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3D Incompressible Navier-Stokes Equations

∂u

∂t
+ (u · ∇)u = −∇p + ν∆u + η; div u = 0. (NSE)

Supplemented by boundary conditions.

u(t, x) velocity
p(t, x) pressure

ν > 0 constant viscosity coefficient
(ν � 1)
η(t, x) random forcing, smooth
as a function of x

The idea is to study the statistical behaviour of u as ν varies, all
other parameters being fixed.
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The K41 Theory

In Fourier space, a scale is, roughly speaking, the inverse of the
Fourier frequency under consideration. In this talk, we only
consider space scales, not time scales.
Thus, in Fourier space, small-scale quantities are quantities such as
the Fourier coefficients û(k) for large k.
In turbulence research, physical-space quantities of the type
u(x + r)− u(x) for small r are also called small-scale quantities.

Small-scale behaviour for a velocity field of turbulent fluid is a very
old problem (1930s-: Taylor, Onsager, Batchelor...)
3 papers by Kolmogorov in 1941. Various physical assumptions (cf
[Frisch 1995], [Tsinober 2001]), including a time-stationary regime.
We limit ourselves to the case of space-periodic flows.
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Notation

X
a∼ Y : There exists C > 0 such that C−1X ≤ Y ≤ CX .

C only depends on the parameter a, which is never

the viscosity coefficient ν. The abbreviations
a

& et
a

.
are defined similarly.

〈. . . 〉 : Expected value (when considering a random force).
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The K41 Theory: Ranges.
The dissipation length scale ld is the scale such that, for
‖k‖ � l−1d , the Fourier coefficients of a function u decrease at a
super-algebraic rate, uniformly in ν. In K41, ld = Cν3/4. The
range Idiss = [0, ld ] is called the dissipation range.

The energy range Ienergy = [le , 1] consists of scales such that the
corresponding Fourier modes contain most of the L2 norm of u:∑

‖k‖≤l−1
e

〈|û(k)|2〉 �
∑
‖k‖>l−1

e

〈|û(k)|2〉.

In K41, le = C .

Iinertial = [ld , le ] is called the inertial range.
In K41, Iinertial = [Cν3/4,C ].
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The K41 Theory: Predictions in Physical Space

We begin by considering moments of the longitudinal increment:

S‖(x, r) =
(u(x + r)− u(x)) · r

‖r‖
.

For p ≥ 0, the p-th moment of S‖(x, r) is called the structure
function of p-th order:

S
‖
p (x, r) =

〈∣∣∣∣∣(u(x + r)− u(x)) · r
‖r‖

∣∣∣∣∣
p〉

.

For r, ‖r‖ = ` ∈ Iinertial , we have

S
‖
p (x, r)

p∼ `p/3.
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The K41 Theory: Predictions in Fourier Space

We define the energy spectrum E (k) as the average of 〈12 |û(n)|2〉
over n such that ‖n‖ ∈ [C−1k , Ck]. For k such that
k−1 ∈ Iinertial , we have:

E (k) ∼ k−5/3.

(Obukhov 1941).
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Intermittency and Corrections to K41

K41 predictions are in agreement with experiments for

S
‖
p , p = 2, 3 and the energy spectrum, but not for S

‖
p , p ≥ 4.

Corrections to K41 ([Kolmogorov 1962], [Frisch, Parisi 1985])
explain these discrepancies by spatial intermittency, i.e. bursty
behaviour.
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This type of intermittency can be
quantified by flatness

F (`) = S
‖
4 (`)/S

‖
2 (`)2:

the larger the flatness, the more
bursty is the function.
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1D Periodic Stochastic Burgers Equation

ut + f ′(u)ux = νuxx + η, t ≥ 0, x ∈ S1 = R/Z. (1DB)

f smooth, strongly convex, of moderate growth. ν > 0, ν � 1.
η(t, x) = ηω(t, x): smooth in space random force, white in time.
η = wt , where w is a spatially smooth L2-valued Wiener process.
Initial condition u0 = u(0, ·) ∈ L1(S1).

For simplicity, we assume that
∫
S1 η(t, ·) = 0, ∀t;

∫
S1 u(0, ·) = 0.

Thus
∫
S1 u(t, ·) = 0, ∀t.

