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Abstract. We consider a non-homogeneous generalised Burgers
equation:

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= ηω, t ∈ R, x ∈ S1.

Here, ν is small and positive, f is strongly convex and satisfies a
growth assumption, while ηω is a space-smooth random ”kicked”
forcing term.

For any solution u of this equation, we consider the quasi-
stationary regime, corresponding to t ≥ 2. After taking the en-
semble average, we obtain upper estimates as well as time-averaged
lower estimates for a class of Sobolev norms of u. These estimates
are of the form Cν−β with the same values of β for bounds from
above and from below. They depend on η and f , but do not depend
on the time t or the initial condition.

1. Notation

Consider a zero mean value smooth function w on S1. For p ∈
[1,+∞], we denote its Lp norm of by |w|p. The L2 norm will be denoted

by |w|, and 〈·, ·〉 stands for the L2 scalar product. From now on, Lp, p ∈
[1,+∞] stands for the space of zero mean value functions in Lp(S

1).
For a nonnegative integer n and p ∈ [1,+∞], W n,p stands for the

Sobolev space of zero mean value functions w on S1 with the norm

|w|n,p =
∣∣w(n)

∣∣
p
,

where

w(n) =
dnw

dxn
.

In particular, W 0,p = Lp for p ∈ [1,+∞]. For p = 2, we denote W n,2

by Hn, and the corresponding norm is abbreviated as ‖w‖n.
We recall a version of the classical Gagliardo-Nirenberg inequality

(see [11, p. 125]).
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Lemma 1.1. For a smooth zero mean value function w on S1,

|w|β,r ≤ C |w|θm,p |w|
1−θ
q ,

where m > β, and r is defined by

1

r
= β + θ(

1

p
−m) + (1− θ)1

q
,

under the assumption that θ = β/m if p = 1 or p = +∞, and β/m ≤
θ < 1 otherwise. Here C = C(m, p, q, β, θ) > 0 is a constant.

For a smooth function v(t, x) defined on [0,+∞) × S1, vt, vx, and

vxx mean respectively ∂v
∂t

, ∂v
∂x

, and ∂2v
∂x2

.

2. Introduction

The generalised one-dimensional space-periodic Burgers equation

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= 0, ν > 0 (1)

(the classical Burgers equation corresponds to f(u) = u2) appears in
different domains of science, ranging from cosmology to traffic mod-
elling (see [1]). It is sometimes called a viscous scalar conservation law.
Historically, it has drawn most attention as a model for the Navier-
Stokes equation (NSE). Indeed, it has a nonlinear term analogous to
the nonlinearity (u · ∇)u in the incompressible NSE. The dissipation
term in (1) is also similar to the one in NSE. We note that the classical
Burgers equation is explicitly solvable. This is done by the Cole-Hopf
transformation (see [3]).

In [2], A.Biryuk considered equation (1) with f strongly convex, i.e.
satisfying

f ′′(x) ≥ σ > 0, x ∈ R. (2)

He studied the behavior of the Sobolev norms of solutions u for small
values of ν and obtained the following estimates:

‖u‖2m ≤ Cν−(2m−1)/2,
1

T

∫ T

0

‖u‖2m ≥ cν−(2m−1)/2, m ≥ 1, ν ≤ ν0.

Note that exponents of ν in lower and upper estimates are the same.
The quantities ν0, C, c, and T depend on the deterministic initial
condition u0 as well as on m. To get results independent from the initial
data, a natural idea is to introduce random forcing and to estimate
ensemble-averaged norms of solutions.

In this article we consider (1) with a random kick force in the right-
hand side. In Section 3 we recall classical existence and uniqueness
results and introduce the probabilistic setting needed to define the kick
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force. Then, we estimate from above the moments of the W 1,1 norm
of u. These estimates, valid after a certain damping time, are proved
using ideas similar to those in [7]. Remarkably, this damping time and
the estimate do not depend on the initial condition. This is the crucial
result of this article.

Next, in Sections 4 and 5, this result allows us to obtain lower and
upper estimates that are, up to taking the ensemble average, of the
same type as in [2], for time t ≥ 2. These estimates will only depend
on the function f and the forcing. Let us emphasise that, for t ≥ 2, we
are in a quasi-stationary regime: all estimates hold independently of
the initial condition. In Section 6, we give some additional estimates
for the Sobolev norms.

In this paper, we use methods introduced by Kuksin in [8, 9], and
developed by Biryuk in [2].

