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Abstract. We consider the fractional unforced Burgers equation
in the one-dimensional space-periodic setting:

∂u

∂t
+ (f(u))x + νΛαu = 0, t ≥ 0, x ∈ Td = (R/Z)d.

Here f is strongly convex and satis�es a growth condition, Λ =√
−∆, ν is small and positive, while α ∈ (1, 2) is a constant in the

subcritical range.
For solutions u of this equation, we generalise the results ob-

tained for the case α = 2 (i.e. when −Λα is the Laplacian) in [12].
We obtain sharp estimates for the time-averaged Sobolev norms
of u as a function of ν. These results yield sharp ν-independent
estimates for natural analogues of quantities characterising the hy-
drodynamical turbulence, namely the averages of the increments
and of the energy spectrum. In the inertial range, these quan-
tities behave as a power of the norm of the relevant parameter,
which is respectively the separation ` in the physical space and the
wavenumber k in the Fourier space.

The form of all estimates is the same as in the case α = 2; the
only thing which changes is that ν is replaced by ν1/(α−1).
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1. Introduction

1.1. Burgers turbulence. The Burgers equation

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0, (1)

where ν > 0 is a constant, and its multidimensional generalisations,
are very popular physical models: see the review [6] and references
therein. On a formal level, this equation looks like a pressureless one-
dimensional model for the incompressible Navier-Stokes equations [42].
In the turbulent regime, i.e. for ν � 1, the solutions of the Burgers
equation display non-trivial small-scale intermittent behaviour, called
decaying Burgers turbulence or �Burgulence� [16, 20, 36]
Now we consider the solutions to (1) in the space-periodic setting,

i.e. x ∈ S1 = R/Z, assuming that the initial condition is of order
1. Then after a time of order 1, these solutions have an N -wave be-
haviour in the limit ν → 0. In other words, u(t, ·) displays negative
jump discontinuities separated by smooth regions where the derivative
is positive [31]. For 0 < ν � 1 the solutions are still highly intermit-
tent: the jump discontinuities become layers of width of order ν where
the derivative is negative of order ν−1. These layers are called cli�s
[33]. For more details, see [12, Section 1].
On a physical level of rigour, the arguments given above imply two

results for the small-scale behaviour of the solutions:

• On one hand, for ν small and for 1� k � ν−1, the energy-type
quantities 1

2
|û(k)|2 (where û(k) is the k-th Fourier coe�cient)

behave, in average, as k−2 [20, 32, 36, 38].
• On the other hand, the structure functions

Sp(`) =

∫
S1

|u(x+ `)− u(x)|p dx



SUBCRITICAL FRACTIONAL BURGERS TURBULENCE 3

behave as `max(1,p) for ν � ` � 1: in other words, we have a
bifractal behaviour in the inertial range: see [4] and [33, Chapter
8].

In the description above, we see that the length scale of the system is
of order ν. Heuristically, this can be justi�ed by looking at the form of
the equation. Namely, we assume that the solution u is of order 1 and
we ignore the term ut (since we do not consider time scales). We denote
the length scale by ` and therefore taking the derivative ∂x amounts to
multiplying by `−1. Then we obtain that uux ∼ `−1 and νuxx ∼ ν`−2,
which yields that ` ∼ ν.
An almost sharp estimate for the small-scale behaviour of the spec-

trum was given by Biryuk [8]. We have proved sharp estimates for
small-scale quantities in [12], thus giving a full rigorous justi�cation
for the above-mentioned heuristics.

1.2. Fractional Burgers equation. Now we consider the fractional
Burgers equation

∂u

∂t
+ f ′(u)

∂u

∂x
+ νΛαu = 0, x ∈ S1 = R/Z, α ≥ 0, (2)

where ν is a constant in (0, 1], Λ =
√
−∆ and f is C∞-smooth and

strongly convex, i.e. f satis�es the property

f ′′(y) ≥ σ > 0, y ∈ R. (3)

For the sake of simplicity, we only consider solutions to (2)-(3) with
zero space average for �xed t:∫

S1

u(t, x)dx = 0, ∀t ≥ 0. (4)

Integrating by parts, one easily sees that is su�ces to require (4) for
t = 0. Since we are in the space-periodic zero-average setting, the op-
erator Λ is well-de�ned as the multiplier by 2π|k| in the Fourier space.
The classical (fractional) Burgers equation corresponds to f(u) =

u2/2. The physical arguments justifying the small-scale estimates given
in the previous section still hold if we replace u2/2 by f(u) satisfying
(3).
For α ≤ 2, there are two main types of physical motivations for

studying the equation (2). In the �eld of nonlinear acoustics, it de-
scribes an asymptotic regime for detonation waves (see the paper of
Clavin and Denet [21] and also the introduction to the paper of Alfaro
and Droniou [2]). In the �eld of �uid mechanics, it has often been
considered as a toy model for the SQG (Surface Quasi-Geostrophic)
equation [22, 24].
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The case α > 2 is technically more di�cult. It is extremely im-
portant for interpretation of turbulent phenomena: see the paper of
Bardos, Frisch, Pauls, Ray and Titi [5]. However, obtaining sharp
bounds in this case is very delicate due to a lack of a good bound for
|u|.
For α < 2, by the same heuristic arguments as above, denoting by

` the length scale for the solutions of (2), we obtain that `−1 ∼ ν`−α,
and therefore ` ∼ νβ, where we denote by β the quantity

β =
1

α− 1
. (5)

Note that for α = 2, i.e. for the classical Burgers equation, we have
β = 1. We see that the heuristic argument given above makes no sense
for α ≤ 1, which suggests that the critical case is α = 1, where β goes
to +∞. In the subcritical case 1 < α < 2, this dimensional analysis
suggests that the results for our model should be the same as the re-
sults for the case α = 2 studied in [12], up to the replacement of ν by
νβ.
Note that the arguments given above do not hold for α > 2. Indeed,

as the operator Λα does not have a positive kernel, there is no imme-
diately available maximum principle for u.
In the subcritical case 1 < α < 2, the well-posedness has �rst been

proved for x ∈ R by Droniou, Gallouët and Vovelle [30]; see also the
earlier paper of Biler, Funaki and Woyczynski [7] for partial results.
Moreover in [3] Alibaud, Droniou and Vovelle proved that for large
smooth initial data, the solutions are not necessarily smooth in the
supercritical case 0 < α < 1. For sharper related results, see the paper
of Dong, Du and Li [29].
The well-posedness in the critical case α = 1 has been proved by

