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Abstract. In this survey, we review the rigorous results on turbu-
lence for the generalised space-periodic Burgers equation:

ut + f ′(u)ux = νuxx + η, x ∈ S1 = R/Z,
studied by A.Biryuk and the author in [8, 10, 12, 13]. Here, f is smooth
and strongly convex, whereas the constant 0 < ν � 1 corresponds to
a viscosity coe�cient.
We will consider both the unforced case (η = 0) and the randomly

forced case, when η is smooth in x and irregular (kick or white noise)
in t. In both cases, sharp bounds for Sobolev norms of u averaged in
time and in ensemble of the type Cν−δ, δ ≥ 0, with the same value of
δ for upper and lower bounds, are obtained. These results yield sharp
bounds for small-scale quantities characterising turbulence, con�rming
the physical predictions [7].

Abbreviations

• 1d, 3d, multi-d: 1, 3, multi-dimensional
• a.e.: almost everywhere
• a.s.: almost surely
• (GN): the Gagliardo�Nirenberg inequality (Lemma 1.1)
• i.i.d.: independent identically distributed
• r.v.: random variable

Introduction

The generalised 1d space-periodic Burgers equation

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= 0, ν > 0, x ∈ S1 = R/Z (1)

(the classical Burgers equation [15] corresponds to f(u) = u2/2) is a
popular model for the Navier�Stokes equation. Indeed, both of them
have similar nonlinearities and dissipative terms. Therefore, the physi-
cal arguments justifying various theories of hydrodynamical turbulence
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can usually be applied to describe the behaviour of solutions to the
Burgers equation. Thus, this equation is often used as a benchmark
for turbulence theories. It is also used as a benchmark for the numeri-
cal methods for turbulent �ows. For more information, see [7].
For ν � 1 and f strongly convex, i.e. satisfying:

f ′′(x) ≥ σ > 0, x ∈ R, (2)

solutions of (1) exhibit turbulent-like behaviour, called Burgers turbu-
lence or �Burgulence� [6, 7]. To simplify the presentation, we restrict
ourselves to solutions with zero mean value in space:∫

S1

u(t, x)dx = 0, ∀t ≥ 0. (3)

The space mean value does not change in time. Indeed, since u is
1-periodic in space, we have:

d

dt

∫
S1

u(t, x)dx = −
∫
S1

f ′(u(t, x))ux(t, x)dx+ ν

∫
S1

uxx(t, x)dx = 0.

If the mean value of the initial value u0 on S1 is equal to b 6= 0, we
may consider the zero mean value function

v(t, x) = u(t, x+ bt)− b,
which is a solution of (1) with f(y) replaced by g(y) = f(y + b) − by.
So the assumption (3) does not lead to a loss of generality.
In this survey, we consider both the unforced equation (1) and the

generalised Burgers equation with an additive forcing term, smooth in
space and irregular in time (see Subsection 1.2). We summarise the
estimates obtained by Biryuk and the author [8, 10, 12, 13] for the
Sobolev norms as well as for the dissipation length scale and the small-
scale quantities relevant for the theory of hydrodynamical turbulence:
the structure functions and the energy spectrum. This survey is par-
tially based on the Ph.D. thesis of the author [11], where some technical
points are covered in more detail.
The major di�erence between the unforced and the white-forced gen-

eralised Burgers equation is the energy picture. In the �rst case, we
have a dissipative system: the L2 norm is decreasing in time. Conse-
quently, the regime where the energy

∫
S1 u

2/2 dissipates fast enough
(which yields a time-averaged lower bound on the Sobolev norms) is
transient and depends on the initial condition through a certain quan-
tity D (see (15) for its de�nition). On the contrary, in the second case,
after a time needed either to dissipate energy if u0 is large or to supply
energy if u0 is small, we are in a quasi-stationary regime, in the sense
that in average on large enough time intervals, we have an approximate
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balance between the dissipation rate −νE‖u‖21 and the constant energy
supply rate I0.
For the unforced Burgers equation, some upper estimates for small-

scale quantities are well-known. For example, Lemma 4.1 of our work
is an analogue in the periodic setting of the one-sided Lipschitz esti-
mate due to Oleinik, and the upper estimate for the structure function
S1(`) follows from an estimate for the solution in the class of bounded
variation functions BV . For references on these classical aspects of the
theory of scalar conservation laws, see [20, 45, 49]. For some upper es-
timates for small-scale quantities, see [38, 53]. To our best knowledge,
rigorous lower estimates were not known before Biryuk's and our work.
The research on the small-scale behaviour of solutions for the (forced)

generalised Burgers equation is motivated by the problem of turbulence.
It has been inspired by the pioneering works of Kuksin, who obtained
lower and upper estimates for Sobolev norms by negative powers of the
viscosity for a large class of equations (see [41, 42] and references in
[42]). For more recent results obtained by Kuksin, Shirikyan and oth-
ers for the 2D Navier�Stokes equation, see the book [43] and references
therein.
The estimates for Sobolev norms and for small-scale quantities pre-

sented in our work are asymptotically sharp in the sense that viscosity
enters lower and upper bounds at the same negative power. Such esti-
mates are not available for the more complicated equations considered
in [41, 42, 43].
This survey is also concerned with the problem of the invariant mea-

sure for the stochastic generalised Burgers equation. This problem has
been treated prevously for the nonlinearity uux by Sinai [51, 52] and in
the inviscid limit ν → 0 by E, Khanin, Mazel and Sinai [22]; see also
[28, 31]. Here we present a simple approach to this problem, described
in [13], which consists in using L1-contractivity of the �ow correspond-
ing to the equation, and a coupling argument.
We do not consider other aspects of Burgulence, such as the inviscid

limit, the behaviour of solutions for spatially rough forcing and the
noncompact setting. We refer the reader to the survey by Bec and
Khanin [7], which is concerned with physical aspects of the theory of
Burgulence, and to the survey by Bakhtin [3], which discusses related
probabilistic and ergodic results.

Organisation of the paper: We begin by introducing the notation
and setup in Section 1. In Section 2, we present the K41 theory as well
as the physical predictions for Burgulence. In Section 3, we formulate
the main results.
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In Section 4, we consider the solution u(t, x) of the unforced equation
(1). In Subsection 4.1, we begin by recalling the upper estimate for the
quantity

max
s∈[t,t+1], x∈S1

ux(s, x), t ≥ 1.

Using this bound, we get upper and lower estimates for the Sobolev
norms of u. In Subsection 4.2 we study the implications of our re-
sults for Burgulence theory. Namely, we give sharp upper and lower
bounds for the dissipation length scale, the increments and the spec-
tral asymptotics for the �ow u(t, x), which hold uniformly for ν ≤ ν0.
The quantity ν0 > 0 depends only on f and on the initial condition.
These results justify rigorously the physical predictions for small-scale
quantities which characterise Burgulence.
In the two last sections of the paper, we consider the randomly forced

generalised Burgers equation. In Section 5, we obtain analogues of the
results in Section 4, which also con�rm the corresponding physical pre-
dictions [7]. Section 6 is concerned with the stationary measure.

1. Notation and setup

All functions which we consider in this paper are real-valued, except
in Section 2, where vectors in R3 are written in bold script.

1.1. Functional spaces and Sobolev norms. Consider a zero mean
value integrable function v on S1. For p ∈ [1,∞], we denote its Lp norm
by |v|p. The L2 norm is denoted by |v|, and 〈·, ·〉 stands for the L2 scalar
product. From now on Lp, p ∈ [1,∞], denotes the space of zero mean
value functions in Lp(S

1). Similarly, C∞ is the space of C∞-smooth
zero mean value functions on S1.
For a nonnegative integer m and p ∈ [1,∞], Wm,p stands for the

Sobolev space of zero mean value functions v on S1 with �nite homo-
geneous norm

|v|m,p =

∣∣∣∣dmvdxm

∣∣∣∣
p

.

In particular, W 0,p = Lp for p ∈ [1,∞]. For p = 2, we denote Wm,2 by
Hm and abbreviate the corresponding norm as ‖v‖m.
Since the length of S1 is 1, we have:

|v|1 ≤ |v|∞ ≤ |v|1,1 ≤ |v|1,∞ ≤ · · · ≤ |v|m,1 ≤ |v|m,∞ ≤ . . .

We recall a version of the classical Gagliardo�Nirenberg inequality (see
[21, Appendix]):
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Lemma 1.1. For a smooth zero mean value function v on S1,

|v|β,r ≤ C |v|θm,p |v|
1−θ
q ,

where m > β ≥ 0, and r is de�ned by

1

r
= β − θ

(
m− 1

p

)
+ (1− θ)1

q
,

under the assumption θ = β/m if p = 1 or p = ∞, and β/m ≤ θ < 1
otherwise. The constant C depends on m, p, q, β, θ.

From now on, we will refer to this inequality as (GN).
For any s ≥ 0, Hs stands for the Sobolev space of zero mean value

functions v on S1 with �nite norm

‖v‖s = (2π)s
(∑
k∈Z

|k|2s|v̂(k)|2
)1/2

, (4)

where v̂(k) are the complex Fourier coe�cients of v(x). For an integer
s = m, this norm coincides with the previously de�ned Hm norm. For
s ∈ (0, 1), ‖v‖s is equivalent to the norm

‖v‖
′

s =

(∫
S1

(∫ 1

0

|v(x+ `)− v(x)|2

`2s+1
d`
)
dx

)1/2

(5)

(see [1, 54]).
Subindices t and x, which can be repeated, denote partial di�erenti-

ation with respect to the corresponding variables. We denote by v(m)

the m-th derivative of v in the variable x. For brevity, the function
v(t, ·) is denoted by v(t).