Equation (1) with ν � 1 is a popular one-dimensional model for
the theory of hydrodynamic turbulence. In Section 7, we present an
interpretation of our results in terms of this theory.
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3. Preliminaries

In this section, we review properties of solutions of (1) used in our
proof.

Physically, t corresponds to the time variable, whereas x corresponds
to the one-dimensional space variable, and the constant ν > 0 to
a viscosity coefficient. The real-valued function u(t, x) is defined on
[0,+∞)×R and is L-periodic in x. The function f is C∞-smooth and
strongly convex, i.e. it satisfies the condition (2) for some constant
σ. Moreover, we assume that f , as well as its derivatives, has at most
polynomial growth, i.e.

∀m ≥ 0, ∃n ≥ 0, Cm > 0 : |f (m)(x)| ≤ Cm(1 + |x|)n, x ∈ R, (3)

where n = n(m). From now on, we fix L = 1, which amounts to study-
ing the problem on [0,+∞)×S1. We note that L-periodic solutions of
(1) with any L reduce, by means of scaling in x, to 1-periodic solutions
with scaled f and ν.
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Since we are mostly interested in the asymptotics of solutions of (1)
as ν → 0+, we assume that

ν ∈ (0, 1].

Moreover, it is enough to study the special case∫
S1

u0(y)dy = 0. (4)

Indeed, if the mean value of u0 on S1 equals b, we may consider

v(t, x) = u(t, x+ bt)− b.
Then v satisfies (4) and is a solution of (1) with f(y) replaced with
g(y) = f(y + b)− by.

Given a C∞-smooth initial condition u0 = u(0, ·), equation (1) has
a unique classical solution u, C∞-smooth in both variables (see [6,
Chapter 5]). Condition (4) implies that the mean value of a solution
for (1) vanishes identically in t.

Now provide each space W n,p(S1) with the Borel σ-algebra. Consider
a random variable ζ on a probability space (Ω,F,P) with values in
L2(S1), such that ζω ∈ C∞(S1) for a.e. ω. We suppose that ζ satisfies
the following three properties.

(i) (Non-triviality)

P(ζ ≡ 0) < 1.

(ii) (Finiteness of exponential moments for Sobolev norms)
For every m ≥ 0 there are constants α = α(m) > 0, β = β(m) such
that

E exp(α ‖ζ‖2m) ≤ β.

In particular
Im = E ‖ζ‖2m < +∞, ∀m ≥ 0.

(iii) (Vanishing of the expected value)

Eζ ≡ 0.

It is not difficult to construct explicitly ζ satisfying (i)-(iii). For
instance we could consider the real Fourier coefficients of ζ, defined for
k > 0 by

ak(ζ) =
√

2

∫
S1

cos(2πkx)u(x), bk(ζ) =
√

2

∫
S1

sin(2πkx)u(x) (5)

as independent random variables with zero mean value and exponential
moments tending to 1 fast enough as k → +∞.
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Now let ζi, i ∈ N be independent identically distributed random
variables having the same distribution as ζ. The sequence (ζi)i≥1 is a
random variable, defined on a probability space which is a countable
direct product of copies of Ω. From now on, this space will itself be
called Ω. The meaning of F and P changes accordingly.

For ω ∈ Ω and a time period θ > 0, the kick force ηω is a C∞-smooth
function in the variable x, with values in the space of distributions in
the variable t, defined by

ηω(x) =
+∞∑
i=1

δt=iθζ
ω
i (x),

where δt=iθ denotes the Dirac measure at a time moment iθ.
The kick-forced version of (1) corresponds to the case where, in the

right-hand side, 0 is replaced with the kick force. This means that for
integers i ≥ 1, at the moments iθ the solution u(x) instantly increases
by the kick ζωi (x), and that between these moments u solves (1). The
equation is written as follows:

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= ηω. (6)

Derivatives are taken in the sense of distributions.
When studying solutions of (6), we will always assume that the ini-

tial condition u0 = u(0, ·) is C∞-smooth. Moreover, we normalise those
solutions to be right-continuous in time at the kick moments iθ. Such
a solution is uniquely defined for a given value of u0, for a.e. ω.

For a given initial condition u0, the function u(t, x) always will de-
note such a solution of (1). The value of u before the i-th kick will
be denoted by u(iθ−, ·), or shortly u−i . We will also use the notation
ui = u(iθ, ·) and denote the function u(t, ·) by u(t). Finally, for a
solution of (6), we consider time derivatives at the kick moments in
the sense of right-sided time derivatives. Those derivatives are right-
continuous in time.

