Erratum for the article "Multidimensional Potential Burgers Turbulence"

Alexandre Boritchev

February 16, 2016

In our contibution [2] we overlooked that the space L_{∞}/\mathbb{R} on which we consider the dual-Lipschitz metric is not separable: thus we are not in the standard setting in which stationary measures for stochastic PDEs are studied (cf. [3]). In particular, the semigroup S_t^{ω} is well-defined on L_{∞}/\mathbb{R} for every $\omega \in \Omega$, but the dual semigroup S_t^* is not well-defined. Thus Lemma 8.4. does not hold. However, we have the following result, the proof of which is almost word-to-word the same as the proof of the corresponding 1d result in [1].

Lemma There exist positive constants C', δ such that for $\psi_1^0, \psi_2^0 \in L_\infty$ we have

$$\mathbf{E}|S_t^{\omega}\delta_{\psi_1^0} - S_t^{\omega}\delta_{\psi_2^0}|_{L(\infty)/\mathbb{R}} \le C't^{-\delta}, \qquad t \ge 1.$$
 (1)

In particular, these constants do not depend on ψ_1^0, ψ_2^0 .

For all ω the solution of the stochastic Burgers equation is C^{∞} -smooth in space for t>0: this is proved in Appendix 1. This allows us to define the semigroups \tilde{S}^{ω}_t and \tilde{S}^*_t , acting respectively on L(1) and on the space of probability measures on L(1). We consider two solutions ψ_1, ψ_2 to the stochastic Hamilton-Jacobi equation with the same noise and different initial conditions, as well as the corresponding solutions $\mathbf{u}_1, \mathbf{u}_2$ to the stochastic Burgers equation. By the Gagliardo-Nirenberg inequality we get

$$|\mathbf{u}_{1} - \mathbf{u}_{2}|_{1} \leq C|\psi_{1} - \psi_{2} - \int_{\mathbf{T}^{d}} (\psi_{1} - \psi_{2})|_{1} |\nabla(\psi_{1} - \psi_{2})|_{1,1}$$

$$\leq C|\psi_{1} - \psi_{2} - \int_{\mathbf{T}^{d}} (\psi_{1} - \psi_{2})|_{\infty} |\mathbf{u}_{1} - \mathbf{u}_{2}|_{1,1}.$$

Thus, using Theorem 6.2. and the lemma stated above we obtain the existence of a u_1^0, u_2^0 -independent constant C' such that:

$$\mathbf{E}|\tilde{S}_t^{\omega}\delta_{u_0^0} - \tilde{S}_t^{\omega}\delta_{u_0^0}|_{L_1} \le C't^{-\delta/2}, \qquad t \ge 1, \tag{2}$$

with the same δ as above. This inequality allows us to obtain Theorem 8.5. Thus, Lemma 8.4. does not hold, but all other results remain valid.

References

- [1] A. Boritchev, Sharp estimates for turbulence in white-forced generalised Burgers equation, GAFA 23 (2013), 6, 1730-1771.
- [2] A. Boritchev, Multidimensional Potential Burgers Turbulence, Communications in Mathematical Physics, http://dx.doi.org/10.1007/s00220-015-2521-7, 2015.
- [3] S. Kuksin and A. Shirikyan, *Mathematics of two-dimensional turbulence*, Cambridge tracts in mathematics, vol. 194, Cambridge University Press, 2012.