Kiselev, Nazarov and Shterenberg [37] in the space-periodic setting us-
ing a modulus of continuity; see also the paper of Dabkowski, Kiselev,
Silvestre and Vicol [27] for a more general result. This paper also
contains a sketch of the proof of the well-posedness in the subcritical
setting. For the sake of completeness, we include a detailed proof us-
ing the mild solution technique [25] in the Appendix. Note also that
in [37] the supercritical ill-posedness result of [3] is extended to the
space-periodic setting.
An alternative proof of the well-posedness in the critical case has

been given by Constantin and Vicol [23] using a nonlinear maximum
principle of the Córdoba-Córdoba type [24]. A multidimensional gen-
eralisation of this result has been proved by Chan and Czubak [19]
extending the techniques of Ca�arelli and Vasseur [18].
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The fractional Burgers equation has also been considered in a va-
riety of other settings. For a probabilistic interpretation of (2), see
the papers of Jourdain, Méléard and Woyczynski [34], Jourdain and
Roux [35] and Truman and Wu [45]. For a proof of ergodicity for the
fractional Burgers equation with space-time white noise, see the paper
of Brzezniak, Debbi and Goldys [15]. For theoretical and numerical
investigations on the rates of growth of di�erent physically relevant
quantities in (2), see the paper of Protas and Yun [43].
In our paper, we give a rigorous justi�cation for the small-scale be-

haviour in the case 1 < α < 2 by proving sharp estimates for the
structure functions and the spectrum on small scales, generalising the
results of [8, 12]. For more details, see Section 3.

1.3. Additional comments. Estimating small-scale quantities for
nonlinear PDEs is motivated by the problem of turbulence: for more
information, see the book of Frisch [33] and the pioneering mathemat-
ically rigorous papers of Kuksin [40, 41].
In the same way as in [12], our estimates hold in average on a time

interval [T1, T2]. In other words, we consider a time range during which
we have the transitory behaviour which is referred to as decaying Burg-
ers turbulence [6]. This time interval depends only on f and, through
the quantity D (see (6)), on u0: thus it does not depend on ν.
When studying the typical behaviour for solutions of nonrandom

PDEs, it is common to avoid pathological initial data, considering some
type of averaging: see for instance [17]. This is due to the lack of a
random mechanism which allows to get solutions out of �bad� regions
of the phase space, in particular in Hamiltonian PDEs. Here, the situ-
ation is more transparent: the behaviour of solutions can be described
using only the quantity D:

D = max(|u0|−11 , |u0|1,∞) > 1 (6)

(see Section 2.3 for the notation).
Note that for m ∈ {0, 1} and 1 ≤ p ≤ ∞, we have (see (10)):

D−1 ≤ |u0|m,p ≤ D.

The physical meaning of D is that it allows both to bound from above
and below the energy 1

2

∫
S1 u

2 both at time 0 and at some later time, and
thus to control from above and from below the rate of its dissipation
(see Section 6).

In a future work we will consider the equation (2) with an additive
random force, in a setting similar to [10, 11]. We expect to obtain the
same results as in those papers up to the replacement of ν by νβ, i.e.
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with the same modi�cations as the ones in our paper with respect to
[12].

1.4. Plan of the paper. We introduce the notation and the setup in
Section 2. We present the main results of our paper in Section 3.
In Section 4, we prove upper estimates for the positive and the nega-

tive parts of the quantity ∂u/∂x. We use in a crucial way the nonlinear
maximum principle of Constantin and Vicol [23]. This result allows us
to obtain upper bounds for the Sobolev norms |u|m,p. In Section 6, us-
ing the results of Sections 4-5, we obtain time-averaged lower bounds
for the Sobolev norms |u|m,p. The upper and lower bounds are sharp,
i.e. they coincide up to a ν-independent multiplicative constant.
In Sections 5 and 7 we obtain ν-uniform sharp upper and lower

bounds for the small-scale quantities corresponding to the �ow u(t, x),
and we analyse the meaning of these results in terms of the theory of
turbulence. Moreover, in Section 5 we prove a crucial upper estimate
for some fractional Sobolev norms, which will be used in Section 6.

2. Notation and setup

Agreement: In the whole paper, all functions that we consider are
real-valued and the space variable x belongs to S1 = R/Z.

2.1. Notation. We study asymptotic properties of solutions to (2) for
small values of ν, i.e. we suppose that

0 < ν � 1. (7)

(and more precisely 0 < ν ≤ ν0; see (31)). We assume that f is
in�nitely di�erentiable and satis�es (3). Moreover, we assume that f
and its derivatives satisfy:

∀m ≥ 0, ∃h ≥ 0, Cm > 0 : |f (m)(x)| ≤ Cm(1 + |x|)h, x ∈ R, (8)

where h = h(m) is a function such that 1 ≤ h(1) < 2 (the lower bound
for h(1) follows from (3)). The usual Burgers equation corresponds to
f(x) = x2/2.
We recall that we restrict ourselves to the case in which the initial

condition u0 := u(0, ·) has zero space average. Integrating in space,
one deduces that u(t) satis�es (4) for all t. Furthermore, we assume
that u0 ∈ C∞. We also assume that we are not in the case u0 ≡ 0,
corresponding to the trivial solution u(t, x) ≡ 0. This ensures that the
quantity D (see (6)) is well-de�ned.

Subindices t and x, which can be repeated, denote partial di�erenti-
ation with respect to the corresponding variables. We denote by v(m)
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the m-th derivative of v in the variable x. For shortness, the function
v(t, ·) is denoted by v(t).

Agreements: From now on, all constants denoted by C with sub-
or superindexes are positive. Unless otherwise stated, they depend
only on f , on u0 (through the single parameter D) and never on the
viscosity coe�cient ν. By C(a1, . . . , ak) we denote constants which

also depend on parameters a1, . . . , ak. By X
a1,...,ak

. Y we mean that

X ≤ C(a1, . . . , ak)Y . The notation X
a1,...,ak∼ Y stands for

Y
a1,...,ak

. X
a1,...,ak

. Y.

