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Abstract

We prove a recent conjecture of Lassalle about positivity and integrality of coefficients
in some polynomial expansions. We also give a combinatorial interpretation of those num-
bers. Finally, we show that this question is closely related to the fundamental problem of
calculating the linearization coefficients for binomial coefficients.
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1 Introduction

Une partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µl > 0) de n est une suite décroissante d’entiers strictement
positifs de somme n = |µ|. Le nombre l = l(µ) est appelé la longueur de µ. Pour tout i ≥ 1,
l’entier mi(µ) = card{j : µj = i} est la multiplicité de i dans µ. Définissons

zµ =
∏

i≥1

imi(µ)mi(µ)!.

Pour n ≥ 1 les factorielles montantes et descendantes sont définies comme suit :

(x)n = x(x + 1) · · · (x + n − 1), 〈x〉n = x(x − 1) · · · (x − n + 1).

Notons que 〈−x〉n = (−1)n(x)n et que les coefficients binomiaux valent
(

x
n

)

= 〈x〉n/n!. Dans ses
travaux sur les polynômes de Jack [13] Lassalle a récemment posé la conjecture suivante.

Conjecture 1. Soit X une indéterminée, m et n deux entiers strictement positifs et r =
(r1, . . . , rm) une suite d’entiers positifs telle que |r| =

∑m
i=1 ri > 0. On a

∑

|µ|=n

X l(µ)−1

zµ





l(µ)
∑

i=1

m
∏

k=1

(µi)rk

rk!



 =
1

|r|

min(n,|r|)
∑

k=1

c
(r)
k

(

X + n − 1

n − k

)

, (1)

où les coefficients c
(r)
k sont des entiers positifs à déterminer.
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Remarquons d’abord que le membre de gauche de (1) est un polynôme en X de degré n− 1,
donc il peut être développé dans la base {

(

X+n−1
n−k

)

} (1 ≤ k ≤ n) d’une seule façon. Ceci implique

l’existence et l’unicité des coefficients rationnels c
(r)
k au membre de droite de (1).

Comme nous allons le démontrer, les nombres c
(r)
k sont en fait des entiers positifs et indé-

pendants de n. Pour m = 1 et m = 2 les coefficients c
(r)
k ont été déterminés et la conjecture a

été vérifiée (voir [7, 12, 13, 17]). Dans le premier cas, on a c
(r1)
k =

(

r1

k

)

et dans le deuxième cas

Lassalle [13] a obtenu plusieurs formules exprimant c
(r1,r2)
k , qui se réduisent au cas précédent

lorsque r2 = 0. Donc les coefficients c
(r)
k sont des extensions des coefficients binomiaux classiques.

L’objectif de cet article est de donner une solution complète de ce problème, ceci par trois
approches distinctes utilisant des techniques complètement différentes. Plus précisément, la sec-
tion 2 donne une réponse analytique à la conjecture 1, ainsi que quelques identités du même type,
ceci à l’aide des fonctions génératrices multivariées. Dans la troisième section, nous donnons
une interprétation combinatoire de l’identité suivante :

∑

|µ|=n

n!

zµ
X l(µ)−1

l(µ)
∑

i=1

m
∏

k=1

µi

(

µi + rk − 1

rk − 1

)

=

∏

j rj

|r|

min(n,|r|)
∑

k=1

c
(r)
k k!

(

n

k

)

(X + k)n−k, (2)

qui est l’identité (1) au facteur n!r1 . . . rm près. Dans la dernière section, nous détaillons une
troisième démonstration de la conjecture de Lassalle qui utilise le calcul aux différences et le cas
particulier m = 1 de (2) , c’est-à-dire l’identité :

∑

|µ|=n

n!

zµ
X l(µ)−1

l(µ)
∑

i=1

µi

(

µi + r1 − 1

r1 − 1

)

=
∑

k≥1

(

r1

k

)

k!

(

n

k

)

(X + k)n−k = (X + r1)n − (X)n, (3)

dont la démonstration est facile, voir [12] pour une preuve algébrique et [17] pour une preuve
combinatoire. Dans ce paragraphe, nous voyons que le problème essentiel soulevé par la conjec-
ture de Lassalle est le calcul de certains coefficients de linéarisation. Malgré l’importance fon-
damentale de cette question, il semble que, jusqu’à présent, les coefficients de linéarisation ne
furent étudiés que pour les polynômes orthogonaux. C’est pourquoi nous ajoutons un traitement
combinatoire du problème dans cette section.

