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The Keller-Segel model

Chemotaxis=aggregation of bacteria, pollen, spermatozoids... through
chemical signals.
Parabolic-parabolic Keller-Segel model:

up—eAu+V-(uVe) =0;
T — Ap = u.
u,¢ > 0: resp. cell density and concentration of a chemical signal.

Mass preserved and solutions remain positive.

In the limit 7 — O (instantaneously propagating information) we get the
parabolic-elliptic aggregation-diffusion equation:

ur —eAu+ V- (uVK xu) =0,

with K the heat kernel.

21



Introduction

Blow-up for aggregation-diffusion equations

up —eAu+ V- (uVK % u) =0.

Whether we have blow-up or not depends on K. No singularities for the
(attractive!) kernel —|x|?, a > 0.

The logarithmic case (corresponding to the heat kernel K for d = 2) is
'borderline’ (a — 0™). Everything depends on the mass.
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Introduction

The parabolic-elliptic Keller-Segel model.
From now on, we put ¢ = 1.

ur = Au—V - (uVy),
Ap+u=0, xeRY t>0. (PE)
U(O) = U, QO(O) = o,
Relevant in astrophysics (dynamics of nebulae): Chandrasekhar stationary
solutions...before the seminal paper Keller-Segel '70.

Under some mild hypotheses, sharp 87 critical mass threshold for the
well-posedness in 2D.

Jager-Luckhaus '92, Herrero-Velazquez '97.
Many papers starting around 2004. Blanchet-Dolbeault-Perthame;
Blanchet-Carlen-Carrillo; Mizoguchi, Senba...

For d > 3, mostly results with concentration/radiality assumptions: Biler,
Naito, Biler-Zienkewicz...



Introduction

The parabolic-parabolic Keller-Segel model

ur = Au—V - (uVyp),
Tor = Ap + u, x€eR? t>0, (PP)
U(O) = Uo, QO(O) = Yo,
Same stationary solutions and same scale invariance as before:
u(x, t) = XN2u(dx, \2t); o(x, t) = d(Ax, A\%t).
No nice wellposedness threshold results; also few result about dependence
on 7 for well-posedness/explosion.

Biler-Guerra-Karch, Calvez-Corrias, Campos-Dolbeault (2D); lwabuchi...;
ill-posedness Winkler (2020)...

Some natural small-7 limit results: Raczynski, Biler-Brandolese,
Lemarié-Rieusset, Corrias-Escobedo-Matos...
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Introduction

Two toy models

ur = Au — ulp,
Tor = A + u, xeR? t>0, (TM)
U(O) = Uo, QO(O) = $o0,

Semilinear: well-posedness proved considering u/A¢ as a perturbation of

V(uV).
ur = Au+ (AL,’))27
Tor = Ap + u, xeRY, t>0, (T™M")
u(0) = uo, ©(0) = o,

"Less semilinear’. Besov-type spaces do not work.

Both models have the same scale invariance as (PP) but a different
parabolic-elliptic limit (the nonlinear heat equation).



Functional spaces

Scale-invariance: u(x, t) + N2u(Ax, \2t); o(x, t) — d(Ax, \2t).

For some parameters, the following spaces work:

Besov-type spaces for initial data:
well-posedness in esssup,~q t?]|u(t, -)||s.

Pseudomeasure spaces for initial data:
well-posedness in esssup,.q ccra t7]€|°]0(t, )]

Morrey spaces (Biler, Lemarié-Rieusset...);
Hardy spaces (Kozono, Sugiyama...)
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Well-posedness results

Besov spaces: definitions

We consider the scale-invariant space

&y = {u € L(0,00; LP(R)), [lull,, := esssup t*~9/?7||u(t)]], < oo }

LEMMA

Letd >2, p>d/2. Then up € By 2 %P (RY) if and only if
(t = etPug) € E,. Moreover:

C(d,p) Huollg-c-arm < [[e2uo]| < C(d,p)lIuoll5--arm-
p,00 P P00




Well-posedness results

Besov spaces: results

Theorem

For d/2 < p < d, provided
luoll g——a/0) < Co/T,
p,o0

(PP) has a global solution u € &, unique in a ball of size C,\/T.

