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Abstract

We prove a recent conjecture of Lassalle about positivity and integrality of coefficients
in some polynomial expansions. We also give a combinatorial interpretation of those num-
bers. Finally, we show that this question is closely related to the fundamental problem of
calculating the linearization coefficients for binomial coefficients.
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1 Introduction

Une partition p = (u1 > po > -+ > p; > 0) de n est une suite décroissante d’entiers strictement
positifs de somme n = |u|. Le nombre [ = [(u) est appelé la longueur de p. Pour tout i > 1,
I'entier m;(p) = card{j : p; =i} est la multiplicité de i dans p. Définissons

Zy = Himi(u)mi(m!'
i>1
Pour n > 1 les factorielles montantes et descendantes sont définies comme suit :
()p=x2(x+1)---(x+n—-1), () =ax(x—1)--(x —n+1).

Notons que (—z), = (—1)"(z), et que les coefficients binomiaux valent () = (z),, /n!. Dans ses
travaux sur les polynomes de Jack [13] Lassalle a récemment posé la conjecture suivante.

Conjecture 1. Soit X wune indéterminée, m et n deux entiers strictement positifs et r =

(r1,...,rm) une suite d’entiers positifs telle que [r| =3 7" r; >0. On a
st (16 m LD
¥ AL (S ) LTS (Y, 0
|p|=n i=1 k=1 : k=1

(r)

ou les coefficients c;.’ sont des entiers positifs a déterminer.



Remarquons d’abord que le membre de gauche de (1) est un polynéme en X de degré n — 1,
donc il peut étre développé dans la base {(X:fk_ 1)} (1 < k < n) d’une seule fagon. Ceci implique

lexistence et 'unicité des coeflicients rationnels c,(:) au membre de droite de (1).

Comme nous allons le démontrer, les nombres c,(:) sont en fait des entiers positifs et indé-

pendants de n. Pour m = 1 et m = 2 les coefficients c,(:) ont été déterminés et la conjecture a

été vérifiée (voir [7, 12, 13, 17]). Dans le premier cas, on a c](:l) = (}) et dans le deuxiéme cas

Lassalle [13] a obtenu plusieurs formules exprimant c,(fl’m), qui se réduisent au cas précédent

lorsque o = 0. Donc les coefficients c,(:) sont des extensions des coefficients binomiaux classiques.

L’objectif de cet article est de donner une solution compléte de ce probleme, ceci par trois
approches distinctes utilisant des techniques completement différentes. Plus précisément, la sec-
tion 2 donne une réponse analytique a la conjecture 1, ainsi que quelques identités du méme type,
ceci a ’aide des fonctions génératrices multivariées. Dans la troisiéme section, nous donnons

une interprétation combinatoire de I’identité suivante :

n!Xl(u)—ll(#) 7 (Hitre 1Y _
ZZ ZHM( i — 1 >_

|lul=n i=1 k=1

I, r; ™D .
J ARV X Bk, (2)
x| k

=1

k

qui est l'identité (1) au facteur nlry...r,, pres. Dans la derniere section, nous détaillons une
troisieme démonstration de la conjecture de Lassalle qui utilise le calcul aux différences et le cas
particulier m =1 de (2) , c’est-a-dire I'identité :

> “:Z)M () =X () & B = G- 0 @

|ul=n k>1

dont la démonstration est facile, voir [12] pour une preuve algébrique et [17] pour une preuve
combinatoire. Dans ce paragraphe, nous voyons que le probleme essentiel soulevé par la conjec-
ture de Lassalle est le calcul de certains coefficients de linéarisation. Malgré I'importance fon-
damentale de cette question, il semble que, jusqu’a présent, les coefficients de linéarisation ne
furent étudiés que pour les polynémes orthogonaux. C’est pourquoi nous ajoutons un traitement
combinatoire du probleme dans cette section.