1.2. Well-posedness and di�erent types of forcing. In Section 4,
we consider the unforced equation (1) with a C∞-smooth initial con-
dition u0. This equation has a unique solution in C∞: see for instance
[39, Chapter 5].
In Section 5, we consider the generalised Burgers equation with two

di�erent types of additive forcing in the right-hand side, taking again
a C∞-smooth initial condition u0. Since the forcing always has zero
mean value in space and the initial condition satis�es (3), its solutions
satisfy (3) for all time.
First, we consider the kick force. We begin by providing the space L2

with the Borel σ-algebra (Ω,F). Then we consider an L2-valued r.v.
ζ = ζω on a probability space (Ω,F ,P). We suppose that ζ satis�es
the following three properties.
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(i) (Non-triviality)

P(ζ ≡ 0) < 1.

(ii) (Finiteness of moments for Sobolev norms) For every
m ≥ 0, we have:

Im = E ‖ζ‖2m < +∞.

(iii) (Vanishing of the expected value)

Eζ ≡ 0.

It is not di�cult to construct explicitly ζ satisfying (i)-(iii). One
possibilty is to suppose that the real Fourier coe�cients of ζ, de�ned
for k > 0 by

ak(ζ) =
√

2

∫
S1

cos(2πkx)u(x); bk(ζ) =
√

2

∫
S1

sin(2πkx)u(x), (6)

are independent r.v. with zero mean value and exponential moments
tending to 1 fast enough as k → +∞.
Now let ζi = ζωi , i ∈ N be i.i.d. r.v.'s having the same distribution as

ζ. The sequence (ζi)i≥1 is a r.v. de�ned on a probability space which
is a countable direct product of copies of Ω. From now on, this space
will itself be called Ω. The meaning of F and P changes accordingly.
For ω ∈ Ω, the kick force ξω is by de�nition the distribution de�ned

by

ξω(t, x) =
+∞∑
i=1

δt=i ζ
ω
i (x),

where δt=i denotes the Dirac measure at the time moment i.
The kick-forced equation corresponds to the case where, in the right-

hand side of (1), 0 is replaced by the kick force:

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= ξω. (7)

This means that for integers i ≥ 1, at the moments i the solution u(x)
instantly increases by the kick ζωi (x), and that between these moments
u solves (1). We make the additional assumption that the solution is
a right-continuous function of time.
Existence and uniqueness of spatially smooth solutions to (7) follows

directly from the corresponding fact for the unforced equation.

The other type of forcing considered here is the white force. Heuris-
tically this force corresponds to a scaled limit of kick forces with more
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and more frequent kicks.
We provide each space Wm,p with the Borel σ-algebra. Then we

consider an L2-valued Wiener process

w(t) = wω(t), ω ∈ Ω, t ≥ 0,

de�ned on a complete probability space (Ω, F , P), and an adapted
�ltration {Ft, t ≥ 0} (i.e., for t ≥ 0, w(t) is Ft-measurable, and Ft
and the σ-algebra generated by the r.v.'s w(t + s) − w(t), s ≥ 0 are
independent).
We assume that for each m and each t ≥ 0, w(t) ∈ Hm, almost

surely. That is, for ζ, χ ∈ L2,

E(〈w(s), ζ〉 〈w(t), χ〉) = min(s, t) 〈Qζ, χ〉 ,

where Q is a symmetric operator which de�nes a continuous mapping
Q : L2 → Hm for every m. Thus, w(t) ∈ C∞ for every t, almost surely.
From now on, we rede�ne the Wiener process so that this property
holds for all ω ∈ Ω. We will denote w(t)(x) by w(t, x). For m ≥ 0, we
denote by Im the quantity

Im = TrHm(Q) = E ‖w(1)‖2m .

For more details on Wiener processes in Hilbert spaces, see [18, Chapter
4] and [44].
It is not di�cult to construct w(t) explicitly. For instance, we could

consider the particular case of a �diagonal� noise:

w(t) =
√

2
∑
k≥1

akwk(t) cos(2πkx) +
√

2
∑
k≥1

bkw̃k(t) sin(2πkx),

where wk(t), w̃k(t), k > 0, are standard independent Wiener processes
and

Im =
∑
k≥1

(a2k + b2k)(2πk)2m <∞

for each m. From now on, dw(s) denotes the stochastic di�erential
corresponding to the Wiener process w(s) in the space L2.
Now �x m ≥ 0. By Fernique's Theorem [44, Theorem 3.3.1], there

exist λm, Cm > 0 such that

E exp
(
λm ‖w(T )‖2m /T

)
≤ Cm, T ≥ 0. (8)

Therefore by Doob's maximal inequality for in�nite-dimensional sub-
martingales [18, Theorem 3.8. (ii)] we have:

E sup
t∈[0,T ]

‖w(t)‖pm ≤
( p

p− 1

)p
E ‖w(T )‖pm < +∞, (9)
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for any T > 0 and p ∈ (1,∞).
The white-forced equation is obtained by replacing 0 by the weak

derivative ηω = ∂wω/∂t in the right-hand side of (1). Here, wω(t), t ≥ 0
is the Wiener process de�ned above.

Definition 1.2. For T ≥ 0, we say that an H1-valued process u(t, x) =
uω(t, x) is a solution of the equation

∂uω

∂t
+ f ′(uω)

∂uω

∂x
− ν ∂

2uω

∂x2
= ηω (10)

for t ≥ T if:
(i) For every t ≥ T , ω 7→ uω(t, ·) is Ft-measurable.
(ii) For every ω, t 7→ uω(t, ·) is continuous in H1 for t ≥ T and

satis�es

uω(t) =uω(T )−
∫ t

T

(
νLuω(s) +

1

2
B(uω)(s)

)
ds

+ wω(t)− wω(T ), (11)

where

B(u) = 2f ′(u)ux; L = −∂xx.
For brevity, solutions for t ≥ 0 will be referred to as solutions.

Existence and uniqueness of smooth solutions to (10) is proved by
the mild solution technique (cf. [19, Chapter 14]). Since the forcing
and the initial condition are smooth in space, the mapping t 7→ u(t) is
time-continuous in Hm for every m, and t 7→ u(t) − w(t) has a space
derivative in C∞ for all t, a.s.
Now consider, for a solution u(t, x) of (10), the functionalGm(u(t)) =
‖u(t)‖2m and apply Itô's formula [18, Theorem 4.17]:

‖u(t)‖2m = ‖u0‖2m −
∫ t

0

(
2ν ‖u(s)‖2m+1 + 〈Lmu(s), B(u)(s)〉

)
ds+ tIm

+ 2

∫ t

0

〈Lmu(s), dw(s)〉

(we recall that Im = Tr(Qm).) Consequently,

d

dt
E ‖u(t)‖2m = −2νE ‖u(t)‖2m+1 − E 〈Lmu(t), B(u)(t)〉+ Im.

As 〈u, B(u)〉 = 0, for m = 0 this relation becomes

d

dt
E |u(t)|2 = I0 − 2νE ‖u(t)‖21 . (12)
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1.3. Notation and agreements. When considering a Sobolev norm
in Wm,p, the quantity γ = γ(m, p) denotes max(0, m− 1/p).
In Subsection 2.1, v(t,x) denotes the velocity of a 3d �ow with pe-

riod 1 in each spatial coordinate. In the whole paper, u(t, x) denotes a
solution of the generalised Burgers equation with a given initial condi-
tion u0 = u(0, ·). In Section 4, we deal with the equation (1) under the
assumptions (2-3). In Section 5 we deal with the equation (10) under
the assumptions (2-3) and under the additional condition

∀m ≥ 0, ∃h ≥ 0, Cm > 0 : |f (m)(x)| ≤ Cm(1 + |x|)h, x ∈ R, (13)

where h = h(m) is a function such that

1 ≤ h(1) < 2 (14)

(the lower bound on h(1) follows from (2)). The results in that section
also hold for the kicked equation (7), under the same assumptions as
for (10), except (14), which is unnecessary.
When we consider the randomly forced generalised Burgers equation,

P et E denote, respectively, the probability and the expected value with
respect to the probability measure Ω (cf. Section 1.2).
All quantities denoted by C with sub- or superindices are positive

and nonrandom. Unless otherwise stated, they depend only on the
following parameters:

• When dealing with the K41 theory, the statistical properties of
the forcing.

• When studying the unforced generalised Burgers equation, the
function f determining the nonlinearity f ′(u)ux, as well as the
parameter

D = max(|u0|−11 , |u0|1,∞) (15)

which characterises how generic the initial condition is.

• When studying the randomly forced generalised Burgers equa-
tion, the function f determining the nonlinearity f ′(u)ux, as
well as the statistical properties of the forcing. In the case of
a kick force, by statistical properties we mean the distribution
function of the i.i.d. r.v.'s ζi. In the case of a white force,
we mean the correlation operator Q for the Wiener process w
de�ning the random forcing.

In particular, these quantities never depend on the viscosity coe�cient
ν.
Constants which also depend on parameters a1, . . . , ak are denoted
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by C(a1, . . . , ak). By X
a1,...,ak

. Y we mean that X ≤ C(a1, . . . , ak)Y .

The notation X
a1,...,ak∼ Y stands for

Y
a1,...,ak

. X
a1,...,ak

. Y.

In particular, X . Y and X ∼ Y mean that X ≤ CY and C−1Y ≤
X ≤ CY , respectively. Note that this notation is never used wit the
parameter ν: in other words, dependence on the viscosity is always
explicitly speci�ed.
We use the notation g− = max(−g, 0) and g+ = max(g, 0).
In Subsection 2.1, the brackets 〈·〉 denote the expected value. For the

meaning of the brackets {·}, see Subsection 4.1 in the deterministic case
(where they correspond to averaging in time) and Subsection 5.3 in the
random case (where they correspond to averaging in time and taking
the expected value). The de�nitions of the relevant ranges and the
length scales, as well as of the small-scale quantities, i.e. the structure
functions Sp,α and Sp,1 = Sp and the spectrum E(k) depend on the
setting: see Subsections 2.1, 2.2, 4.2 and 5.3.

