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Abstract

We prove hyperbolicity of global minimizers for random Lagrangian
systems in dimension 1. The proof considerably simpli�es a related
result in [3]. The conditions for hyperbolicity are almost optimal:
they are essentially the same as conditions for uniqueness of a global
minimizer in [4].

1 Introduction

A large body of work on the random forced Burgers equation and Burgers
turbulence in the last 10 years (see [2] and further references therein) has
motivated closely related studies of random Lagrangian systems [3, 4]. The
main object of analysis is a Lagrangian system which depends smoothly on
position x and velocity v, but quite irregularly on time t:

Lω(x, v, t) = L0(x, v) + F ω(x, t), (1)

where F ω(x, t) is a stationary random process in t. The Lagrangian is de-
�ned on the tangent bundle TM to a connected d-dimensional Riemannian
manifold M . Most rigorous results available at the moment require that M
be compact, which will also be the standing assumption in this paper. Since
the potential F ω(x, t) is smooth in x the most natural continuous time model
is given by

F ω(x, t) =
K∑
k=1

Ẇ ω
k (t)F k(x), (2)
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where F k(x) are smooth non-random potentials on M , and Ẇ ω
k (t) are inde-

pendent white noises. One can also consider �kicked� models:

F ω(x, t) =
+∞∑
j=−∞

F ω(j)(x)δ(t− j), (3)

where {F ω(j)(x), j ∈ Z} is a stationary sequence of random potentials.
We shall assume that potentials F ω(j) are picked independently for di�erent
j ∈ Z according to a given probability distribution µ on Cn(M), where n is
big enough. The Lagrangian dynamics corresponding to (3) can be described
as follows. For non-integer times t the system evolves according to a non-
random Lagrangian L0, and at integer times t = j ∈ Z the velocity changes
discontinuously:

v(j + 0) = v(j − 0) +∇F ω(j)(x).

Although the two models (2) and (3) look rather di�erent, the theory and
results for both cases are parallel.

Lagrangian systems (1) are related to random forced Hamilton-
Jacobi equations. One has to �rst de�ne the Hamiltonian

Hω(x, p, t) = maxv [p · v − Lω(x, v, t)] = H0(x, p)− F ω(x, t),

and then to consider the corresponding Hamilton-Jacobi equation

φt +Hω(x,∇φ, t) = 0. (4)

One of the most studied cases corresponds to L0 = v2/2. In this case H0 =
p2/2 and the Hamilton-Jacobi equation (4) takes the form

φt(x, t) + 1
2
|∇φ|2 − F ω(x, t) = 0.

Then for the velocity �eld v(x, t) = ∇φ(x, t) one gets the inviscid Burgers
equation:

vt(x, t) + (v · ∇)v(x, t)−∇F ω(x, t) = 0.

Although all the results of this paper hold for any Lagrangian L0 which is
convex in v and grows super-linearly as |v| → ∞, below we only consider the
case L0 = v2/2.
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It is well-known that minimizers for the Lagrangian Lω generate the vis-
cosity solution of the Hamilton-Jacobi equation (4). This connection is espe-
cially useful and important for the study of global solutions, that is solutions
for t ∈ (−∞,∞). In what follows we assume that M is d-dimensional torus
Rd/Zd. In order to discuss a global solution one has to �x the value of the
�rst integral

b =

∫
M

∇φ(x, t)dx. (5)

The theory developed in [4] states that under extremely mild conditions,
with probability 1, for every value of the �rst integral b ∈ Rd, there exists a
unique (up to an additive constant) global solution to the Hamilton-Jacobi
equation. This unique global solution can be viewed as a stationary solution.
It plays the role of a global attractor for the dynamics corresponding to
the Cauchy problem for the Hamilton-Jacobi equation. Under additional
assumptions of non-degeneracy one can also prove that for every value of
b ∈ Rd, with probability 1, there exists a unique global minimizer for the
Lagrangian Lω (see [4]). A global minimizer can be de�ned as a smooth
curve γ : (−∞,∞) → M such that for any compact perturbation γ̃ the
di�erence between Lagrangian actions corresponding to γ̃ and to γ is non-
negative. Namely, if γ̃ − γ is supported on [T1, T2], then

Aω,b(γ̃)− Aω,b(γ) =
∫ T2
T1
Lω(γ̃, ˙̃γ − b, t)dt−

∫ T2
T1
Lω(γ, γ̇ − b, t)dt ≥ 0.

It is expected that the global minimizer is a hyperbolic trajectory of the
Lagrangian �ow. Unfortunately such a result is not available at present in
the multi-dimensional case d > 1. In our view hyperbolicity of the global
minimizer is one of the most important open problems in the theory of ran-
dom Lagrangian systems on compact manifolds. In the one-dimensional case
hyperbolicity was established in [3]. However the proof in [3] is unnecessarily
complicated and conditions are too restrictive. In this paper we present a
new proof which is both elementary and conceptual. Here, conditions for hy-
perbolicity are almost the same as the conditions for uniqueness of a global
minimizer (see [4]). This is another important advantage of the approach
used in this article.