Afin de rendre la lecture la plus autonome possible nous rappelons ici quelques formules
fréquemment utilisées dans la suite. D’abord la formule binomiale peut s’écrire :

(1—2) =) (%x" (4)
n>0

Nous aurons aussi besoin de la transformation suivante, qui est un cas limite de la formule de
Whipple [1, p. 142] :

—n,a,b ] (c—a), -n,a,d—b
3F2[ c.d ’1}_W3F2[d,a+1—n—c’l ; (5)
et qui se réduit a la formule de sommation de Chu-Vandermonde lorsque b = d :
-n,a (c—a)y
F | = —t 6
oh| ] = ©



ou

F [alva%'--:ap.z] :Z(Cbll)k::‘(ap))kz_]?‘

PR by by, by -

est la définition des fonctions hypergéométriques classiques.

2 Fonctions génératrices

En multipliant le membre de gauche de (1) par t"z]" -- -z et en sommant sur n > 1 et les
entiers r1,...,7y, > 0 tels que |r| # 0, par la formule binomiale (4), nous sommes amenés a
évaluer ’expression

(-1 W) 7 m
3 X Z(H(l—xﬂ"”—l).

|u>1 s i
Lemme 1. Soit y une indéterminée, alors
> XS s (et
lu>1 St n>1 k koo

Preuve. Toute partition p non nulle correspond de fagon biunivoque & une suite non nulle &
support fini m = (my,me,...) telle que p = (1122 ...). On a donc

I(u)—1 L)
Zt'“'X: WA ZX 1H<X’fj> 'Zmzy

|| >1 b=t §>1 i>1
; Xt X\ 1
- (e (BT (B
i>1 m; >0 J#im;>0 7
t)’ Xt Xt
= Z (y) exp <—> Hexp (—)
i>1 b G J
= (1=t Nlogl —yt) . (®)
Par soustraction du terme correspondant a y = 1, nous obtenons
xlw-1 um ‘ -1
el M 1) = (1—t) Xlog(1———(y—1
SIS 1) = (=0 e (1- 7))
lul>1 i=1
tk -1 k
- Y _ xRy ="
k
E>1
X +n—1)(y—1)"*
- ey (et
n>1
ce qui acheve la démonstration. [l



otons, pour toute fonction multivariée f, par [z} ---xlm]f(x1,..., ) le coefficient de
Not toute foncti Itivariée f Mgt f le coefficient d
xyt---xpm dans f. Nous déduisons donc de (7), en posant y = 1/(1 — z1)(1 —x2) -+ (1 — xp,),

le résultat suivant.

Théoreme 1. Soient c,(f) les nombres rationnels définis par (1). Alors

c(r) 1 1 k
L: Q:Tl...xrm — — .
o~ m]k<<1—x1>~--<1—xm> 1) ©)

En particulier, kcg)/\r\ est un entier positif et ne dépend pas de n.

Il en résulte que

= ['%ﬂl‘l “ e mr'm d

o

Zl% ((1_2951)..1.(1_2%) —1>k (10)

k—1 x Tm
e [.’Erl :L-T'm} ( 1 _ 1> 1_111:1 ++ 1—zpm .
! m (1—z1) (1 —xm) (I—z1) (1 — )
La derniere expression montre clairement le corollaire suivant.

Corollaire 1. Les nombres c,(:) sont des entiers positifs.

Il est aussi possible de déduire le corollaire au moyen des fonctions symétriques homogeénes

sur {x1,...,Tm}, qui sont définies [10, 14] par la fonction génératrice :
m
Z hn(x1,...  xm)2" = H(l — zxy) 7,
n>0 i=1

et donc ceci, a I'aide de (10), permet d’écrire :

Z Z c,(:)tka:ql---mrn;”

k>171,...,rm >0

- log 1—t2hn(:p1,...,:ﬁm)z”

z=1 n>1
tl()\)

B H0) 1) o
B ;A’lm <m1<A>,m2<A>,.-->h“ tesssim)
. (A —1
- ;tl(/\)Zz<m1()\),m2()\)(,.)..,mi()\)—1,...>h/\($1"”’mm)’ ()
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ce qui montre aussi que c,(:) € N. Notons que le membre de droite de (11) s’apparente au

développement de la nieme fonction symétrique puissance py(x1, ..., %) dans la base des fonc-
tions symétriques homogenes donné par la formule de Waring [10, 15].



