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Abstract. We prove exponential convergence to the stationary measure for a class

of 1d Lagrangian systems with random forcing in the space-periodic setting:

φt + φ2x/2 = Fω, x ∈ S1 = R/Z.

This is the �rst such result in a classical setting, i.e. in the dual-Lipschitz metric

with respect to the Lebesgue space Lp for �nite p. This partially answers the conjec-

ture formulated in [10]. Our result is a consequence (and the natural stochastic PDE

counterpart) of the results obtained in [6, 8]. It is also the natural analogue of the

deterministic result [13] which holds in a generic setting.
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Introduction

We are concerned with convergence to the stationary measure for 1d random La-

grangian systems of the mechanical type, i.e. of the form:

Lω(x, v, t) = v2/2 + Fω(x, t), x ∈ S1 = R/Z,

where Fω(x, t) is a smooth function in x and a stationary random process in t (of the

kick or white force type: see Section 1.1). The Legendre-Fenchel transform gives us the

corresponding Hamiltonian:

Hω(x, p, t) = p2/2− Fω(x, t).

The corresponding Hamilton-Jacobi equation is:

φt + φ2x/2 = Fω. (1)

Here, we consider only 1-periodic solutions φ. In this case the function u = φx satis�es

the randomly forced inviscid Burgers equation:

ut + uux = (Fω)x, x ∈ S1 = R/Z. (2)

Note that it is equivalent to consider a solution of (2) and a solution of (1) de�ned up

to an additive constant. Under the assumptions of Section 1.1, both of these equations

are well-posed and their solutions de�ne Markov processes. Therefore, we can consider

the corresponding stationary measure. Its existence and uniqueness has been proved

by E, Khanin, Mazel and Sinai in the white force case in the seminal work [8] using the

Lagrangian representation of the solutions. For the case of a kick force, see for instance

[11]. This result was clari�ed and generalised to the multi-d case by Khanin and his

collaborators in [6, 10, 14] with more transparent assumptions on the forcing. In these

papers, no explicit estimates on the speed of convergence to the stationary measure
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are given. However, an exponential bound locally in space away from the shocks has

been obtained by Bec, Frisch and Khanin in [1]. In the papers mentioned above, the

key object is the global minimiser and the key fact is its hyperbolicity.

We have previously obtained a bound on the speed of convergence to the station-

ary measure for solutions of (2) both in the 1d and in the multi-d case in [2, 3, 5]

using stochastic PDE techniques. We proved that the speed of convergence is at least

C(p)t−δ/p, δ > 0, in the dual-Lipschitz metric corresponding to Lp, p ∈ [1,∞). Al-

though this bound is given for the equation with an additional viscous term νuxx, it

is independent from the viscosity coe�cient ν, and thus it still holds when we pass to

the limit ν → 0. Note that for ν > 0 there is exponential convergence to the stationary

measure, but the speed of convergence is not a priori uniform in ν [16].

In our paper, we give an exponential bound for the speed of convergence to the

stationary measure for solutions of (2) in the natural dual-Lipschitz metric mentioned

above, which gives a partial answer in the 1d case to the conjecture stated in [10,

Section 4]. This bound is important since it gives a natural SPDE analogue to the re-

sults on the exponential convergence of the minimising action curves obtained in [6, 8].

The part of the conjecture in [10] which remains open is proving that this exponential

bound still holds if we add a positive viscosity coe�cient ν, uniformly in ν. The main

technical di�culty is that introducing this term destroys the well-understood structure

of the minimisers.

It is very likely that the estimate we obtain is sharp since it coincides with the

optimal one obtained in the generic nonrandom case by R. Iturriaga and H. Sanchez-

Morgado [13]. Note that the metrics we use are also optimal since it is impossible to

obtain such an estimate in the Lipschitz-dual space corresponding to L∞ for solutions

of (2) which are discontinuous with a strictly positive probability.
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Finally, we would like to emphasize the link between our work and the correspond-

ing deterministic results belonging to the realm of the weak KAM theory developed by

A. Fathi and J. Mather [9]. In particular, there is a striking correspondence between

the scheme of our proof and the one in [13], which follows a general rule: the results

which hold in the random case under fairly weak assumptions are similar to the results

which hold in the nonrandom case under more stringent genericity assumptions. For

more on this subject and the link with the Aubry-Mather theory, see [11].