In particular, X . Y and X ∼ Y mean that X ≤ CY and
C−1Y ≤ X ≤ CY , respectively.
All constants are independent of the viscosity ν. A relation where

the admissible values of t (respectively, x) are not speci�ed is assumed
to hold for all t ≥ 0, or t > 0 if the relation contains t−1 (respectively,
all x ∈ S1).
We denote by u = u(t, x) a solution of (2) for an initial condition u0.
The brackets {·} stand for the averaging in time over an interval

[T1, T2], where T1, T2 only depend on f and on D (see (24) for their
de�nition.)
For m ≥ 0, p ∈ [1,∞], γ(m, p) is by de�nition the quantity

max(0,m− 1/p).
We use the notation g− = max(−g, 0) and g+ = max(g, 0).

2.2. Notation in Sections 5 and 7. In Sections 5 and 7, we study
analogues of quantities which are important for hydrodynamical tur-
bulence. We consider quantities in the physical space (structure func-
tions) as well as in the Fourier space (energy spectrum). We assume
that ν ≤ ν0. The value of ν0 > 0 will be chosen in (31), where we
de�ne the non-empty and non-intersecting intervals

J1 = (0, C1ν
β]; J2 = (C1ν

β, C2]; J3 = (C2, 1]

corresponding to the physical scales respectively in the
dissipation range, the inertial range and the energy range from the
Kolmogorov 1941 theory of turbulence [33]. For the de�nition of β, see
(5).
The quantities Sp(`) denote the averaged moments of the increments

in space for the �ow u(t, x):

Sp(`) =

{∫
S1

|u(t, x+ `)− u(t, x)|pdx

}
, p ≥ 0, 0 < ` ≤ 1.
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The quantity Sp(`) is the structure function of p-th order. The �atness,
which measures spatial intermittency [33], is de�ned by:

F (`) = S4(`)/S
2
2(`). (9)

Finally, for k ≥ 1, we de�ne the (layer-averaged) energy spectrum by

E(k) =

{∑
|n|∈[M−1k,Mk] |û(n)|2∑
|n|∈[M−1k,Mk] 1

}
,

where M ≥ 1 is a constant which will be speci�ed later (see the proof
of [12, Theorem 6.11]). Using multiplicative shells for the energy spec-
trum is optimal in our framework since all of our estimates hold up to a
multiplicative constant. Moreover, one cannot use shells of �xed width
because of the particular case when the initial data is 1/n-periodic for
arbitrarily large values of n.
For more comments on the small-scale features of the solution, see

the paper [12].

2.3. Sobolev spaces. Consider a zero mean value integrable function
v de�ned on S1. For p ∈ [1,∞), we denote its Lp norm(∫

S1

|v|p
)1/p

by |v|p. The L∞ norm is by de�nition

|v|∞ = ess supx∈S1 |v(x)|.
The L2 norm is denoted by |v|, and 〈·, ·〉 stands for the L2 scalar prod-
uct. From now on Lp, p ∈ [1,∞], denotes the space of zero mean value
functions in Lp(S1). Similarly, C∞ is the space of C∞-smooth zero
mean value functions on S1.
For a nonnegative integer m and p ∈ [1,∞], Wm,p stands for the

Sobolev space of zero mean value functions v on S1 with �nite norm

|v|m,p =

∣∣∣∣dmvdxm

∣∣∣∣
p

.

In particular, W 0,p = Lp for p ∈ [1,∞]. For p = 2, we denote Wm,2 by
Hm, and abbreviate the corresponding norm as ‖v‖m.
Note that since the length of S1 is 1 and the mean value of v vanishes,

we have:

|v|1 ≤ |v|∞ ≤ |v|1,1 ≤ |v|1,∞ ≤ · · · ≤ |v|m,1 ≤ |v|m,∞ ≤ . . . (10)

We recall a version of the classical Gagliardo-Nirenberg inequality: cf.
[28, Appendix].
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Lemma 2.1. For a smooth zero mean value function v on S1,

|v|χ,r ≤ C |v|θm,p |v|
1−θ
q ,

where m > χ, and r is determined by

χ− 1

r
= θ
(
m− 1

p

)
+ (1− θ)

(
0− 1

q

)
,

under the assumption θ = χ/m if p = 1 or p = ∞, and χ/m ≤ θ < 1
otherwise. The constant C depends on m, p, q, χ, θ.

Subindices t and x, which can be repeated, denote partial di�erenti-
ation with respect to the corresponding variables. We denote by v(m)

the m-th derivative of v in the variable x. The function v(t, ·) is ab-
breviated as v(t).
For any s ≥ 0, Hs stands for the Sobolev space of zero mean value

functions v on S1 with �nite norm

‖v‖s = (2π)s
(∑
k∈Z

|k|2s|v̂k|2
)1/2

,

where v̂k are the complex Fourier coe�cients of v(x). For an integer
s = m, this norm coincides with the previously de�ned Hm norm. For
s ∈ (0, 1), ‖v‖s is equivalent to the norm

‖v‖
′

s =

(∫
S1

(∫ 1

0

|v(x+ `)− v(x)|2

`2s+1
d`
)
dx

)1/2

(11)

(see [1, 44]).
Hölder's inequality yields the following well-known interpolation in-

equality:
‖v‖s2 ≤ ‖v‖

θ
s1
‖v‖1−θs3

, s1 ≤ s2 ≤ s3, (12)

where:

θ =
s3 − s2
s3 − s1

.

Remark 2.2. When we prove upper estimates, we take advantage of
the fact that we are in the one-dimensional setting, which allows to
easily predict the powers for di�erent Sobolev norms: in the inequalities,
the �size� of | · |m,p is m− 1/p and the �size� of ‖ · ‖s is s− 1/2, as can
be seen in the formulation of Lemma 2.1 and (12). For instance, the
inequality

‖v‖ . |v|2/31 ‖v‖
1/3
1 ,

which is a particular case of Lemma 2.1, can be predicted using the fact
that:

0− 1

2
=

2

3

(
0− 1

)
+

1

3

(
1− 1

2

)
.
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Following this principle allows us to guess the right exponents, in par-
ticular in the three following lemmas which will be used in the proof of
Lemma 4.4. However, this principle cannot become a systematic rule.
Indeed, there are restrictions for admissible exponents in Lemma 2.1.
For later use and for the reader's convenience, let us combine
Lemma 2.1 and (12) to interpolate between Wm,p and Hs norms.

