn)#ρ

ini
)
≤ e

∫ t
0 α(s)dsWp(ρ

0
∆x, ρ

ini). (4.35)

Now, for ρini ∈ Pp(Rd), we recall the definition

ρ0
∆x =

∑
J∈Zd

ρ0
JδxJ , with ρ0

J =

∫
CJ

ρini(dx)= ρini(CJ). (4.36)
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Let us define τ : [0, 1]×Rd → Rd by τ(σ, x) = σxJ + (1− σ)x, for x ∈ CJ . We have that τ(0, ·) = id
and τ(1, ·)#ρ

0 = ρ0
∆x. Thus

Wp(ρ
0
∆x, ρ

ini)p ≤
∫
Rd

|x− y|p (id× τ(1, ·))#ρ
ini(dx, dy)

≤
∑
J∈Zd

∫
CJ

|x− xJ |p ρini(dx),
(4.37)

where we use (4.36) for the last inequality. We deduce Wp(ρ
0
∆x, ρ

ini) ≤ ∆x. Injecting this latter
inequality into (4.35), we obtain

Wp

(
Z(tn)#ρ

0
∆x, Z(tn)#ρ

ini
)
≤ e

∫ tn

0 α(s)ds∆x. (4.38)

Second term. For the second term of the right hand side of (4.34), by the standard property
(2.5) of the Wasserstein distance, one has

Wp

(
Y n

#ρ
0
∆x, Z(tn)#ρ

0
∆x

)
≤ ‖Y n − Z(tn)‖Lp(ρ0

∆x) ≤ sup
J∈Zd

|Y n(xJ)− Z(tn, xJ)|.

Then applying Lemma 4.2, we deduce that there exists a non-negative constant C such that

Wp(Y
n

#ρ
0
∆x, Z(tn)#ρ

0
∆x) ≤ Ca∞e(1+∆t)

∫ tn

0 α(s)ds

√
∆t

(
tn + (1 + ∆t)

∫ tn

0
α(s) ds

)

≤ Ce(1+∆t)
∫ tn

0 α(s)ds

√
∆x

(
tn +

∫ tn

0
α(s) ds

)
,

(4.39)

where we used again the CFL condition (3.12) and where C only depends on d and a∞.
First term. We consider finally the first term in the right hand side of (4.34). By (2.6),

Wp

(
Xn

#Pρ0 , Ŷ n
#Pρ0

)
≤ Eρ0

[
|Xn − Ŷ n|p

]1/p
.

From Lemma 4.5, we deduce that there exists a constant Cp, only depending on p, d and a∞, such
that

Wp

(
Xn

#Pρ0 , Ŷ n
#Pρ0

)
≤ Cp e

∫ tn

0 α(s) ds
(√

tn∆x+ ∆x
)
. (4.40)

Conclusion. Injecting inequalities (4.38), (4.39) and (4.40) into (4.34) we deduce, for all n ∈ N∗,

Wp

(
ρn∆x, ρ(tn)

)
≤ Cp e(1+∆t)

∫ tn

0 α(s)ds

(√
∆x

(
tn +

∫ tn

0
α(s) ds

)
+ ∆x

)
,

for a new value of Cp.

Remark 4.7 When a is L-Lipschitz in time (uniformly in space) and a(s, ·) is replaced by a(tn, ·) in
the definition of the upwind scheme (3.11), Remarks 4.4 and 4.6 say that the final result holds true
but with α replaced by α+ L∆t and with

∫ tn
0 α(s)ds replaced by the Riemann sum ∆t

∑n−1
k=0 α(tk).
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5 One-dimensional examples

In the aim to show the optimality of the present result, we perform both an exact computation of
the error in a very simple case and provide some numerical simulations, in dimension 1. We first
recall that, in the one-dimensional case, the expression of the Wasserstein distance simplifies. This
simplification may be used for a numerical investigation, as it has been proposed in the pioneering
work [19]. Indeed, any probability measure µ on the real line R can be described thanks to its
cumulative distribution function F (x) = µ((−∞, x]), which is a right-continuous and non-decreasing
function with F (−∞) = 0 and F (+∞) = 1. Then we can define the generalized inverse Qµ of F
(or monotone rearrangement of µ) by Qµ(z) = F−1(z) := inf{x ∈ R/F (x) > z}; it is a right-
continuous and non-decreasing function, defined on [0, 1]. For every non-negative Borel-measurable
map ξ : R→ R, we have ∫

R
ξ(x)µ(dx) =

∫ 1

0
ξ(Qµ(z)) dz.