2. Turbulence and the Burgers equation

2.1. Turbulence, K41 theory, intermittency. It is well-known that
giving a precise de�nition of turbulence is problematic. However, some
features are generally recognised as characteristic of turbulence: many
degrees of freedom, unpredictability/chaos, (small-scale) irregularity...
For a more detailed discussion, see [27, 55]. Here, we will only present
(in a slightly modi�ed form) the vocabulary of the theory of turbulence
which is relevant to the study of the Burgers model. In particular, we
will proceed as if the �ow v(t,x) under consideration is periodic in
space, without concerning ourselves with the physical relevance of K41
in this setting. Without loss of generality, we may assume that v is 1-
periodic in each coordinate x1, x2, x3. Let us denote by ν the viscosity
coe�cient; we only consider the turbulent regime 0 < ν � 1.
We de�ne the space scale as the inverse of the frequency under con-

sideration. In particular, the Fourier coe�cients v̂(k) for large values
of k or, in the physical space, the increments v(x+ r)−v(x) for small
values of r, are prototypical small-scale quantities.
The theory which may be considered as a starting point for the

modern study of turbulence is essentially contained in three articles by
Kolmogorov which have been published in 1941 [33, 34, 35]. Thus, it
is referred to as the K41 theory.
The philosophy behind K41 is that although large-scale characteris-

tics of a turbulent �ow are clearly individual (depending on the forcing
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and/or on the boundary conditions), small-scale characteristics display
some non-trivial universal features. To make this point clearer, we will
introduce several de�nitions.
The dissipation scale `d is the smallest scale such that for all |k| �

`−1d , the Fourier coe�cients of the function v decrease super-
polynomially in |k|, uniformly in ν. The interval Jdiss = (0, `d] is called
the dissipation range. The K41 theory claims that `d = Cν3/4. The
energy range Jenerg = (`e, 1] consists of the scales such that the corre-
sponding Fourier modes support most of the L2 norm of v:∑

|k|<`−1
e

〈|v̂(k)|2〉 �
∑
|k|≥`−1

e

〈|v̂(k)|2〉.

K41 states that `e = C.
Finally Jinert = (`d, `e] is the inertial range. K41 states that Jinert =

(Cν3/4, C]. This is the most interesting zone, where the �ow exhibits
non-trivial universal small-scale behaviour which will be described more
precisely below. Heuristically, in the dissipation range the damping
corresponds to an extinction of all relevant features of the �ow, and in
the energy range the �ow is dominated by a heavy dependence on the
large-scale features, i.e. the random forcing.

Figure 1. Kolmogorov scales

Two quantities used to describe the small-scale behaviour of a �ow
v(t,x) at a �xed time moment are:

• On one hand, the longitudinal structure function

S‖p(x, r) =

〈∣∣∣∣∣(v(x + r)− v(x)) · r
|r|

∣∣∣∣∣
p〉

(16)

• On the other hand, the energy spectrum

E(k) =

∑
|n|∈[M−1k,Mk] 〈|v̂(n)|2〉∑

|n|∈[M−1k,Mk] 1
, (17)

i.e. the average of 〈|v̂(n)|2〉 over a layer of n such that |n| ∼ k.
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Figure 2. Example of a function exhibiting small-scale intermittency

The K41 theory predicts that under some conditions on the �ow, for
` = |r| ∈ Jinert and for every x, we have:

S‖p(x, r)
p∼ `p/3, p ≥ 0. (18)

On the other hand, for k such that k−1 ∈ Jinert, K41 states that

E(k) ∼ k−5/3 (19)

(see [46, 47]).
The K41 predictions are in good agreement with experimental and

numerical data for the energy spectrum and for the structure functions
Sp, p = 2, 3. However, there are important discrepancies for the func-
tions Sp, p ≥ 4 [27, Chapter 8]. One of the possible explanations for
these discrepancies involves the concept of spatial intermittency.
We say that a function is intermittent in space if at a given time

moment, it is very strongly excited on a small subset of its domain of
de�nition, as for the function whose graph is given in Figure 2.
Intermittency at the scale ` is quanti�ed by �atness, de�ned as

F (`) = S
‖
4(`)/S

‖
2(`)2 :

the larger the �atness, the more intermittent is the function. Therefore
the K41 theory does not predict the intermittent features observed in
the inertial range in turbulent �ows, such as vortex stretching, which
are clear manifestations of intermittency [50]. Indeed, for ` ∈ J2 the
K41 predictions yield that

F (`) ∼ `4/3/(`2/3)2 = 1.

Two parallel theories, due respectively to Kolmogorov himself [36]
and to Frisch and Parisi [48] both give an explanation for the discrep-
ancies between K41 and the experimental and numerical data which
emphasises the role of spatial intermittency.

2.2. Burgulence. The 1d Burgers equation

ut + uux = νuxx, (20)
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where ν > 0 is a viscosity coe�cient, has �rst been considered by
Forsyth [25] and Bateman [5] in the �rst decades of the XXth century.
Here, we will only consider the space-periodic case, which after rescal-
ing reduces to x ∈ S1 = R/Z.
Around 1950, the Burgers equation attracted considerable interest

in the scienti�c community. In particular, it has been studied by the
Dutch physicist whose name it bears ([14, 15]; see also [4]). His goal
was to consider a simpli�ed version of the incompressible Navier�Stokes
equation

ut + (u · ∇)u = ν∆u−∇p; ∇ · u = 0, (21)

which would keep some of its features. This hope was shared by von
Neumann [56, p. 437].
The Hopf-Cole-Florin transformation ([17, 24, 30]; see [9] for a his-

torical account) reduces the Burgers equation to the heat equation.
Indeed, if u is the solution of (20) corresponding to an initial condition
u0, then u(t, x) is the space derivative of the function

−2ν ln(φ(t, x)),

where φ is the solution of the heat equation

φt = νφxx

corresponding to the initial condition φ0 = exp(−H0/2ν). Here, H0

is a primitive of u0. This transformation can also be applied to the
multi-d potential Burgers equation:

ut + (u · ∇)u = ν∆u; u = −∇ψ. (22)

The fact that the Burgers equation can be reduced to the heat equa-
tion means that it is integrable and therefore its solutions do not exhibit
chaotic behaviour. However, the Hopf-Cole-Florin transformation in-
volves exponentials of a quantity divided by ν and does not provide
information about the small-scale behaviour of solutions in the turbu-
lent regime corresponding to 0 < ν � 1 in a transparent way. More-
over, this transformation cannot be applied to the generalised Burgers
equation considered in our survey. Therefore we will not use this trans-
formation, and our arguments will extend to the generalised Burgers
equation (1) under the additional assumption (2).
The small-scale behaviour of solutions to the Burgers equation has

been studied on a qualitative level by many physicists [2, 16, 26, 32, 37].
There is an agreement about the behaviour of the increments and of
the energy spectrum in the inertial range, which corresponds to the
interval Jinert = (Cν,C]. To explain the physical arguments in [2],
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we need to give more details on the structure of the solutions to (20).
We assume that both the initial condition u0 and its derivative have
amplitude of the order 1.
First, consider the inviscid Hopf equation which is the limit case

ν = 0 of (20). Its solution is only smooth during a �nite interval of time:
it can be implicitly constructed using the method of characteristics (see
for instance [20]). This method tells us that while the solution remains
smooth, the value of u is constant along the lines (t, x+ tu0(x)) in the
space-time. However, if u0 is not constant, then lines corresponding to
di�erent values of u0 cross after a �nite time, forbidding the existence
of smooth solutions. Nevertheless, a weak entropy solution can still be
uniquely de�ned for all time in the class of bounded variation func-
tions BV (S1). Such a solution is a limit in L1 of classical solutions for
the viscous equation as ν → 0. More precisely, this solution exhibits
the N -wave behaviour [23], i.e. solutions are composed of waves sim-
ilar to the Cyrillic capital letter I (the mirror image of N). In other
words, at a �xed (large enough) time t the solution u(t, ·) alternates
between negative jump discontinuities and smooth regions where the
derivative is positive and of the order 1. This is a clear manifestation
of small-scale intermittency in space. Note that the solutions of (20)
remain of order 1 during a time of order 1. On the other hand, for
t → +∞ the solutions decay at least as Ct−1 in any Lebesgue space
Lp, 1 ≤ p ≤ +∞, uniformly in ν (cf. for instance [40]).
Now let us give a more precise description of the N -wave behaviour.

For a typical initial data u0 (i.e. for max |u0| ∼ 1 and max |(u0)x| ∼ 1)
and for t > 1/(min(u0)x), t ∼ 1, it is numerically observed [2] that
a �typical� solution u(t, ·) of the viscous equation has the following
features (cf. Figure 3):

• Amplitude of the solution: ∼ 1.

• Number of cli�s per period: ∼ 1.

• �Vertical drop� at a cli�: ∼ −1.

• �Width� of a cli�: ∼ ν.

Now we denote by Sp(`) the structure function de�ned by

Sp(`) =

∫
S1

|u(x+ `)− u(x)|pdx, p ≥ 1. (23)

For ` ∈ Jinert, ` is typically smaller than the interval between two
cli�s, but larger than the width of a cli�. Aurell, Frisch, Lutsko and
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Figure 3. Typical solution of the Burgers equation

Vergassola [2] observe that there are three possibilities for the interval
[x, x+ `].

• [x, x+ `] covers a large part of a cli�.
Probability = C`. u(x + `) − u(x) = −C︸︷︷︸

cliff

+ C`︸︷︷︸
ramps

= −C.

|u(x+ `)− u(x)|p p∼ 1.

• [x, x+ `] covers a small part of a cli�.
The contribution of this term is negligible.

• [x, x+ `] does not intersect a cli�.
Probability = 1− C` = C. u(x+ `)− u(x) = C`︸︷︷︸

ramp

.

|u(x+ `)− u(x)|p p∼ `p.