Lemma 2.3. For a smooth function v, we have:

‖v‖m
m

. |v|1−θ1,1 ‖v‖
θ
m+γ , m ≥ 2, 0 ≤ γ ≤ 1,

where:

θ =
2m− 1

2m+ 2γ − 1
.

Proof. Using �rst (12) and then Lemma 2.1 for the function v′, we
get:

‖v‖m ≤‖v‖
γ/(m+γ−1)
1 ‖v‖(m−1)/(m+γ−1)

m+γ

m

. |v|γ(2m−2)/(2m−1)(m+γ−1)
1,1 ‖v‖γ/(2m−1)(m+γ−1)

m

× ‖v‖(m−1)/(m+γ−1)
m+γ .

Dividing by ‖v‖γ/(2m−1)(m+γ−1)
m on both sides of the inequality, since

1− γ

(2m− 1)(m+ γ − 1)
=

(m− 1)(2m+ 2γ − 1)

(2m− 1)(m+ γ − 1)
,

we obtain that:

‖v‖(m−1)(2m+2γ−1)/(2m−1)(m+γ−1)
m

m

. |v|γ(2m−2)/(2m−1)(m+γ−1)
1,1 ‖v‖(m−1)/(m+γ−1)

m+γ ,

which yields that:

‖v‖m
m

. |v|1−θ1,1 ‖v‖
θ
m+γ . �

Lemma 2.4. We have:

|v|1,∞
m

. |v|1−θ
′

1,1 ‖v‖
θ′

m+γ , m ≥ 2, 0 ≤ γ ≤ 1,

where:

θ′ =
2

2m+ 2γ − 1
.

Proof. This result follows immediately from the previous lemma
after observing that by Lemma 2.1 we have:

|v|1,∞
m

. |v|(2m−3)/(2m−1)1,1 ‖v‖2/(2m−1)m . �
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Lemma 2.5. We have:

‖v‖1
m

. |v|1−θ
′′

1,1 ‖v‖
θ′′

m+γ , m ≥ 2, 0 ≤ γ ≤ 1,

where:

θ′′ =
1

2m+ 2γ − 1
.

Proof. This results follows immediately from the previous lemma
after observing that by Hölder's inequality we have:

‖v‖1. |v|
1/2
1,1 |v|

1/2
1,∞ . �

3. Main results

In our paper, in Sections 4 and 6, we prove sharp upper and lower
bounds for moments of Sobolev norms of u, generalising the results in
[12]. These results for Sobolev norms of solutions are summed up in
Theorem 6.7. Namely, for m ∈ {0, 1} and p ∈ [1,∞] or for m ≥ 2 and
p ∈ (1,∞] we have:(

{|u(t)|κm,p}
)1/κ m,p,κ∼ ν−βγ, κ > 0, (13)

and on the other hand:(
{‖u(t)‖κs}

)1/κ s,κ∼ ν−β(s−1/2), s > 1/2. (14)

We recall that by de�nition, γ(m, p) = max(0,m−1/p), and the brack-
ets {·} stand for the averaging in time over an interval [T1, T2] (T1, T2
only depend on f and, through D, on u0: see (24)).
In Section 5 and 7 we obtain sharp estimates for analogues of quan-

tities characterising hydrodynamical turbulence. In what follows, we
assume that ν ∈ (0, ν0], where ν0 ∈ (0, 1] depends only on f and on D.
First, as a consequence of (13)-(14), we prove Theorem 7.6, which

states that for ` ∈ J1:

Sp(`)
p∼

{
`p, 0 ≤ p ≤ 1.

`pν−β(p−1), p ≥ 1,

and for ` ∈ J2:

Sp(`)
p∼
{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.

Consequently, for ` ∈ J2 the �atness satis�es the estimate:

F (`) = S4(`)/S
2
2(`) ∼ `−1.

This gives a rigorous proof of the fact that u is highly intermittent in
the inertial range [33, Chapter 8].
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Finally we get estimates for the spectral asymptotics of the decaying
Burgulence. On one hand, for m ≥ 1 we have:

{|û(k)|2}
m

. k−2m‖u‖2m
m

. (kνβ)−2mνβ.

In particular, {|û(k)|2} decreases at a faster-than-algebraic rate for
|k| � ν−β. On the other hand, by Theorem 7.8, for k such that k−1 ∈ J2
the energy spectrum E(k) satis�es:

E(k) ∼ k−2,

where the quantity M ≥ 1 in the de�nition of E(k) depends only on f
and on D.

Remark 3.1. The main results of our paper are word-to-word the same
as in the paper [12] with ν replaced by νβ.

4. Upper estimates for Sobolev norms

We recall that u = u(t, x) denotes a solution of (2) for an initial
condition u0. For more information on the notation, see Section 2.
We begin by proving a key upper estimate for ux. This estimate is

well-known in the case α = 2 [39].

Lemma 4.1. We have:

ux(t, x) ≤ min(D, σ−1t−1),

with the constants σ de�ned in (3) and D in (6).

Proof. Di�erentiating the equation (2) once in space, multiplying
by t and considering the function v = tux we obtain that:

vt + t−1(−v + f ′′(u)v2) + f ′(u)vx = −νΛαv. (15)

Now suppose that we are not in the trivial case v ≡ 0 and consider
a point (t1, x1) where v reaches its maximum on the cylinder S =
[0, t]× S1. We assume that t1 > 0 and we remark that this maximum
is positive since for every t, v(t, ·) has zero space average. At (t1, x1),
Taylor's formula implies that we have vt ≥ 0 (since t1 > 0) and vx = 0
(since S1 has no boundary). Moreover, the positivity of the kernel
associated to the operator −Λα for α ≤ 2 implies that Λαv ≥ 0 (cf.
[23]). Therefore, (15) yields that at the point (t1, x1):

−v + f ′′(u)v2 ≤ 0,

which implies that v(t1, x1) ≤ σ−1. Thus, ux(t, x) ≤ σ−1t−1 for all t, x.
To prove that for all x, ux(t, x) ≤ maxy∈S1 (u0)x(y) ≤ D, we use
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a simpler version of the same argument applied to the function ux.
Namely, if we consider w = ux, we have:

wt + f ′′(u)w2 + f ′(u)wx = −νΛαw,

and then we use Taylor's formula as previously. �

Since the space averages of u(t) and ux(t) vanish, we get:

|u(t)|p ≤ |u(t)|∞ ≤
∫
S1

u+x (t) ≤ min(D, σ−1t−1), 1 ≤ p ≤ +∞, (16)

and also the following crucial estimate:

|u(t)|1,1 =

∫
S1

u+x (t) +

∫
S1

u−x (t) = 2

∫
S1

u+x (t)

≤ 2 min(D, σ−1t−1). (17)

Lemma 4.2. We have:

|u(t)|1,∞. ν−β.