In particular, µ ∈ Pp(R) if and only if Qµ ∈ Lp((0, 1)). Moreover, in the one-dimensional setting,
there exists a unique optimal transport plan realizing the minimum in (2.4). More precisely, if µ and
ν belong to Pp(R), with monotone rearrangements Qµ and Qν , then Γ0(µ, ν) = {(Qµ, Qν)#L(0,1)}
where L(0,1) is the restriction to (0, 1) of the Lebesgue measure. Then we have the explicit expression
of the Wasserstein distance (see [27, 33])

Wp(µ, ν) =

(∫ 1

0
|Qµ(z)−Qν(z)|p dz

)1/p

, (5.41)

and the map µ 7→ Qµ is an isometry between Pp(R) and the convex subset of (essentially) non-
decreasing functions of Lp((0, 1)).

We will take advantage of this expression (5.41) of the Wasserstein distance in dimension 1 in
our numerical simulations to estimate the numerical error of the upwind scheme (3.10). This scheme
in dimension 1 on a Cartesian mesh reads, with time step ∆t and cell size ∆x:

ρn+1
j = ρnj −

∆t

∆x

(
(anj )+ρnj − (anj+1)−ρnj+1 − (anj−1)+ρnj−1 + (anj )−ρnj

)
.

With this scheme, we define the probability measure ρn∆x =
∑

j∈Z ρ
n
j δxj . Then the generalized

inverse of ρn∆x, denoted by Q∆x, is given by

Q∆x(z) = xj+1, for z ∈
[∑
k≤j

ρnk ,
∑
k≤j+1

ρnk

)
.

5.1 Optimality of the convergence order when a ≡ 1 and 2∆t = ∆x

We here consider the very simple case where a = 1 and ρini = δ0, thus ρ0
j = δ0j . In this case, the

solution of the transport equation with velocity a and initial data ρini is given by ρ(t) = δt. For
the sake of simplicity, we choose ∆t and ∆x such that ∆t/∆x = 1/2. The numerical scheme thus
simplifies to ρn+1

j = ρnj − 1/2(ρnj − ρnj−1), and it is a simple exercise to show that then the numerical
solution is

ρnj =


0 if j < 0,(
n
j

)
(1/2)n if 0 ≤ j ≤ n,

0 if j > n.
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For any discrete time tn, n ∈ N, W1(ρ(t), ρn∆x) is the sum over j of the distance |j∆x − n∆t| of
the cell number j to the position of the Dirac mass of the exact solution, multiplied by the mass
associated with this cell, ρnj (formula (5.41)):

W1(ρ(tn), ρn∆x) =
n∑
j=0

ρnj |j∆x− n∆t| =
n∑
j=0

(
n

j

)
(1/2)n|j∆x− n∆t|

The right-hand side may be written as ∆x×E[|Sn−E(Sn)|], where Sn is a binomial random variable
with n as number of trials and 1/2 as parameter of success. Recalling that the variance of Sn is n/4,
we know from the central limit theorem that

lim
n→∞

2√
n
E[|Sn − E(Sn)|] =

1√
2π

∫
R
|x| exp

(
−x

2

2

)
dx =

√
2√
π

∫ +∞

0
x exp

(
−x

2

2

)
dx =

√
2√
π
. (5.42)

Therefore,

W1(ρ(tn), ρn∆x) ∼n→∞
1√
2π

√
n∆x2 =

1√
2π

√
2n∆t∆x =

1√
π

√
tn∆x, (5.43)

which proves the optimality of the one half order of convergence. Remark furthermore that, due to
the linearity of both the equation and the scheme, this provides a direct proof of the convergence
to the one half order of the scheme with any initial probability measure datum (when the velocity
a is constant, and at least when a∆t/∆x = 1/2). Observe also that the distance between the left
and right-hand sides in (5.43) can be explicitly bounded in terms of n by means of Berry-Esseen’s
theorem, which is a standard result in probability theory for estimating the rate of convergence
in the central limit theorem for sums of random variables with a finite moment of order 3 (which
is obviously the case here). In our framework, Berry-Esseen’s theorem asserts that there exists a
constant C ≥ 0, independent of ∆x, such that, for all n ≥ 1 and x ∈ R:∣∣Fn(x)− Φ(x)| ≤ C√

n(1 + |x|3)
, (5.44)

see Petrov [25] or Shiryaev [30], where we let:

Fn(x) = P
[
2
Sn − E(Sn)√

n
≤ x

]
, Φ(x) =

1√
2π

∫ x

−∞
exp
(
−z

2

2

)
dz, x ∈ R.