The following property is crucial for establishing hyperbolicity of the
global minimizer. De�ne �rst backward minimizers as minimizers on semi-
in�nite time intervals (−∞, t] with one end point at t �xed. They can be
de�ned in the same way as global minimizers. Now consider all backward
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minimizers which originate at time t, and denote by Ωs,t the set of all points
x which are reached by some backward minimizer at time s ≤ t. We prove
that the diameter of Ωs,t tends to zero exponentially as t → ∞. This prop-
erty implies hyperbolicity by the standard argument, which also allows to
construct corresponding stable and unstable manifolds. We shall not discuss
these issues in the present paper and refer the readers to [3]. Instead, here
we shall only deal with the key shrinking property formulated above.

We �nish this section with several general remarks. First, we want to
emphasize the importance of hyperbolicity of the global minimizer. It im-
mediately implies many fundamental properties of the global solution to the
Hamilton-Jacobi equation, such as piecewise smoothness, exponential rate of
convergence to the global solution, and many others. It also allows to study
the structure of singularities (shocks) (see [2]).

Our second remark is related to a general problem of hyperbolicity of
minimizers for generic non-random Lagrangian systems. This is one of the
central problems of the Aubry-Mather theory. Randomness is another way
to introduce the notion of genericity. In this setting generic stands for prop-
erties which hold for almost all systems (with probability 1). Note however
that in many respects, random and nonrandom (autonomous, or depending
on time periodically) Lagrangian systems are very di�erent. In particular,
all number-theoretical aspects of the Aubry-Mather theory disappear in the
random case.

Finally, we want to say a few words about the non-compact case. At
present there are very few results in that setting. Very recently results in this
direction were obtained in [1]. It is believed that if the system exhibits any
form of translation invariance, global minimizers do not exist. However, it is
likely that backward minimizers do exist, and the study of their asymptotic
scaling properties is an extremely interesting and important problem.

2 Hyperbolicity assumptions and main results

We begin by formulating the assumptions on potentials:
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Assumption 2.1. In the �kicked� case, we assume the following.
(i) The kicks at integer times j are of the form

F ω(j) =
K∑
k=1

cωk (j)F k,

where F k are smooth potentials on S1 = R/Z. The random vectors
(cωk (j))1≤k≤K are independent identically distributed RK-valued random vari-
ables. Their distribution on RK, denoted by µ, is assumed to be absolutely
continuous with respect to the Lebesgue measure.
(ii) 0 belongs to Supp µ.
(iii) The mapping from S1 to RK de�ned by

x 7→ (F 1(x), ..., FK(x))

is an embedding.

Remark 2.1. Let g be the function de�ned by

g(c1, ..., cK) =
K∑
k=1

ckF
k.

We denote by ν the corresponding push-forward measure

ν = g∗(µ)

on a smooth Sobolev space. The assumption 0 ∈ Supp µ can then be replaced
by the slightly weaker assumption 0 ∈ Supp ν.

Assumption 2.2. In the case of the white force potential, we assume the
following.
(i) The forcing has the form

F ω(x, t) =
K∑
k=1

Ẇ ω
k (t)F k(x),

where F k are smooth potentials on S1, and Ẇ ω
k are independent white noises,

i.e. weak time derivatives of independent Wiener processes W ω
k (t).

(ii) The mapping from S1 to RK de�ned by

x 7→ (F 1(x), ..., FK(x))

is an embedding.
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We denote by G an antiderivative in time of the forcing:

Gω(x, t) =
K∑
k=1

W ω
k (t)F k(x),

where W ω
k (t) are independent standard Wiener processes with W ω

k (0) = 0.
Since we will only consider time di�erences of G, the particular choice of
antiderivative has no importance.

In both cases, F ω will be abbreviated as F , and in the white force case
F (·, t) will be abbreviated as F (t), and similarly for G.

Remark 2.2. The embedding conditions are consistent with the condition for
uniqueness of the global minimizer (see [4]). In the �kicked� case, the condi-
tion for uniqueness in [4] is slightly weaker: the map x 7→ (F 1(x), ..., FK(x))
is only required to be one-to-one. However, we need to assume the embedding
to prove hyperbolicity.

The following property, called the separation property, plays a crucial role
in our construction.

Property 2.1. There exist α0 > 0, three pairwise disjoint open intervals Ji,
i = 1, 2, 3, and three potentials F̃i, i = 1, 2, 3 with the following properties.
1) In the �kicked� case, we have F̃i ∈ Supp ν for every i. In the white force
case, each F̃i is a linear combination of the F k.
2) Each of the functions −F̃i reaches its minimum, denoted by mi, at a single
point xi.
3) For every α, 0 < α ≤ α0, there exist three open intervals Ii(α), Ii ⊂
Ji, i = 1, 2, 3 such that

F̃i(S
1 − Ii) ⊂ (−∞,−mi − α].

Note that for every i and α, the point xi where min(−F̃i) is reached
belongs to Ii.

Lemma 2.1. Assumptions 2.1 or 2.2 imply the separation property.

Proof of Lemma 2.1:

�Kicked� case: We start by showing that, for Lebesgue-a.e. vector (cj)1≤j≤K ,
the maximum of

K∑
j=1

cjF
j(x)
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is reached at a single point x ∈ S1. This follows from a rather standard
argument (see [4, Corollary 5]). Indeed, the function

Φ : (c1, . . . , cK) 7→ max
x∈S1

K∑
j=1

cjF
j(x)

is Lipschitz and therefore di�erentiable a.e., with respect to the
Lebesgue measure µLeb. On the other hand, at a point of di�erentiability of
Φ,

∇Φ(c1, . . . , cK) = (F 1(xmax), . . . , F
K(xmax))

for every point of maximum equal to xmax(c1, . . . , cK). Hence the embedding
assumption 2.1 (iii) implies that the point of maximum is unique. Since µ
is absolutely continuous with respect to µLeb, the maximum uniqueness set
O1 ⊂ RK has full µ-measure.