Thus, Sp(`)
p∼ `+ `p

p∼
{
`p, 0 ≤ p ≤ 1,

`, p ≥ 1.

In other words, for p ≥ 0 the description above implies that for
` ∈ Jinert, the structure functions behave as follows:

Sp(`)
p∼
{
`p, 0 ≤ p ≤ 1,

`, p ≥ 1
(24)

Consequently, for ` in the inertial range, the �atness F (`) behaves as
`−1.

Now we remark that asymptotically, the Fourier coe�cients of an
N -wave satisfy |û(k)| ∼ k−1. Thus, it is natural to conjecture that for
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Figure 4. Space scales for the Burgers equation

ν small and for a certain range of k, energy-type quantities 1
2
|û(k)|2 be-

have, in average, as k−2. Thus, for k−1 ∈ Jinert the physical predictions
give E(k) ∼ k−2 with the same de�nition as above, up to the absence
of the brackets 〈·〉 for E(k) [16, 26, 32, 37]. The restriction k−1 ∈ Jinert
is due to a simple dimensional argument, ν being the natural small
scale (width of a cli�) for the solutions.
Beginning from the 1980s, there has been an increasing interest in

random versions of the Burgers equation. The most studied model has
been the one with additive white in time noise, more or less smooth in
space. Here, we will only consider the case where the noise is
C∞-smooth in space; for the general case, see the surveys [6, 7]. In this
setting, numerical simulations and physical predictions give exactly the
same results as in the deterministic case, up to the fact that we con-
sider the expected values of the quantities [29]. Heuristically, this is
due to the fact that forcing acts on large scales, in the energy range,
and thus only in�uences smaller scales indirectly, as an energy source.

3. Main results

In Section 4, we are concerned with the deterministic Burgers
equation. First, in Subsection 4.1, we prove sharp upper and lower
bounds for some Sobolev norms of u. In Lemma 4.1, we recall the key
estimate

ux(t, x) ≤ min(D, σ−1t−1). (25)

For the de�nition of D, see (15). The main results for the Sobolev
norms of solutions are summed up in Theorem 4.8. Namely, for m =
0, 1 and p ∈ [1,∞] or for m ≥ 2 and p ∈ (1,∞], we have:(

{|u(t)|αm,p}
)1/α m,p,α∼ ν−γ, α > 0, (26)

where {·} denotes averaging in time over the interval [T1, T2] de�ned
by (38). We recall that γ(m, p) = max(0,m− 1/p).
In Subsection 4.2 we obtain sharp estimates for analogues of the

quantities characterising the hydrodynamical turbulence. In what fol-
lows, we assume that ν ∈ (0, ν0], where ν0 ∈ (0, 1] depends only on f



17

and onD. To begin with, we de�ne the non-empty and non-intersecting
intervals

J1 = (0, C1ν]; J2 = (C1ν, C2]; J3 = (C2, 1].

For the de�nitions of ν0, C1 and C2, see (51); these quantities depend
only on f and on D. As a consequence of (25-26), in Theorem 4.17 we
prove that for ` ∈ J1:

Sp(`)
p∼

{
`p, 0 ≤ p ≤ 1,

`pν−(p−1), p ≥ 1,

and for ` ∈ J2:

Sp(`)
p∼
{
`p, 0 ≤ p ≤ 1,

`, p ≥ 1.

Consequently, for ` ∈ J2 the �atness satis�es:

F (`) = S4(`)/S
2
2(`) ∼ `−1.

Finally, we get estimates for the spectral asymptotics of Burgulence.
On one hand, as a consequence of Theorem 4.8, for m ≥ 1 we get:

{|û(k)|2}
m

. k−2m‖u‖2m
m

. (kν)−2mν.

In particular, {|û(k)|2} decreases at a faster-than-polynomial rate for
|k| � ν−1. On the other hand, by Theorem 4.21, for k such that
k−1 ∈ J2 the energy spectrum satis�es

E(k) =

∑
|n|∈[M−1k,Mk] 〈|û(n)|2〉∑

|n|∈[M−1k,Mk] 1
∼ k−2,

where M ≥ 1 depends only on f and on D.
Note that these results con�rm rigorously the physical predictions

exposed in Subsection 2.2. Moreover, averaging in the initial condi-
tion, as considered in [2], is actually not necessary. This is due to the
particular structure of the deterministic generalised Burgers equation:
an initial condition u0 is as generic as the ratio between the orders
of (u0)x and of u0 itself, which can be bounded from above using the
quantity D.
The results in Section 5 can be formulated in exactly the same way,

up to two modi�cations:

• The estimates hold uniformy in t (for t large enough) and in u0.
On the other hand, all estimated quantities should be replaced
by their expected values. In particular, we modify the meaning
of the brackets {·}.
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• Dependence on D should be replaced by dependence on the
statistical properties of the forcing.

In Section 6, we expose results on existence and uniqueness of the sta-
tionary measure for the randomly forced generalised Burgers equation.
These results yield that all estimates listed in Section 5 still hold if tak-
ing the expected value and averaging in time is replaced by averaging
with respect to the stationary measure µ.

4. Estimates in the unforced case

The results in Subsection 4.1 have been obtained by Biryuk [8] for the
Sobolev norms in Hm, m ≥ 1, under a slightly di�erent form. Our pre-
sentation follows the lines of [10], where we generalise Biryuk's results,
obtaining estimates on the Sobolev norms Wm,p for m ∈ {0, 1} , p ∈
[1,∞] or m ≥ 2, p ∈ (1,∞], by Hölder's inequality and (GN). In [8],
Biryuk also proved upper and lower spectral estimates, which allowed
him to give the correct asymptotics for the dissipation length scale as
ν → 0. These results have been sharpened in in [10], where moreover
sharp bounds for the structure functions have been obtained. In Sub-
section 4.2 we will only give the results in [10], referring the reader to
that paper for a comparison with the results in [8].

4.1. Estimates for Sobolev norms. We begin by recalling the proof
of a key upper estimate for ux, which is a reformulation of the
�Kruzhkov maximum principle� [40].

Lemma 4.1. We have:

ux(t, x) ≤ min(D, σ−1t−1).

Proof. Di�erentiating the equation (1) once in space we get:

(ux)t + f ′′(u)u2x + f ′(u)(ux)x = ν(ux)xx. (27)

Now consider a point (t1, x1) where ux reaches its maximum on the
cylinder S = [0, t]×S1. Suppose that t1 > 0 and that this maximum is
nonnegative. At such a point, Taylor's formula implies that we would
have (ux)t ≥ 0, (ux)x = 0 and (ux)xx ≤ 0. Consequently, since by (2)
f ′′(u) ≥ σ, (27) yields that σu2x ≤ 0, which is impossible. Thus ux can
only reach a nonnegative maximum on S for t1 = 0. In other words,
since (u0)x has zero mean value, we have:

ux(t, x) ≤ max
x∈S1

(u0)x(x) ≤ D.

The inequality
ux(t, x) ≤ σ−1t−1
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is proved in [40] by a similar maximum principle argument applied to
the function v = tux. Indeed, this function can only reach a nonneg-
ative maximum on S at a point (t1, x1) such that t1 > 0. Multiplying
(27) by t2, we get:

t vt︸︷︷︸
≥ 0

+tf ′(u) vx︸︷︷︸
0

+(−v + f ′′(u)v2) = νt vxx︸︷︷︸
≤ 0

.

Thus v ≤ σ−1 on S. In other words, ux ≤ σ−1t−1 for all t > 0. �

Since the space averages of u(t) and ux(t) vanish for all t, we get the
following upper estimates:

|u(t)|p ≤ |u(t)|∞ ≤
∫
S1

u+x (t) ≤ min(D, σ−1t−1), 1 ≤ p ≤ +∞. (28)

|u(t)|1,1 = 2

∫
S1

u+x (t) ≤ 2 min(D, σ−1t−1). (29)

Now we recall a standard estimate for the nonlinearity〈
v(m+1), (f(v))(m)

〉
,

which is proved in [13].

Lemma 4.2. For v ∈ C∞ such that |v|∞ ≤ N , we have:

Nm(v) =
∣∣〈v(m+1), (f(v))(m)

〉∣∣ m,N. ‖v‖m ‖v‖m+1 , m ≥ 1.

Proof. Fix m ≥ 1. In this proof, constants denoted by C̃ depend
only on m,N . We have:

Nm(v) ≤ C̃

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

∣∣v(m+1)v(a1) . . . v(ak)f (k)(v)
∣∣

≤ C̃ max
x∈[−N,N ]

max(f ′(x), . . . f (m)(x))

×
m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

|v(a1) . . . v(ak)v(m+1)|.
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Using (13), Hölder's inequality and (GN), we get:

Nm(v) ≤ C̃(1 +N)max(h(1),...,h(m))

×
m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

|v(a1) . . . v(ak)v(m+1)|

≤ C̃

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

(
∣∣v(a1)∣∣

2m/a1
. . .
∣∣v(ak)∣∣

2m/ak
‖v‖m+1)

≤ C̃ ‖v‖m+1

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

(
(‖v‖a1/mm |v|(m−a1)/m∞ )× . . .

· · · × (‖v‖ak/mm |v|(m−ak)/m∞ )
)

≤ C̃(1 +N)m−1 ‖v‖m ‖v‖m+1 = C̃ ‖v‖m ‖v‖m+1 . �

The following result shows the existence of a strong nonlinear damp-
ing which prevents the successive derivatives of u from becoming too
large.

Lemma 4.3. We have:
‖u(t)‖21 . ν−1.

On the other hand, for m ≥ 2,

‖u(t)‖2m
m

. max(ν−(2m−1), t−(2m−1)).