Returning to (5.42), we get:

2√
n
E
[
|Sn − E(Sn)|

]
=

∫ +∞

0
P
[2|Sn − E(Sn)|√

n
≥ x

]
dx

=

∫ +∞

0

(
Fn(−x) + 1− Fn(x−)

)
dx,

(5.45)

where we used the notation Fn(x−) = limy↗x Fn(y). Since Fn(x−) = Fn(x) for almost every x ∈ R,
we can easily replace Fn(x−) by Fn(x) in the last term right above. Of course, a similar identity
holds true for the L1-norm of a standard Gaussian random variable Z:

E
[
|Z|
]

=

∫ +∞

0

(
Φ(−x) + 1− Φ(x)

)
dx. (5.46)

Recall from (5.42) that E[|Z|] =
√

2/
√
π. Making the difference between (5.45) and (5.46) and

invoking (5.44), we deduce that:∣∣∣ 2√
n
E
[
|Sn − E(Sn)|

]
−
√

2√
π

∣∣∣ ≤ 2C√
n

∫ +∞

0

1

1 + x3
dx.
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Allowing the constant C to increase from line to line and recalling that W1(ρ(tn), ρn∆x) = ∆x ×
E[|Sn − E(Sn)|], we end up with:

∀n ≥ 1,
∣∣∣W1(ρ(tn), ρn∆x)− 1√

π

√
tn∆x

∣∣∣ ≤ C

n
.

Of course, one may bypass the use of the central limit theorem and perform the computations
explicitly. Choose for instance n of the form n = 2k, k ∈ N. Then, thanks to the parity of the
binomial coefficients and to the fact that, for j = k, 2k∆t = k∆x = j∆x, we have

W1(ρ(tn), ρn∆x)

= 2

k−1∑
j=0

(
2k

j

)
(1/2)2k(2k∆t− j∆x) = 2

k−1∑
j=0

(
2k

j

)
(1/2)2k(k∆x− j∆x)

= 2∆x

k−1∑
j=0

(
2k

j

)
(1/2)2k(k − j) = 2∆x

k k−1∑
j=0

(
2k

j

)
(1/2)2k − k

k−1∑
j=1

(
2k − 1

j − 1

)
(1/2)2k−1


= 2k∆x

k−1∑
j=0

(
2k

j

)
(1/2)2k −

k−2∑
j=0

(
2k − 1

j

)
(1/2)2k−1

 .

Using the two identities

2

k−1∑
j=0

(
2k

j

)
(1/2)2k = 1−

(
2k

k

)
(1/2)2k,

2
k−2∑
j=0

(
2k − 1

j

)
(1/2)2k−1 = 1− 2

(
2k − 1

k − 1

)
(1/2)2k−1,

this rewrites

W1(ρ(tn), ρn∆x) = k∆x

(
1−

(
2k

k

)
(1/2)2k − 1 +

(
2k − 1

k − 1

)
(1/2)2k−2

)
= k∆x

(
4

(
2k − 1

k − 1

)
−
(

2k

k

))
(1/2)2k = k∆x

(
2k

k

)
(1/2)2k.

From Stirling’s formula, we thus recover that

W1(ρ(tn), ρn∆x) ∼n→∞ k∆x
4k√
kπ

(1/2)2k =
1√
π

√
tn∆x.

5.2 Numerical illustration

We present in the following several numerical examples for which we compute the numerical error
in the Wasserstein distance W1 using formula (5.41). For these computations, we choose the final
time T = 2 and the computational domain is [−2.5, 2.5]. We compute the error in the Wasserstein
distance W1 for different space and time step to estimate the convergence order.

Example 1. We consider a velocity field given by a(t, x) = 1 for x < 0 and a(t, x) = 1
2 for x ≥ 0.