Afin de rendre la lecture la plus autonome possible nous rappelons ici quelques formules
fréquemment utilisées dans la suite. D’abord la formule binomiale peut s’écrire :

(1 − x)−α =
∑

n≥0

(α)n

n!
xn. (4)

Nous aurons aussi besoin de la transformation suivante, qui est un cas limite de la formule de
Whipple [1, p. 142] :

3F2

[

−n, a, b
c, d

; 1

]

=
(c − a)n

(c)n
3F2

[

−n, a, d − b
d, a + 1 − n − c

; 1

]

, (5)

et qui se réduit à la formule de sommation de Chu-Vandermonde lorsque b = d :

2F1

[

−n, a
c

; 1

]

=
(c − a)n

(c)n
, (6)
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où

pFq

[

a1, a2, . . . , ap

b1, b2, . . . , bq
; z

]

=
∑

k≥0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
.

est la définition des fonctions hypergéométriques classiques.

2 Fonctions génératrices

En multipliant le membre de gauche de (1) par tnxr1

1 · · ·xrm
m et en sommant sur n ≥ 1 et les

entiers r1, . . . , rm ≥ 0 tels que |r| 6= 0, par la formule binomiale (4), nous sommes amenés à
évaluer l’expression

∑

|µ|≥1

t|µ|
X l(µ)−1

zµ

l(µ)
∑

i=1

(

m
∏

l=1

(1 − xl)
−µi − 1

)

.

Lemme 1. Soit y une indéterminée, alors

∑

|µ|≥1

t|µ|
X l(µ)−1

zµ

l(µ)
∑

i=1

(yµi − 1) =
∑

n≥1

tn
n

∑

k=1

(

X + n − 1

n − k

)

(y − 1)k

k
. (7)

Preuve. Toute partition µ non nulle correspond de façon biunivoque à une suite non nulle à
support fini m = (m1, m2, . . .) telle que µ = (1m12m2 . . .). On a donc

∑

|µ|≥1

t|µ|
X l(µ)−1

zµ

l(µ)
∑

i=1

yµi =
∑

m

X−1
∏

j≥1

(

Xtj

j

)mj 1

mj !

∑

i≥1

miy
i

=
∑

i≥1

yi





∑

mi≥0

mi

(

Xti

i

)mi X−1

mi!



 ·
∏

j 6=i

∑

mj≥0

(

Xtj

j

)mj 1

mj !

=
∑

i≥1

(yt)i

i
exp

(

Xti

i

)

∏

j 6=i

exp

(

Xtj

j

)

= (1 − t)−X log(1 − yt)−1. (8)

Par soustraction du terme correspondant à y = 1, nous obtenons

∑

|µ|≥1

t|µ|
X l(µ)−1

zµ

l(µ)
∑

i=1

(yµi − 1) = (1 − t)−X log

(

1 −
t

1 − t
(y − 1)

)−1

=
∑

k≥1

(1 − t)−X−k tk(y − 1)k

k

=
∑

n≥1

tn
n

∑

k=1

(

X + n − 1

n − k

)

(y − 1)k

k
,

ce qui achève la démonstration.
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Notons, pour toute fonction multivariée f , par [xr1

1 · · ·xrm
m ]f(x1, . . . , xm) le coefficient de

xr1

1 · · ·xrm
m dans f . Nous déduisons donc de (7), en posant y = 1/(1 − x1)(1 − x2) · · · (1 − xm),

le résultat suivant.

Théorème 1. Soient c
(r)
k les nombres rationnels définis par (1). Alors

c
(r)
k

|r|
= [xr1

1 · · ·xrm
m ]

1

k

(

1

(1 − x1) · · · (1 − xm)
− 1

)k

. (9)

En particulier, kc
(r)
k /|r| est un entier positif et ne dépend pas de n.

Il en résulte que

c
(r)
k = [xr1

1 · · ·xrm
m ]

d

dz

∣

∣

∣

∣

∣

z=1

1

k

(

1

(1 − zx1) · · · (1 − zxm)
− 1

)k

(10)

= [xr1

1 · · ·xrm
m ]

(

1

(1 − x1) · · · (1 − xm)
− 1

)k−1 x1

1−x1
+ · · · + xm

1−xm

(1 − x1) · · · (1 − xm)
.