Remark 0.1 Our results extend to the case where φ, instead of being periodic in space,

satis�es

φ(x+ 1) = φ(x) + b, x ∈ R.

The proofs are exactly the same since we use the results of [6, 8], which hold for all

values of b.

Our results also extend to a class of non-mechanical convex in p Hamiltonians of

the type H(p) + Fω(t, x) with Fω as above, under assumptions of the Tonelli type [9].

Remark 0.2 After the manuscript has been submitted, Iturriaga, Khanin and Zhang

published a preprint containing more general results including also the multidimensional

case [12]. However, their methods are more technically involved.

1 Notation and setting

1.1 Random setting

We consider the mechanical Hamilton-Jacobi equation with two di�erent types of ad-

ditive forcing in the right-hand side and a C∞-smooth initial condition φ0.
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We begin by formulating the assumptions on potentials, which are (except 1.1 (i)

where we add an additional assumption for moments of the r.v.) the same as in the

paper [6]:

Assumption 1.1 In the �kicked� case, we assume the following.

(i) The kicks at integer times j are of the form

Fω(j)(x) =
K∑
k=1

cωk (j)F
k(x),

where F k are C∞-smooth potentials on S1 = R/Z. The random vectors

(cωk (j))1≤k≤K are i.i.d. RK-valued r.v.'s de�ned on a probability space (Ω,F ,P). Their

distribution on RK , denoted by λ, is assumed to be absolutely continuous with respect

to the Lebesgue measure, and all of its moments are assumed to be �nite.

(ii) The potential 0 belongs to the support of λ.

(iii) The mapping from S1 to RK de�ned by

x 7→ (F 1(x), ..., FK(x))

is an embedding.

Assumption 1.2 In the case of the white force potential, we assume the following.

(i) The forcing has the form

Fω(x, t) =
K∑
k=1

(Wω
k )t(t)F

k(x),

where F k are C∞-smooth potentials on S1, and (Wω
k )t are independent white noises de-

�ned on a probability space (Ω,F ,P), i.e. weak time derivatives of independent Wiener

processes Wω
k (t).

(ii) The mapping from S1 to RK de�ned by

x 7→ (F 1(x), ..., FK(x))
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is an embedding.

Remark 1.1 For both types of forcing, our results extend to the case of in�nite-

dimensional noise. The necessary restriction is that the noise remains smooth in space.

For instance, we can put independent white noises on each Fourier mode in such a way

that the amplitude of the noise decreases exponentially with the wavenumber.

In the white noise case, we denote by G an antiderivative in time of the forcing:

Gω(x, t) =
K∑
k=1

Wω
k (t)F

k(x),

where Wω
k (t) are independent standard Wiener processes with Wω

k (0) = 0. Since we

will only consider time di�erences of G, the particular choice of antiderivative has no

importance.

In both cases, Fω will be abbreviated as F , and in the white force case F (·, t) will

be abbreviated as F (t), and similarly for G.

Note that since we have G(t) ∈ C∞ for every t, a.s., we can rede�ne the forcing F

in the white force case so that G(t) ∈ C∞ for all ω ∈ Ω.

1.2 Functional spaces and Sobolev norms

Consider an integrable function v on S1. For p ∈ [1,∞], we denote its Lp norm by |v|p.

The L2 norm is denoted by |v|, and 〈·, ·〉 stands for the L2 scalar product.

For a nonnegative integer m and p ∈ [1,∞], Wm,p stands for the Sobolev space of

zero mean value functions v on S1 with �nite homogeneous norm

|v|m,p =
∣∣∣∣dmvdxm

∣∣∣∣
p

.

In particular, W 0,p = Lp for p ∈ [1,∞]. We will never use Sobolev norms with m ≥ 1

for non-zero mean functions: in particular, for solutions of (1) we will only consider the
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Lebesgue norms. On the other hand, C0 (resp. C∞) will denote the space of C0-smooth

(resp. C∞-smooth) (not necessarily zero mean value!) functions on S1.

Since the length of S1 is 1, we have:

|v|1 ≤ |v|∞ ≤ |v|1,1 ≤ |v|1,∞ ≤ · · · ≤ |v|m,1 ≤ |v|m,∞ ≤ . . .