Since a is non-increasing, a satisfies the OSL condition (1.2). For this example, we choose the initial
datum ρini = δx0 with x0 = −0.5. Then the solution to the transport equation (1.1) is given by

ρ(t, x) = δt+x0(x) for t < −x0; ρ(t, x) = δ 1
2

(t+x0)(x) for t ≥ −x0.
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Then the generalized inverse is given for z ∈ [0, 1) by Qρ(t, z) = t+x0 if t < −x0, Qρ(t, z) = 1
2(t+x0)

if t ≥ −x0. Therefore, denoting unj =
∑

k≤j ρ
n
k , we can compute easily the error at time tn = n∆t,

en := W1(ρ(tn), ρn∆x) =
∑
k∈Z

∫ unk

unk−1

|xk −Qρ(tn, z)|dz.

Then we define the numerical error as e = maxn≤T/∆t e
n. We display in Figure 1 the numerical

error with respect to the number of nodes in logarithmic scale computed with this procedure for
∆t = 0.8∆x. We observe that the computed numerical error is of order 1/2. This suggests the
optimality of the result in Theorem 4.1.

4.5 5 5.5 6 6.5 7 7.5
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Figure 1: Numerical error with respect to the number of nodes in logarithmic scale for the upwind
scheme in Wasserstein distance W1 in the case of example 1: initial datum given by a Dirac mass
and velocity field a(t, x) = 1 for x < 0 and a(t, x) = 1/2 for x ≥ 0.

Example 2. We consider the same velocity field as above, given by a(t, x) = 1 for x < 0
and a(t, x) = 1

2 for x ≥ 0. However, we choose for initial datum the piecewise constant function
ρini = 1[−1,1]. Then the solution to the transport equation (1.1) is given by

ρ(t, x) =

{
1[−1+t,0) + 2 1[0,t/2) + 1[t/2,1+t/2), for t ≤ 1,

2 1[ 1
2

(t−1), t
2

) + 1[t/2,1+t/2), for t > 1.

We perform the numerical computation as in the first example. Figure 2 displays a comparison
between the numerical solution ρ∆x and the exact solution ρ at time T = 2, with ∆x = 2/1000
and ∆t = 0.8∆x. As expected we observe numerical diffusion. Figure 3-left reports the numerical
error in Wasserstein distance W1 with respect to the number of nodes in logarithmic scale, with
∆t = 0.8∆x is given. We observe that the numerical error seems to be of order 1 in this case.
However, since the solution stays in L1, we can estimate the numerical error in L1, which is provided
in Figure 3-right. We observe that this numerical error is of order 1/2.

Example 3. We consider the velocity field a(t, x) = 2 for x < min(t, 1) and a(t, x) = 1
for x ≥ min(t, 1). Since a is non-increasing with respect to x, it satisfies the one-sided Lipschitz
continuity condition. The initial datum is given by: ρini = 1[−1,0]. In this case, the solution to the
transport equation (1.1) is given by

ρ(t, x) =

{
1[−1+2t,t) + t δt, for t < 1,

δt, for t ≥ 1.
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Figure 2: Comparison between the numerical approximation obtained with the upwind scheme and
the exact solution at time T = 2 for the second example.
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Figure 3: Left: Numerical error with respect to the number of nodes for the upwind scheme in
Wasserstein distance W1 in logarithmic scale for the second example. Right: Numerical error for
the upwind scheme in L1 norm in logarithmic scale for the second example.

We deduce the expression of the generalized inverse,

Qρ(z) =

{
(z − 1 + t)1[0,1−t) + 1[1−t,1), for t < 1,

t, for t ≥ 1.

Performing the numerical computation, we obtain the numerical error displayed in Figure 4, in the
same way for the preceding two examples, with ∆t = 0.4∆x. We observe that in this case the order
of the convergence is 1/2. Compared to example 2, although the initial datum is regular (piecewise
constant), we have the formation of a Dirac delta in finite time. Then the solution is defined as a
measure and the observed numerical order of convergence falls down to 1/2.

As a conclusion, these numerical results seem to indicate that as long as the numerical solution
belongs to L1∩BV (Rd), the convergence of the upwind scheme is of order 1 in Wasserstein distance.
However, when the velocity field is only bounded and one-sided Lipschitz continuous, the solution
might no longer be a function; for instance in example 3 above, Dirac deltas are created for t > 0
althought the initial datum is piecewise constant. When such singularities appear, examples 1 and
3 indicate that convergence order falls down to 1/2 which shows the optimality of Theorem 4.1.
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Figure 4: Numerical error with respect to the number of nodes in logarithmic scale for the upwind
scheme in Wasserstein distance W1 in the case of example 3 for which a Dirac delta is created from
the initial datum ρini = 1[−1,0].