La dernière expression montre clairement le corollaire suivant.

Corollaire 1. Les nombres c
(r)
k sont des entiers positifs.

Il est aussi possible de déduire le corollaire au moyen des fonctions symétriques homogènes
sur {x1, . . . , xm}, qui sont définies [10, 14] par la fonction génératrice :

∑

n≥0

hn(x1, . . . , xm)zn =
m
∏

i=1

(1 − zxi)
−1,

et donc ceci, à l’aide de (10), permet d’écrire :

∑

k≥1

∑

r1,...,rm≥0

c
(r)
k tkxr1

1 · · ·xrm
m

= −
d

dz

∣

∣

∣

∣

∣

z=1

log



1 − t
∑

n≥1

hn(x1, . . . , xm)zn





=
∑

λ

|λ|
tl(λ)

l(λ)

(

l(λ)

m1(λ), m2(λ), . . .

)

hλ(x1, . . . , xm)

=
∑

λ

tl(λ)
∑

i≥1

i

(

l(λ) − 1

m1(λ), m2(λ), . . . , mi(λ) − 1, . . .

)

hλ(x1, . . . , xm), (11)

ce qui montre aussi que c
(r)
k ∈ N. Notons que le membre de droite de (11) s’apparente au

développement de la nième fonction symétrique puissance pn(x1, . . . , xm) dans la base des fonc-
tions symétriques homogènes donné par la formule de Waring [10, 15].
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D’autre part, en développant le membre de droite de (9) par la formule binomiale, nous
obtenons

(−1)k

k
+

1

k

∑

i≥1

(−1)k−i

(

k

i

)

(1 − x1)
−i · · · (1 − xm)−i

=
∑

|r|>0

∑

i≥1

(−1)k−i

i

(

k − 1

i − 1

) m
∏

l=1

(

rl + i − 1

rl

)

xrl

l ,

ce qui donne, en extrayant le coefficient de xr1

1 · · ·xrm
m , le résultat suivant.

Corollaire 2. On a la formule explicite pour c
(r)
k :

c
(r)
k = |r|

∑

i≥1

(−1)k−i

i

(

k − 1

i − 1

) m
∏

l=1

(

rl + i − 1

rl

)

(12)

=

m
∑

j=1

k
∑

i=1

(−1)k−i

(

k − 1

i − 1

)(

i + rj − 1

rj − 1

) m
∏

l=1,l 6=j

(

rl + i − 1

rl

)

. (13)

En particulier, pour m = 1 et m = 2, la formule (12) permet de retrouver les deux expressions
explicites de Lassalle [13]. En fait, pour m = 1 la formule (9) se réduit directement à

k

r1
c
(r1)
k = [xr1

1 ] xk
1(1 − x1)

−k = [xr1

1 ]
∑

l≥k

(

l − 1

k − 1

)

xl
1 =⇒ c

(r1)
k =

(

r1

k

)

. (14)

Pour m = 2 la formule (12) s’écrit

c
(r1,r2)
k =

r1 + r2

k

k
∑

i=1

(−1)k−i

(

k

i

)(

i + r1 − 1

r1

)(

i + r2 − 1

r2

)

= (−1)k−1(r1 + r2) 3F2

[

−k + 1, r1 + 1, r2 + 1
2, 1

; 1

]

.

Appliquons deux fois la formule (5) à l’expression ci-dessus, ce qui donne bien

c
(r1,r2)
k =

(

r1 + r2

k

)

3F2

[

−k + 1,−r1,−r2

1 − r1 − r2, 1
; 1

]

.

Remarquons qu’en appliquant une troisième fois (5), on retrouve une autre expression de [13] :

c
(r1,r2)
k =

(

r1 + r2

k

)(

r1 + r2

r1

)

3F2

[

−r1,−r2, k − r1 − r2

1 − r1 − r2,−r1 − r2
; 1

]

=
∑

i≥0

(−1)i

(

r1 + r2 − i

k

)

r1 + r2

r1 + r2 − i

(

r1 + r2 − i

i

)(

r1 + r2 − 2i

r1 − i

)

.