Here we consider the case f (u) = u2/2. Same type of nonlinearity
and dissipation as (NSE); no pressure. Therefore, natural model
pour (NSE). Studied by physicists such as Burgers, Kida,
Kraichnan, Zeldovich, Frisch, Parisi, Gotoh, Polyakov...

Shocks after a finite time for ν = 0. For ν > 0, instant
smoothening but steep cliffs.
Again, only ν varies: we fix η and we do not care about u0.



Kolmogorov Theory (1DB): Physical Predictions (1DB): Results

Typical Profile of a Burgers Solution
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Amplitude of solution ∼ 1. Cliffs (quasi-shocks): number of cliffs
∼ 1, jump ∼ −1, width ∼ ν.
Burgers turbulence or ”Burgulence”: see [Bec-Khanin 2007].
Ramp-cliff structure ⇒ intermittency.
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Predictions for (1DB)

Physical predictions for dissipation length scale, increments,
flatness, energy spectrum.
Unforced case with random initial data: [Kraichnan 1968], [Kida
1979], [Aurell-Frisch-Lutsko-Vergassola 1992].
Arguments are easily adapted to the case when there is an additive
forcing term, smooth in space and white in time.
If we add such a term: [E-Khanin-Mazel-Sinai 1997] (stationary
solution for ν = 0), [Kraichnan-Gotoh 1998].
No rigorous proof ever given in the case ν > 0 with white in time
smooth in space forcing, for finite-time evolution.
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Predictions for (1DB): Length Scales
Energy range (corresponding to Fourier modes where most of the
L2 norm is contained): Ienergy = [C , 1].
K41: [C , 1].

Dissipation length scale (the scale ld such that the energy
spectrum decreases super-algebraically for Fourier modes
corresponding to |k | � l−1d ): Cν.
K41: Cν3/4.

Inertial range: Iinertial = [Cν, C ].
K41: [Cν3/4, C ].
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Predictions for (1DB): Physical Space (I)
Structure functions, i.e. moments of increments:
We define Sp(`) as ∫

S1

〈|u(x + `)− u(x)|p〉dx .

Then, for ` ∈ Iinertial , we have

Sp(`)
p∼

{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.

K41: Sp(`)
p∼ `p/3, ∀p.

Flatness: We define F (`) = S4(`)/S2(`)2. Then for ` ∈ Iinertial , we
have

F (`) ∼ `−1.

K41: F (`) ∼ 1.
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Predictions pour (1DB): Physical Space (II)
Arguments of [AFLV]

Aurell-Frisch-Lutsko-Vergassola begin by observing that
` ∈ Iinert = [Cν,C ] is larger than the length of a ”cliff” and
smaller than the length of a ”ramp”. Thus, there are 3 possibilities
for [x , x + `]:
1) [x , x + `] covers a large part of a ”cliff”.

Probability ' C`. |u(x + `)− u(x)|p p∼ 1.
2) [x , x + `] covers a small part of a ”cliff”.
Contribution of this term is negligible.
3) [x , x + `] lies entirely on a ”ramp”.

Probability ' 1− C`. |u(x + `)− u(x)|p p∼ `p.

Thus, Sp(`)
p∼ `+ `p. Sp(`)

p∼

{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.
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Predictions for (1DB): Fourier Space

Energy spectrum: Let E (k) denote the average of 〈12 |û(n)|2〉 over
n such that |n| ∈ [C−1k , Ck]. Then, for k−1 ∈ Iinertial :

E (k) ∼ k−2.

K41: E (k) ∼ k−5/3.
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Estimates for the norms of the Solution: Preliminaries

In [Bor2], we obtain sharp upper and lower estimates on the
Sobolev norms W m,p of the (1DB) solution. These estimates are
uniform with respect to the initial condition u(0, ·). The upper and
lower estimates coincide up to a multiplicative constant factor,
which does not depend on ν.

Notation:

| · |p : the Lebesgue norm in the space Lp(S1).

| · |m,p : the Sobolev norm in the space W m,p(S1).

{. . . } : averaging both over the time period [t, t + T0], where t ≥ T0

and T0 is a constant, and in ensemble (taking the expected
value).
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Estimates for the norms of the solution

Theorem 1
{|u|np}

n∼ 1, ∀n ≥ 0, p ∈ [1,+∞].