We denote by L∞/R the space of functions in L∞ de�ned modulo an additive

constant endowed with the norm:

|u− v|L∞/R = inf
K∈R

|u− v −K|∞

We recall a version of the classical Gagliardo�Nirenberg inequality (see [7, Ap-

pendix]):

Lemma 1.2 For a smooth zero mean value function v on S1,

|v|β,r ≤ C |v|
θ
m,p |v|

1−θ
q ,

where m > β ≥ 0, and r is de�ned by

β − 1

r
= θ
(
m− 1

p

)
+ (1− θ)

(
0− 1

q

)
,

under the assumption θ = β/m if p = 1 or p = ∞, and β/m ≤ θ < 1 otherwise. The

constant C depends on m, p, q, β, θ.

Subindices t and x, which can be repeated, denote partial di�erentiation with re-

spect to the corresponding variables. We denote by v(m) the m-th derivative of v in

the variable x. For brevity, the function v(t, ·) is denoted by v(t).
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1.3 Agreements

All functions which we consider in this paper are real-valued.

The quantities denoted by Ki or Mi are positive constants which only depend on

the general features of the system (i.e. the statistical distribution of the forcing): they

are nonrandom and do not depend on the initial condition. Moreover the constants

K1(p), . . . , K5(p) depend on the Lebesgue exponent p ∈ [1,∞).

There are two quantities, denoted respectively by C1(ω) and C2(p)(ω), which are

time-independent r.v.'s with all moments �nite, which do not depend on the initial

condition, but only "pathwise" on the forcing; moreover the quantity C2(p) depends

on the parameter p.

Quantities denoted by Ci(s, ω), i ≥ 3 being a natural number, are time-dependent

r.v.'s, which also have �nite moments and do not depend on the initial condition, but

only "pathwise" on the forcing ω. Moreover, these r.v.'s are stationary in the sense

that Ci(s, ω) coincides with Ci(s+ t, θtω) for every t, where θt denotes the time shift

[8].

We will always denote by φ(t, x) a solution of (1) and by u(t, x) its derivative,

which solves (2), respectively for initial conditions φ0 and u0 = φ0x. We will denote

accordingly the solutions for two initial conditions φ0, φ0. The assumptions on the

forcing are the ones given in Section 1.1.

2 Dynamical objects and stationary measure

Here we introduce the Lagrangian dynamical objects in the setting described in the

previous section. Note that all the results in Sections 2.2 hold under much more gen-

eral assumptions: for instance, it is possible to drop (iii) in Assumption 1.1 or (ii) in
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Assumption 1.2. However, these hypotheses will be extremely important for the results

which will be given in Section 2.3. For more details on the de�nitions given below, see

[10, 11].

2.1 Lagrangian formulation and minimisers

Definition 2.1 For a time interval [s, t] and x, y ∈ S1, we say that a curve γy,xs,t (τ)

is a minimiser if it minimises the action

A(γ) =
1

2

t∫
s

γt(τ)
2dτ +

∑
n∈(s,t]

(
Fn(γ(n))

)
in the �kicked� case and the action

A(γ) =
1

2

t∫
s

γt(τ)
2dτ +

t∫
s

(
γt(τ)

(
∂G

∂x
(γ(τ), s)− ∂G

∂x
(γ(τ), τ)

))
dτ

+
(
G(γ(t), t)−G(γ(t), s)

)
in the white force case, respectively, over all absolutely continuous

curves γ such that γ(t) = x and γ(s) = y.

Remark 2.2 In the kicked case, it is easy to see that minimising curves are linear on

intervals [n, n+ 1] for integer values of n.

Definition 2.3 For a time interval [s, t], x ∈ S1 and a continuous function φ : S1 →

R, we say that a curve γxs,t,φ(τ) : [s, t]→ S1 is a φ-minimiser if it minimises A(γ)+

φ(γ(s)) over all absolutely continuous curves on [s, t] such that γ(t) = x. In particular,

all φ-minimisers are minimisers.

Now we can de�ne the (pathwise) solution to (1) for a given ω ∈ Ω and a given

continuous initial condition.



Title Suppressed Due to Excessive Length 11

Definition 2.4 For a time interval [s, t] and a continuous initial condition φ(s) :

S1 → R, for every ω by de�nition the (pathwise) solution φ : [s, t]× S1 → R of (1) is

de�ned by the ω-dependent action A:

φ(τ, x) = A(γ) + φ(s, γ(s)), τ ∈ [s, t],

where γ = γxs,τ,φ(s) is an ω-dependent φ(s)-minimiser de�ned on [s, τ ] satisfying

γ(τ) = x.