Enfin, en multipliant le membre de gauche de (1) par tnxr1

1 · · ·xrm
m et en sommant sur n ≥ 1

et les entiers r1, . . . , rm ≥ 0, nous obtenons

∑

|µ|≥1

t|µ|
X l(µ)−1

zµ

l(µ)
∑

i=1

m
∏

l=1

(1 − xl)
−µi ,
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ce qui peut se développer directement à l’aide de (8) comme suit :

∑

n≥0

tn
(X)n

n!

∑

k≥1

1

k

(

t

(1 − x1) · · · (1 − xm)

)k

=
∑

n,k≥1

tn

k

(

X + n − k − 1

n − k

) m
∏

l=1

∑

rl≥0

(k)rl

rl!
xrl

l ,

et donc nous obtenons l’identité

∑

|µ|=n

X l(µ)−1

zµ

l(µ)
∑

i=1

m
∏

k=1

(µi)rk

rk!
=

n
∑

k=1

1

k

m
∏

l=1

(

rl + k − 1

rl

)(

X + n − k − 1

n − k

)

. (15)

Il est possible d’établir une extension de (15) comme suit.

Proposition 1. Pour toute partition µ et tout p ∈ N, soit
〈

µ
p

〉

le nombre de façons de choisir p
éléments dans le diagramme de Ferrers de µ, dont au moins un par ligne, alors

∑

|µ|=n

〈

µ

p

〉

X l(µ)−1

zµ





l(µ)
∑

i=1

m
∏

k=1

(µi)rk

rk!





=

p
∑

k=1

1

k





n−p+k
∑

j=k

(

j − 1

k − 1

)(

n − j − 1

p − k − 1

) m
∏

l=1

(

rl + j − 1

rl

)





(

X + p − k − 1

p − k

)

. (16)

Preuve. Rappelons la fonction génératrice suivante [10] :

∑

p≥1

〈

µ

p

〉

xp =
∏

k≥1

(

(1 + x)k − 1
)mk(µ)

.

Nous pouvons ainsi, comme pour (15), calculer la fonction génératrice du membre de gauche de
(16), en le multipliant par tnxpxr1

1 · · ·xrm
m et en sommant sur n, p ≥ 1 et r1, . . . , rm ≥ 0 :

∑

|µ|≥1

t|µ|
X l(µ)−1

zµ

∑

p≥1

〈

µ

p

〉

xp

l(µ)
∑

i=1

m
∏

l=1

(1 − xl)
−µi

=

(

1 −
tx

1 − t

)−X [

log

(

1 −
t

(1 − x1) · · · (1 − xm)

)

− log

(

1 −
t(1 + x)

(1 − x1) · · · (1 − xm)

)]

.

Développons alors cette dernière expression, ce qui donne :

∑

p≥0

(

tx

1 − t

)p (X)p

p!

∑

j≥1

1

j

(

t

(1 − x1) · · · (1 − xm)

)j
(

(1 + x)j − 1
)

=
∑

j,k≥1

∑

p≥0

1

j

(

tx

1 − t

)p (X)p

p!

(

t

(1 − x1) · · · (1 − xm)

)j (

j

k

)

xk

=
∑

j,k,p≥1

1

j

(

j

k

)(

X + p − k − 1

p − k

)

xp





m
∏

l=1

∑

rl≥0

(j)rl

rl!
xrl

l



 tp+j−k(1 − t)−p+k.
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Mais en utilisant la formule binomiale sous la forme :

(1 − t)−p+k =
∑

n≥0

(p − k)n

n!
tn,

en remplaçant n par n − p − j + k et en extrayant le coefficient devant xptnxr1

1 · · ·xrm
m , nous

obtenons la fonction génératrice du membre de droite.

Remarque. Pour p = n, l’identité (16) donne bien (15). Lorsque tous les ri sont nuls, le
membre de droite de (1) n’a pas de sens. Or il résulte de (7) avec y = 0 que

(1 − t)−X log(1 − t)−1 =
∑

n≥1

tn
n

∑

k=1

(

X + n − 1

n − k

)

(−1)k−1

k
,

ce qui donne le prolongement suivant de (1) pour r = 0 :

∑

|µ|=n

X l(µ)−1

zµ
l(µ) =

n
∑

k=1

(−1)k−1

k

(

X + n − 1

n − k

)

. (17)

Cette formule est en fait la dérivée d’une formule de Macdonald [14, p. 26] :

∑

|µ|=n

X l(µ)

zµ
=

(

X + n − 1

n

)

.