We recall that we assume ν ≤ ν0 (cf. Section 2.1).

Proof. By Lemma 4.1, it su�ces to prove that we have:

h = −ux . ν−β.

Di�erentiating the equation (2) once in space we obtain that:

ht − f ′′(u)h2 + f ′(u)hx = −νΛαh. (18)

Now consider a point (t1, x1) where h reaches its maximum on the
cylinder S = [0, t]× S1 and suppose that we are not in the trivial case
h ≡ 0. Suppose also that t1 > 0 (else max(t,x)∈S h(t, x) ≤ D) and
denote this maximum by M . Then at (t1, x1) by Taylor's formula we
have ht ≥ 0 and hx = 0. On the other hand, by [23, Theorem 2.3] we
have one of the two following situations:
a): h(t1, x1) . max(−u), and therefore by (16), h(t1, x1) . 1.
b): Λαh(t1, x1) & h1+α(t1, x1)/|u(t1, ·)|α∞, and therefore by (16),

Λαh(t1, x1) &M1+α.
In the situation b), (18) yields that at the point (t1, x1):

−f ′′(u(t1, x1))M
2 . −νM1+α,

and therefore by (3) we get:

M . ν−1/(α−1) = ν−β. �

Lemma 4.3. We have the inequality

‖u(t)‖21 . ν−β.
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Proof. It su�ces to use (17) and Lemma 4.2 and to apply Hölder's
inequality. �

Now we prove an important auxiliary lemma, which plays the same
role as [12, Lemma 5.2.]. The powers of the Sobolev norms can be
guessed using Remark 2.2.

Lemma 4.4. For every m ≥ 1 there exist Cm > 0 and a natural
number n′ = n′(m) such that for v ∈ C∞,

Nm(v) :=
∣∣〈v(m), (f(v))(m+1)

〉∣∣ (19)

≤ Cm(1 + |v|1,1)
n′ ‖v‖4m/(2m+α−1)

m+α/2 .

Proof. Fix m ≥ 1. We denote |v|1,1 by N and we recall that

|v|∞ ≤ N . Let C ′ denote various expressions of the form Cm(1+N)n(m).
Integrating by parts, we get:

Nm(v) =
∣∣〈v(m), (f(v))(m+1)

〉∣∣
≤ C(m)

∑
1≤k≤m+1

1≤a1≤···≤ak≤m−1
a1+···+ak=m+1

∫
S1

∣∣v(m)v(a1) . . . v(ak)f (k)(v)
∣∣

+m

∣∣∣∣∫
S1

(v(m))2v′f ′′(v)

∣∣∣∣+

∣∣∣∣∫
S1

v(m)v(m+1)f ′(v)

∣∣∣∣
The term v(m) cannot be bounded from below using lower order Sobolev
norms, so we have to get rid of it integrating by parts.

Nm(v) ≤ C(m)
∑

1≤k≤m+1
1≤a1≤···≤ak≤m−1
a1+···+ak=m+1

∫
S1

∣∣v(m)v(a1) . . . v(ak)f (k)(v)
∣∣

+
(
m+

1

2

) ∣∣∣∣∫
S1

f ′′(v)(v(m))2v′
∣∣∣∣

≤ C(m) max
x∈[−N,N ]

max(f ′(x), . . . f (m+1)(x))

×
∑

1≤k≤m+1
1≤a1≤···≤ak≤m−1
a1+···+ak=m+1

∫
S1

|v(a1) . . . v(ak)v(m)|

+
(
m+

1

2

) ∣∣∣∣∫
S1

f ′′(v)(v(m))2v′
∣∣∣∣ .
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Therefore by Hölder's inequality, (8) and (16) we get:

Nm(v) ≤ C ′
∑

1≤k≤m+1
1≤a1≤···≤ak≤m−1
a1+···+ak=m+1

∫
S1

|v(a1) . . . v(ak)v(m)|

︸ ︷︷ ︸
Nm,1

+ C ′
∫
S1

∣∣(v(m))2v′
∣∣︸ ︷︷ ︸

Nm,2

.

By Lemma 2.3 and Lemma 2.4, there exists a constant ε(m) > 0 such
that:

Nm,2 ≤ C ′|v|1,∞ ‖v‖2m
≤ C ′|v|ε(m)

1,1 ‖v‖
2/(2m+α−1)
m+α/2 ‖v‖(4m−2)/(2m+α−1)

m+α/2

≤ C ′ ‖v‖4m/(2m+α−1)
m+α/2 .

Now it remains to deal with Nm,1. Using �rst Hölder's inequality, then
Lemma 2.1 and �nally (12), we get:

Nm,1 ≤ C ′
∑

1≤k≤m+1
1≤a1≤···≤ak≤m−1
a1+···+ak=m+1

|v(a1)|∞ . . . |v(ak−1)|∞ ‖v‖ak ‖v‖m

≤ C ′ ‖v‖m
∑

1≤k≤m+1
1≤a1≤···≤ak≤m−1
a1+···+ak=m+1

(‖v‖1/2a1
‖v‖1/2a1+1) . . . (‖v‖

1/2
ak−1
‖v‖1/2ak−1+1) ‖v‖ak

≤ C ′ ‖v‖m
∑

1≤k≤m+1
1≤a1≤···≤ak≤m−1
a1+···+ak=m+1

[
(‖v‖(2m−2a1−1)/2(m−1)1 ‖v‖(2a1−1)/2(m−1)m ) . . .