Since space averages of the kicks vanish and u0(x) satisfies (4), the
space average of u(t), t ≥ 0 vanishes identically. For the sake of sim-
plicity, we normalise the kick period: from now on θ = 1.

We observe that, since the kicks are independent and between the
kicks (6) is deterministic, the solutions of (6) make a random Markov
process. For details, see [10], where a kick force is introduced in a
similar setting.

Agreements. All constants denoted C with sub- or super-indexes
are strictly positive. Unless otherwise stated, they depend only on f ,



6

on the distribution of the kicks, as well as on the parameters a1, . . . , ak
if they are denoted C(a1, . . . , ak). u always denotes a solution of (6)
with any initial condition u0. Averaging in ensemble corresponds to
averaging in P. All our estimates hold independently of the value of
u0.

We observe that for every integer i we have the following energy
dissipation identity on the maximal kick-free intervals:

Ai = |ui|2 −
∣∣u−i+1

∣∣2 , (7)

where

Ai = 2ν

∫ (i+1)

i

‖u(t)‖21 dt. (8)

Indeed, for any t ∈ (i, i+ 1) u satisfies

2ν ‖u(t)‖21 = −2ν

∫
S1

uuxxdx = −2

∫
S1

uf ′(u)uxdx− 2

∫
S1

uutdx.

The first term on the right-hand side vanishes since its integrand is a
full derivative. The second term equals − d

dt
|u|2. Integrating in time

we get (7). We note that energy dissipation between kicks Ai is always
non-negative: energy can be added only at the kick points. We also
note that an analogue of (7) holds on every kick-free time interval.

The following two lemmas are proved using the maximum principle
in the same way as in [7].

Lemma 3.1. We have the estimate

ux(t, x) ≤ 2σ−1, t ∈ [k + 1/2, k + 1), k ∈ N, x ∈ S1,

where σ is the constant in the assumption (2).

Proof. Consider the equation (6) on the kick-free time interval
[0, 1 − ε] for arbitrarily small ε and differentiate it once in space. We
get

∂ux
∂t

+ f ′′(u)u2x + f ′(u)
∂ux
∂x
− ν ∂

2ux
∂x2

= 0. (9)

Consider v(t, x) = tux(t, x). For t > 0, v verifies

∂v

∂t
+ t−1(−v + f ′′(u)v2) + f ′(u)

∂v

∂x
− ν ∂

2v

∂x2
= 0. (10)

Now observe that, if v > 0 somewhere on the domain Sε = [0, 1− ε]×
S1, then v attains its maximum M on Sε at a point (t1, x1) such that
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t1 > 0. At (t1, x1) we have ∂v
∂t
≥ 0, ∂v

∂x
= 0, and ∂2v

∂x2
≤ 0. Therefore,

(10) yields that

t−11 [−v(t1, x1) + f ′′(u(t1, x1))v
2(t1, x1)] ≤ 0.

Since, by (2), f ′′ ≥ σ > 0, then

−M + σM2 ≤ 0,

and therefore

M ≤ σ−1.

Thus we have proved that v ≤ σ−1 everywhere on Sε for every ε > 0.
In particular, by definition of v and Sε, we get that

ux(t, x) ≤ 2σ−1, x ∈ S1, t ∈ [1/2, 1).

Repeating the same argument on all the intervals [k, k + 1), k ∈ N we
get the lemma’s assertion. �

Lemma 3.2. There are constants C ′, C such that

E exp(C ′ sup
t∈[k,k+1)

maxux(t, ·)) ≤ C, k ≥ 1.

Proof. Fix k ≥ 1. Since the W 1,∞ norm is dominated by the H2

norm, then for C ′ > 0 we get

exp(C ′ux(k, x)) ≤ exp(C ′ux(k
−, x) + C ′‖ζk‖2), x ∈ S1.

The same inequality holds when we maximise in x. Now denote by Xk

the random variable

maxux(k, ·).
By Lemma 3.1 and Property (ii) of the kicks, for C ′ = α(2) we get

E exp(C ′Xk) ≤ exp(2C ′σ−1)E exp(C ′‖ζk‖2) ≤ C, (11)

for some constant C. Now consider the equation (9). An application of
the maximum principle to the function ux, which cannot be negative
everywhere, yields

maxux(t, ·) ≤ maxux(k, ·), t ∈ [k, k + 1) .