Furthermore, by the Lebesgue points theorem [5, Theorem 7.7], c = (cj)j
is a Lebesgue point for the density

q =
dµ

dµLeb

on a set O′ of full µLeb-measure, and thus of full µ-measure.
Denote by O2 ⊂ O′ the set of Lebesgue points c for q such that q(c) > 0.

By de�nition, they belong to Supp µ, and O2 has full µ-measure.
Now consider c1 = (c1

j)j ∈ O1 ∩ O2. Denote by x1 the point where the

maximum of F̃1 =
∑K

j=1 c
1
jF

j(x) is reached: x1 = argmax F̃1.
Denote by V the set of vectors (cj)j such that

K∑
j=1

cj
dF j

dx
(x1) 6= 0.

Denote by Bn the open ball with radius 1/n centered at c1. We will also
need B

′
n = Bn ∩ (c1 + V ) ∩O1 ∩O2. By the embedding assumption 2.1 (iii),

Bn ∩ (c1 + V ) is just Bn itself with a removed hyperplane. Thus, since µ is
continuous with respect to µLeb, we have µ(B

′
n) = µ(Bn).

Using [5, Theorem 7.7] one more time, we obtain that there exists a
constant N0 such that for n ≥ N0,

µ(B
′
n) = µ(Bn) ≥ q(c1)

2
µLeb(Bn) > 0.
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On the other hand, for small enough ε > 0 there exists N1(ε) such that
for n ≥ N1, if (cj)j ∈ B

′
n, then

∑K
j=1 cjF

j reaches its (unique) maximum
in a point of the ε-neighbourhood of x1 di�erent from x1 itself. Considering
a smaller neighbourhood at each step, this argument can be repeated any
�nite number of times. It enables us to construct any number of potentials
contained in Supp ν and attaining their respective maxima at di�erent points:
three su�ce for our purposes. Denote them by F̃1, F̃2, F̃3. Let J1, J2, J3

be three non-intersecting open intervals around their respective points of
maximum. Take as α0 the minimum of max(F̃i)−max(F̃i|S1−Ji). It is obvious
that for any α ∈ (0, α0] we can construct the required intervals Ii(α).

White force case: The proof follows the same lines, but is much simpler
since measure-theoretic arguments are trivialised. �

Definition 2.1. Consider a closed subset Z of S1. Let m(Z) denote the
maximal length of a connected component of S1−Z. We de�ne the diameter
of Z as

d(Z) = 1−m(Z).

The diameter of Z can be thought of as the minimal length of an interval
on S1 containing Z.

In what follows we use the function ψω, either deterministic or random,
as an initial condition at time s. Everywhere below, the value of the �rst
integral b (see (5)) is �xed. For simplicity, we do not indicate dependence on
b in our notation.

Definition 2.2. For a given value of b ∈ R, a curve γy,xs,t (τ) is a minimizer
if it minimizes the action

A(γ) = 1
2

t∫
s

(γ̇(τ)− b)2dτ +
∑

n∈[s,t)

(
− F (n)(γ(n))

)
in the �kicked� case and the action

A(γ) = 1
2

t∫
s

(γ̇(τ)− b)2dτ

+
t∫
s

(
γ̇(τ)

(
∂G
∂x

(γ(τ), τ)− ∂G
∂x

(γ(τ), t)
))

dτ

+
(
G(γ(s), s)−G(γ(s), t)

)
in the white force case, respectively, over all absolutely continuous
curves with endpoints x at time t and y at time s.
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Remark 2.3. The formula above for A(γ) in the white force case can be
easily obtained using integration by parts: see [4] for details.

Definition 2.3. For any time interval [s, t] and any continuous function
ψ : S1 → R, a curve γxs,t,ψ(τ) : [s, t] 7→ S1 is a ψ-minimizer if it minimizes
A(γ) +ψ(γ(s)) over all absolutely continuous curves with endpoint x at time
t.

Definition 2.4. For −∞ < r < s ≤ t < +∞ and for a �xed function
ψ(·, r) : S1 → R, let Ωr,s,t,ψ be the set of points reached, at the time s, by
ψ-minimizers on [r, t]:

Ωr,s,t,ψ = {γxr,t,ψ(s), x ∈ S1}.

Remark 2.4. In what follows, the initial condition ψ will always be �xed,
while t will increase to +∞. It is important that we shall consider both
deterministic and random initial conditions ψ. In the latter case, ψ should
be measurable with respect to the past σ-algebra Br = B(−∞,r], which is de�ned
in a standard way. It is important to take r smaller then s. Everywhere below,
we set r = s− 1. To simplify notation, Ωs−1,s,t,ψ will be denoted by Ωs,t.

It is well-known that Ωs,t is a closed set. Obviously, Ωs,t1 ⊇ Ωs,t2 for all
s ≤ t1 ≤ t2. It follows that t 7→ d(Ωs,t) is a non-increasing function.