Appendix

1 Generalization to other finite volume schemes

For simplicity of the notations, we have presented our analysis for an upwind scheme. In this
appendix, we generalize our approach to other schemes on Cartesian grids. With the notation
above, for J ∈ Zd, we consider the scheme:

ρn+1
J = ρnJ −

d∑
i=1

∆t

∆xi

(
gn
J+ 1

2
ei

(ρnJ , ρ
n
J+ei)− g

n
J− 1

2
ei

(ρnJ−ei , ρ
n
J)
)
, (A.1)

where we take the general form for the flux

gn
J+ 1

2
ei

(u, v) = ζn
J+ 1

2
ei
u− βn

J+ 1
2
ei
v.

We make the following assumptions on the coefficients:

0 ≤ ζn
J+ 1

2
ei
≤ ζ∞, 0 ≤ βn

J+ 1
2
ei
≤ β∞. (A.2)

Then, equation (A.1) can be rewritten as

ρn+1
J = ρnJ

(
1−

d∑
i=1

∆t

∆xi

(
ζn
J+ 1

2
ei

+ βn
J− 1

2
ei

))
+

d∑
i=1

∆t

∆xi

(
βn
J+ 1

2
ei
ρnJ+ei + ζn

J− 1
2
ei
ρnJ−ei

)
.

Assuming that the following CFL condition holds

(β∞ + ζ∞)

d∑
i=1

∆t

∆xi
≤ 1, (A.3)
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the scheme is clearly non-negative. We define then the random characteristics as in Section 3.3 by
(3.18) where the transition matrix at time n is now given by

PnJ,L =



1−
d∑
i=1

∆t

∆xi
(ζn
J+ 1

2
ei

+ βn
J− 1

2
ei

) when L = J,

∆t

∆xi
ζn
J+ 1

2
ei

when L = J + ei, for i = 1, . . . , d,

∆t

∆xi
βn
J− 1

2
ei

when L = J − ei, for i = 1, . . . , d,

0 otherwise.

It is clear that Lemma 3.6 and Proposition 3.7 (ii) hold true with this random characteristics. We
compute

EnJ
(
Xn+1 −Xn

)
=

d∑
i=1

(
∆xi ζ

n
J+ 1

2
ei

∆t

∆xi
−∆xi β

n
J− 1

2
ei

∆t

∆xi

)
ei.

Thus

EnJ
(
Xn+1 −Xn

)
= ∆t

d∑
i=1

(
ζn
J+ 1

2
ei
− βn

J− 1
2
ei

)
ei.

We deduce the following result:

Proposition A.1 Under the assumptions of Theorem 4.1 on ρini and a, assume further that the
bounds (A.2) and the CFL condition (A.3) hold true.

If moreover the weights (((ζnJ+ei/2
)i=1,...,d)J∈Zd)n∈N and (((βnJ+ei/2

)i=1,...,d)J∈Zd)n∈N satisfy

ζn
J+ 1

2
ei
− βn

J− 1
2
ei

= ai
n
J , (A.4)

where ai
n
J is given in (3.11), then, the result of Theorem 4.1 still holds true for the scheme (A.1).

Indeed, thanks to (A.4), Proposition 3.7 (i) holds true. Thus, we can redo the proof of Theorem 4.1
in this framework.

Example A.2

• We first observe that, for ζn
J+ 1

2
ei

= (ai
n
J)+ and βn

J− 1
2
ei

= −(ai
n
J)−, (A.4) is satisfied. This

choice corresponds to the upwind scheme (3.10) considered in this paper.

• If we now consider the Rusanov scheme (see [22, 6]), we then have ζn
J+ 1

2
ei

= 1
2(ai

n
J + a∞) and

βn
J− 1

2
ei

= 1
2(−ainJ + a∞). We easily check that (A.2) and (A.4) are satisfied. Thus our result

also shows that the Rusanov scheme, when applied to a conservative transport equation with a
velocity field that is only L∞ and OSL, has an order 1/2 in distance Wp, p ≥ 1.