D’autre part, en développant le membre de droite de (9) par la formule binomiale, nous
obtenons

kz ()1—331) v (=)™

i>1

- 1 rr+1—1 -
e ()} (RS
[r|>0 i>1 =1

ce qui donne, en extrayant le coefficient de z7' - - - 2], le résultat suivant.

()

Corollaire 2. On a la formule explicite pour c;

SR o <Z - 11> ﬁ (” +ri - 1) (12)

i>1 =1
- W (i+r—1\ 14 (ri+i-1
= . 1
ZZ (1_1)< rj—1 > H( Tl ) (3)
Jj=li=1 1=1,l#j

En particulier, pour m = 1 et m = 2, la formule (12) permet de retrouver les deux expressions
explicites de Lassalle [13]. En fait, pour m = 1 la formule (9) se réduit directement a

k@) 1 ok —k 7 I=1Y\ (r1) 1
el = b =) = 32 () )t = e = () (1)

Pour m = 2 la formule (12) s’écrit

k .
R R
_ 1 2

—k—i—l,?”l—i-l,?“g—l—l‘l
2,1 T

=~ Ly ) 3F2[

Appliquons deux fois la formule (5) & 'expression ci-dessus, ce qui donne bien

(r1,r2) _ r1+ 712 —k+ 1) —Try, —Tr2,
k —< k >3FQ{ 1—ry—ro,1 -

Remarquons qu’en appliquant une troisieme fois (5), on retrouve une autre expression de [13] :

(rir2)  _ (TiET2) (T1+ T n —7“17—7“2,]?—7“1—7"2,1

Ck ( k )( R AR P T SR S
B Z(_l)i ritre—i\ ri+re (ritre—u\(ri+reg—2i
- =0 k ri+mre—1 7 rL—1 '

Enfin, en multipliant le membre de gauche de (1) par t"z}" - - - 2l™ et en sommant sur n > 1
et les entiers rq,..., 7, > 0, nous obtenons

" ‘Xl 1l(ﬂ) m .
>t 2 [
|u|>1 i=1 [=1



ce qui peut se développer directement & I’aide de (8) comme suit :

Zt"(?nzé((1—x1>-%-<1—xm>>k:n%lk(XM_ _1>ﬁ§2: e

n>0 k>l

et donc nous obtenons I'identité

ﬁ(umk: = %ﬁ(n—kk—l)(X—k:_—:—l). (15)

z Tk
lu=n M iZ1k=1 K k=1

w1 1(p)

I1 est possible d’établir une extension de (15) comme suit.

Proposition 1. Pour toute partition i et tout p € N, soit <g> le nombre de facons de choisir p
éléments dans le diagramme de Ferrers de p, dont au moins un par ligne, alors

lu|=n &G i=1 k=1
p n—p+k . . m .
k:lk = E—1)\p—k—-1 o ] p—k '

Preuve. Rappelons la fonction génératrice suivante [10] :

2 <Z>xp =TI (a+a)- 1)mk(u) |

p>1 k>1

Nous pouvons ainsi, comme pour (15), calculer la fonction génératrice du membre de gauche de

(16), en le multipliant par t"aPx]" - --z]™ et en sommant sur n,p > 1 et r,...,ry, >0
- (p) m
xUm)-1
ST S (e S T
|ul>1 e ps1 i=11=1

B (1‘ %yx [lOg (1‘ FErEs <1—xm>> s (1‘ <1—xf§1~+-<xl)—xm>>] |

Développons alors cette dernieére expression, ce qui donne :

Z(lti) L <1_x1 t(l_wm)>j((1+x) —1)

p>0 j>1

L) () O
Z §<§‘5> <X+]f—_:_ ) HZ ”xl” tpri—h(1 — §)=prk,

Jsk,p>1 I=17r;>0




Mais en utilisant la formule binomiale sous la forme :

(1 _ t)—P-i-k — Z Mt”’

n!
n>0
en remplacant n par n —p — j + k et en extrayant le coefficient devant zPt"x]" ---z]™, nous
obtenons la fonction génératrice du membre de droite. O