We are now able to formulate the main results of this paper which are
the following theorem and its corollary. Both results hold for a given value
of b ∈ R. However, all constants are uniformly bounded if b stays bounded.
It is easy to see that in the �kicked� case, b is e�ectively de�ned modulo 1,
since the action is invariant under the transformation (b, γ) 7→ (b+ 1, γ + t).
Thus in this case all constants are uniformly bounded for all b.

Theorem 2.1. Assume that the separation property holds. Then there exist
constants λ, C̃ > 0 such that if −∞ < s ≤ t < +∞, then

E(d(Ωs,t)) ≤ C̃ exp(−λ(t− s)),

where E(·) stands for the expectation with respect to the distribution of po-
tentials.

Corollary 2.1. Assume that the separation property holds. Fix
s ∈ R. Then, for a.e. ω, there exists a random constant C̃(s, ω) > 0 such
that

d(Ωs,t) ≤ C̃(s, ω) exp(−λ(t− s)/2), t ≥ s.
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Here, λ is the same as in Theorem 2.1.

As we have already pointed out in the introduction, Corollary 2.1 implies
hyperbolicity (see [3] for details). The following lemma, called the main
lemma, is proved in Section 3: the proof is quite involved, with additional
technical di�culties in the white force case.

Main Lemma. Assume that the separation property holds. Fix b ∈ R. Then
there exist constants c, T > 0 such that if −∞ < s ≤ t < +∞, then the
following inequality holds a.s.:

P

(
d(Ωs,t+T ) ≤ d(Ωs,t)

2
| Bt
)
≥ c.

We �nish this section by deriving Theorem 2.1 and Corollary 2.1 from
the main lemma.

Proof of Theorem 2.1 : Consider the function

d(t) = E(d(Ωs,t)) exp(λ(t− s)),

where λ is a �xed positive number, chosen later.
Since t 7→ d(Ωs,t) is non-increasing, the main lemma implies that

E(d(Ωs,t+T )) ≤ c E(d(Ωs,t))

2
+ (1− c)E(d(Ωs,t)).

Thus

d(t+ T ) ≤ exp(λT )
(

1− c
2

)
d(t).

Now put

λ = − 1
T

ln
(

1− c
2

)
.

It follows that d(t+ T ) ≤ d(t). But d(s) = 1. Therefore, for t ∈ s+ TN, we
have d(t) ≤ 1. Consequently, since t 7→ d(Ωs,t) is non-increasing, we have

E(d(Ωs,t)) ≤ C̃ exp(−λ(t− s)), t ≥ s,

with C̃ = exp(λT ) = (1− c
2
)−1. This proves the theorem's assertion. �
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Proof of Corollary 2.1 assuming Theorem 2.1: In the same way as
in the previous proof, it is enough to prove the statement for t ∈ s+TN. By
Theorem 2.1 and Chebyshev's inequality, for every X > 0,

P(d(Ωs,s+nT ) ≥ X exp(−λnT/2)) ≤ C̃
X

exp(−nλT/2), n ≥ 0.

An application of the Borel-Cantelli lemma ends the proof. �

3 Proof of the main lemma

For all s < t, let us de�ne a map Sts from S1 to S1, which can be viewed as a
coordinate projection at time t of the generalized Lagrangian �ow correspond-
ing to the Burgers equation. It certainly depends on the initial condition ψ
at time s− 1.

If, at time s, a point y belonging to S1 is reached by a ψ-minimizer on
[s− 1, t] starting in x at time t, then Sts(y) is equal to the point x. Note that
such an x is unique, since minimizers on the time interval [s − 1, t] cannot
intersect outside of endpoints s− 1 and t.

If a point y is not reached by such a ψ-minimizer, then it belongs to
a closed interval corresponding to a shock at time t. In this case Sts(y) is
equal to the corresponding shock position. To de�ne an interval at time s
corresponding to a shock at time t, one has to consider rightmost and left-
most minimizers originating at (x, t). Intersections of those minimizers with
S1 × {s} generate a space interval of points absorbed by the shock (x, t). It
is easy to see that every point (y, s) is reached by a minimizer or belongs to
a shock interval generated by a uniquely de�ned shock.

Note that some points may correspond to both cases considered above.
Namely, points corresponding to minimizers which originate from the shock
positions. However, even in this case the map Sts is still uniquely de�ned.

3.1 Proof in the �kicked� case

Put
C = 3

(
max
i∈1,2,3

‖F̃i‖C1 + 1
)
. (6)
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Then put

α = min

(
α0,

1

10C

)
(7)

(see the separation property for the de�nition of α0.) We keep in mind that
α < 1/30.

Consider integers

N ′ ∈
(

2 +
1

α3
,

2

α3

)
; N ∈

( 2

α10
+ 1,

4

α10

)
. (8)

Denote by E1 the event

‖F (t+ k)‖∞ ≤ α20, 0 ≤ k ≤ N − 1. (9)

By Assumption 2.1 (ii) the zero potential belongs to Supp ν. It follows that
E1 has positive probability.

Put l = 1− d(Ωs,t). If Ωs,t 6= S1, consider a connected component (y1, y2)
of S1 − Ωs,t which has maximal length l. Let y3 be the center of (y1, y2),
and let y4 be the point diametrically opposite to y3. If Ωs,t = S1, let y3

and y4 be any pair of diametrically opposite points in S1. Then consider
z1 = S

(t+N)
s y3 and z2 = S

(t+N)
s y4. Since the Ji (see the separation property for

their de�nition) are pairwise disjoint, one of the Ji has an empty intersection
with one of [z1, z2] and [z2, z1]. Without loss of generality, we may suppose
that [z1, z2] ∩ J1 = ∅.

