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1d, multi-d and fractional Burgers turbulence:
Sobolev norms and small-scale behaviour.
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Motivation: 3D Incompressible Navier-Stokes Equations

∂u

∂t
+ (u · ∇)u = −∇p + ν∆u + η; div u = 0. (NSE)

Supplemented by boundary conditions.

u(t, x) velocity
p(t, x) pressure

ν > 0 constant viscosity coefficient
(ν � 1: turbulent regime)
η(t, x) (random) forcing, smooth
as a function of x

The idea is to study the statistical behaviour of u as ν varies, all
other parameters being fixed.
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The K41 Theory

In Fourier space, a scale is, roughly speaking, the inverse of the
Fourier frequency under consideration.

In a periodic setting, typical small-scale quantities are:
-û(k) for large k.
-u(x + r)− u(x) for small r.

In this talk, we only consider space scales, not time scales.

Small-scale (or rather ’moderately-small scale’) behaviour for a
velocity field of turbulent fluid is a very old problem (1930s-:
Taylor, Onsager...; Kolmogorov 1941).
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Length Scales

There are also estimates for small-scale quantities in K41
(of course non-rigorous: 3D Navier-Stokes is one of the Clay
millenium problems!)
These estimates are related to estimates for Sobolev norms.

Some estimates have been found for 2D Navier-Stokes, non-linear
Schrödiger, KdV (see Kuksin ’97-’98 and the book of
Kuksin-Shirikyan), with and without random forcing.

However, these estimates are not sharp in the limit when the small
parameter ν goes to 0 (different powers for upper and lower ones).

5 / 28



Intro 1D Burgers Fractional Burgers Randomness Multi-d Burgers

1D Periodic Generalised Burgers Equation

ut + (f (u))x = νuxx , t ≥ 0, x ∈ S1 = R/Z. (1DB)

We assume that f is smooth, strongly convex.
Case f (u) = u2/2: usual Burgers equation.

”Pressureless turbulence” considered by many physicists, for
instance Polyakov ’95 (and Zeldovich in the multi-d case ’89).

We assume that ν > 0, ν � 1. Again, only ν varies.

For simplicity, we assume that
∫
S1 u(t, ·) = 0, ∀t.
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Typical Profile of a Burgers Solution
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Amplitude of solution ∼ 1. Cliffs (quasi-shocks): number of cliffs
∼ 1, jump ∼ −1, width ∼ ν.
Burgers turbulence or ”Burgulence”: see [Bec-Khanin 2007].
Ramp-cliff structure ⇒ intermittency.
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Estimates for the Norms of the Solution: Notation

X
a∼ Y : There exists C > 0 such that C−1X ≤ Y ≤ CX .

C only depends on the parameter a, which is never the
viscosity coefficient ν.

| · |p : the Lebesgue norm in the space Lp(S1).

| · |m,p : the Sobolev norm in the space Wm,p(S1).

|| · ||α : the Sobolev norm in the space Hα(S1) = W α,2(S1).

{. . . } : averaging over a time period [T1,T2], where T1,T2 only
depend on |u0|∞, |u′0|∞.
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Estimates for the Sobolev Norms of the Solution

In [Bor3], we obtain sharp estimates for the (1DB) solution.

Theorem 1

{|u|βm,p}
m,p,β∼ ν−βγ , ∀m ≥ 1, 1 < p ≤ ∞, β ≥ 0.

Here γ(m, p) = m − 1/p.

• Upper and lower estimates the same up to a ν-independent
constant.

• For all norms N, {N(u)β} behaves like {N(u)}β.
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Estimates for the Sobolev Norms of the Solution:
Ideas of Proofs

Exact upper estimates are obtained by using Oleinik’s estimate.

Exact lower estimates follow from the energy balance:

d

dt
||u||20 = −2ν||u||21.

combined with the ’inviscid energy dissipation’.

Propagation to higher order Sobolev norms follows from the
Gagliardo-Nirenberg inequality and higher-order energy estimates.
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Upper Bounds: Oleinik’s Estimate

Consider unforced (1DB) on S = (t, x) ∈ [0,T ]× S1:

ut + uux = νuxx .