Remarque. Pour p = n, l'identité (16) donne bien (15). Lorsque tous les r; sont nuls, le
membre de droite de (1) n’a pas de sens. Or il résulte de (7) avec y = 0 que

X +n—1\ (~1)1
1—¢)~X1 - " —t
CRURECIRTRES o0 Sl QAR S
n>1
ce qui donne le prolongement suivant de (1) pour r =0 :

1(u)—1 no k-1 n—
S -y E 1}2 <X;_k 1). (17)

z
lul=n  H k=1

Cette formule est en fait la dérivée d’une formule de Macdonald [14, p. 26] :

3 XWX 4n-1
= ; ,

yA
lul=n  “H

3 Interprétations combinatoires

Une permutation o de I'ensemble E = {ay,...,ax} est un cycle si E = {a1,0(a1),...,0* 1 (a1)}.
On note o = (aj,0(a;),...,0 (a;)) pour 1 < i < k et on appelle ¢ un cycle de longueur k
ou un k-cycle et E le support de o. Il est d’usage d’identifier o avec son graphe sagittal G,
c’est-a-dire, a; — a; est un arc de G, si et seulement si o(a;) = aj. Si o = (a1,a2,...,ax)
et 5 = (bi,ba,...,b,) sont deux cycles de supports disjoints, un mélange de « et (3 est défini
comme un cycle (¢1,...,Ckir), OU le mot w = ¢y ... gy, est un réarrangement de

aias . .. akbibiﬂ ...bebiboy . b, 1€ {1, R ,7“},

tel que ajag...ag et bibjyq...bb1ba...bi—1 sont deux sous-mots de w. Géométriquement
mélanger deux cycles a et [ consiste a insérer $ dans « (ou inverse) pour former un nou-
veau cycle de longueur k£ + r en gardant la méme orientation.

Exemple 1. Soient o = (1,2,3,4,5,6) et 8 = (a,b,c,d,e). Alors (1,¢,2,3,4,d,e,5,6,a,b) est
un mélange de o et B (voir Uillustration Figure 1).

Lemme 2. Soient a et § deux cycles de supports disjoints et de longueur k et r respectivement.
Alors le nombre de mélanges de o et 3 est donné par

e (I Y (b
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Figure 1: Un mélange de deux cycles

En effet, il y a (k+7—1)! manieres de constituer un cycle a I’aide de k+r éléments, mais 'ordre
des cycles initiaux de longueurs k et r devant étre respecté, on obtient le résultat.

Remarque. Comme (kzr) compte le nombre de manieres de mélanger deux chemins orientés
de longueur k et r, respectivement, pour obtenir un chemin orienté de longueur k& + r, on
pourrait appeler Fy(r) coefficient binomial cyclique. Or, il semble difficile d’interpréter Fj(r)
dans le contexte des coefficients binomiaux généralisés de [2]. En effet, (sz) = (X;ZT), ott X*
est un chemin orienté avec k sommets, mais le coefficient binomial cyclique de [2], & savoir (Cé:r)
(Ck est un circuit orienté avec k sommets), est égal a 1 si k est un diviseur de k + r et égal a 0
sinon.

La notion de mélange a 'avantage d’étre symétrique par rapport aux deux cycles, mais on
aura besoin d’une variante asymétrique du mélange dans la suite. Dans un mélange v de deux
cycles a et 3, un sommet a de « est G-décoré par un sommet b de (§ s’il existe un arc b — a.

La [(-décoration de « associée & v est le graphe 4/ obtenu en posant 7/(b) = ~(b) pour tout
b de (3 ainsi que v/(a) = a(a) pour tout a de a.

Exemple 2. On reprend l'exemple de la Figure 1. Les €éléments 1, 2 et 5 sont décorés par b, c
et e respectivement.