Therefore, in (11), we can replace Xk by supt∈[k,k+1) maxux(t, ·). This
proves the lemma’s assertion. �

Corollary 3.1. For the same C ′, C as in Lemma 3.2 we have

E exp
(C ′

2
sup

t∈[k,k+1)

|u(t)|1,1
)
≤ C, k ≥ 1.
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Proof. Since the mean value of ux(t) is 0, then∫
S1

|ux(t)| = 2

∫
S1

max(ux(t), 0).

�

Corollary 3.2. For the same C ′, C as in Lemma 3.2 we have

E exp(C ′ sup
t∈[k,k+1)

|u(t)|p) ≤ C, k ≥ 1, p ∈ [1,+∞].

Note that C ′ and C do not depend on p.

4. Lower estimates of Hm norms

For a solution u of (6), the first quantity that we estimate from below
is the expected value of

1

N

∫ N+1

1

‖u(t)‖21 =
1

N
(2ν)−1

N∑
i=1

Ai, (12)

where N is a fixed natural number chosen later, and Ai is the same as
in (8).

Lemma 4.1. There exists a natural number N ≥ 1, independent from
u0, such that

1

N

∫ N+1

1

E ‖u(s)‖21 ≥ Cν−1.

Proof. For N ≥ 1 we have

E
∣∣u−N+1

∣∣2 ≥ E
( ∣∣u−N+1

∣∣2 − ∣∣u−1 ∣∣2 )
= E

N∑
i=1

(
|u−i+1|2 − |ui|2

)
+ E

N∑
i=1

(
|ui|2 − |u−i |2

)
= −E

N∑
i=1

Ai + E
N∑
i=1

(
|u−i + ζi|2 − |u−i |2

)
= −E

N∑
i=1

Ai + 2E
N∑
i=1

〈u−i , ζi〉+ E
N∑
i=1

|ζi|2.

Since Eζi ≡ 0 (Property (iii) of the kicks), and u−i and ζi are indepen-
dent, then E〈u−i , ζi〉 = 0. Therefore, by (8), we have

E
∣∣u−N+1

∣∣2 ≥ −2νE
∫ N+1

1

‖u(s)‖21 + 0 +NI0.
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On the other hand, by Corollary 3.2 (p = 2) there is a constant C1

such that

E
∣∣u−N+1

∣∣2 ≤ C1.

Consequently

1

N

∫ N+1

1

E ‖u(s)‖21 ≥
NI0 − C1

2N
ν−1.

Choosing the smallest possible integer N verifying

N ≥ max
(

1,
C1 + 1

I0

)
,

we get the lemma’s assertion. �

We have reached our first goal: estimating from below the expected
value of (12). Thus, we have a time-averaged lower estimate of the H1

norm, which enables us to obtain similar estimates of Hm norms for
m ≥ 2.

Lemma 4.2. We have

1

N

∫ N+1

1

E ‖u(s)‖2m ≥ C(m)ν−(2m−1), m ≥ 1,

where N is the same as in Lemma 4.1.

Proof. This statement is already proved in the previous lemma for
m = 1, so we may assume that m ≥ 2. By Lemma 1.1 and Hölder’s
inequality we have(

E ‖u(s)‖21
)2m−1

≤ C ′(m)E ‖u(s)‖2m
(
E |u(s)|21,1

)2m−2
. (13)

Since by Corollary 3.1

E |u(s)|21,1 ≤ K, t ∈ [1, N + 1],

where K > 0 is a constant, then, integrating (13) in time, we get

1

N

∫ N+1

1

E ‖u(s)‖2m ≥
∫ N+1

1
[E(‖u(s)‖21)](2m−1)

NC ′(m)K2m−2 .

By Hölder’s inequality,∫ N+1

1

[E(‖u(s)‖21)]
(2m−1) ≥

(∫ N+1

1

E ‖u(s)‖21
)(2m−1)

N2−2m,



10

and then

1

N

∫ N+1

1

E ‖u(s)‖2m ≥

( ∫ N+1

1
E ‖u(s)‖21

)(2m−1)
N2−2m

NC ′(m)K2m−2

=

(
1
N

∫ N+1

1
E ‖u(s)‖21

)(2m−1)
C ′(m)K2m−2 .

Now the assertion follows from Lemma 4.1. �

Since we impose no conditions on u0, we can consider a different
positive integer ”starting time”. We may also consider a different av-
eraging time interval of length T ≥ N . Finally, we obtain a general
result for a non-integer starting time t ≥ 1 by considering the maximal
interval [m1,m2] ⊂ [t, t+T ] such that m1 and m2 are positive integers.