Remark 2.5 Note that by a compactness argument, one can show that given an initial

condition φ, for any given endpoint x, a φ-minimiser γ on [s, t] such that γ(t) = x

exists. In the white force case, this minimiser gives a time-continuous solution in C0,

whereas in the �kicked� case the solution is a cadlag in time (right-continuous and with

a limit to the left) C0-valued function.

Remark 2.6 It is easy to check that the solution φ veri�es the semigroup property: in

other words, one can de�ne a solution operator

St2t1 : φ(t1) 7→ φ(t2), s ≤ t1 ≤ t2 ≤ t,

such that for t1 ≤ t2 ≤ t3,

St3t2 ◦ S
t2
t1

= St3t1 .

In particular, the following holds:

Lemma 2.7 For any τ ∈ (s, t), the restriction of any φ(s)-minimiser de�ned on [s, t]

on the time interval [τ, t] is a Sτs φ(s)-minimiser.

Remark 2.8 Note that the solution φ is the limit in C0 of the strong solutions to the

equation obtained if we add a viscous term νφxx to (1) and then we make ν tend to 0

(see [10]).
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Definition 2.9 For a time t and a point x ∈ S1, we say that a curve γx,+t (τ) :

[t,+∞) 7→ S1 is a forward one-sided minimiser if it minimises A(γ) over all absolutely

continuous curves such that γ(t) = x for compact in time perturbations.

Namely, we require that if for a curve γ̃ such that γ̃(t) = x there exists T such that

γ̃(s) ≡ γ(s) for s ≥ T , then A(γ)−A(γ̃) ≤ 0 (this di�erence is well-de�ned since it is

equal to the di�erence of the actions on the �nite interval [t, T ]).

2.2 Stationary measure and related issues

Here we give a few results which hold under weak assumptions and are su�cient to

ensure that the stationary measure corresponding to (2) exists and is unique. These

results are not new and hold both in the one-dimensional and in the multi-dimensional

setting: see [8, 11]. Estimates for the speed of convergence are given in [2, 3, 5], where

all proofs are stated for ν > 0, but still hold for ν = 0 [8, 10]. Up to some natural

modi�cations due to the fact that the forcing is now discrete in time, the convergence

estimates can be generalised to the kick force case in 1d [2]. For more details, see also

[15], where a random forcing is introduced in a similar setup.

The �ow corresponding to (2) induces a Markov process, and then we can de�ne

the corresponding semigroup denoted by S∗t , acting on Borel measures on any Lp, 1 ≤

p < ∞. A stationary measure for (2) is a Borel probability measure de�ned on Lp,

invariant with respect to S∗t for every t. A stationary solution of (2) is a random

process v de�ned for (t, ω) ∈ [0,+∞)×Ω, satisfying (2) and taking values in Lp, such

that the distribution of v(t) does not depend on t. This distribution is automatically

a stationary measure.

Existence of a stationary measure for (2) is obtained using uniform bounds for
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solutions inW 1,1, which is compactly injected into Lp, p ∈ [1,∞), and the Bogolyubov-

Krylov argument. It is more delicate to obtain uniqueness of a stationary measure,

which implies uniqueness for the distribution of a stationary solution.

Remark 2.10 The most natural space for our model would be the space L∞/R, on

which we could have treated directly the solutions to the equation (1). Moreover, this is

the space in which exponential convergence to the unique stationary solution is proved

in the deterministic generic setting in [13]. However, this space is not separable, which

makes it delicate to deal with the stationary measure.

Definition 2.11 Fix p ∈ [1,∞). For a continuous function

g : Lp → R,

we de�ne its Lipschitz norm as

|g|L(p) := |g|Lip + sup
Lp

|g|,

where |g|Lip is the Lipschitz constant of g. The set of continuous functions with �nite

Lipschitz norm will be denoted by L(p).