Proof. Fix m ≥ 1. Denote

x(t) = ‖u(t)‖2m .
We claim that the following implication holds:

x(t) ≥ C ′ν−(2m−1) =⇒ d

dt
x(t) ≤ −(2m− 1)x(t)2m/(2m−1), (30)

where C ′ is a �xed positive number, chosen later. Below, all constants
denoted by C do not depend on C ′.
Indeed, assume that x(t) ≥ C ′ν−(2m−1). Integrating by parts in space

and using (28) (p = ∞) and Lemma 4.2, we get the following energy
dissipation relation:

d

dt
x(t) = −2ν ‖u(t)‖2m+1 + 2

〈
u(m+1)(t), (f(u(t)))(m)

〉
≤ −2ν ‖u(t)‖2m+1 + C ‖u(t)‖m ‖u(t)‖m+1 . (31)
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Applying (GN) to ux and then using (29), we get:

‖u(t)‖m ≤ C ‖u(t)‖(2m−1)/(2m+1)
m+1 |u(t)|2/(2m+1)

1,1

≤ C ‖u(t)‖(2m−1)/(2m+1)
m+1 . (32)

Thus, we have the relation

d

dt
x(t) ≤(−2ν ‖u(t)‖2/(2m+1)

m+1 + C) ‖u(t)‖4m/(2m+1)
m+1 . (33)

The inequality (32) yields that

‖u(t)‖2/(2m+1)
m+1 ≥ Cx(t)1/(2m−1), (34)

and then using the assumption x(t) ≥ C ′ν−(2m−1) we get:

‖u(t)‖2/(2m+1)
m+1 ≥ CC ′1/(2m−1)ν−1. (35)

Combining the inequalities (33-35), for C ′ large enough we get:

d

dt
x(t) ≤ (−CC ′1/(2m−1) + C)x(t)2m/(2m−1).

Thus we can choose C ′ in such a way that implication (30) holds.
For m = 1, (15) and (30) yield that

x(t) ≤ max(C ′ν−1, D2) ≤ max(C ′, D2)ν−1, t ≥ 0.

Now consider the case m ≥ 2. We claim that

x(t) ≤ max(C ′ν−(2m−1), t−(2m−1)). (36)

Indeed, if x(s) ≤ C ′ν−(2m−1) for some s ∈ [0, t], then the assertion (30)
ensures that x(s) remains below this threshold up to time t.
Now, assume that x(s) > C ′ν−(2m−1) for all s ∈ [0, t]. Denote

x̃(s) = (x(s))−1/(2m−1), s ∈ [0, t] .

By (30) we have dx̃(s)/ds ≥ 1. Therefore x̃(t) ≥ t and x(t) ≤ t−(2m−1).
Thus in this case, the inequality (36) still holds. This proves the
lemma's assertion. �

By (GN) applied to u(m) we get the following inequality for m ≥ 1:

|u(t)|m,∞ . ‖u(t)‖1/2m ‖u(t)‖1/2m+1

m

. max(ν−m, t−m).

Similarly, applying (GN) and interpolating between |u|1,1 and ‖u‖M
for large values of M , we get the following result (we recall that γ =
max(0,m− 1/p)):
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Theorem 4.4. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞], (

|u(t)|αm,p
)1/α m,p,α

. max(t−γ, ν−γ), α > 0. (37)

Now we de�ne

T1 =
1

4
D−2C̃−1; T2 = max

(3

2
T1, 2Dσ−1

)
, (38)

where C̃ is a constant such that for all t, ‖u(t)‖21 ≤ C̃ν−1 (cf.
Lemma 4.3). From now on, for any time-dependent Sobolev-space val-
ued functional A(·), {A(t)} is by de�nition the time average

{A(t)} =
1

T2 − T1

∫ T2

T1

A(t).

Lemma 4.5. We have:

{‖u(t)‖21} & ν−1.

Proof. Integrating by parts in space, we get the dissipation identity

d

dt
|u(t)|2 =

∫
S1

(−2uf ′(u)ux + 2νuuxx) = −2ν ‖u(t)‖21 . (39)

Thus, integrating in time and using (15) and Lemma 4.3, we obtain
that

|u(T1)|2 = |u0|2 − 2ν

∫ T1

0

‖u(t)‖21 ≥ D−2 − 2T1C̃ ≥
1

2
D−2.

Consequently, integrating (39) in time and using (28) (p = 2) we get:

{‖u(t)‖21} =
1

2ν(T2 − T1)
(|u(T1)|2 − |u(T2)|2)

≥ 1

2ν(T2 − T1)

(1

2
D−2 − σ−2T−22

)
≥ D−2

8(T2 − T1)
ν−1,

which proves the lemma's assertion. �

This time-averaged lower bound yields similar bounds for other
Sobolev norms.

Lemma 4.6. For m ≥ 1,

{‖u(t)‖2m}
m

& ν−(2m−1).
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Proof. Since the case m = 1 is covered by the previous lemma, we
may assume that m ≥ 2. By (29) and (GN), we have:

{‖u(t)‖2m}
m

& {‖u(t)‖2m |u(t)|(4m−4)1,1 }
m

& {‖u(t)‖4m−21 }.
Thus, using Hölder's inequality and Lemma 4.5, we get:

{‖u(t)‖2m}
m

& {‖u(t)‖4m−21 }
m

& {‖u(t)‖21}
(2m−1)

m

& ν−(2m−1). �

The following lemma is proved similarly.

Lemma 4.7. For m ≥ 0, p ∈ [1,∞], we have:

{|u(t)|2m,p}
m,p

& ν−2γ.

The following theorem sums up the results of this section which will
be used later, with the exception of Lemma 4.1.

Theorem 4.8. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞], we have:(

{|u(t)|αm,p}
)1/α m,p,α∼ ν−γ, α > 0, (40)

where {·} denotes time-averaging over [T1, T2]. The upper estimates
in (40) hold without time-averaging, uniformly for t separated from 0.
Namely, we have:

|u(t)|m,p
m,p

. max(ν−γ, t−γ).

On the other hand, the lower estimates hold for all m ≥ 0, p ∈ [1,∞],
α > 0.

Proof. The upper estimates follow from Theorem 4.4. The lower
estimates for α ≥ 2 follow from Lemma 4.7 by Hölder's inequality. For
m = 0, p ∈ [1,∞] and for m ≥ 1, p ∈ (1,∞] we obtain lower estimates
for α ∈ (0, 2) using lower estimates for α = 2, upper estimates for
α = 3 and Hölder's inequality. Indeed,

{|u(t)|αm,p} ≥
(
{|u(t)|2m,p}

)3−α(
{|u(t)|3m,p}

)−(2−α)
& ν−(6−2α)γν(6−3α)γ = ν−αγ.

For |u|m,1, m > 1, the lower estimates follow from those for |u|m−1,∞.
�

For p, α = 2, this theorem tells us that for integers m ≥ 1, we have:

{‖u‖2m}
m∼ ν−(2m−1). (41)
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By a standard interpolation argument (see (4)) the upper bound in
(41) also holds for non-integer indices s > 1. Actually, the same is true
for the lower bound, since for any integer n > s we have:

{‖u‖2s} ≥ {‖u‖2n}n−s+1{‖u‖2n+1}−(n−s)
s

& ν−(2s−1).

4.2. Estimates for small-scale quantities. In this section, we study
analogues of quantities which are important for the study of hydro-
dynamical turbulence. We consider quantities in the physical space
(structure functions) as well as in the Fourier space (energy spectrum).
We assume that ν ≤ ν0 and we de�ne the intervals

J1 = (0, C1ν]; J2 = (C1ν, C2]; J3 = (C2, 1].

The positive constants ν0, C1 and C2 will be chosen in (50)-(51) in such
a manner that C1ν0 < C2 < 1, which ensures that the intervals Ji are
non-empty and non-intersecting.
By Theorem 4.8, we obtain that {|u|2} ∼ 1. On the other hand, by

(29) we get (after integration by parts):

{|û(n)|2} = (2πn)−2
{∣∣∣ ∫

S1

e2πinxux(x)
∣∣∣2}

≤ (2πn)−2{|u|21,1} ≤ Cn−2, (42)

and C1 and C2 can be made as small as we wish (cf. (52)). Conse-
quently, the proportion of the sum {

∑
|û(n)|2} contained in the Fourier

modes corresponding to J3 can be made as large as we wish. For in-
stance, we may assume that{ ∑

|n|<C−1
2

|û(n)|2
}
≥ 99

100

{∑
n∈Z

|û(n)|2
}
.

For p ≥ 0, we de�ne the structure function of p-th order as:

Sp(`) =
{∫

S1

|u(t, x+ `)− u(t, x)|pdx
}
.

The �atness F (`), which measures spatial intermittency, is given by

F (`) = S4(`)/S
2
2(`). (43)

Finally, for k ≥ 1, we de�ne the (layer-averaged) energy spectrum by

E(k) =

{∑
|n|∈[M−1k,Mk] |û(n)|2∑
|n|∈[M−1k,Mk] 1

}
, (44)
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where M ≥ 1 is a constant which will be speci�ed later (see the proof
of Theorem 4.21).
We begin by estimating the functions Sp(`) from above.

Lemma 4.9. For ` ∈ [0, 1],

Sp(`)
p

.

{
`p, 0 ≤ p ≤ 1,

`pν−(p−1), p ≥ 1.

Proof. We begin by considering the case p ≥ 1. We have:

Sp(`) =
{∫

S1

|u(x+ `)− u(x)|pdx
}

≤
{(∫

S1

|u(x+ `)− u(x)|dx
)(

max
x
|u(x+ `)− u(x)|p−1

)}
.

Using the fact that
∫
S1 u(·+ `)− u(·) = 0 and Hölder's inequality, we

obtain that

Sp(`) ≤
{(

2

∫
S1

(u(x+ `)− u(x))+dx
)p}1/p

×
{

max
x
|u(x+ `)− u(x)|p

}(p−1)/p

≤C`
{

max
x
|u(x+ `)− u(x)|p

}(p−1)/p
, (45)

where the second inequality follows from Lemma 4.1. Finally, by The-
orem 4.8 we get:

Sp(`) ≤ C`
{

(`|u|1,∞)p
}(p−1)/p

≤ C`pν−(p−1).