TN O 0-@
; T 0@ ®

? P79 9-0-0
D-@-0-3F @

Figure 2: Un mélange de « et § et sa B-décoration de « correspondante

La notion de décoration permet de donner une autre expression pour Fy(r) comme suit :

o5 ()()



En effet, pour constituer une (-décoration de « ayant ¢ éléments (-décorés, on peut d’abord
choisir ces éléments dans o de (’f) maniéres, et puis choisir les i éléments du cycle 3 les décorant
de (’;) manieres. Il ne reste plus qu’a associer cycliquement ces deux familles de ¢ éléments, ce
qui donne % choix, et ceci démontre 'identité ci-dessus.

Remarque. On aurait pu aussi déduire la formule précédente du lemme 2 en partant du
membre de droite et en utilisant la formule de Chu-Vandermonde. Inversement on obtient une
preuve combinatoire de cette derniere sous la forme suivante :

S C) =) =)

Considérons maintenant une généralisation de la notion de mélange ou décoration comme
suit. Soient a, 31, ..., Oy, des cycles de supports deux a deux disjoints. On note B=(f1, ..., Om)
et on définit une B-décoration de o comme étant le graphe obtenu en décorant o par chacun de
ces m cycles. De plus, on dit qu’une 3-décoration de « est surjective si chaque sommet de « est
décoré par au moins un sommet des cycles 31,..., Bm.

Exemple 3. Soient o = (1,...,6), 51 = (a,b,c,d,e) et B2 = (x,y,2,t). Considérons les 1-
décoration et B2-décoration suivantes de v ainsi que la (1, B2)-décoration de o correspondante :

O— - @©—-O
@H?/ \C? (?/ \@%@
® O—-—©-@ OW—6 O

\@/ \@/_@

B1-décoration de « B2-décoration de o
© ®

! i
@ ©

Figure 3: Une (1, f2)-décoration de «

On notera que cette décoration est surjective, alors que celle de la Figure 2 ne I’était pas.



Proposition 2. Soient a, 31, ..., Bm des cycles de longueur k,ry,...,ry respectivement, et de
supports deuz a deux disjoints. Si Fy(r) (resp. Si(r)) est le nombre de B-décorations (resp. sur-
jectives) de «, alors on a

HFk ) :ﬁn(kJr”_l) (18)

et
S(r) = i(—w’f-i (’“) llf[lm ( e 1). (19)

En effet, d’apres le lemme 2 la formule (18) est évidente car les m décorations sont indépendantes
les unes des autres. D’autre part, il est clair que le nombre de B-décorations de a ayant ¢ sommets
décorés est (lf) S;(r), donc Fy(r) = Zle (]:) S;(r) et par inversion on obtient

Sk(r) = zk:(—l)k_i (f) Fi(r),

qui permet de déduire (19) par substitution de (18).

Interprétons maintenant le membre de gauche de (2) a l'aide du modele précédent. Pour
tout entier positif n on note [n] ’ensemble {1,2,...,n}. Un L-compleze sur [n] est un triplet
(0,,3), ou o est une permutation de [n], @ un cycle de o et 3 est une suite de m cycles qui
décorent «. Etant donnée une partition p de n, il y a n!/z, permutations de [n] de type p,
c’est-a dire ayant m;(u) cycles de longueur i (1 <14 < n). Choisissons un cycle (de longueur p;)
a décorer parmi les [(u) possibles, les autres cycles étant comptés a 1’aide de la variable X. La
fonction génératrice des L-complezes sur [n] selon le nombre de cycles non décorés est égale a

um

Z E!Xl(u)—l Z F,.(r).

z
lul=n "* i=1

D’autre part, on pourrait construire un £-complexe de [n] en constituant d’abord un k-cycle a
décorer. Iy a (k—1)! (Z) manieres différentes de choisir ces éléments, et de les placer sous forme
de cycle, qu’on décore ensuite de Fy(r) fagons (cf. proposition 2). Enfin, comme la fonction
génératrice des permutations des n — k éléments restants selon le nombre de cycles est (X),,—x,
on obtient donc l'identité (15), i.e

U

> Zx Y ZF(r)(k—l)!(Z)mn-k- 20
k=1

|pl=n

Rappelons le résultat suivant, di a Berge [3], Foata et Strehl [8] (voir aussi [4, p. 91] et
[5, 6, 11] pour d’autres généralisations récentes) :