× (‖v‖(2m−2ak−1−1)/2(m−1)
1 ‖v‖(2ak−1−1)/2(m−1)

m )

× (‖v‖(2m−2ak)/2(m−1)1 ‖v‖(2ak−2)/2(m−1)m )
]

≤ C ′ ‖v‖m
m+1∑
k=1

‖v‖(2mk−2m−k−1)/2(m−1)1 ‖v‖(2m−k+1)/2(m−1)
m .

Using Lemma 2.3 and Lemma 2.5, we get that for every k there exist
ε′(k) and C ′(k) such that:

Nm,1 ≤ C ′ ‖v‖m
m+1∑
k=1

C ′(k) |v|ε
′(k)
1,1 ‖v‖

(2m+1)/(2m+α−1)
m+α/2 .
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Using once again Lemma 2.3, we get:

Nm,1 ≤ C ′ ‖v‖m ‖v‖
(2m+1)/(2m+α−1)
m+α/2

≤ C ′ ‖v‖4m/(2m+α−1)
m+α/2 . �

The following result shows that there is a strong nonlinear damping
which prevents the successive derivatives of u from becoming too large.

Lemma 4.5. For integer values of m ≥ 1,

‖u(t)‖2m
m

. max(ν−(2m−1)β, t−(2m−1)).

(we recall that β = 1/(α− 1)).

Proof. Fix m ≥ 1. Denote

x(t) = ‖u(t)‖2m .

We claim that the following implication holds:

x(t) ≥ C̄ν−(2m−1)β =⇒ d

dt
x(t) ≤ −(2m− 1)x(t)2m/(2m−1), (20)

where C̄ is a �xed positive number, chosen later. Below, all constants
denoted by C do not depend on C̄.
Indeed, assume that x(t) ≥ C̄ν−(2m−1)β. Now denote

y(t) = ‖u(t)‖2m+α/2 .

By Lemma 2.3 and (17) we get:

y(t) & x(t)(2m+α−1)/(2m−1) (21)

≥ C̄(2m+α−1)/(2m−1)ν−(2m+α−1)β. (22)

On the other hand, integrating by parts in space and using Lemma 4.4,
we get the following energy dissipation relation:

d

dt
x(t) = −2ν ‖u(t)‖2m+α/2 − 2

〈
u(m)(t), (f(u(t)))(m+1)

〉
≤ −2ν ‖u(t)‖2m+α/2 + C ‖u(t)‖4m/(2m+α−1)

m+α/2

= (−2νy(t)1/β(2m+α−1) + C)y(t)2m/(2m+α−1).

Thus, using (21) and (22), we get that for C̄ large enough:

d

dt
x(t) ≤ C(−2C̄1/β(2m−1) + C)x(t)2m/(2m−1).
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Thus we can choose C̄ in such a way that the implication (20) holds.
We claim that

x(t) ≤ max(C̄ν−(2m−1)β, t−(2m−1)). (23)

Indeed, if x(s) ≤ C̄ν−(2m−1)β for some s ∈ [0, t], then the assertion (20)
ensures that x(s) remains below this threshold up to time t.
Now, assume that x(s) > C̄ν−(2m−1)β for all s ∈ [0, t]. Denote

x̃(s) = (x(s))−1/(2m−1), s ∈ [0, t] .

By (20) we get dx̃(s)/ds ≥ 1. Therefore x̃(t) ≥ t and x(t) ≤ t−(2m−1).
Thus in this case, the inequality (23) still holds. This proves the
lemma's assertion. �

Applying the inequality (12) we get the following result:

Lemma 4.6. For s ≥ 1, s not necessarily being an integer,

‖u(t)‖2s
s

. max(ν−(2s−1)β, t−(2s−1)).

The proof of the following lemma is word-to-word the same as the
proof of [12, Lemma 5.4].

Lemma 4.7. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and p ∈
(1,∞] we have:

|u(t)|m,p
m,p

. max(ν−γβ, t−γ),

where we denote

γ = max(0, m− 1/p).

5. Upper estimates for small-scale quantities

In this section, we study analogues of quantities which are important
for the study of hydrodynamical turbulence. For notation for these
quantities and the ranges J1, J2, J3, see Section 2.2. The statements
and the proofs are word-to-word the same as in the case α = 2 [12], up
to the replacement of ν by νβ. Therefore we will omit the proofs.
Moreover, in this section, we prove an upper estimate for the norms
‖u‖s, s ∈ (1/2, 1), which will play a crucial role for the lower estimates
in Section 6.

Lemma 5.1. For ` ∈ [0, 1],

Sp(`)
p

.

{
`p, 0 ≤ p ≤ 1.

`pν−β(p−1), p ≥ 1.
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Lemma 5.2. For ` ∈ J2 ∪ J3,

Sp(`)
p

.

{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.

Lemma 5.3. We have

‖u(t)‖2s . ν−β(2s−1), s ∈ (1/2, 1).

Proof. This proof follows the lines of [11, Lemma 4.12].
By (11) we have:

‖u(t)‖2s ∼
∫
S1

(∫ 1

0

|u(t, x+ `)− u(t, x)|2

`(2s+1)
d`
)
dx.

Consequently, by Fubini's theorem,

{‖u(t)‖2s} ∼
∫ 1

0

1

`(2s+1)

(∫
S1

|u(t, x+ `)− u(t, x)|2dx
)
d`

=

∫ 1

0

S2(`)

`(2s+1)
d` =

∫
J1

S2(`)

`(2s+1)
d`+

∫
J2

S2(`)

`(2s+1)
d`

+

∫
J3

S2(`)

`(2s+1)
d`.

By Lemma 5.1 we get:∫
J1

S2(`)

`(2s+1)
d` .

∫ C1νβ

0

`2ν−β

`(2s+1)
d` ∼ ν−βνβ(2−2s) = ν−β(2s−1)

and ∫
J2

S2(`)

`(2s+1)
d` .

∫ C2

C1νβ

`

`(2s+1)
d` ∼ ν−β(2s−1).

Finally, by (16) we get:∫
J3

S2(`)

`(2s+1)
d` ≤ CC

−(2s+1)
2 ≤ C.

Thus,

‖u‖2s . ν−β(2s−1).