The case p < 1 follows immediately from the case p = 1 since now
Sp(`) ≤ (S1(`))

p, by Hölder's inequality. �

For ` ∈ J2 ∪ J3, we have a better upper bound if p ≥ 1.

Lemma 4.10. For ` ∈ J2 ∪ J3,

Sp(`)
p

.

{
`p, 0 ≤ p ≤ 1,

`, p ≥ 1.

Proof. The calculations are almost the same as in the previous
lemma. The only di�erence is that we use another bound for the right-
hand side of (45). Namely, by Theorem 4.8 we have:

Sp(`) ≤ C`
{

max
x
|u(x+ `)− u(x)|p

}(p−1)/p

≤ C`
{

(2|u|∞)p
}(p−1)/p

≤ C`. �
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Remark 4.11. Lemmas 4.9 and 4.10 actually hold even if we drop
the time-averaging, since in deriving them we only use upper estimates
which hold uniformly for t ≥ T1.

To prove the lower estimates for Sp(`), we need a lemma. Loosely
speaking, this lemma states that there exists a large enough set LK ⊂
[T1, T2] such that for t ∈ LK , several Sobolev norms are of the same
order as their time averages. Thus for t ∈ LK , we can prove the exis-
tence of a cli� of height at least C and width at least Cν, using some
of the arguments in [2] which we explained in Subsection 2.2.
Note that in the following de�nition, (46)-(47) contain lower and

upper estimates, while (48) only contains an upper estimate. The in-
equality |u(t)|∞ ≤ maxux(t) in (46) always holds, since u(t) has zero
mean value and the length of S1 is 1.

Definition 4.12. For K > 1, we denote by LK the set of all t ∈ [T1, T2]
such that the assumptions

K−1 ≤ |u(t)|∞ ≤ maxux(t) ≤ K (46)

K−1ν−1 ≤ |u(t)|1,∞ ≤ Kν−1 (47)

|u(t)|2,∞ ≤ Kν−2 (48)

hold.

Lemma 4.13. There exist constants C,K1 > 0 such that for K ≥ K1,
the Lebesgue measure of LK satis�es λ(LK) ≥ C.

Proof. We begin by observing that if K ≤ K ′, then LK ⊂ LK′ . By
Lemma 4.1 and Theorem 4.8, for K large enough the upper estimates
in (46)-(48) hold for all t ≥ T1. Therefore, if we denote by BK the set
of t such that

�The lower estimates in (46)-(47) hold for a given value of K�,

then it su�ces to prove the lemma's statement with BK in place of LK .
Now denote by DK the set of t such that

�The lower estimate in (47) holds for a given value of K� .

By (GN) we have:

|u|∞ ≥ C|u|−12,∞|u|21,∞.
Thus if DK holds, then BK′ holds for K

′ large enough. Now it remains
to show that there exists C > 0 such that for K large enough, we have
the inequality λ(DK) ≥ C. We clearly have

{|u|1,∞1(|u|1,∞ < K−1ν−1)} < K−1ν−1.
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Here, 1(A) denotes the indicator function of an event A. On the other
hand, by the estimate for {|u|21,∞} in Theorem 4.8 we get:

{|u|1,∞1(|u|1,∞ > Kν−1)} < K−1ν{|u|21,∞} ≤ CK−1ν−1

Now denote by f the function

f = |u|1,∞1(K−10 ν−1 ≤ |u|1,∞ ≤ K0ν
−1).

The inequalities above and the lower estimate for {|u|1,∞} in Theo-
rem 4.8 imply that

{f} ≥ (C −K−10 − CK−10 )ν−1 ≥ C0ν
−1,

for some suitable constants C0 and K0. Since f ≤ K0ν
−1, we get:

λ(f ≥ C0ν
−1/2) ≥ C0K

−1
0 (T2 − T1)/2.

Thus, since |u|1,∞ ≥ f , we have the inequality

λ(|u|1,∞ ≥ C0ν
−1/2) ≥ C0K

−1
0 (T2 − T1)/2,

and therefore there exist C,K1 > 0 such that λ(DK) ≥ C for K ≥ K1.
�

Let us denote by OK ⊂ [T1, T2] the set de�ned as LK , but with
relation (47) replaced by

K−1ν−1 ≤ −minux ≤ Kν−1. (49)

Corollary 4.14. For K ≥ K1 and ν < K−21 , we have λ(OK) ≥ C.
Here, C,K1 are the same as in the formulation of Lemma 4.13.

Proof. For K = K1 and ν < K−21 , the estimates (46)-(47) tell us
that

maxux(t) ≤ K1 < K−11 ν−1 ≤ |ux(t)|∞, t ∈ LK .
Thus, in this case we have OK = LK , which proves the corollary's
assertion. Since increasing K while keeping ν constant increases the
measure of OK , it follows that for K ≥ K1 and ν < K−21 we still have
λ(OK) ≥ C. �

Now we �x

K = K1, (50)

and choose

ν0 =
1

6
K−2; C1 =

1

4
K−2; C2 =

1

20
K−4. (51)

In particular, we have 0 < C1ν0 < C2 < 1: thus the intervals Ji are
non-empty and non-intersecting for all ν ∈ (0, ν0]. Everywhere below
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the constants depend on K.
Actually, we can choose any values of C1, C2 and ν0, provided that:

C1 ≤
1

4
K−2; 5K2 ≤ C1

C2

<
1

ν0
. (52)

Lemma 4.15. For ` ∈ J1,

Sp(`)
p

&

{
`p, 0 ≤ p ≤ 1,

`pν−(p−1), p ≥ 1.

Proof. By Corollary 4.14, it su�ces to verify that the inequalities
hold uniformly in t for t ∈ OK , with Sp(`) replaced by∫

S1

|u(x+ `)− u(x)|pdx.

Till the end of this proof, we assume that t ∈ OK .
Denote by z the leftmost point on S1 (considered as [0, 1)) such that

u′(z) ≤ −K−1ν−1. Since |u|2,∞ ≤ Kν−2, we have:

u′(y) ≤ −1

2
K−1ν−1, y ∈ [z − 1

2
K−2ν, z +

1

2
K−2ν]. (53)

In other words, the interval

[z − 1

2
K−2ν, z +

1

2
K−2ν]

corresponds to (a part of) a cli�.
Case p ≥ 1. Since ` ≤ C1ν = 1

4
K−2ν, by Hölder's inequality we

get: ∫
S1

|u(x+ `)− u(x)|pdx ≥
∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

|u(x+ `)− u(x)|pdx

≥ (K−2ν/2)1−p
(∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

|u(x+ `)− u(x)|dx
)p

= C(p)ν1−p
(∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

(∫ x+`

x

−u′(y)dy
)
dx
)p

≥ C(p)ν1−p
(∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

1

2
`K−1ν−1 dx

)p
= C(p)ν1−p`p.
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Case p < 1. By Hölder's inequality we obtain that∫
S1

|u(x+ `)− u(x)|pdx ≥
∫
S1

(
(u(x+ `)− u(x))+

)p
dx

≥
(∫

S1

(
(u(x+ `)− u(x))+

)2
dx
)p−1(∫

S1

(u(x+ `)− u(x))+dx
)2−p

.

Using the upper estimate in (46) we get:∫
S1

|u(x+ `)− u(x)|pdx

≥
(∫

S1

`2K2dx
)p−1(∫

S1

(u(x+ `)− u(x))+dx
)2−p

.

Since
∫
S1 (u(·+ `)− u(·)) = 0, we obtain that∫
S1

|u(x+ `)− u(x)|pdx

≥ C(p)`2(p−1)
(1

2

∫
S1

|u(x+ `)− u(x)|dx
)2−p

≥ C(p)`p.

The last inequality follows from the case p = 1. �

The proof of the following lemma uses an argument from [2], which
becomes quantitative if we restrict ourselves to the set OK .

Lemma 4.16. For m ≥ 0 and ` ∈ J2,

Sp(`)
p

&

{
`p, 0 ≤ p ≤ 1,

`, p ≥ 1.

Proof. In the same way as above, it su�ces to verify that the
inequalities hold uniformly in t for t ∈ OK , with Sp(`) replaced by∫

S1

|u(x+ `)− u(x)|pdx,

and using Hölder's inequality we can restrict ourselves to the case p ≥ 1.
Again, till the end of this proof, we assume that t ∈ OK .
De�ne z as in the proof of Lemma 4.15. We have:∫

S1

|u(x+ `)− u(x)|pdx ≥∫ z

z− 1
2
`

∣∣∣ ∫ x+`

x

u′−(y)dy︸ ︷︷ ︸
cliffs

−
∫ x+`

x

u′+(y)dy︸ ︷︷ ︸
ramps

∣∣∣pdx.
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Since ` ≥ C1ν = 1
4
K−2ν, by (53) for x ∈ [z − 1

2
`, z] we get:∫ x+`

x

u′−(y)dy ≥
∫ z+ 1

8
K−2ν

z

u′−(y)dy ≥ 1

16
K−3.

.

On the other hand, since ` ≤ C2, by (46) and (51) we have:∫ x+`

x

u′+(y)dy ≤ C2K =
1

20
K−3.

Thus,∫
S1

|u(x+ `)− u(x)|pdx ≥ 1

2
`

(( 1

16
− 1

20

)
K−3

)p

≥ C(p)`. �

Summing up the results above we obtain the following theorem.

Theorem 4.17. For ` ∈ J1,

Sp(`)
p∼

{
`p, 0 ≤ p ≤ 1,

`pν−(p−1), p ≥ 1.

On the other hand, for ` ∈ J2,

Sp(`)
p∼
{
`p, 0 ≤ p ≤ 1,

`, p ≥ 1.