Finally, as pointed out in Remark 3.1, we observe that for another traditional upwind scheme
given by:

ρn+1
J = ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J+ 1

2
ei

)+ρnJ − (ai
n
J+ 1

2
ei

)−ρnJ+ei − (ai
n
J− 1

2
ei

)+ρnJ−ei + (ai
n
J− 1

2
ei

)−ρnJ

)
,
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where ai
n
J+ 1

2
ei

= 1
∆t

∫ tn+1

tn ai(s, xJ+ 1
2
ei

) ds, we have

EnJ(Xn+1 −Xn) =

∫ tn+1

tn

d∑
i=1

(
ai(s,X

n +
∆xi

2
ei)

+ − ai(s,Xn − ∆xi
2
ei)
−
)
ei ds.

Then the statements of Proposition 3.7 (i) does not hold. Consequently, we cannot use the techniques
developed in this paper.

2 Application of the technique to a scheme on unstructured meshes

In this section, we explain shortly how to obtain the error estimate for a forward semi-Lagrangian
scheme defined on an unstructured mesh. For the sake of simplicity, we present the case of a
triangular mesh in dimension 2, but this approach can be easily extended to any mesh made of
simplices, in any dimension. Basic references on forward semi-Lagrangian schemes are [13] and [14]
(although they concern schemes on structured quadrilateral meshes).

2.1 Numerical algorithm

Let us consider a triangular mesh T = (Tk)k∈Z with nodes (xi)i∈Z. We assume this mesh to be
conformal: A summit cannot belong to an open edge of the grid. The triangles (Tk)k∈Z are assumed
to satisfy

⋃
k∈Z Tk = R2 and Tk ∩ Tl = ∅ if k 6= l (in particular, the cells are here not assumed

to be closed nor open). For any triangle T with summits x, y, z, we will use also the notation
(x, y, z) = T . We denote by V(T ) = V(x, y, z) the area of this triangle, and h(T ) its height (defined
as the minimum of the three heights of the triangle T ). We make the assumption that the mesh
satisfies ~ := infk∈Z h(Tk) > 0.

For any node xi, i ∈ Z, we denote by K(i) the set of indices indexing triangles that have xi
as a summit, and we denote by Ti the set of all triangles of T that have xi as a summit: thus
Ti = {Tk; k ∈ K(i)}.

For any triangle Tk, k ∈ Z, we denote by

I(k) = {I1(k), I2(k), I3(k)} (A.5)

the set of indices indexing the summits of Tk (for some arbitrary order, whose choice has no impor-
tance for the sequel).

Here is the derivation of the forward semi-Lagrangian scheme, whose rigorous definition is given
next, in (A.9). Let us emphasize that this is not a finite volume scheme.

• For an initial distribution ρini of the PDE (1.1), define the probability weights (ρ0
i )i∈Z through

the following procedure: Consider the one-to-one mapping ι : Z 3 k 7→ ι(k) ∈ Z such that, for
each k ∈ Z, xι(k) is a node of the triangle Tk; ι is thus a way to associate a node with a cell;
then, for all i ∈ Z, let ρ0

i =
∑

k;ι(k)=i ρ
ini(Tk). Observe from (4.37) that ρ0

∆x =
∑

j∈Z ρ
0
jδxj is

an approximation of ρini.

• Assume that, for a given n ∈ N, we already have probability weights (ρni )i∈Z such that ρn∆x =∑
j∈Z ρ

n
j δxj is an approximation of ρ(tn, ·), where ρ is the solution to (1.1) with ρini as initial

condition. Similar to (3.11), let us denote ani = ∆t−1
∫ tn+1

tn a(s, xi) ds, and xni = xi + ani ∆t, for
i ∈ Z. Under the CFL-like condition

a∞∆t ≤ ~, (A.6)
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xni belongs to one (and only one) of the elements of Ti. We denote by kni the index of this
triangle: xni ∈ Tkni .