�

6. Lower estimates for Sobolev norms

We de�ne

T1 =
1

4
D−2C̃−1; T2 = max

(
3

2
T1, 2Dσ−1

)
, (24)
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where C̃ is a constant such that for all t, ‖u(t)‖2α/2 ≤ C̃ν−1 (see

Lemma 5.3). Note that T1 and T2 do not depend on the viscosity coef-
�cient ν.
From now on, for any measurable function A(t), {A(t)} is by de�ni-

tion the time average

{A(t)} =
1

T2 − T1

∫ T2

T1

A(s) ds.

The �rst quantities that we estimate from below are the Sobolev
norms {|u(t)|2p}, p ∈ [1,∞].

Lemma 6.1. For p ∈ [1,∞], we have:

{|u(t)|2p} & 1.

Proof. It su�ces to prove the lemma's statement for p = 1. But
this case follows from the case p = 2. Indeed, by Hölder's inequality
and (16) we get:

{|u(t)|21} ≥ {|u(t)|−2∞ |u(t)|4} & {|u(t)|4} ≥ {|u(t)|2}2.

Integrating by parts in space, we get the dissipation identity

d

dt
|u(t)|2 =

∫
S1

(−2uf ′(u)ux + 2νuΛαu) = −2ν ‖u(t)‖2α/2 . (25)

Thus, integrating in time and using (6) and Lemma 5.3, we obtain that
for t ∈ [0, 3T1/2] we have the following uniform lower bound:

|u(t)|2 = |u0|2 − 2ν

∫ t

0

‖u(t)‖2α/2 ≥ D−2 − 3T1C̃ = D−2/4. (26)

Thus,

{|u(t)|2} ≥ 1

T2 − T1

∫ 3T1/2

T1

|u(t)|2 ≥ D−2T1
8(T2 − T1)

. �

Now we prove a key estimate for {‖u(t)‖2α/2}.

Lemma 6.2. We have

{‖u(t)‖2α/2} & ν−1.

Proof. In the same way as in (26), we prove that |u(T1)|2 ≥ D−2/2.
Thus, using (16) (p = 2) and integrating in time the equality (25) we
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get:

{‖u(t)‖2α/2} =
1

2ν(T2 − T1)
(|u(T1)|2 − |u(T2)|2)

≥ 1

2ν(T2 − T1)

(1

2
D−2 − σ−2T−22

)
≥ D−2

8(T2 − T1)
ν−1,

which proves the lemma's assertion. �

Corollary 6.3. We have

{‖u(t)‖21} & ν−β.

Proof. By (12) and Hölder's inequality we get:

{‖u(t)‖2α/2} . {‖u(t)‖2(1+α)/4}
(4−2α)/(3−α){‖u(t)‖21}

(α−1)/(3−α),

and therefore

{‖u(t)‖21} & {‖u(t)‖2α/2}
(3−α)/(α−1){‖u(t)‖2(1+α)/4}

−(4−2α)/(α−1).

Thus, by Lemma 5.3 and Lemma 6.2 we get:

{‖u(t)‖21 & ν−(3−α)/(α−1)ν(2−α)/(α−1) = ν−β. �

This time-averaged lower bound yields similar bounds for other
Sobolev norms: the proofs are word-to-word the same as in [12]. We
recall that γ = m−1/p. The result in Lemma 6.4 can easily be extended
to fractional Sobolev norms.

Lemma 6.4. For m ≥ 2,

{‖u(t)‖2m}
m

& ν−(2m−1)β.

Lemma 6.5. For m ≥ 0 and p ∈ [1,∞],

{|u(t)|2m,p}
1/2

m,p

& ν−γβ.

Lemma 6.6. For m ≥ 0 and p ∈ [1,∞],

{|u(t)|κm,p}
1/κ

m,p,κ

& ν−γβ, κ > 0.

The following theorem sums up the main results of Sections 4 and 6.

Theorem 6.7. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞] we have:(

{|u(t)|κm,p}
)1/κ m,p,κ∼ ν−γβ, κ > 0, (27)
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and for s > 1/2 we have:(
{‖u(t)‖κs}

)1/κ s,κ∼ ν−(s−1/2)β, κ > 0,

where {·} denotes time-averaging over [T1, T2]. The upper estimates
in (27) hold without time-averaging, uniformly for t separated from 0.
Namely, we have:

|u(t)|m,p
m,p

. max(t−γ, ν−γβ).

On the other hand, the lower estimates hold for all m ≥ 0 and p ∈
[1,∞], and also for s = 1/2.

Proof. Upper estimates follow from Lemma 4.7, and lower estimates
from Lemma 6.6. �

7. Lower estimates for small-scale quantities

In this section, we study analogues of quantities which are important
for the study of hydrodynamical turbulence. For notation for these
quantities and the ranges J1, J2, J3, see Section 2.2. The statements
and the proofs are word-to-word the same as in the case α = 2 [12], up
to the replacement of ν by νβ. Therefore we will omit the proofs.
Provided ν ≤ ν0 (see (31), all estimates hold independently of the

viscosity ν. We recall that the brackets {·} stand for the averaging in
time over an interval [T1, T2]: see (24).

De�nition 7.1. For K > 1, we denote by LK the set of all t ∈ [T1, T2]
such that the assumptions

K−1 ≤ |u(t)|∞ ≤ maxux(t) ≤ K (28)

K−1ν−β ≤ |u(t)|1,∞ ≤ Kν−β (29)

|u(t)|2,∞ ≤ Kν−2β (30)

hold.

Lemma 7.2. There exist constants C,K1 > 0 such that for K ≥ K1,
the Lebesgue measure of LK satis�es λ(LK) ≥ C.

Let us denote by OK ⊂ [T1, T2] the set de�ned as LK , but with the
relation (29) replaced by

K−1ν−β ≤ −minux ≤ Kν−β.

Corollary 7.3. For K ≥ K1 and ν < K
−2/β
1 , we have λ(OK) ≥ C.
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Now we �x

K = K1,

and choose

ν0 =
(1

6
K−2

)1/β
; C1 =

1

4
K−2; C2 =

1

20
K−4. (31)

In particular, we have 0 < C1ν
β
0 < C2 < 1: thus the intervals Ji are

non-empty and non-intersecting for all ν ∈ (0, ν0]. Everywhere below
the constants depend on K.
Actually, we can choose any values of C1, C2 and ν0, provided:

C1 ≤
1

4
K−2; 5K2 ≤ C1

C2

<
1

νβ0
.