Theorem 4.1. We have

1

T

∫ t+T

t

E ‖u(s)‖2m ≥
C(m)

4
ν−(2m−1), t ≥ 1, T ≥ N + 1, m ≥ 1,

where N and C(m) are the same as in Lemma 4.2.

5. Upper estimates of Hm norms

To estimate from above a Sobolev norm ‖u‖m , m ≥ 1, of a solution

u for (6), we differentiate between the kicks the quantity ‖u(t)‖2m.
Denote by B(u) the nonlinearity 2f ′(u)ux, and by L the operator
−∂xx. Integrating by parts, we get

d

dt
‖u‖2m = 2

〈
u(m), u

(m)
t

〉
= −2ν ‖u‖2m+1 − 〈L

mu,B(u)〉 . (14)

We will need a standard estimate for the nonlinearity 〈Lmu,B(u)〉.

Lemma 5.1. For a zero mean value smooth function w such that |w|∞ ≤
M , we have

|〈Lmw,B(w)〉| ≤ C ‖w‖m ‖w‖m+1 , m ≥ 1,

with C satisfying

C ≤ Cm(1 +M)n, (15)

where Cm, as well as the natural number n = n(m), depend only on m.
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Proof. Let C ′ denote various positive constants satisfying an esti-
mate of the type (15). Then we have

|〈Lmw,B(w)〉| =2
∣∣〈w(2m), (f(w))(1)

〉∣∣
=2
∣∣〈w(m+1), (f(w))(m)

〉∣∣
≤C ′

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

∣∣w(m+1)w(a1) . . . w(ak)f (k)(w)
∣∣

≤C ′ |f |Cm[−M,M ]

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

|w(a1) . . .

. . . w(ak)w(m+1)|.

By (3), |f |Cm[−M,M ] satisfies an estimate of the type (15). By Hölder’s
inequality, we obtain that

|〈Lmw,B(w)〉| ≤C ′ ‖w‖m+1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

( ∣∣w(a1)
∣∣
2m/a1

. . .

. . .
∣∣w(ak)

∣∣
2m/ak

)
.

Finally, the Gagliardo-Nirenberg inequality yields

|〈Lmw,B(w)〉| ≤C ′ ‖w‖m+1

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m[

(‖w‖a1/mm |w|(m−a1)/m∞ ) . . . (‖w‖ak/mm |w|(m−ak)/m∞ )
]

≤C ′ |w|m−1∞ ‖w‖m ‖w‖m+1

≤C ′ ‖w‖m ‖w‖m+1 ,

which proves the lemma’s assertion. �

Theorem 5.1. For any natural numbers m,n we have

E( sup
t∈[k,k+1)

‖u(t)‖nm) ≤ C(m,n)ν−(2m−1)n/2, k ≥ 2.

Proof. Fix k ≥ 2 and m ≥ 1. In this proof, Θ denotes various posi-
tive random constants which depend on m, such that all their moments
are finite, and C denotes various positive deterministic constants, de-
pending only on m.

We begin by noting that Corollary 3.1 and Property (ii) of the kicks
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imply the inequalities

|u(t)|1,1, ‖ζk‖m ≤ Θ, t ∈ [k − 1, k + 1). (16)

We claim that when ‖u‖2m is too large, it decreases at least as fast
as a solution of the differential equation

y′ + (2m− 1)y2m/(2m−1) = 0,

i.e. as t−(2m−1). More precisely, we want to prove that for
t ∈ [k − 1, k + 1) we have

‖u(t)‖2m ≥ Θ1ν
−(2m−1) =⇒

d

dt
‖u(t)‖2m ≤ −(2m− 1) ‖u(t)‖4m/(2m−1)m , (17)

where Θ1 is a random positive constant, chosen later. Random con-
stants Θ below do not depend on Θ1.

Indeed, assume that

‖u(t)‖2m ≥ Θ1ν
−(2m−1). (18)

We begin by observing that by Lemma 1.1 we have

‖u‖m ≤ C ‖u‖(2m−1)/(2m+1)
m+1 |u|2/(2m+1)

1,1 ,

and hence

‖u‖m+1 ≥ C |u|−2/(2m−1)1,1 ‖u‖(2m+1)/(2m−1)
m

≥ Θ−1 ‖u‖(2m+1)/(2m−1)
m (19)

(we used (16)). Now, (14), (16), and Lemma 5.1 imply that

d

dt
‖u‖2m ≤ −2ν ‖u‖2m+1 + Θ ‖u‖m ‖u‖m+1

=(−2ν ‖u‖2/(2m+1)
m+1 + Θ ‖u‖m ‖u‖

−(2m−1)/(2m+1)
m+1 ) ‖u‖4m/(2m+1)

m+1 . (20)

Combining (20) and (19), we get

d

dt
‖u‖2m ≤(−2ν ‖u‖2/(2m+1)

m+1 + Θ) ‖u‖4m/(2m+1)
m+1 .