The following result follows immediately from the de�nition (43).

Corollary 4.18. For ` ∈ J2, the �atness satis�es F (`) ∼ `−1.

By Theorem 4.8, for m ≥ 1 we have:

{|û(k)|2} ≤ (2πk)−2m{‖u‖2m}
m∼ (kν)−2mν.

Thus for |k| � ν−1, {|û(k)|2} decreases super-polynomially.

Now we want to estimate the Hs norms of u for s ∈ (0, 1).

Lemma 4.19. We have:

{‖u‖21/2} ∼ | log ν|.

Proof. By (5) we have:

‖u‖1/2 ∼

(∫
S1

(∫ 1

0

|u(x+ `)− u(x)|2

`2
d`
)
dx

)1/2

.
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Consequently, by Fubini's theorem,

{‖u‖21/2} ∼
∫ 1

0

1

`2

{∫
S1

|u(x+ `)− u(x)|2dx
}
d`

=

∫ 1

0

S2(`)

`2
d` =

∫
J1

S2(`)

`2
d`+

∫
J2

S2(`)

`2
d`+

∫
J3

S2(`)

`2
d`.

By Theorem 4.17 we get:∫
J1

S2(`)

`2
d` ∼

∫ C1ν

0

`2ν−1

`2
d` ∼ 1

and ∫
J2

S2(`)

`2
d` ∼

∫ C2

C1ν

`

`2
d` ∼ | log ν|,

respectively. Finally, by Lemma 4.10 we get:∫
J3

S2(`)

`2
d` ≤ CC−22 ≤ C.

Thus,

{‖u‖21/2} ∼ | log ν|. �

The proof of the following result follows the same lines.

Lemma 4.20. For s ∈ (0, 1/2),

{‖u‖2s}
s∼ 1.

On the other hand, for s ∈ (1/2, 1),

{‖u‖2s}
s∼ ν−(2s−1).

The results above tell us that {|û(k)|2} decreases very fast for |k| &
ν−1 and that for s ≥ 0 the sums

∑
|k|2s{|û(k)|2} have exactly the same

behaviour as the partial sums
∑
|k|≤ν−1 |k|2s|k|−2 in the limit ν → 0+.

Therefore we can conjecture that for |k| . ν−1, we have {|û(k)|2} ∼
|k|−2.
A result of this type actually holds (after layer-averaging), as long

as |k| is not too small. To prove it, we use that by Parseval's theorem,
for a function v ∈ L2 one has:

|v(·+ y)− v(·)|2 = 4
∑
n∈Z

sin2(πny)|v̂(n)|2. (54)

Theorem 4.21. For k such that k−1 ∈ J2, we have E(k) ∼ k−2.
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Proof. We recall that by the de�nition (44),

E(k) =

{∑
|n|∈[M−1k,Mk] |û(n)|2∑
|n|∈[M−1k,Mk] 1

}
.

Therefore proving the assertion of the theorem is the same as proving
that ∑

|n|∈[M−1k,Mk]

n2{|û(n)|2} ∼ k. (55)

From now on, we will indicate explicitly the dependence on M . The
upper estimate in (55) holds without averaging over n such that

|n| ∈ [M−1k,Mk].

Indeed, by (42) we know that

{|û(n)|2} ≤ Cn−2.

Also, this inequality implies that∑
|n|<M−1k

n2{|û(n)|2} ≤ CM−1k (56)

and ∑
|n|>Mk

{|û(n)|2} ≤ CM−1k−1. (57)

To prove the lower estimate in (55) we note that∑
|n|≤Mk

n2{|û(n)|2} ≥ k2

π2

∑
|n|≤Mk

sin2(πnk−1){|û(n)|2}

≥ k2

π2

(∑
n∈Z

sin2(πnk−1){|û(n)|2} −
∑
|n|>Mk

{|û(n)|2}
)
.

Using (54) and (57) we get:∑
|n|≤Mk

n2{|û(n)|2} ≥ k2

4π2

(
{|u(·+ k−1)− u(·)|2} − CM−1k−1

)
≥ k2

4π2

(
S2(k

−1)− CM−1k−1
)
.

Finally, using Theorem 4.17 we obtain that∑
|n|≤Mk

n2{|û(n)|2} ≥ (C − CM−1)k.

Now we use (56) and we choose M ≥ 1 large enough to obtain (55). �
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5. Estimates in the randomly forced case

5.1. Foreword. The results in this section (estimates for Sobolev
norms and for small-scale quantities) have been obtained in [13] for
the equation forced by the white noise. For the simpler case of the
kick force, estimates for Sobolev norms have been obtained in [12].
Since these estimates are used as a �black box� when studying small-
scale quantities, generalisation of the small-scale estimates in [13] to
the case of a kick force is immediate. Thus, in this section, we only
consider the white-forced equation (10).
Some proofs in [13] are similar to the proofs in the unforced case.

We will only give here the proofs of Theorem 5.1 and Lemma 5.6, as
well as some comments on the proofs of small-scale results.
For simplicity, in the white-forced case we assume that the initial

condition u0 is deterministic. However, we can easily generalise all
results to the case of a random initial condition u0 independent of
w(t), t ≥ 0. Indeed, in this case for any measurable functional Φ(u(·))
we have:

EΦ(u(·)) =

∫
E
(

Φ(u(·))|u(0) = u0

)
dµ(u0),

where µ(u0) is the law of u0, and all our estimates hold uniformly in
u0.
Moreover, for τ ≥ 0 and u0 independent of w(t) − w(τ), t ≥ τ ,

the Markov property, which can be proved in the same way as in [43],
yields:

EΦ(u(·)) =

∫
E
(

Φ(u(τ + ·))|u(τ) = u0

)
dµ(u0).

Consequently, all estimates which hold for time t or a time interval
[t, t+T ] actually hold for time t+ τ or a time interval [t+ τ, t+ τ +T ],
uniformly in τ ≥ 0.
The remarks above still hold for the kick-forced equation, up to some

natural modi�cations due to the fact that the forcing is now discrete
in time.

5.2. Estimates for Sobolev norms. The following key estimate is
proved using a stochastic version of the Kruzhkov maximum principle
(cf. [40]).

Theorem 5.1. Denote by Xt the random variable

Xt = max
s∈[t,t+1], x∈S1

ux(s, x).
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For every k ≥ 1, we have:

E Xk
t

k

. 1, t ≥ 1.

Proof. We take t = 1 and denote Xt by X.
Consider (10) on the time interval [0, 2]. Putting v = u − w and

di�erentiating once in space, we get:

∂vx
∂t

+ f ′′(u)(vx + wx)
2 + f ′(u)(vx + wx)x = ν(vx + wx)xx. (58)

Set ṽ(t, x) = tvx(t, x) and multiply (58) by t2. For t > 0, ṽ satis�es

tṽt − ṽ + f ′′(u)(ṽ + twx)
2 + tf ′(u)ṽx + t2f ′(u)wxx

= νtṽxx + νt2wxxx. (59)

Now observe that if the zero mean function ṽ does not vanish identically
on the domain S = [0, 2]× S1, then it attains its positive maximum N
on S at a point (t1, x1) such that t1 > 0. At (t1, x1) we have ṽt ≥ 0,
ṽx = 0 and ṽxx ≤ 0. By (59), at (t1, x1) we have the inequality

f ′′(u)(ṽ + twx)
2 ≤ ṽ − t2f ′(u)wxx + νt2wxxx. (60)

Denote by A the random variable

A = max
t∈[0,2]

|w(t)|3,∞.

Since for every t, tv(t) is the zero space average primitive of ṽ(t) on
S1, we get:

max
t∈[0,2], x∈S1

|tu| ≤ max
t∈[0,2], x∈S1

(|tv|+ |tw|)

≤ N + 2 max
t∈[0,2]

|w(t)|∞ ≤ N + 2A.

Now denote by δ the quantity

δ = 2− h(1)

(cf. (13)). Since δ > 0, we obtain that

max
t∈[0,2], x∈S1

|t2f ′(u)wxx| ≤ A max
t∈[0,2], x∈S1

tδ|t2−δf ′(u)|

≤ CA max
t∈[0,2], x∈S1

tδ(|tu|+ t)2−δ

≤ CA(N + 2A+ 2)2−δ.

From now on, we assume that N ≥ 2A. Since ν ∈ (0, 1] and f ′′ ≥ σ,
the relation (60) yields

σ(N − 2A)2 ≤ N + CA(N + 2A+ 2)2−δ + 4A.
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Thus we have proved that if N ≥ 2A, then N ≤ C(A+ 1)1/δ. Since by
(9), all moments of A are �nite, all moments of N are also �nite. By
de�nition of ṽ and S, the same is true for X. This proves the theorem's
assertion. �

Corollary 5.2. For k ≥ 1,

E max
s∈[t,t+1]

|u(s)|k1,1
k

. 1, t ≥ 1.

Corollary 5.3. For k ≥ 1,

E max
s∈[t,t+1]

|u(s)|kp
k

. 1, p ∈ [1,∞], t ≥ 1.

Lemma 5.4. For m ≥ 1,

E max
s∈[t,t+1]

‖u(s)‖2m
m

. ν−(2m−1), t ≥ 2.

Theorem 5.5. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞],(

E max
s∈[t,t+1]

|u(s)|αm,p
)1/α m,p,α

. ν−γ, α > 0, t ≥ 2.

Now we give the key lower estmate.

Lemma 5.6. There exists a constant T0 > 0 such that we have:( 1

T

∫ t+T

t

E ‖u(s)‖21
)1/2
& ν−1/2, t ≥ 1, T ≥ T0.

Proof. For T > 0, by (12) we get:

E |u(t+ T )|2 ≥ E(|u(t+ T )|2 − |u(t)|2) = TI0 − 2ν

∫ t+T

t

E ‖u(s)‖21.