Lemma 7.4. For ` ∈ J1,

Sp(`)
p

&

{
`p, 0 ≤ p ≤ 1.

`pν−β(p−1), p ≥ 1.

Lemma 7.5. For ` ∈ J2,

Sp(`)
p

&

{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.

Summing up the results above and the upper estimates proved in
Section 5 we obtain the following theorem.

Theorem 7.6. For ` ∈ J1,

Sp(`)
p∼

{
`p, 0 ≤ p ≤ 1.

ν−(p−1)β`p, p ≥ 1.

On the other hand, for ` ∈ J2,

Sp(`)
p∼
{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.

The following result follows immediately from the de�nition (9).

Corollary 7.7. For ` ∈ J2, the �atness satis�es F (`) ∼ `−1.

Theorem 7.8. For k such that k−1 ∈ J2, we have E(k) ∼ k−2.
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Appendix: the well-posedness of the fractional Burgers

equation

In this Appendix, we give a detailed proof for the well-posedness of
the equation (2). This proof is similar to the less detailed one given
in [37]. We use the regularising e�ect of the Laplacian and the con-
cept of mild solutions (i.e. an in�nite-dimensional generalisation of
Duhamel's formula). It can be generalised to the case of a stochastic
forcing and/or a multidimensional setting: see [9, Appendix A] and
[14, Appendix 1]. This proof cannot be adapted to the critical case
α = 1, where more involved arguments using, for instance, a modulus
of continuity, are needed: see [23, 37].
Here, the functions whose Sobolev norms we consider do not neces-

sarily have zero mean value in space. The only thing which changes is
that now in the expressions for the Sobolev norms Wm,p (resp. Hs) we
have to add the norm in Lp (resp. L2) to the formulas in Section 2.3.
We use the standard notation C(I,Wm,p) for the space of continuous
functions de�ned on the time interval I with values in Wm,p endowed
with the supremum norm. The space C(I, C∞) will denote the inter-
section

∩m≥0C(I,Hm).

We begin by considering mild solutions in H1, in the spirit of [25, 26].
Then, by a bootstrap argument, we prove that for strictly positive
times these solutions are actually smooth. Finally upper estimates
(see Section 4) allow us to prove that such mild solutions are global.
By a scaling argument, we can restrict ourselves to the equation (2)

with ν = 1. We will denote by Λ the operator Lα, and by SL(t) the
fractional heat semigroup etL. For v ∈ L2 the function SL(t)v(x) is
given by:

SL(t)v(x) =
∑
k∈Zd

e−(2π|k|)
αtv̂ke

2πik·x. (32)

We consider the mild formulation of (2):

Y (t) = SL(t)u0 −
∫ t

0

SL(t− τ) (f(Y (τ)))x dτ . (33)

The fractional heat semigroup SL de�nes a contraction in each Sobolev
space Hs. Moreover, we have the following result.

Lemma 7.9. The mapping

Z 7→ f(Z) : H1 → H1

is locally Lipschitz on bounded subsets of H1.
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Proof. It su�ces to develop (f(Z1)− f(Z2))
(1) using Leibniz's formula

and then to use the inequality |Z|∞ ≤ ‖Z‖1. �

Lemma 7.10. For any s ≥ 0, the linear mapping

Z 7→
(
t 7→

∫ t

0

SL(t− τ)Z(τ)dτ
)

de�nes a bounded operator from C([0, T ), Hs) into
C([0, T ), H(s+(α+1)/2)). Moreover, the norm of this operator tends to 0
as t→ 0.

Proof. Fix s ≥ 0. By (32), for τ ∈ [0, t) we have

‖SL(t− τ)Z(τ)‖2s+(α+1)/2

∼ |(Ẑ(τ))0|2 +
∑
k∈Zd
|k|2s+α+1e−(2π|k|)

α(t−τ)|(Ẑ(τ))k|2

. |(Ẑ(τ))0|2 +
(

max
k′∈Zd

|k′|α+1e−(2π|k
′|)α(t−τ)

)∑
k∈Zd
|k|2s|(Ẑ(τ))k|2

.
(

1 + max
k′∈Zd

|k′|α+1e−(2π|k
′|)α(t−τ)

)
‖Z(τ)‖2s.

. C
[
1 + (t− τ)−(α+1)/α

]
‖Z(τ)‖2s.

To prove the lemma's statement, it remains to observe that since α > 1,
we have: ∫ t

0

(1 + (t− τ)−(α+1)/α)1/2dτ < +∞.

�

Lemma 7.9, Lemma 7.10 for s = 1 and the Cauchy-Lipschitz theorem
imply that the equation (33) has a unique local solution in H1.
Now consider such a solution Y . We want to prove that this solution

belongs to C∞ for all t > 0. For this, since α > 1, it su�ces to prove
that for s ≥ 1, a solution Y ∈ Hs lies in the space Hs+(α−1)/2 for all
positive times. We will need the following result:

Lemma 7.11. For s > 1/2, the mapping

Z 7→ f(Z) : Hs → Hs

is bounded on bounded subsets of Hs.

Proof. See [9, Lemma A.0.5] for a proof based on Leibniz's formula
and, for noninteger f , on the fact that Hs ⊂ C∞ for s > 1/2. �
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Theorem 7.12. Consider a local solution Y of (2) in H1 de�ned on
an interval [0, T ). If for some s ≥ 1, we have Y ∈ C([0, T ), Hs), then
we actually have Y ∈ C((0, T ), Hs+(α−1)/2).

Proof. By Lemma 7.11 we have

(f(Y (τ)))x ∈ C([0, T ), Hs−1),

and thus by Lemma 7.10 we get∫ t

0

SL(t− τ)(f(Y (τ)))xdτ ∈ C([0, T ), H(s+(α−1)/2)).

Since Y is a solution of (33) and the semigroup SL is smoothing,

Y (t) = SL(t)u0 −
∫ t

0

SL(t− τ)(f(Y (τ)))xdτ

belongs to the space C((0, T ), Hs+(α−1)/2). �

Thus, by a bootstrap argument, it follows that there exists a unique
local solution to (2), which is C∞-smooth in space for t > 0. To prove
that this solution is necessarily global, it su�ces to use the uniform in
time upper estimates in Section 4.
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