Therefore, by (19) and (18) we have

d

dt
‖u‖2m ≤

(
− νΘ−1 ‖u‖2/(2m−1)m + Θ

)
‖u‖4m/(2m+1)

m+1

≤
(
−Θ−1Θ

1/(2m−1)
1 + Θ

)
‖u‖4m/(2m+1)

m+1 .
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Now we choose Θ1 in such a way that the quantity in the parentheses
is negative. Under this assumption, we get from (19) that

d

dt
‖u‖2m ≤

(
−Θ−1Θ

1/(2m−1)
1 + Θ

)
Θ−1 ‖u‖4m/(2m−1)m .

This relation implies (17) if we choose for Θ1 a sufficiently big random
constant with all moments finite.

Now we claim that ∥∥u−k ∥∥2m ≤ Θ2ν
−(2m−1), (21)

where

Θ2 = max(Θ1, 1)

has finite moments. Indeed, if ‖u(t)‖2m ≤ Θ1ν
−(2m−1) for some t ∈

[k − 1, k), then (17) ensures that ‖u(t)‖2m remains under this threshold
up to t = k−. Otherwise, we consider the function

y(t) = ‖u(t)‖−2/(2m−1)m , t ∈ [k − 1, k) .

By (17), since ‖u(t)‖2m > Θ1ν
−(2m−1), y(t) increases at least as fast as

t. Indeed,

d

dt
y(t) = − 1

2m− 1

(
‖u(t)‖2m

)−2m/(2m−1) d
dt
‖u(t)‖2m

≥ 1

2m− 1
‖u(t)‖−4m/(2m−1)m (2m− 1) ‖u(t)‖4m/(2m−1)m

≥ 1.

Therefore ‖y(k−)‖2m ≥ 1. Since ν ≤ 1, then in this case we also have
(21).

In exactly the same way, using (16), we obtain that for t ∈ [k, k+1),

‖u(t)‖2m ≤ max(Θ2ν
−(2m−1), ‖u(k)‖2m)

≤ max
[
Θ2,

(
Θ +

√
Θ2

)2]
ν−(2m−1)

≤
(

Θ +
√

Θ2

)2
ν−(2m−1).

Therefore ‖u(t)‖2m ν2m−1 is uniformly bounded by
(

Θ +
√

Θ2

)2
for t ∈

[k, k + 1). Since all moments of this random variable are finite, the
lemma’s assertion is proved. �
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6. Estimates of other Sobolev norms.

The results in the three previous sections enable us to find upper
and lower estimates for a large class of Sobolev norms. Unfortunately,
while lower estimates extend to the whole Sobolev scale for m ≥ 0 and
p ∈ [1,+∞], there is a gap, corresponding to the case m ≥ 2 and p = 1,
for upper estimates.

Lemma 6.1. For m ∈ {0, 1} and p ∈ [1,+∞], or for m ≥ 2 and
p ∈ (1,+∞], we have(

E sup
t∈[k,k+1)

|u(t)|nm,p
)1/n

≤ C(m, p, n)ν−γ, n ≥ 1, k ≥ 2.

Here and later on,

γ = γ(m, p) = max
(

0, m− 1

p

)
.

Proof. We begin by considering the case m = 1 and p ∈ [2,+∞].
Since by Lemma 1.1 we have

|u(t)|m,p ≤ C(m, p) ‖u(t)‖1−θm ‖u(t)‖θm+1 ,

where

θ =
1

2
− 1

p
,

then Theorem 5.1 and Hölder’s inequality yield the wanted result.
The case m = 1 and p ∈ [1, 2) is proved in exactly the same way,

by combining Corollary 3.1 and Theorem 5.1 (m = 1). The same
method is used to prove the case m ≥ 2 and p ∈ (1, 2), combining
the case p ∈ [2,+∞] for a big enough value of m and Corollary 3.1.
Unfortunately, it cannot be applied for m ≥ 2 and p = 1, because
Lemma 1.1 only allows us to estimate a W n,1 norm from above by
other W n,1 norms.