3 Interprétations combinatoires

Une permutation σ de l’ensemble E = {a1, . . . , ak} est un cycle si E = {a1, σ(a1), . . . , σ
k−1(a1)}.

On note σ = (ai, σ(ai), . . . , σ
k−1(ai)) pour 1 ≤ i ≤ k et on appelle σ un cycle de longueur k

ou un k-cycle et E le support de σ. Il est d’usage d’identifier σ avec son graphe sagittal Gσ,
c’est-à-dire, ai → aj est un arc de Gσ si et seulement si σ(ai) = aj . Si α = (a1, a2, . . . , ak)
et β = (b1, b2, . . . , br) sont deux cycles de supports disjoints, un mélange de α et β est défini
comme un cycle (c1, . . . , ck+r), où le mot w = c1 . . . ck+r est un réarrangement de

a1a2 . . . akbibi+1 . . . brb1b2 . . . bi−1, i ∈ {1, . . . , r},

tel que a1a2 . . . ak et bibi+1 . . . brb1b2 . . . bi−1 sont deux sous-mots de w. Géométriquement
mélanger deux cycles α et β consiste à insérer β dans α (ou l’inverse) pour former un nou-
veau cycle de longueur k + r en gardant la même orientation.

Exemple 1. Soient α = (1, 2, 3, 4, 5, 6) et β = (a, b, c, d, e). Alors (1, c, 2, 3, 4, d, e, 5, 6, a, b) est
un mélange de α et β (voir l’illustration Figure 1).

Lemme 2. Soient α et β deux cycles de supports disjoints et de longueur k et r respectivement.
Alors le nombre de mélanges de α et β est donné par

Fk(r) =
(k + r − 1)!

(k − 1)!(r − 1)!
= k

(

k + r − 1

r − 1

)

= r

(

k + r − 1

k − 1

)

.
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m1
↙

m2
↓
m3
↘ m4 ↗

m5
↑

m6
↖

cycle α

ma
↙

mb

↓

mc → md

↑

me
↖

cycle β

=⇒

m1←mc
↙

mb←

m2
↓
m3
↓
m4 → md → me → m5

↗

m6
↑

ma
↖

un mélange de α et β

Figure 1: Un mélange de deux cycles

En effet, il y a (k+r−1)! manières de constituer un cycle à l’aide de k+r éléments, mais l’ordre
des cycles initiaux de longueurs k et r devant être respecté, on obtient le résultat.

Remarque. Comme
(

k+r
k

)

compte le nombre de manières de mélanger deux chemins orientés
de longueur k et r, respectivement, pour obtenir un chemin orienté de longueur k + r, on
pourrait appeler Fk(r) coefficient binomial cyclique. Or, il semble difficile d’interpréter Fk(r)

dans le contexte des coefficients binomiaux généralisés de [2]. En effet,
(

k+r
k

)

=
(

Xk+r

Xk

)

, où Xk

est un chemin orienté avec k sommets, mais le coefficient binomial cyclique de [2], à savoir
(

Ck+r

Ck

)

(Ck est un circuit orienté avec k sommets), est égal à 1 si k est un diviseur de k + r et égal à 0
sinon.

La notion de mélange a l’avantage d’être symétrique par rapport aux deux cycles, mais on
aura besoin d’une variante asymétrique du mélange dans la suite. Dans un mélange γ de deux
cycles α et β, un sommet a de α est β-décoré par un sommet b de β s’il existe un arc b → a.

La β-décoration de α associée à γ est le graphe γ′ obtenu en posant γ′(b) = γ(b) pour tout
b de β ainsi que γ′(a) = α(a) pour tout a de α.

Exemple 2. On reprend l’exemple de la Figure 1. Les éléments 1, 2 et 5 sont décorés par b, c
et e respectivement.

m1←mc
↙

mb←

m2
↓
m3
↓
m4 → md → me → m5

↗

m6
↑

ma
↖

=⇒

m1
↙

mb←− ma←

m2
↓

mc −→

m3
↘ m4 ↗

m5
↑

me←− md←

m6
↖

Figure 2: Un mélange de α et β et sa β-décoration de α correspondante

La notion de décoration permet de donner une autre expression pour Fk(r) comme suit :

Fk(r) =
∑

i≥1

i

(

r

i

)(

k

i

)

.