Definition 2.12 For two Borel probability measures µ1, µ2 on Lp, we denote by

‖µ1 − µ2‖∗L(p) the Lipschitz-dual distance:

‖µ1 − µ2‖∗L(p) := sup
g∈L(p), |g|L(p)≤1

∣∣∣ ∫
S1

gdµ1 −
∫
S1

gdµ2

∣∣∣.
The following result proved in [2, 3, 5] is, as far as we are aware, the �rst explicit

estimate for the speed of convergence to the stationary measure of (2) which is uniform

with respect to the viscosity coe�cient ν and is formulated in terms of Lebesgue spaces

only. It holds both in the white force and in the kick-force setting in 1d, and only in

the white force case in the multidimensional setting. However, a result which holds in
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the L∞ norm locally in space away from the shocks in 1d has been obtained by Bec,

Frisch and Khanin in [1]. The proof in [2, 3, 5] uses a version of the coupling argument

due to Kuksin and Shirikyan [15, Chapter 3]. The situation is actually simpler than for

the stochastic 2D Navier-Stokes equations. In particular, in our setting the "damping

time" needed to make the distance between two solutions corresponding to the same

forcing small does not depend on the initial conditions. Moreover, since the �ow of (2)

is L1-contracting, the coupling argument is simpli�ed.

Theorem 2.13 There exists δ > 0 such that for every p ∈ [1,∞), there exists a positive

constant K1(p) such that we have:

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ K1(p)t
−δ/p, t ≥ 1,

for any probability measures µ1, µ2 on Lp.

2.3 Main results and scheme of the proof

Now we are ready to state the main result of the paper.

Theorem 2.14 There exists M1 > 0 such that for every p ∈ [1,∞), there is a positive

constant K2(p) such that we have:

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ K2(p)exp(−M1t/p), t ≥ 0, (3)

for any probability measures µ1, µ2 on Lp.

The proof is, in the spirit, similar to the proof of [13, Theorem 1]. In that paper

the authors use the objects of the weak KAM theory such as the Peierls barrier, which

do not have any directly available counterparts in our setting. However, there is a
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straightforward dynamical interpretation of their method in the simplest case. Namely,

consider a mechanical Lagrangian

v2/2− V (x)

such that the potential V is smooth and generic (i.e. it reaches its maximum at a

unique point y with V ′′(y) < 0).

An energy-minimising curve on [0, T ] remains in a small neighbourhood of y on

[τ, T − τ ] (with τ T -independent). Consequently, since y is a nondegenerate maximum

for V , we obtain by linearising the Euler-Lagrange equation that at the time T/2, all

minimisers (independently of the initial condition) are C exp(−CT )-close to y, and

then a standard argument allows us to conclude that for any initial conditions φ0, φ0,

the solutions of (1) at time T are C exp(−CT )-close up to an additive constant, i.e.:

sup
φ0, φ0∈C0

inf
c̃∈R

∣∣∣φ(T, x)− φ(T, x)− c̃∣∣∣
∞

≤ sup
φ0, φ0∈C0

∣∣∣φ(T, x)− φ(T, x)− (φ(T/2, y)− φ(T/2, y))
∣∣∣
∞

≤ C exp(−CT ).

There are two main ingredients in the proof. Roughly speaking, the �rst one is

that for a given initial condition φ0, the φ0-minimisers concentrate exponentially. The

second one is that the one-sided minimisers, which are limits of the φ0T -minimisers on

[0, T ] as T → +∞ for any set of initial conditions
{
φ0T
}
, also concentrate exponentially.

Now we introduce some de�nitions.

The diameter of a closed set Z can be thought of as the minimal length of a closed

interval on S1 containing Z.
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Definition 2.15 Consider a closed subset Z of S1. Let a(Z) denote the maximal

length of a connected component of S1 − Z. We de�ne the diameter of Z as

d(Z) = 1− a(Z).

Definition 2.16 For −∞ < r < s ≤ t < +∞ and for a �xed function φ0 : S1 → R,

let Ωr,s,t,φ0 be the set of points reached, at the time s, by φ0-minimisers on [r, t]:

Ωr,s,t,φ0 = {γxr,t,φ0(s), x ∈ S1}.

Now we give the formulations of the two key lemmas. The �rst of them is (up to

notation) [6, Corollary 2.1.]; the only small di�erence is that we require that C3 does

not depend on φ0 and is stationary in s (which follows immediately from the proof)

and all its moments are �nite (which follows without any problems using the Borel-

Cantelli lemma in the same way as in that paper). The second one is a forward-in-time

version of [8, Lemma 5.6.(a)]; the �niteness of the moments of C follows from the

Borel-Cantelli lemma like in the proof of [8, Lemma 5.4.]. Time-reversal can be done

without any measurability issues, since this is a �pathwise� result.

Remark 2.17 Although the second lemma is only proved in the white force setting in

[8], its proof in the kick force setting follows the same lines and is technically simpler.