Now consider the straight line de�ned by

γ(τ) = x+ b(τ − t−N), τ ∈ [t+N, t+ 2N − 1]

for some x ∈ S1.
We claim that there exist (at least) N ′ di�erent integers 0 = n0 < . . . <

nN ′−1 ≤ N ′ − 1 such that we have

max
j,j′∈[0,N−1]

|γ(t+N + nj)− γ(t+N + nj′)| ≤ α7. (10)

Indeed, by the pigeonhole principle, since N ′ ≤ α7N , there exist integers
0 ≤ ñ0 < . . . < ñN ′−1 ≤ N − 1 such that

maxj,j′∈[0,N ′−1] |γ(t+N + ñj)− γ(t+N + ñj′)| ≤ α7.
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Then it su�ces to take, for every j, nj = ñj − ñ0.
By de�nition of C and α, (10) yields that

maxj,j′∈[0,N ′−1] |F̃1(γ(t+N + nj))− F̃1(γ(t+N + nj′))|
≤ α7‖F̃1‖C1 ≤ α6/10. (11)

Now consider the event E2 de�ned by the system of inequalities:{
‖F (t+N + nj)− F̃1‖∞ ≤ α20, 0 ≤ j ≤ N ′ − 1.‖F (t+N + k)‖∞ ≤ α20, k ∈ [0, N − 1]− {n0, . . . , nN ′−1}.

(12)
Since F̃1 and 0 belong to Supp ν, this event (independent from E1) also has
positive probability.

It remains to prove that for ω ∈ E1 ∩ E2 all minimizers on [t, t + 2N ]
pass through I1(α) at time t+N , which follows from Lemma 3.1 and Lemma
3.2. Indeed, if this statement holds, no such minimizers can pass through
[z1, z2] at t + N , since I1(α) ⊂ J1. Consequently all the points that are in
[y3, y4] at time s will not be reached by minimizers originating at time t+2N .
In particular, it follows that [y3, y4] is contained in an interval generated by
some shock at time t+ 2N . Therefore (y1, y2)∪ [y3, y4] = (y1, y4] is contained
in a connected component of S1 − Ωs,t+2N . Thus

d(Ωs,t+2N) ≤ 1− 1+l
2

= 1
2
d(Ωs,t)

with a positive conditional probability which equals at least P(E1)P(E2).
This proves the lemma's assertion. �

Lemma 3.1. Assume that ω ∈ E2. Then for every minimizer γ1 on [t+N, t+
2N ] there exists j, 1 ≤ j ≤ N ′ − 1, such that

−F̃1(γ1(t+N + nj)) ≤ m1 + α2.

Proof: We argue by contradiction. Suppose that there exists a minimizer
γ1 on [t+N, t+ 2N ] such that

−F̃1(γ1(t+N + nj)) > m1 + α2, 1 ≤ j ≤ N ′ − 1. (13)

Consider a curve γ2 with the same endpoints as γ1, linear on intervals [t +
N + k, t+N + k + 1]. Moreover we suppose that γ2 = x1 + b(τ − t−N) on
[t+N+n1, t+N+nN ′−1] (x1 being the point where F̃1 reaches its maximum),
and that |γ̇2 − b| ≤ 1/2n1 and |γ̇2 − b| ≤ 1/2(N − nN ′−1) on the extremal
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intervals [t+N, t+N + n1] and [t+N + nN ′−1, t+ 2N ], respectively.
From now on, for a curve γ we denote γ̇ − b by γ̇b. We recall that the

�kicked� case action A for γ : [t1, t2]→ S1 equals

A(γ) = 1
2

t2∫
t1

(γ̇b(τ))2dτ −
∑

n∈[t1,t2) F [γ(n)].

The �rst part of the right-hand side, corresponding to the kinetic energy,
will be denoted by Ak. The remaining part, corresponding to the potential
energy, will be denoted by Ap. We observe that

Ak(γ|[t1,t3]) = Ak(γ|[t1,t2]) + Ak(γ|[t2,t3]), (14)

and similarly for Ap. We have

Ak(γ1) ≥ 0; Ak(γ2) ≤ 1
4
.

On the other hand, using the inequalities (11-13), we get

Ap(γ1) ≥ (N ′ − 1)(m1 + α2 − α20)− (N −N ′)α20 − F (γ(t+N)),

Ap(γ2) ≤ (N ′ − 1)(m1 + α6/10 + α20) + (N −N ′)α20 − F (γ(t+N)).

Therefore, by (7-8), we get

A(γ1)− A(γ2) = Ak(γ1)− Ak(γ2) + Ap(γ1)− Ap(γ2)

≥ −1
4

+ (N ′ − 1)(α2 − α6/10)− 2(N − 1)α20

≥ −1
4

+ α−1 − α3

10
− 8α10 > 0.

Thus we have a contradiction with the fact that γ1 is a minimizer. This
proves the lemma's assertion. �

Lemma 3.2. Assume that ω ∈ E1∩E2. For some j, 1 ≤ j ≤ N ′−1, consider
a minimizer γ1 on [t, t+N + nj] such that y = γ1(t+N + nj) satis�es:

−F̃1(y) ≤ m1 + α2.