Finally, the case m = 0 follows from Corollary 3.2. �

The first norm that we estimate from below is the L2 norm.

Lemma 6.2. We have(∫ k+1

k

E|u(s)|2
)1/2
≥ C, k ≥ 2.
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Proof. Using Properties (i) and (iii) of the kicks (u−k and ζk being
independent), we get

E
∣∣u+k ∣∣2 = E

∣∣u−k ∣∣2 + 2E
〈
u−k , ζk

〉
+ E |ζk|2

= E
∣∣u−k ∣∣2 + E |ζk|2 ≥ I0.

On the other hand, by Theorem 5.1 we have

E ‖u(t)‖21 ≤ C ′ν−1, t ∈ (k, k + 1).

Since
d

dt
|u(t)|2 = −2ν ‖u(t)‖21 , t ∈ (k, k + 1),

then, integrating in time and setting

d = min
(

1,
I0

4C ′

)
,

we obtain that, for s ∈ [k, k + d],

E|u(s)|2 ≥ E
∣∣u+k ∣∣2 − 2(s− k)C ′ ≥ I0 − 2C ′d ≥ I0

2
.

Therefore ∫ k+1

k

E|u(s)|2 ≥ min
(I0

2
,
I20

8C ′

)
> 0,

which proves the lemma’s assertion. �

Now we can study the case m = 0 and p ∈ [1,+∞].

Corollary 6.1. We have(∫ k+1

k

E|u(s)|2p
)1/2
≥ C, k ≥ 2, p ∈ [1,+∞],

where C does not depend on p.

Proof. It suffices to prove the inequality for p = 1. Using Hölder’s
inequality and integrating in time and in ensemble, and then using the
Cauchy-Schwarz inequality, we get∫ k+1

k

E|u|21 ≥
∫ k+1

k

E|u|4|u|−2∞

≥
(∫ k+1

k

E|u|2
)2(∫ k+1

k

E|u|2∞
)−1

.

Lemma 6.2 and Corollary 3.2 (p = +∞) complete the proof. �

Since the W 1,1 norm dominates the L∞ norm, we get
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Corollary 6.2. We have(∫ k+1

k

E|u(s)|21,1(t)
)1/2
≥ C, k ≥ 2.

The cases m ≥ 2 and m = 1, p ≥ 2 follow from Lemma 4.1 and
Lemma 1.1 by interpolation in the same way as Lemma 4.2, for p > 1.
The case p = +∞ follows from the case p = 1, since |u|m,1 ≥ |u|m−1,∞,
and γ(m, 1) = γ(m− 1,+∞).

Lemma 6.3. If either m ≥ 2 and p ∈ [1,+∞], or m = 1 and p ∈
[2,+∞], then( 1

T

∫ t+T

t

E |u(s)|2m,p
)1/2
≥ C(m, p)ν−γ, t ≥ 1, T ≥ N + 1,

where N is the same as in Lemma 4.1.

Now it remains to deal with the case m = 1 and p ∈ (1, 2).

Lemma 6.4. For p ∈ (1, 2) we have( 1

T

∫ t+T

t

E |u(s)|21,p
)1/2
≥ C(p)ν−γ, t ≥ 2, T ≥ N + 1,

where N is the same as in Lemma 4.1. Note that here, γ = 1− 1/p.

Proof. In the proof of this lemma, C ′(p) denotes various positive
constants depending only on p. By Hölder’s inequality in space we have

‖u(s)‖21 ≤ |u(s)|p1,p |u(s)|(2−p)1,∞ .

Therefore, using Hölder’s inequality in time and in ensemble, as well
as Lemma 6.1, we get

1

T

∫ t+T

t

E ‖u(s)‖21 ≤
( 1

T

∫ t+T

t

E |u(s)|21,∞
)(2−p)/2

·( 1

T

∫ t+T

t

E |u(s)|21,p
)p/2

≤ C ′(p)ν(p−2)
( 1

T

∫ t+T

t

E |u(s)|21,p
)p/2

.

Furthermore, Lemma 4.1 implies that

1

T

∫ t+T

t

E |u(s)|21,p ≥ C ′(p)
(
ν(2−p)

1

T

∫ t+T

t

E ‖u(s)‖21
)2/p

≥ C ′(p)
(
ν(2−p)ν−1

)2/p
≥ C ′(p)ν−(2p−2)/p.
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�

Remark 6.1. Upper estimates for( 1

T

∫ t+T

t

E|u(s)|nm,p
)1/n

, n ≥ 2

follow from the lemmas above and Hölder’s inequality.