Lemma 2.18 There exist a r.v. C3(s, ω) and a constant K6 such that we have the

inequality:

supφ0∈C0 d(Ω0,s,s+s′,φ0) ≤ C3 exp(−K6s
′).

Lemma 2.19 There exists a r.v. C1(ω) and a constant K7 such that we have:

sup
γ̃1,γ̃2∈Γ

|γ̃1(t)− γ̃2(t)| ≤ C1 exp(−K7t), t ≥ 0. (3)
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where Γ is the set of all forward one-sided minimisers de�ned on the time interval

[0,+∞).

Corollary 2.20 Consider an initial condition φ0 and a time t > 0. Then there exists

a r.v. C4(t, ω) and a constant K8 such that for any φ0-minimiser γ : [0, 2t]→ S1 and

any forward one-sided minimiser δ : [0,+∞)→ S1 we have:

|γ(t)− δ(t)| ≤ C4 exp(−K8t). (4)

Proof of Corollary 2.20: As we know from [8, Section 5], extracting a subse-

quence of minimisers (and in particular of φ0-minimisers) on [0, s] and taking the limit

while letting s go to +∞, one obtains a forward one-sided minimiser. In particular,

for every ε there exists s(ε) ≥ 2t, a φ0-minimiser γ̃ de�ned on [0, s] and a forward

one-sided minimiser δ̃ on [0,+∞) such that:

|γ̃(t)− δ̃(t)| ≤ ε. (5)

By Lemma 2.19 we have:

|δ(t)− δ̃(t)| ≤ C1(ω) exp(−K7t), (6)

and by Lemma 2.18, since the restriction γ̃|[0,2t] is a φ0-minimiser, we have:

|γ(t)− γ̃(t)| ≤ C3(t, ω) exp(−K6t), (7)

Combining the inequalities (5)-(7) and using the triangular inequality, and then

letting ε go to 0, we get (4) with K8 = min(K6, K7) and C4(t, ω) = C1(ω)+C3(t, ω).

ut
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3 Proof of Theorem 2.14

First we state two auxiliary lemmas. To prove Lemma 3.1 one can take the ν-uniform

estimates in [2, 3] and consider the limit ν → 0. On the other hand, [8, Lemma 3.1]

yields Lemma 3.3 after a few standard modi�cations (namely proving as previously

that all moments of the stationary random variable are �nite).

Lemma 3.1 There is a r.v. C5(t, ω) such that for t ≥ 1, we have:

sup
φ0∈C0

|u(t)|1,1 ≤ C5.

Corollary 3.2 For t ≥ 1, we have:

sup
φ0∈C0

|u(t)|∞ ≤ C5,

where C5 is the same as above.

Lemma 3.3 For t ≥ 1, there is a r.v. C6(t, ω) such that we have:

sup
s∈[t,t+1],γ∈Γ

|γt(s)| ≤ C6,

where Γ is the set of minimisers de�ned on [0, t+ 1].

Moreover, we will need the following lemma, analogous to [8, Section 3, Fact 1].

Lemma 3.4 Consider two minimisers γ1, γ2, both de�ned on [t, T ], T ≥ t + 1, and

satisfying γ1(T ) = γ2(T ). There is a r.v. C7(t, ω) such that if for ε > 0 we have:

|γ1(t)− γ2(t)| ≤ ε,

then we have the following inequality for the actions of the minimisers:

|A(γ1)−A(γ2)| ≤ C7(t, ω)(ε+ ε2).
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Proof: By symmetry, it su�ces to prove that:

A(γ2) ≤ A(γ1) + C7(t, ω)(ε+ ε2); (8)

C7 will be �xed later. Consider the curve γ̃1 : [t, T ]→ S1 de�ned by:

γ̃1(s) = γ1(s) + (t+ 1− s)(γ2(t)− γ1(t)), s ∈ [t, t+ 1].

γ̃1(s) = γ1(s), s ∈ [t+ 1, T ].

Using De�nition 2.1 and Lemma 3.3, we get:

A(γ̃1) ≤ A(γ1) + C7(t, ω)(ε+ ε2).

On the other hand, since γ̃1 has the same endpoints as the minimiser γ2, we get:

A(γ2) ≤ A(γ̃1).

Combining these two inequalities yields (8). ut

The proof of the following lemma follows the lines of [13].

Lemma 3.5 Consider two solutions φ and φ of (1) de�ned on the time interval [0,+∞).