• The basic idea now is to use a linear splitting rule between the summits of the triangle Tkni :
the mass ρni is sent to these three points xI1(kni ), xI2(kni ), xI3(kni ) according to the barycen-
tric coordinates of xni in the triangle. In some sense, this scheme is a natural extension of
the one-dimensional upwind scheme to greater dimensions (see the interpretation of the one-
dimensional upwind scheme provided in Remark 3.3).

xi = xI1(kni ) xI2(kni )

xI3(kni )

xni

Let T = (x, y, z) ∈ T , and ξ ∈ T . We define the barycentric coordinates of ξ with respect to x, y
and z, λTx , λTy and λTz :

λTx (ξ) =
V(ξ, y, z)

V(T )
, λTy (ξ) =

V(ξ, x, z)

V(T )
, λTz (ξ) =

V(ξ, x, y)

V(T )
, (A.7)

and then have ξ = λTx (ξ)x+ λTy (ξ)y+ λTz (ξ)z. Note also that λTx (ξ) + λTy (ξ) + λTz (ξ) = 1. Therefore,
we have the following fundamental property, which will be used in the sequel:

λTx (ξ)(x− ζ) + λTy (ξ)(y − ζ) + λTz (ξ)(z − ζ) = ξ − ζ, (A.8)

for any ζ ∈ R2.

Considering xni ∈ Tkni , we will use the barycentric coordinates of xni with respect to the summits
(xj)j∈I(kni ) of Tkni . For notational convenience, let us denote

λni,j = λTxj (x
n
i ) when T = Tkni .

The numerical scheme reads:

ρn+1
j =

∑
i∈γ(j)

ρni λ
n
i,j , j ∈ Z, n ∈ N, (A.9)

where, for a given j ∈ Z, we denote by γ(j) the set of all indices i ∈ Z indexing nodes xi such that
xi + ani ∆t belongs to a triangle that has xj as a summit :

γ(j) = {i ∈ Z / there exists k ∈ K(j) such that xi + ani ∆t ∈ Tk}.
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2.2 Probabilistic interpretation

As in Section 3.3, we define a random characteristic associated to the scheme (A.9). Letting Ω = ZN

and defining the canonical process (In)n∈N as we defined (Kn)n∈N above (the definition is the same
but we prefer to use the letter I instead of K; we make this clear right below), we equip Ω with the
Kolmogorov σ-field A and with a collection of probability measures (Pµ)µ∈P(Z), such that, for each
µ ∈ P(Z), (In)n∈N is a time-inhomogeneous Markov chain under Pµ, with µ as initial distribution
and with transition matrix:

Pni,j =

{
λni,j when j ∈ I(kni ),

0 otherwise,
(A.10)

where we used the notation I(kni ) introduced in (A.5), that is to say, more precisely,

Pni,j =

{
λ
Tkn

i
xj (xni ) when j ∈ I(kni ),

0 otherwise,

with the notation in (A.7). Pay attention that the chain (In)n∈N here takes values in the set of
indices indexing the nodes of the grid whilst the chain (Kn)n∈N used in the analysis of the upwind
scheme (see Section 3.3) takes values in the set of indices indexing the cells of the grid. This is the
rationale for using different letters.

Then, we let the random characteristics be the sequence of random variables (Xn)n∈N from
(Ω,A) into R2 defined by

∀n ∈ N, ∀ω ∈ Ω, Xn(ω) = xIn(ω). (A.11)

We now check that Proposition 3.7 still holds true with this definition of the random character-
istics:

Proposition A.1 Let (Xn)n∈N be the random characteristics defined by (A.10)–(A.11).
(i) Defining ρn∆x =

∑
j∈Z ρ

n
j δxj , we have ρn∆x = Xn

#Pρ0
∆x

.

(ii) For all j ∈ Z, we have, with probability one under Pj, Enj (Xn+1 −Xn) = anIn∆t.

Proof. (i) This result follows straightforwardly from the proof of (ii) in Proposition 3.7, but with
the transition matrix defined in (A.10).

(ii) From a direct computation, we have

Enj (Xn+1 −Xn) =
∑

`∈I(knIn )

λnIn,`(x` − xIn).

Thanks to Property (A.8),

Enj (Xn+1 −Xn) = xnIn − xIn = anIn∆t,

which completes the proof.

2.3 Convergence order

By the same token as in Section 4, we can use Proposition A.1 and Lemmas 4.2 and 4.5 to prove
that the numerical scheme (A.9) is of order 1/2:
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Theorem A.2 Let ρini ∈ Pp(Rd) for p ≥ 1. Let us assume that a ∈ L∞([0,∞);L∞(R2))2 and
satisfies the OSL condition (1.2). Let ρ = Z#ρ

ini be the unique measure solution to the aggregation
equation with initial datum ρini in the sense of Theorem 2.4. Let us consider a triangular conformal
mesh (Tk)k∈Z with nodes (xj)j∈Z such that ~ = infk∈Z h(Tk) > 0. We denote by ∆x the longest edge
in the mesh. We define

ρn∆x =
∑
j∈Z

ρnj δxj ,

where the approximation sequence (ρnj ) is computed thanks to the scheme (A.9). We assume that the
CFL condition (A.6) holds. Then, there exists a non-negative constant C, such that for all n ∈ N∗,

Wp(ρ(tn), ρn∆x) ≤ Ce2
∫ tn

0 α(s)ds
(√
tn∆x+ ∆x

)
.