Consider v = tux . The function v can only reach a str. positive
maximum for t > 0. Then we would have:

vt︸︷︷︸
≥ 0

+u vx︸︷︷︸
0

+t−1(−v + v2) = νvxx︸︷︷︸
≤ 0

.

Thus v ≤ 1 on S . In other words, ux ≤ t−1 ⇒ ”damping”.
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Obtaining lower bounds
We have:

d

dt

∫
S1

u2 = −2

∫
S1

uf ′(u)ux︸ ︷︷ ︸
0

+2ν

∫
S1

uuxx = −2ν

∫
S1

u2x .

Integrating in time, we get:

|u(T )|22 − |u(0)|22 = −2νT{|u|21,2}.

Using the upper estimates, for t ≥ 1 we have that:

|u(T )|22 ≤ (max
x

ux(0, x))2 ≤ CT−2.

Consequently, for T large enough:

{|u|21,2} ≥ Cν−1.
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Small-Scale Results

Sp(`):
∫
S1 {|u(x + `)− u(x)|p}dx , p ≥ 0.

E (k): average of {12 |û(n)|2} over n such that |n| ∈ [C−1k , Ck],
where C > 0 is a constant.

Theorem 2

For ` ∈ [Cν, C ], we have Sp(`)
p∼

{
`p, 0 ≤ p ≤ 1.

`, p ≥ 1.

Theorem 3
For k−1 ∈ [Cν, C ], the energy spectrum satisfies E (k) ∼ k−2.
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The fractional Burgers equation

We consider the equation with a fractional dissipation term
(Λ =

√
−∆):

ut + (f (u))x = −νΛαu, t ≥ 0, x ∈ S1 = R/Z. (1DB)

Periodic zero-average setting: fractional Laplacian well-defined as a
Fourier multiplier by (2π|k |)α.

Physical motivation: study of combustion (Clavin-Denet).
Mathematical study: Alibaud-Imbert-Vovelle, Alfaro-Droniou,
Kiselev-Nazarov-Shterenberg, Constantin-Vicol...
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Scaling argument and technical difficulties (I)

Scaling analysis (` caracteristic length scale):

ut + u︸︷︷︸
1

ux︸︷︷︸
`−1

= −ν Λαu︸︷︷︸
`−α

.

` ∼ νβ, β =
1

α− 1
.

Supercritical case 0 < α < 1 (β < 0): if initial data large, solutions
stop being smooth. Indeed:

||u||20 ≤ |u|21,1 ≤ t−2; ||u||2α/2 ≤ C (α)|u|21,1 ≤ C ,

On the other hand if solutions are smooth, no dissipation in the
inviscid limit since:

d ||u||20/dt = −2ν||u||2α/2 =⇒ contradiction.
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Scaling argument and technical difficulties (II)

ut + u︸︷︷︸
1

ux︸︷︷︸
`−1

= −ν Λαu︸︷︷︸
`−α

.

Critical case α = 1 (β =∞): we still have regularity. Exponentially
small phenomenon (see Kiselev-Nazarov-Shterenberg).

Case α > 2 problematic since Λα is not positive (therefore no good
maximum principle).

Conclusion: The nicest case is the subcritical case 1 < α < 2.

16 / 28



Intro 1D Burgers Fractional Burgers Randomness Multi-d Burgers

Constantin-Vicol maximal principle

Assume 0 < α < 2. Let v be a smooth function on S1 and
consider a point x1 where vx(·) reaches its maximum on S1. Then
we have the following alternative (which corresponds to a nonlinear
maximum principle:)

• Either vx(x1) . max(v(·)).

• Or −Λαvx(t, x1) & (vx(t, x1))1+α/|v(t)|α∞.

Proved in [Constantin-Vicol ’12] using ideas form
[Córdoba-Córdoba ’04].
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Results for Sobolev norms and small-scale quantities

Exactly the same as in the case α = 2, except that ν has to be
replaced with νβ as expected.

The nonlinear maximum principle gives us optimal upper bounds;
lower ones follow by Gagliardo-Nirenberg.
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The random force

We only deal with additive random forcing.

η(t, x) = ηω(t, x): smooth in space random force, white (or
kicked) in time. Idea: independent white noises on each Fourier
mode (decreasing amplitudes ensure smoothness).