There there exist M2 > 0 and a r.v. C8(t, ω) such that we have:

|φ(t)− φ(t)|L∞/R ≤ C8 exp(−M2t), t ≥ 0.

Proof of Lemma 3.5: Consider two solutions φ and φ to (1) corresponding to the

same forcing and di�erent initial conditions at time 0. Using De�nition 2.4, we get for

any t ≥ 1 and x ∈ S1:

φ(2t, x)− φ(2t, x) (9)

= φ(t, γ1(t)) +A(γ1|[t,2t])− φ(t, γ2(t))−A(γ2|[t,2t]),



20 Alexandre Boritchev

where γ1 and γ2 are respectively a φ0- and a φ0-minimiser on [0, 2t] ending at x. By

Corollary 2.20, we have:

|γi(t)− y| ≤ C4(t, ω) exp(−K8t), i = 1, 2, (10)

where we �x any point y such that y = δ(t) for a one-sided minimiser δ de�ned on

[0,∞). By Corollary 3.2, this inequality yields that:

|φ(t, γ1(t))− φ(t, γ2(t))−R|

≤ (|φx(t)|∞|γ1(t)− y|+ |φx(t)|∞|γ2(t)− y|)

≤ 2C4(t, ω)C5(t, ω) exp(−K8t),

where

R = φ(t, y)− φ(t, y),

Note that R does not depend on x. On the other hand, using (10), by Lemma 3.4 we

get that there is a r.v. C9(t, ω) such that:

|A(γ1|[t,2t])−A(γ2|[t,2t])| ≤ C9 exp(−K8t).

Therefore, by (9), we get:

|φ(2t)− φ(2t)|L∞/R ≤ sup
x∈S1

|φ(2t, x)− φ(2t, x)−R|

≤ (C9(t, ω) + 2C4(t, ω)C5(t, ω)) exp(−K8t).

This proves the lemma's statement. ut

Corollary 3.6 Consider two solutions u and u of (2) de�ned on the time interval

[0,+∞). Then there exists a p-dependant r.v. C2(p)(ω) such that for any p > 0 we

have:

|u(t)− u(t)|p ≤ C2(p) exp(−M2t/2p), t ≥ 0.
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Proof: This result follows from Lemma 3.5 using Lemma 1.2, Lemma 3.1 and Corol-

lary 3.2. Indeed, it su�ces to observe that for any R′ ∈ R:

|u(t)− u(t)|p ≤ K3(p)|φx(t)− φx(t)|
1/p
1 |φx(t)− φx(t)|

1−1/p
∞

≤ K4(p)|φ(t)− φ(t)−R′|1/2p1 |ux(t)− ux(t)|1/2p1 |u(t)− u(t)|1−1/p
∞ .

≤ K5(p)|φ(t)− φ(t)−R′|1/2p1 max(|ux(t)|1, |ux(t)|1, |u(t)|∞, |u(t)|∞)1−1/p

≤ C2(p)|φ(t)− φ(t)−R′|1/2p∞ .ut

Proof of Theorem 2.14: By the Fubini theorem, it su�ces to prove this result

in the case when the measures µ1 and µ2 are two Dirac measures concentrated at the

initial conditions u0, u0 ∈ Lp.

By a contradiction argument, it follows from Corollary 3.6 that if we denote by B

the event

B = {ω ∈ Ω | |u(t)− u(t)|L(p) ≥ exp(−M2t/4p)},

then we have:

P(B) ≤ exp(−M2t/4p)EC2(p), t ≥ 0.

Now consider a function g de�ned on Lp which satis�es |g|L ≤ 1. We have for t ≥ 0:

E(|g(φ(t))− g(φ(t))|p)

≤ P(B) E(|g(φ(t))− g(φ(t))|p | B)

+P(Ω −B) E(|g(φ(t))− g(φ(t))|p | Ω −B)

≤ 2P(B) +P(Ω −B) exp(−M2t/4p)

≤ (2EC2(p)(ω) + 1) exp(−M2t/4p).
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This proves the theorem's statement with K2(p) = 2EC2(p) + 1 and

K1(p) =M2/4p. ut

Remark 3.7 The estimate in Lemma 3.5 is uniform with respect to the initial condi-

tions: in other words, there exists a constant K9 > 0 such that we have

E sup
φ0,φ0∈C0

|φ(t)− φ(t)|L∞/R ≤ K9 exp(−M2t), t ≥ 0.

A similar statement holds for the estimate in Corollary 3.6.
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