XY = (X + k), (21)

10



ou la somme porte sur toutes les injections f : [n — k| — [n] (cyc f est le nombre de cycles de f).
En notant que ces injections peuvent étre décomposées en cycles et en k chemins (dont certains
peuvent étre vides), on peut en présenter une preuve rapide :

k
exp XZz—l'— 1+Zi!% — exp [~ X log(1 — )] (1 — 1)~*

i>1 i>1

t'L
=(1-t)% k=1+Z(X+k)i5
i>1
Afin d’interpréter le membre de droite de (2) on a besoin d’une notion plus subtile que
celle de décoration. Soit +' une S-décoration de . Associons & 7' son squelette " en posant
~"(b) = +/(b) pour tout b de [ ainsi que v’ (a) = v/(a) pour tout a de o qui n’est pas [S-décoré.
En revanche, si a de a est 3-décoré, alors nous posons 7" (a) = 4P(a) ou p est le plus petit entier
positif pour lequel v'P(a) est [S-décoré.

Exemple 4. On reprend l’exemple de la Figure 2: le squelette obtenu a pour cycle (1,2,5).

@
O ®-® @@@

— ©— @—>@ ©-@

o-a
@\@/@~@H@ o

Figure 4: Une (-décoration de « et son squelette

On définit de fagon analogue le squelette d’'une (1, ..., Bm)-décoration de «, o «, B, . . . , B
sont des cycles de supports deux a deux disjoints et (3; est de longueur r; pour 1 < ¢ < m.
Interprétons maintenant le membre de droite de (2). Pour construire un £-complexe sur [n] on
peut d’abord former le k-cycle 6 du squelette du cycle o décoré. Il y a (k — 1)'(2) manieres
différentes de former un tel cycle. On décore ensuite § de Si(r) fagons (cf. proposition 2),
car le cycle du squelette est par définition B-décoré surjectivement. Enfin, comme la fonction
génératrice des injections de n — k éléments restant dans les k£ éléments de  selon le nombre de
cycles est (X + k)p—k (voir (21)), on a établi le résultat suivant.

Théoréme 2. La fonction génératrice des L-complexes sur [n] selon le nombre de cycles non
décorés peut s’exprimer comme suit :

1(w)

Z Xl 12}«3 ZSk <k)(X+k) (22)

lpl=n

Par comparaison avec (2), on en déduit alors que

11



(r)
k

ce qui montre que ¢; ’ est positif et ne dépend pas de n, et par substitution de (19), on retrouve

(r)

les formules du corollaire 2, dont la derniere, a savoir (13), montre que ¢, ~ est un entier.
En fait, nous pouvons renforcer le dernier résultat, c’est-a-dire la conjecture de Lassalle en

supposant que le support de chacun des cycles §, B1, ..., Bm est totalement ordonné.

Théoréme 3. Soit Ty (r;j) le nombre de (B, ..., Bm)-décorations surjectives de o telles que le
plus grand élément décorant de [3; décore le plus grand élément de 0, et le plus grand élément
de tout autre cycle décore le plus grand élément de § décoré par ce cycle. Alors on a

Sk(r) -7

Tii(r; j) = Eorr pour 1<j<m.
m

Preuve. 11 suffit de regarder I'action de la permutation cyclique ¢ ainsi que 'action de la per-
mutation cyclique §; pour tout ¢ # j. O

La formule (23) montre par le théoreme 3 que nous avons trouvé une interprétation combi-

natoire pour c/,(c]r> = ZTzl Ty (r; 7).

On suppose maintenant que p éléments de [n] sont marqués d’une étoile, dont au moins un
par cycle de la permutation de type u. Ceci donne la fonction génératrice suivante

2\ ! I(p)
3 < >_‘Xl(u)—1 3" ()
=1

z
ul=n P/ 1

On peut d’autre part commencer par choisir les p éléments marqués, et noter i (resp. j) le
nombre d’éléments marqués (resp. non marqués) parmi les p; du cycle choisi pour étre décoré.
Si l'on isole les éléments non marqués de tous les autres cycles, alors la fonction génératrice est

<Z> igﬂﬂ(r)(i +J- 1)!<ZZ) <" jp> (X)ps.