{. . . }: averaging both over the time period
[t, t + T0], where t ≥ T0 and T0 is a constant,
and in ensemble (taking the expected value).
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The results and the methods

The results are exactly the same as in the deterministic case, up to
the change of notation for the brackets (see previous slide).

The basic ideas of the methods are also the same, except we have
to ensure that everything holds in the stochastic case.
In particular, we need Itô’s formula, but also more refined tools
such as the Burkholder-Davis-Gundy inequality.
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Stationary Measure

The solutions u define a Markov process in L1(S1).

Existence of a stationary measure: Bogolyubov-Krylov.

Uniqueness and rate of convergence to the stationary measure:
coupling argument (cf. papers of Kuksin-Shirikyan). The Markov
semigroup St is nonexpanding in L1 in the 1d case (in multi-d
argument OK with different norm):

|Sωt u0 − Sωt ũ0|1 ≤ |u0 − ũ0|1, ∀ω.

Thus, the distance between the solutions is made small since the
solutions themselves become small during ”small-noise intervals”,
and then this distance is nonincreasing.

21 / 28



Intro 1D Burgers Fractional Burgers Randomness Multi-d Burgers

Stationary Measure: the Speed of Convergence

The arguments above give us a convergence in Ct−δ,
independently from the viscosity and the initial data.

In a recent preprint [Bor5], we gave an elementary proof of the fact
that this speed is exponential in 1D in the inviscid case using
Lagrangian methods (cf. [E-Khanin-Mazel Sinai ’00]).

More involved statement in [Bec-Frisch-Khanin ’00] (see also the
recent preprint [Iturriaga-Khanin-Zhang] in the multi-d case).
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Multi-d Burgers Turbulence: Setting

ut + (∇f (u) · ∇) · u = ν∆u +∇η, t ≥ 0, x ∈ Td = (R/Z)d .

Key assumption: u = ∇ψ (conserved by flow), where the potential
ψ solves the viscous Hamilton-Jacobi equation:

ψt + f (∇ψ) = ν∆ψ + η, t ≥ 0, x ∈ Td .

As previously, f smooth, strongly convex, of moderate growth.
ν > 0, ν � 1, η smooth in space and white in time.
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Multi-d Burgers turbulence: What is Expected
One expects a tesselation of smooth zones separated by shocks of
codimension 1. In directions which are transverse to the shock, the
longitudinal projection of the solution looks like a 1d solution
[Gurbatov-Moshkov-Noullez 2010].
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Notation: What Changes
Compared to 1D

The Sobolev norms are defined as follows:

|v|m,p =
∑

α1+···+αd=m, 1≤i≤d

∣∣∣∣ ∂mvi
∂xα1

1 . . . ∂xαd
d

∣∣∣∣
p

.

The notation for small-scale quantities is:

Sp(r):
{∫

x∈Td |u(x + r)− u(x)|pdx
}

.

Sp(`): c−1d `−(d−1)
∫
r∈`Sd−1 Sp(r)dσ(r), p ≥ 0.

E (k): Same definition as above: average of {12 |û(n)|2} over n such
that |n| ∈ [C−1k , Ck], where C > 0 is a constant.
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Upper and Lower Estimates:
What Changes Compared to 1D

The statements are almost exactly the same, up to the fact that
we do not have estimates for the Sobolev norms m ≥ 1, p =∞.

In the deterministic case (or in the kicked case), we need mild
anisotropy assumptions on the initial data.

It should be possible to combine multi-d and a fractional
dissipation term.
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Concluding Remarks

Our results give exact and rigorously proved small-scale estimates
for a broad class of 1d and multid models which have a ”good”
maximum principle.

They confirm previous physical predictions under very general
conditions on the initial data, for a physically reasonable class of
forces. Our small-scale estimates also hold for solutions of the
inviscid equation, and for the stationary solution.

First sharp estimates for Sobolev norms (and almost sharp
estimates for small-scale quantities) in the unforced case are due to
[Biryuk 2001].

Ongoing work on small-scale phenomena for more general
equations with P.Biler and G.Karch (Wroclaw) and P.Laurençot
(Toulouse).
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