Then we have

γ1(t+N) ∈ I1(α).
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Proof: We argue by contradiction, supposing that γ1(t + N) /∈ I1(α).
We may also assume that

−F̃1(γ1(t+N + nj′)) > m1 + α2, 1 ≤ j′ < j.

Indeed, otherwise we could consider a smaller value of j. In the same way as
previously, we want to prove that γ1 cannot be a minimizer, and we consider a
curve γ2 with the same endpoints as γ1. Namely, we suppose that γ2 satis�es
γ̇b2 = 0 between t+N and t+N + nj, γ2 is linear between t and t+N , and
moreover |γ̇b2| ≤ 1/2N . We have the inequalities

Ak(γ1) ≥ 0; Ak(γ2) ≤ 1
8N
.

On the other hand, using the separation property, (9), (11), and (12), we get

Ap(γ1) ≥ −Nα20 + (m1 + α− α20) + (j − 1)(m1 + α2 − α20)

−(nj − j)α20,

Ap(γ2) ≤ Nα20 + j(m1 + α2 + α6/10 + α20) + (nj − j)α20.

Therefore, by (7-8), we obtain that

A(γ1)− A(γ2) ≥ − 1
8N

+ α− α2 −N ′α6/10− 4Nα20 > 0.

Again, we have a contradiction. This proves the lemma's assertion. �

3.2 Proof in the white force case

The scheme of the proof is very similar to the one in the �kicked� case. The
major di�erences are auxiliary lemmas which are technically more involved
and the conditions on the forcing, in some way much more restrictive.

The constants C, α,N ′, N are the same as in the proof of the �kicked�
case, with the exception that now

α = min

(
α0,

1

10C
,

1

10(b+ 1)2

)
, (15)

and that the de�nitions of N ′ and N change accordingly. Denote by E1 the
event

sup
t1,t2∈[t,t+N ]

‖G(t1)−G(t2)‖C1 ≤ α40. (16)

15



By classical properties of the Wiener process, E1 has positive probability,
uniformly in t.

Now we proceed exactly in the same way as in the �kicked� case, supposing
with the same notation and without loss of generality that [z1, z2] ∩ J1 = ∅.

We assume that for every j, j ∈ [0, N ′−1] (we take nN ′ = N), G satis�es:{
‖G(t+N + nj+1)−G(t+N + nj)− F̃1‖C1 ≤ α40.‖G(t+N + nj+1)−G(t+N + nj + τ)‖C1 ≤ α40, τ ∈ [α40, nj+1 − nj].‖G(t+N + nj + τ)−G(t+N + nj + τ ′)‖C1 ≤ 3

2
‖F̃1‖C1 ≤ C

2
, τ, τ ′ ∈ [0, nj+1 − nj].

(17)
This event, denoted by E2, has positive probability and is independent from
E1.

Finally, in the same way as in the �kicked� case, the lemma's assertion
follows from Lemma 3.3 and Lemma 3.4. �

Lemma 3.3. Consider a minimizer γ1 on [t + N, t + 2N ]. Then, if ω ∈ E2,
we have

−F̃1(γ1(t+N + nj)) ≤ m1 + α2 (18)

for some j, 1 ≤ j ≤ N ′ − 1.

Proof: As previously, we argue by contradiction, considering a minimizer
γ1 on [t+N, t+ 2N ] such that (18) does not hold for any j, 1 ≤ j ≤ N ′− 1.
We recall that the action is given by:

A(γ) = 1
2

t2∫
t1

γ̇b(τ)2dτ

+
t2∫
t1

(
γ̇(τ)

(
∂G
∂x

(γ(τ), τ)− ∂G
∂x

(γ(τ), t2)
))

dτ

+
(
G(γ(t1), t1)−G(γ(t1), t2)

)
.

The �rst term of the right-hand side, i.e. the kinetic energy, will be denoted
by A1. The second and the third terms, whose sum is the potential energy,
will be denoted by A2 and A3, respectively. We observe that A as well as
the quantities A1 and A2 +A3 satisfy a relation of the same type as (14). To
see it for A2 +A3, it su�ces to write down this sum as a stochastic integral.
A(γ|[s,t]) is denoted by As,t(γ), and similarly for Ai, i = 1, 2, 3.

Consider a curve γ2 with the same endpoints as γ1, de�ned exactly in the
same way as in the proof of Lemma 3.1. Namely, γ2 = x1 + b(τ − t − N)
on [t + N + n1, t + N + nN ′−1], and γ2 is linear on [t + N, t + N + n1] and
on [t + N + nN ′−1, t + 2N ] with |γ̇b2| ≤ 1/2n1 and |γ̇b2| ≤ 1/2(N − nN ′−1),

16



respectively.
Now, for every j ∈ [0, N ′ − 1], consider a straight line γ3 connecting

γ1(t + N + nj) and γ1(t + N + nj+1) with constant velocity γ̇3, |γ̇3
b| ≤

1/2(nj+1 − nj) (we take nN ′ = N). Denote by R the quantity

R = A2
t+N+nj ,t+N+nj+1

(γ1).