A similar result holds for (TM) but not for (TM").
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Well-posedness results

Besov spaces: proof

We define the operators L, B by

t
Lu(¢.t) = (2m) ™ / / e (P ent(¢ —n.s)e ™ I Go(n) dn ds.
Rd
(U v (57 t) -
(27)" / / e~ (=P o= 2=l G(¢ — 0 $Y9(1, o) dyp dor dis.
Rd T
In this way, we see that u satisfies the integral equation

A, t) = e () + Lu(€, £) + Bu, u)(&, 1).
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Well-posedness results

Besov spaces: proof (2)

For p, g in an appropriate range, we prove estimates of the form

liLz(t)ll, < Cr=Y/2H2A/P=1/a| g

IB(u, 2)ll, < Cr2/2+a20p= D] ||z]] ,

and we obtain the uniqueness in a ball of size C1/7 in the space £, of a
fixed point for
u— e®ug + Lu + B(u, u).
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Well-posedness results

Pseudomeasure spaces: definitions

Let a € R. We introduce the pseudomeasure spaces
PMP = {f € Z'(RY): [|f|lppss = esssupecra [€]°]F(€)] < o0},
We will construct our solutions in the scale-invariant space

% = {u € Li5(0, 00" (RY)):

lulla, = esssupesg cera £ 2IE12[G(E, )] < oo}

13/21



Well-posedness results

Pseudomeasure spaces: results

Theorem

Let d > 2, ug € PM92 and wo = 0. Assume 7 > e3.
Then (PP) possesses a global solution, provided

||U0||7)Md—2 < Cd’T/(In 7')3.

It is unique in a ball of %y 4\, ., with radius C,7/(InT)3 .

Initial data of size 'almost 7' instead of /7 with Besov spaces.

We allow as initial data C|x|~2 for d > 3 (multiples of the stationary
Chandrasekhar solution).

Proof: again, a fixed point method with a mild formulation and
linear/bilinear estimates.

A similar result holds for (TM) and (TM’).
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Explosion results

Explosion "a la Montgomery-Smith”

We define wg € 7 (RY) given by wo(£) = A 1g(5,1/4)(€). where A(d) >0
and a = (3/4,0,...,0).

Theorem

Assume that ug € .7(R9) and 7 > 1 and we have

to(§) = Two(§)-

Then the life span t* of a solution to (TM) satisfies t* < 1.

Only a logarithmic discrepancy w.r.t. the well-posedness result in
pseudomeasure spaces.

An analogous result (but worse discrepancy with well-posedness since we
require an initial data of size at least 72) holds for (TM").
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Explosion results

Explosion "a la Montgomery-Smith": proof.

(e, t) = e~ G (e) — /Ote‘“‘s)'“@@,@ds

t
_ e—t\{IZﬁO(g) + (27?)_" /0 /Rd e—(t—5)|f‘2ﬁ(5 —n,5)n*3(n, s) dnds.

Positivity of the Fourier transform is preserved.

This (and the fact that the nonlinearity is quadratic: compare with the
ODE v/ = v?) allows us to build a sequence t, — 1 such that
|u(ti)loo = [u(0, tx)| = |0(tk)[1 = +oo.
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Explosion results

Moment method

Result on bounded domains.

Theorem

There exist positive solutions of system (TM’) for T > 2 with uy > 0,
©o > 0 of order 72, T, with lifespan at most Tpax = 1.

Proof: For well-chosen initial data, the moment

5 = [ oot o) d,
where ¢ > 0 is the normalized eigenfunction of A with the first eigenvalue
A > 0, cannot be continued past T = 1 (since it satisfies a differential

inequality).
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Perspectives

Blow-up for (PP) in the whole space (radiality assumptions?) for u large
enough. The method needs to be changed.

Less specific assumptions for blow-up for (TM).

Better size for (TM’), for which unlike (TM) we have a gap between
well-posedness and examples of ill-posedness.
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Perspectives (2)

In the very beginning, in

u —eAu+ V- (uVe) =0;
Tor — Ap = u.
we fixed ¢ = 1. For some simpler (parabolic-elliptic) models, the limit

£ — 0 is non-trivial (beyond the limit, see e-sharp estimates for small
e > 0 in [Biler-B.-Karch-Laurengot '21-'22]).

So we may look at parabolic-parabolic models for a different kernel for
e — 0 (interaction with 7 — 00)?

Part of a more general program to look at small-parameter asymptotics for
nonlinear PDEs, motivated by turbulence.
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THANK You!l

For those who want to use this beamer theme, the name is 'Ann Arbor’.
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