Proof. In order to repeat the arguments developed in Section 4, the main point is to check the
analogue of the second inequality in (4.24).

To do so, we need to bound λni,j for j 6= i. Clearly,∑
j 6=i

λni,j =
V(xni , xi, z) + V(xni , xi, y)

V(Tkni )
,

where y and z are the two summits of Tkni that are different from xi, namely {y, z} = I(kni ) \ {xi}.
Since |xni − xi| ≤ a∞∆t, we have

V(xni , xi, y) ≤ a∞∆t∆x

2
, V(xni , xi, z) ≤

a∞∆t∆x

2
,

from which we get ∑
j 6=i

λni,j ≤
a∞∆t∆x

V(Tkni )
≤ 2a∞

∆t

~
.

This permits to implement the strategy proposed in Lemma 4.5, as long as the constants therein are
allowed to depend upon 1/~, which shows the need for requiring ~ > 0.

3 An interpolation result

Proposition A.1 ([28]) There exists a constant C such that, for any f , g, non-negative functions
in BV (Rd) such that

∫
Rd f =

∫
Rd g = 1, it holds that

||f − g||1 ≤ C|f − g|1/2BVW1(f, g)1/2,

where | · |BV denotes the BV semi-norm.

Proof. Let h ∈ L∞(Rd) such that ||h||L∞ = 1. Let ρ be a smoothing kernel and ρε(x) = ρ(x/ε)/εd,
for any ε > 0. Let us denotes hε = h ? ρε, fε = f ? ρε, gε = g ? ρε, where ? stands for the convolution
product. One has ∫

Rd

h(f − g) =

∫
Rd

h
(
f − g − (fε − gε)

)
+

∫
Rd

h(fε − gε).

Let us now estimate both integrals in the right hand term above. On the one hand, we have∫
Rd

h
(
f − g − (fε − gε)

)
≤ ||h||L∞ ||f − g − (fε − gε)||L1 ≤ Cε|f − g|BV ,
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for C =
∫
Rd |x|ρ(x) dx; indeed,∫

Rd

|f − fε| =
∫
Rd

∣∣∣∣∫
Rd

(f(x)− f(x− y))ρ(y/ε)

εd
dy

∣∣∣∣ dx
≤
∫
Rd

∫
Rd

|f(x)− f(x− εy)|ρ(y) dy dx

=

∫
Rd

(∫
Rd

|f(x)− f(x− εy)| dx
)
ρ(y) dy ≤ ε|f |BV

∫
Rd

|y|ρ(y) dy,

the last inequality being due to the fact that
∫
Rd |f(x)− f(x− εy)| dx ≤ ε|f |BV |y| for any y: see for

example Remark 3.25 in [1]. On the other hand,∫
Rd

h(fε − gε) =

∫
Rd

hε(f − g) ≤W1(f, g)||∇hε||L∞ ,

where we used the identity W1(f, g) = suph∈C1/||∇h||L∞≤1

∫
Rd(f − g)h (see [32]). Furthermore,

||∇hε||L∞ = ||h ?∇ρε||L∞ ≤ ||h||L∞ ||∇ρε||L1 ≤
1

ε
||∇ρ||L1 .

In the end, taking C = max(
∫
Rd |x|ρ(x)dx,

∫
Rd |∇ρ(x)|dx), one gets∫

Rd

h(f − g) ≤ C
(
ε|f − g|BV +

1

ε
W1(f, g)

)
.

“Optimizing” in ε, that is to say, taking ε = W1(f, g)1/2/|f − g|1/2BV (without any loss of generality,

we can assume |f − g|1/2BV 6= 0), one gets

||f − g||L1 = sup
h∈L∞,||h||L∞=1

∫
Rd

h(f − g) ≤ C|f − g|1/2BVW1(f, g)1/2,

which completes the proof.
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