Commeilya(p—i)(p—i+1)(p—i+2)---(n—i—j—1)=(p—i)n—p—; manieres différentes
de réintroduire les n — p — j éléments restants, on a démontré 'identité suivante

3 <Z>£‘sz>—1 %F ®

z
lul=n a i=1

= (Z) Zn_pmj(r)(p — i)npg i+ = 1)!@ (“ P ) (X)p-i,

i=1 j=0 J
qui est exactement 'identité (16).

Remarque. Lorsque m =1 une preuve analogue de (16) a été donnée dans [17].
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4 Liens avec les coefficients de linéarisation

Remarquons d’abord qu’en posant X = 0 dans ’équation (1) nous obtenons

m r|
T2 = et &
3 7. e .

(r)

Comme ¢;.* est indépendant de n, la détermination de c( r) apparait donc comme le calcul des
coefficients du développement du polynéme (x),, - - - (x),,, dans la base ((z)x)r>0. De plus, si

nous pouvons démontrer autrement que les nombres c,(:) sont indépendants de n, cette approche
fournirait une nouvelle preuve de la conjecture de Lassalle.

Supposons x entier positif et considérons m ensembles E7, Ea, ..., FEp,, deux a deux disjoints
et tels que card(E;) = r; pour tout i € [m]|. Nous appelons une famille de fonctions (f1,..., fm),
fi + By — [x] pour tout i € [m], injective si et seulement si chaque fonction f; est injective. Le
nombre de familles de fonctions injectives vaut (x),, - - - (z),,,. D’autre part, nous pouvons poser
E = FE1U- - -UE,, et faire correspondre, de facon bijective, a chaque famille de fonctions injectives
une fonction f : E — [] telle que, pour tout j € [z] et tout i € [m], card(f~1(j) N E;) € {0,1}.
Appelons de maniere générale un sous-ensemble T' C E transversal si card(T' N E;) € {0, 1} pour
tout i € [m]. Ceci démontre le théoreme suivant.

Théoréme 4. Soit di(ri,...,mm) le nombre de maniéres différentes de partitionner E en
k transversaux mon-vides, alors

(@), (@) = Y i) (@) (25)
k>0
En particulier, nous avons la formule de linéarisation classique :
1\ (T2
@t =3 (1) ()R sracr (26)
k>0

En effet, pour m = 2, 8’il y a k transversaux de cardinal deux et si le nombre total de transversaux
vaut r1 + r9 — k, alors nous pouvons les choisir de (”) (’z)k' fagons distinctes, c’est-a-dire

r T
dT1+T2*k(r17742) = <kl) <]€2> k!

Il est encore plus simple de choisir directement, de fagon indépendante, m sous-ensembles
de [z] de cardinaux 7i, ..., 7,, respectivement. Ceci est possible de (fl) e (rx) manieres
distinctes et montre le théoreme suivant.

Théoréme 5. Soit dy.(r) le nombre de maniéres différentes de choisir m sous-ensembles de [k]
de cardinauz ry, ..., rmy, respectivement, de sorte que chaque élément de [k] soit choisi au moins

une fois. Alors
(Z) < > kz>0dk ( ) di(r) = % (27)

En particulier, on a

5 ri+re—k
dT1+T2—k(r17T2) == < ! 2 )

]{?,7"1 —k‘,?"g—k
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On peut aussi donner une preuve directe de ce dernier résultat. En effet, choisir deux sous-
ensembles Ej et Ey de [z] tels que |Ey| = r1, |Ea| = 2 et |Ey N E3] = k équivaut & choisir un
sous-ensemble de [z] de cardinal 1 4+ ro — k et puis le partitionner en trois blocs de cardinaux
k, r1 — k, ro — k, respectivement. D’oul drﬁ,«rk(n,rg) = (k;ifgrzk_k)

Au lieu de choisir, de fagon indépendante, 71, ..., 7, éléments de [x] sans répétition,
choisissons-les maintenant avec des répétitions possibles. Comme le nombre de fagons de choisir
n éléments dans [x] avec des répétitions possibles, c’est-a-dire le nombre de n-multi-ensembles

sur [z] d’aprés Stanley [16, p. 15], est

()05 -

le nombre de scénarios distincts est donc égal a ((fl)) e ((T‘fn)) D’autre part, le nombre de

fagons de choisir k éléments dans [z] sans répétition est (7). On en déduit le résultat suivant.