Since ∫
a(τ)b(τ)dτ ≥ −2α20

C

∫ (a(τ)
2

)2

dτ − C
2α20

∫
b(τ)2dτ ,

then we have

R ≥ −2α20

C

t+N+nj+1∫
t+N+nj

(
γ̇b1(τ)+b

2

)2

dτ

− C
2α20

t+N+nj+1∫
t+N+nj

(
∂G
∂x

(γ1(τ), τ)− ∂G
∂x

(γ1(τ), t+N + nj+1)
)2

dτ

≥ −2α20

C

(
A1
t+N+nj ,t+N+nj+1

(γ1) +
b2(nj+1−nj)

2

)
− C

2α20

( t+N+nj+α40∫
t+N+nj

(
∂G
∂x

(γ1(τ), τ)− ∂G
∂x

(γ1(τ), t+N + nj+1)
)2

dτ

+
t+N+nj+1∫

t+N+nj+α40

(
∂G
∂x

(γ1(τ), τ)− ∂G
∂x

(γ1(τ), t+N + nj+1)
)2

dτ

)
.

The �rst term of the right-hand side can be estimated by observing that
the restriction of γ1 to [t + N + nj, t + N + nj+1] is still a minimizer, and
that A3

t+N+nj ,t+N+nj+1
, which only depends on the endpoint of the curve at

t+N + nj, is the same for γ1 and γ3.
On the other hand, the second and the third terms of the right-hand side

can be estimated by using (17). Thus we obtain that

R ≥ −2α20

C

(
−R + A1

t+N+nj ,t+N+nj+1
(γ3) + A2

t+N+nj ,t+N+nj+1
(γ3)

+ b2N
2

)
− C

2α20

(
α40C2

4
+ (nj+1 − nj − α40)α80

)
≥ −2α20

C

(
−R + 1

8(nj+1−nj)

+
t+N+nj+1∫
t+N+nj

γ̇3(τ)
(
∂G
∂x

(γ3(τ), τ)− ∂G
∂x

(γ3(τ), t+N + nj+1)
)
dτ
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+ b2N
2

)
− α20C3.

Consequently,

R ≥ 2α20

C
R− α20

4C

−2α20

C

(
b+ 1

2

) t+N+nj+1∫
t+N+nj

∣∣∣∂G∂x (γ3(τ), τ)− ∂G
∂x

(γ3(τ), t+N + nj+1)
∣∣∣dτ

− b2Nα20

C
− α20C3.

Using (6), (15), (8), and (17), we get

R ≥ 2α20

C
R− α20

4C
−
(
b+ 1

2

)
Nα20 − b2Nα20

C
− α20C3

≥ 2α20

C
R−Nα20(b+ 1)2 −

(
C3 + 1

4C

)
α20

≥ 2α20

C
R− 4α9

10
− 2α17

103
≥ 2α20

C
R− α9

2
.

Consequently,

R ≥ −
(

1− 2α20

C

)−1
α9

2
≥ −α9.

By (11), it follows that for j ∈ [1, N ′ − 2] we have

At+N+nj ,t+N+nj+1
(γ2)− At+N+nj ,t+N+nj+1

(γ1)

= (A1
t+N+nj ,t+N+nj+1

(γ2)− A1
t+N+nj ,t+N+nj+1

(γ1))

+(A2
t+N+nj ,t+N+nj+1

(γ2)− A2
t+N+nj ,t+N+nj+1

(γ1))

+(A3
t+N+nj ,t+N+nj+1

(γ2)− A3
t+N+nj ,t+N+nj+1

(γ1))

≤ (0− 0) +
(
b(Cα40/2 +Nα40)− (−α9)

)
+
(

(m1 + α6/10 + α40)− (m1 + α2 − α40)
)
≤ −α2

2
. (19)

Here, the estimate of A2
t+N+nj ,t+N+nj+1

(γ2) follows from (17).

Similarly, since A3
t+N,t+N+n1

(γ2) = A3
t+N,t+N+n1

(γ1), we have

At+N,t+N+n1(γ2)− At+N,t+N+n1(γ1)

≤ 1

8
+ A2

t+N,t+N+n1
(γ2) + α9 ≤ 1, (20)
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and

At+N+nN′−1,t+2N(γ2)− At+N+nN′−1,t+2N(γ1)

≤ 1
8

+ A2
t+N+nN′−1,t+2N(γ2) + α9 + C ≤ 2C. (21)

Here, we get

A2
t+N,t+N+n1

(γ2), A2
t+N+nN′−1,t+2N(γ2) ≤ (b+ 1/2)(Cα40/2 +Nα40)

in the same way as for the estimate of A2
t+N+nj ,t+N+nj+1

(γ2) above.
It remains to add together the inequalities (19-21). Using (15) and (8)

we get

At+N,t+2N(γ2)− At+N,t+2N(γ1)

≤ 2C + 1− (N ′ − 2)α
2

2
≤ 2C + 1− 1

2α
< 0.

This inequality is in contradiction with the fact that γ1 is a minimizer. This
proves the lemma's assertion. �

Lemma 3.4. For ω ∈ E1∩E2, if for some minimizer γ1 on [t, t+N+nj], 1 ≤
j ≤ N ′ − 1, y = γ1(t+N + nj) satis�es:

−F̃1(y) ≤ m1 + α2,

then we have

γ1(t+N) ∈ I1(α).