7. Conclusion

Putting together the estimates that we have obtained, we formulate
our main result.

Theorem 7.1. For m ∈ {0, 1} and p ∈ [1,+∞], or for m ≥ 2 and
p ∈ (1,+∞], we have(

E sup
t∈[k,k+1)

|u(t)|nm,p
)1/n

≤ C(m, p, n)ν−γ, n ≥ 1, k ≥ 2. (22)

Moreover, there is an integer N ′ ≥ 1 such that, for m ≥ 0 and p ∈
[1,+∞], we have( 1

T

∫ t+T

t

E|u(s)|nm,p
)1/n

≥ C(m, p)ν−γ, n ≥ 2, t ≥ 2, T ≥ N ′. (23)

In both inequalities

γ = max
(

0, m− 1

p

)
.

For a solution u of (6), we have obtained asymptotic estimates for
expectations of a large class of Sobolev norms. The power of ν is clearly
optimal except for m ≥ 2 and p = 1, since it coincides for upper and
lower estimates: we are in a quasi-stationary regime. Let us stress
again that the upper bound t = 2 for the time needed for a quasi-
stationary regime to be established has no dependence on u0. The
condition t ≥ T0 for some time T0 ≥ 1 is necessary: we need damping
if u0 is large and injection of energy at a kick point if u0 is small.

Now put ûk = ak(u) + ibk(u) (see (5)). For t ≥ 2 and T big enough
(see Theorem 7.1), consider the averaged quantities

Fs,θ =
1

T

∫ t+T

t

∑
k∈I(s,θ) E|ûk|2(τ)∑

k∈I(s,θ) 1
, s, θ > 0,
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where I(s, θ) = [ν−s+θ, ν−s−θ). In the same way as in [2, formulas
(1.6)-(1.8)], the inequalities (22-23) yield

Fs,θ ≤ Cν2s (24)

Fs,θ ≤ C(m)ν2+2m(s−1−θ), m > 0, s > 1 + θ (25)

F1,θ > Cν2+2θ (26)

for ν ≤ ν(θ) with some ν(θ) > 0. These results have some consequences
for the energy spectrum of u.

Indeed, relation (25) implies that the energy of the k-th Fourier

mode, Ek = 1
2T

∫ t+T
t

E|ûk|2, averaged around k = l, where l� ν−1, de-
cays faster than any negative degree of l. On the other hand, by (24)
and (26), the energy Ek, averaged around k = ν−1, behaves as k−2.
That is, the interval k ∈ (ν−1,+∞) is the dissipation range, where the
energy Ek decays fast.

As the force η is smooth in x, then the energy is injected at fre-
quencies k ∼ 1. The estimate (24) readily implies that the energy
E =

∑
Ek of a solution u is supported, when ν → 0, by any interval

(0, ν−γ), γ > 0. That is, the energy range of the solution u is the
interval (0, ν0] (see [5]).

The complement to the energy and dissipation ranges is the inertial
range (ν0, ν−1). At k ∼ ν−1 we have Ek ∼ k−2. It is plausible that in
this range Ek decays algebraically; possibly Ek ∼ k−2. The study of
the energy spectrum of solutions u in the inertial range is one of the
objectives of our future research.

We recall that the behavior of the energy spectrum Ek of turbu-
lent fluid of the form ”some negative degree of k in the inertial range,
followed by fast decay in the dissipation range” is suggested by the Kol-
mogorov theory of turbulence (see [5]). Our results (following those of
A.Biryuk in [2]) show that for the ”burgulence” (described by the Burg-
ers equation, see [1]) the dissipation range is (ν−1,+∞) and suggest
that the power-law in the inertial range is Ek ∼ k−2.

We also see that for ν → 0+, solutions u display intermittency-type
behavior (see [5, Chapter 8]). Indeed, in the quasi-stationary regime,
up to averaging in time and in ensemble, maxx∈S1 ux ∼ 1, whereas∫
S1 u

2
x ∼ ν−1. Thus, typically u has large negative gradients on a small

subset of S1, and small positive gradients on a large subset of S1.
In a future paper, we will look at the same problem with the kick

force replaced by a spatially smooth white noise in time (see [4] for a
possible definition). This problem is, heuristically, the limit case of the
kick-forced problem with more and more frequent appropriately scaled
kicks.
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