Theorem 2
{maxS1 |u+

x |n}
n∼ 1, {maxS1 |u−x |n}

n∼ ν−n, ∀n ≥ 0.

Theorem 3
{|u|nm,∞}

m,n∼ ν−mn, ∀m ≥ 1, n ≥ 0.

Exact upper estimates are obtained by using Kruzhkov’s maximum
principle(good bound for u+

x ), and some stochastic methods. They
still hold if time averaging is replaced by maximising in time over
[t, t + T0].

Exact lower estimates are obtained by stochastic methods.
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What do these bounds tell us?

{|u|np}
n∼ 1, ∀n ≥ 0, p ∈ [1,+∞].

⇒ amplitude of u ∼ 1.

{(maxS1 u+
x )n} n∼ 1, {(maxS1 u−x )n} n∼ ν−n, ∀n ≥ 0.

⇒ positive part of ux ∼ 1; negative part of ux ∼ ν−1.

{|u|nm,∞}
m,n∼ ν−mn, ∀m ≥ 1, n ≥ 0.

⇒ seemingly, u(x) behaves ”as g(xν−1)”.
Problem: positive part of ux . To understand the small-scale
structure of u, we need to work more.
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Stationary measure

Solutions u define a Markov process in L1(S1). The corresponding
semigroup St is contracting:

|Stu0 − St ũ0|1 ≤ |u0 − ũ0|1.

Theorems 1-3 yield, by the Bogolyubov-Krylov argument, the
existence of a stationary measure. Its uniqueness, and the rate of
convergence to it, follow from estimates of the same type as (??)
(idea: distance between solutions is made small since the solutions
themselves become small, and then this distance is nonincreasing.)
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Obtaining lower bounds

The Itô formula yields:

〈|u(t + T0)|22〉 − 〈|u(t)|22〉 = −2νT0{|u|21,2}+ CT0.

By the Kruzhkov maximum principle, for t ≥ 1 we have:

〈|u(t + T0)|22〉 ≤ 〈(max
x

ux(t + T0, x))2〉 ≤ C .

Consequently, for T0 large enough, the terms in the right-hand side
of the Itô formula are asymptotically equal, and therefore:

{|u|21,2} ≥ Cν−1.
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Notation

Sp(`):
∫
S1 {|u(x + `)− u(x)|p}dx , p ≥ 0.

E (k): average of {12 |û(n)|2} over n such that |n| ∈ [C−1k , Ck],
where C > 0 is a constant.

Note that in the definitions of ranges, we also have to replace 〈·〉
by {·}!
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Main Results: Length Scales

From Theorems 1-3, we derive the following estimates, confirming
the physical predictions.

Theorem 4
For a solution of (1DB), Ienergy = [C , 1] and the dissipation length
scale is Cν.
Therefore Iinertial = [Cν, C ].
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Main Results in Physical Space

Theorem 5
For ` ∈ Iinertial , the structure functions satisfy:

Sp(`)
p∼

{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.

Corollary 6

For ` ∈ Iinertial , the flatness satisfies:

F (`) ∼ `−1.

Upper bounds follow from Theorems 1-3 by Hölder’s inequality.
Some lower bounds follow from geometrical arguments in [AFLV]
for ”typical” solutions.
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Main Results: Fourier Space

Theorem 7
For k−1 ∈ Iinertial , the energy spectrum satisfies:

E (k) ∼ k−2.
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Generalisations

We can generalise our results to the ”kicked force” case, since we
have the same Sobolev norm estimates (cf. [Bor1]).
We obtain similar results for the unforced case (cf. [Biryuk 2001,
Bor3]).
We expect similar results to hold for the multidimensional potential
Burgers equation:

ut + (u · ∇)u = ν∆u + ηt ; u = −∇φ.

as well as for the equation with fractional Laplacian.
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Concluding Remarks

Our results give exact and rigorously proved small-scale estimates
for 1D Burgers turbulence. They confirm previous physical
predictions under very general conditions on the initial data, for a
physically reasonable class of forces. Our small-scale estimates also
hold for solutions of the inviscid equation, and for the stationary
solution for ν > 0.

PDE and SPDE methods are used to confirm geometric intuition
and quantify the dissipation length scale and the intermittency
factor (flatness) for (1DB).
We hope that our estimates can be generalised to other equations
admitting a ”good” maximum principle.
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