Proof: In the same way as in the proof of Lemma 3.2, we consider a
�bad� minimizer γ1. Without loss of generality, we assume that

−F̃1[γ1(t+N + nj′)] > m1 + α2, 1 ≤ j′ < j. (22)

We de�ne γ2 with the same endpoints as γ1 in the same way as in the proof
of Lemma 3.2, i.e. such that γ̇2

b = 0 between t + N and t + N + nj, linear
between t and t+N , and satisfying |γ̇2

b| ≤ 1
2N

. We get

A3
t,t+N(γ2) = A3

t,t+N(γ1).

A1
t,t+N(γ2)− A1

t,t+N(γ1) ≤ N
8N2 − 0 ≤ α10

16
.

A2
t,t+N(γ2) ≤

(
b+ 1

2N

) t+N∫
t

∣∣∣∂G∂x (γ2(τ), τ)− ∂G
∂x

(γ2(τ), t+N)
∣∣∣dτ ≤ α29.
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The last inequality follows from (15), (8), and (16).
To estimate the quantity

R = A2
t,t+N(γ1),

we proceed in the same way as for A2
t+N+nj ,t+N+nj+1

(γ1) in Lemma 3.3.
Namely, we consider a straight line γ3 with the same endpoints as γ1|[t,t+N ]

satisfying |γ̇3
b| ≤ 1/2N . We have

R ≥ −2α20
t+N∫
t

(
γ̇1(τ)

2

)2

dτ

− 1
2α20

t+N∫
t

(
∂G
∂x

(γ1(τ), τ)− ∂G
∂x

(γ1(τ), t+N)
)2

dτ

≥ −2α20
t+N∫
t

(γ̇b1(τ))2+b2

2
dτ

− 1
2α20

t+N∫
t

(
∂G
∂x

(γ1(τ), τ)− ∂G
∂x

(γ1(τ), t+N)
)2

dτ .

Since a restriction of γ1 is still a minimizer, we get

R ≥ −2α20
(
A1
t,t+N(γ3) + A2

t,t+N(γ3)−R + b2N
2

)
− 1

2α20

t+N∫
t

(
∂G
∂x

(γ1(τ), τ)− ∂G
∂x

(γ1(τ), t+N)
)2

dτ

≥ −2α20
(

N
8N2 +

(
b+ 1

2N

)
×

t+N∫
t

∣∣∣∂G∂x (γ3(τ), τ)− ∂G
∂x

(γ3(τ), t+N)
∣∣∣dτ

−R + b2N
2

)
− N

2α20α
80

≥ 2α20R− 2α20
(
α10

16
+ (b+ 1)Nα40 + 2b2

α10

)
− Nα60

2

≥ 2α20R− (5b2 + 1)α10 ≥ 2α20R− α9

2
.

Therefore

A2
t,t+N(γ1) ≥ −α9.

On the other hand, we have

A1
t+N,t+N+nj

(γ2)− A1
t+N,t+N+nj

(γ1) ≤ 0.

20



By de�nition, the action di�erence

U = At,t+N+nj
(γ2)− At,t+N+nj

(γ1)

satis�es

U = (A1
t,t+N(γ2)− A1

t,t+N(γ1)) + (A1
t+N,t+N+nj

(γ2)− A1
t+N,t+N+nj

(γ1))

+(A2
t,t+N(γ2)− A2

t,t+N(γ1)) + (A3
t,t+N(γ2)− A3

t,t+N(γ1))

+(A2
t+N,t+N+nj

(γ2) + A3
t+N,t+N+nj

(γ2)

−A2
t+N,t+N+nj

(γ1)− A3
t+N,t+N+nj

(γ1)).

Consequently,

U ≤ α10

16
+ 0 +

(
α29 + α9

)
+ 0 + (A2

t+N,t+N+nj
(γ2) + A3

t+N,t+N+nj
(γ2)

−A2
t+N,t+N+nj

(γ1)− A3
t+N,t+N+nj

(γ1))

≤ 2α9 + (A2
t+N,t+N+nj

(γ2)− A2
t+N,t+N+nj

(γ1)

+A3
t+N,t+N+nj

(γ2)− A3
t+N,t+N+nj

(γ1)]. (23)

In the same way as previously, we get

A2
t+N,t+N+nj

(γ2) ≤ bj
(
Cα40

2
+Nα40

)
≤ 5bN ′α30 ≤ α26.

The estimates of A2
t+N+nj′ ,t+N+nj′+1

(γ1), 0 ≤ j′ < j in Lemma 3.3 still hold

in our case. Therefore

A2
t+N,t+N+nj

(γ1) ≥ −N ′α9 ≥ −2α6.

By (11) and (22), for 1 ≤ j′ ≤ j − 1 we get

A3
t+N+nj′ ,t+N+nj′+1

(γ2)− A3
t+N+nj′ ,t+N+nj′+1

(γ1)

≤ (m1 + α2 + α6

10
+ α40)− (m1 + α2 − α40) ≤ α6.

Finally, since we have supposed that γ1(t+N) /∈ I1(α), we have

A3
t+N,t+N+n1

(γ2)− A3
t+N,t+N+n1

(γ1)

≤ (m1 + α2 + α6

10
+ α40)− (m1 + α− α40) ≤ −α/2.

Combining all these inequalities with (23) we get

U ≤ 2α9 + α26 + 2α6 + (N ′ − 1)α6 − α/2 < 0.

We have a contradiction with the fact that γ1 is a minimizer. This proves
the lemma's assertion. �
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