On the other hand, by Corollary 5.3 there exists a constant C ′ > 0
such that E |u(t+ T )|2 ≤ C ′. Consequently, for T ≥ T0 := (C ′+ 1)/I0,

1

T

∫ t+T

t

E ‖u(s)‖21 ≥
TI0 − C ′

2T
ν−1 ≥ I0

2(C ′ + 1)
ν−1,

which proves the lemma's assertion. �

Theorem 5.7. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞], we have:( 1

T

∫ t+T

t

E |u(s)|αm,p
)1/α m,p,α∼ ν−γ, α > 0,

t ≥ T1 = T0 + 2, T ≥ T0. (61)
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Moreover, the upper estimates hold with time-averaging replaced by
maximising over [t, t+ 1], i.e.(

E max
s∈[t,t+1]

|u(s)|αm,p
)1/α m,p,α

. ν−γ, α > 0, t ≥ 2. (62)

On the other hand, the lower estimates hold for all m ≥ 0 and p ∈
[1,∞]. The asymptotics (61) hold without time-averaging if m and p
are such that γ(m, p) = 0. Namely, in this case,(

E |u(t)|αm,p
)1/α m,p,α∼ 1, α > 0, t ≥ T1. (63)

5.3. Estimates for small-scale quantities. Consider an observable
A, i.e. a real-valued functional on a Sobolev space Hm, which we
evaluate on the solutions uω(s). We denote by {A} the average of
A(uω(s)) in ensemble and in time over [t, t+ T0]:

{A} =
1

T0

∫ t+T0

t

E A(uω(s))ds, t ≥ T1.

The constant T1 is the same as in Theorem 5.7. In this section, we
assume that ν ≤ ν0, where ν0 is a positive constant. The de�nitions
and the choices for ν0, the ranges and the small-scale quantities are
word-to-word the same as in the unforced case, up to the changes in
the meaning of the brackets {·}.

Lemma 5.8. For α ≥ 0 and ` ∈ [0, 1],

Sp,α(`)
p,α

.

{
`αp, 0 ≤ p ≤ 1,

`αpν−α(p−1), p ≥ 1.

Lemma 5.9. For α ≥ 0 and ` ∈ J2 ∪ J3,

Sp,α(`)
p,α

.

{
`αp, 0 ≤ p ≤ 1,

`α, p ≥ 1.

The following lemma states that with a not too small probability,
during a not too small period of time, several Sobolev norms are of the
same order as their expected values.

Definition 5.10. For a given solution u(s) = uω(s) and K > 1, we
denote by LK the set of all (s, ω) ∈ [t, t+ T0]× Ω such that

K−1 ≤ |u(s)|∞ ≤ maxux(s) ≤ K (64)

K−1ν−1 ≤ |u(s)|1,∞ ≤ Kν−1 (65)

|u(s)|2,∞ ≤ Kν−2. (66)
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Lemma 5.11. There exist constants C̃,K1 > 0 such that for all K ≥
K1, ρ(LK) ≥ C̃. Here, ρ denotes the product measure of the Lebesgue
measure and P on [t, t+ T0]× Ω.

Proof. The proof is almost the same as in the deterministic case.
One di�erence is that now we consider the product of the Lebesgue and
the probability measures instead of only the Lebesgue measure. The
other di�erence is that the upper estimates now hold with probability
tending to 1 as K → +∞, and not with probability 1 for K large
enough. �

Definition 5.12. For a given solution u(s) = uω(s) and K > 1, we
denote by OK the set of all (s, ω) ∈ [t, t+T0]×Ω such that the conditions
(64), (66) and

K−1ν−1 ≤ −minux ≤ Kν−1 (67)

hold.

Corollary 5.13. If K ≥ K1 and ν < K−21 , then ρ(OK) ≥ C̃. Here,
C̃ and K1 are the same as in the statement of Lemma 5.11.

Theorem 5.14. For α ≥ 0 and ` ∈ J1,

Sp,α(`)
p,α∼

{
`αp, 0 ≤ p ≤ 1,

`αpν−α(p−1), p ≥ 1.

On the other hand, for α ≥ 0 and ` ∈ J2,

Sp,α(`)
p,α∼
{
`αp, 0 ≤ p ≤ 1,

`α, p ≥ 1.

Corollary 5.15. For ` ∈ J2, the �atness satis�es F (`) ∼ `−1.

Lemma 5.16. We have:

{‖u‖2s}
s∼ 1, s ∈ (0, 1/2),

{‖u‖21/2} ∼ | log ν|,

{‖u‖2s}
s∼ ν−(2s−1), s ∈ (1/2, 1).

Theorem 5.17. If M in the de�nition of E(k) is large enough, then
for every k such that k−1 ∈ J2, we have E(k) ∼ k−2. Moreover, we
have: {(∑

|n|∈[M−1k,Mk] |û(n)|2∑
|n|∈[M−1k,Mk] 1

)α}
α∼ k−2α, α > 0.
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6. Stationary measure and related issues

The results of this section are proved in [13] for the equation with
white forcing. Up to some natural modi�cations due to the fact that
the forcing is now discrete in time, they can be generalised to the kick
force case. For more details, see [11]; see also [43], where a random
forcing is introduced in a similar setup.

Theorem 6.1. Consider two solutions u, u of (10), corresponding to
the same random force but di�erent initial conditions in C∞. For all
t ≥ 0, we have:

|u(t)− u(t)|1 ≤ |u(0)− u(0)|1.

Since C∞ is dense in L1, Theorem 6.1 allows us to extend the �ow of
(10): now we can consider an initial condition in L1. Note that since
the Burgers �ow is smoothing, the corresponding L1-solutions become
solutions to (10) for t > 0. This allows us to prove that the �ow corre-
sponding to (10) induces a time-continuous Markov process, and then
we can de�ne the corresponding semigroup S∗t acting on Borel mea-
sures on L1. For a more detailed account on the well-posedness in a
similar setting, see [43].
A stationary measure is a Borel probability measure on L1 invariant

with respect to S∗t for every t. A stationary solution of (10) is a random
process v de�ned for (t, ω) ∈ [0,+∞)×Ω and taking values in L1, such
that the distribution of v(t) does not depend on t, satisfying (10). This
distribution is automatically a stationary measure.
Now we consider the question of existence and uniqueness of a sta-

tionary measure, which implies existence and uniqueness (in the sense
of distribution) of a stationary solution. Moreover, we obtain a bound
for the rate of convergence to the stationary measure in an appropriate
distance. This bound holds independently of the viscosity or of the
initial condition.

Definition 6.2. Fix p ∈ [1,∞). For a continuous function

g : Lp → R,

we de�ne its Lipschitz norm as

|g|L := sup
Lp

|g|+ |g|Lip,

where |g|Lip is the Lipschitz constant of g. The set of continuous func-
tions with �nite Lipschitz norm will be denoted by L(p) = L(Lp). We
will abbreviate L(1) as L.
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Definition 6.3. For two Borel probability measures µ1, µ2 on Lp, we
denote by ‖µ1 − µ2‖∗L(p) the Lipschitz-dual distance:

‖µ1 − µ2‖∗L(p) := sup
g∈L(p), |g|L(p)≤1

∣∣∣ ∫
S1

gdµ1 −
∫
S1

gdµ2

∣∣∣.
Since we have u0-uniform upper estimates, the existence of a station-

ary measure for the generalised Burgers equation is proved using the
Bogolyubov-Krylov argument (see [43]).
Now we state the main result of this section. It immediately implies

the uniqueness of a stationary measure µ for the equation (10), and
an estimate on the speed of convergence to this measure which is al-
gebraic in t, uniformly in the viscosity coe�cient ν. Theorem 6.4 is
proved using a simpli�ed version of a coupling argument due to Kuksin
and Shirikyan [43, Chapter 3]. The situation is actually simpler than
for the stochastic 2D Navier Stokes equation. Indeed, in our setting
the "damping time" needed to make the distance between two solu-
tions corresponding to the same forcing small does not depend on the
initial conditions, and moreover by Theorem 6.1 the �ow of (10) is
L1-contracting.

Theorem 6.4. There exists a positive constant C ′ such that we have:

‖S∗t µ1 − S∗t µ2‖∗L ≤ C ′t−1/13, t ≥ 1, (68)

for any probability measures µ1, µ2 on L1.

Corollary 6.5. For every p ∈ (1,∞), there exists a positive constant
C ′(p) such that we have:

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ C ′t−1/13p, t ≥ 1, (69)

for any probability measures µ1, µ2 on Lp.

Note that all the estimates in the previous sections still hold for a
stationary solution, since they hold uniformly for any initial condition
in L1 for large times and a stationary solution has time-independent
statistical properties. It follows that these estimates still hold when
averaging in time and in ensemble (denoted by {·}) is replaced by aver-
aging solely in ensemble, i.e. by integrating with respect to µ. Namely,
Theorem 5.7, Theorem 5.14 and Theorem 5.17 imply, respectively, the
following results.

Theorem 6.6. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞], (∫

|u|αm,p dµ(u)
)1/α m,p,α∼ ν−γ, α > 0.
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Theorem 6.7. For α ≥ 0 and ` ∈ J1,∫ (∫
S1

|u(x+ `)− u(x)|pdx
)α
dµ(u)

p,α∼

{
`αp, 0 ≤ p ≤ 1,

`αpν−α(p−1), p ≥ 1.

On the other hand, for α ≥ 0 and ` ∈ J2,∫ (∫
S1

|u(x+ `)− u(x)|pdx
)α
dµ(u)

p,α∼
{
`αp, 0 ≤ p ≤ 1,

`α, p ≥ 1.

Theorem 6.8. For k such that k−1 ∈ J2, we have:∫ ∑
|n|∈[M−1k,Mk] |û(n)|2∑
|n|∈[M−1k,Mk] 1

dµ(u) ∼ k−2.
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