Théoréme 6. Soit ¢ (r) le nombre de maniéres différentes de choisirry, ..., rm, éléments de [k]
avec des répétitions possibles, de sorte que chaque élément de [k] soit choisi au moins une fois,

() () - g ()

On en déduit en particulier pour m =1
_ rp—1
= 30
¢(r) (n B k) (30)

d’apres (28), et pour m = 2

i k r — 1 r2 — 1
—_ ’ 1
Cr(r1,m2) Z (l,k‘l — 1 kg — l> <r1 - k:1> <r2 - k2> (31)

k1+ko=k+l

En effet, supposons que les choix de r; et ro éléments dans [k] avec répétitions possibles ont
respectivement ki et ko éléments distincts et [ éléments communs. Comme chaque élément de
[k] doit étre choisi au moins une fois, ceci donne des couples (E1, F3) de parties de [k] tels que

|Eq| = ki, |Eal =k, |E1NE3 =1, E;{UE;=]Ik].

Il y a clairement (l k:l—l; k2_l) tels couples. Nous appliquons ensuite (30) a Ej et Es respective-

ri—1 ) ( ro—1

r1—ter) Uy kz) de choix correspondant au couple (Ep, E3).

ment, ce qui donne le nombre (
Notons que 'identité (26) s’écrit encore

(@)ry (@), _ T +ry—1 (T)rytra—1
=S )i )

r! 7! = lLiry—lirg—1) (r1 + 1o —1)!

En reportant (32) dans (1) nous déduisons le résultat suivant.

. r . . s, .
Lemme 3. Les coefficients c,(c) satisfont la relation de récurrence suivante :

(r1,72,73,-,7m) (rit+re—i,r3,....,rm)

c —1 c

k ) :(1)l< LT > k . (33)
ritre Tyt i, Lriy—lLrg—=1)ri+ro—l+r3+-+1ry

En particulier, comme cl(fl) = (7}3) (voir (14)), les coefficients c,(:) sont indépendants de n.
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En vue de déduire une nouvelle preuve de la conjecture de Lassalle, nous introduisons
quelques notations supplémentaires. Pour tout polynéme p(x) définissons les opérateurs E,
I et A comme suit :

Ep(x) =p(x+1), Ip(x)=p(x) et A=FE-1I.

Pour tout k > 0 posons A? = I et A*1 = A(A*). La formule binomiale implique alors que

n

APp(a) = (B — I)"pla) = S (~1)F (Z)p@c Fn—), (34)

k=0
et d’autre part nous avons le développement de Taylor suivant :

k
p) =3 Ty, (35)

k>0

En appliquant (34) et (35) au polynéme p(z) = (x),, - - - (¢)r,, nous obtenons

m |r] k

1 (K T ,
[T =3 | e (5) T | o (36)

i=1 k=0 =0
Grace au lemme 3 la comparaison de (24) avec (29) et (36) montre le théoreme suivant.

Théoréme 7. On a d’une part

) T+t T
o) = e ), (37)

et d’autre part la formule explicite (13), c¢’est-a-dire,

) = i ;(_1)“ <l:: 11> (z tﬁ; 1) ﬁ <7‘z +7’i - 1>. (38)

j=11 I=1,l#j

I1 résulte respectivement de (38) et (37) que ¢; ’ est entier et positif.

(r)
k
Remarque. 1l est évident que (29) et (9) fournissent exactement les mémes interprétations

combinatoires pour les nombres c,(:). Enfin, des g-analogues naturels de ces coefficients ont été
introduits dans [9].
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