8



En effet, pour constituer une β-décoration de α ayant i éléments β-décorés, on peut d’abord
choisir ces éléments dans α de

(

k
i

)

manières, et puis choisir les i éléments du cycle β les décorant
de

(

r
i

)

manières. Il ne reste plus qu’à associer cycliquement ces deux familles de i éléments, ce
qui donne i choix, et ceci démontre l’identité ci-dessus.

Remarque. On aurait pu aussi déduire la formule précédente du lemme 2 en partant du
membre de droite et en utilisant la formule de Chu-Vandermonde. Inversement on obtient une
preuve combinatoire de cette dernière sous la forme suivante :

∑

i≥1

i

(

r

i

)(

k

i

)

= k

(

k + r − 1

r − 1

)

= r

(

k + r − 1

k − 1

)

.

Considérons maintenant une généralisation de la notion de mélange ou décoration comme
suit. Soient α, β1, . . . , βm des cycles de supports deux à deux disjoints. On note β=(β1, . . . , βm)
et on définit une β-décoration de α comme étant le graphe obtenu en décorant α par chacun de
ces m cycles. De plus, on dit qu’une β-décoration de α est surjective si chaque sommet de α est
décoré par au moins un sommet des cycles β1, . . . , βm.

Exemple 3. Soient α = (1, . . . , 6), β1 = (a, b, c, d, e) et β2 = (x, y, z, t). Considérons les β1-
décoration et β2-décoration suivantes de α ainsi que la (β1, β2)-décoration de α correspondante :

m1
↙

mb←− ma←

m2
↓

mc −→

m3
↘ m4 ↗

m5
↑

me←− md←

m6
↖

β1-décoration de α

m1
↙

mx −→

m2
↓
m3
↘

my −→

m4 ↗ mz←−

m5
↑

m6
↖

mt←−

β2-décoration de α

m1
↙

mb←− ma←

mx
↓

m2
↓

mc −→

m3
↘

my −→

m4 ↗ mz←−

m5
↑

me←− md←

m6
↖

mt←−

Figure 3: Une (β1, β2)-décoration de α

On notera que cette décoration est surjective, alors que celle de la Figure 2 ne l’était pas.
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Proposition 2. Soient α, β1, . . . , βm des cycles de longueur k, r1, . . . , rm respectivement, et de
supports deux à deux disjoints. Si Fk(r) (resp. Sk(r)) est le nombre de β-décorations (resp. sur-
jectives) de α, alors on a

Fk(r) =

m
∏

i=1

Fk(ri) =

m
∏

l=1

rl

(

k + rl − 1

rl

)

, (18)

et

Sk(r) =
k

∑

i=1

(−1)k−i

(

k

i

) m
∏

l=1

rl

(

i + rl − 1

rl

)

. (19)

En effet, d’après le lemme 2 la formule (18) est évidente car les m décorations sont indépendantes
les unes des autres. D’autre part, il est clair que le nombre de β-décorations de α ayant i sommets
décorés est

(

k
i

)

Si(r), donc Fk(r) =
∑k

i=1

(

k
i

)

Si(r) et par inversion on obtient

Sk(r) =
k

∑

i=1

(−1)k−i

(

k

i

)

Fi(r),

qui permet de déduire (19) par substitution de (18).
Interprétons maintenant le membre de gauche de (2) à l’aide du modèle précédent. Pour

tout entier positif n on note [n] l’ensemble {1, 2, . . . , n}. Un L-complexe sur [n] est un triplet
(σ, α, β), où σ est une permutation de [n], α un cycle de σ et β est une suite de m cycles qui
décorent α. Étant donnée une partition µ de n, il y a n!/zµ permutations de [n] de type µ,
c’est-à dire ayant mi(µ) cycles de longueur i (1 ≤ i ≤ n). Choisissons un cycle (de longueur µi)
à décorer parmi les l(µ) possibles, les autres cycles étant comptés à l’aide de la variable X. La
fonction génératrice des L-complexes sur [n] selon le nombre de cycles non décorés est égale à

∑

|µ|=n

n!

zµ
X l(µ)−1

l(µ)
∑

i=1

Fµi
(r).

D’autre part, on pourrait construire un L-complexe de [n] en constituant d’abord un k-cycle à
décorer. Il y a (k−1)!

(

n
k

)

manières différentes de choisir ces éléments, et de les placer sous forme
de cycle, qu’on décore ensuite de Fk(r) façons (cf. proposition 2). Enfin, comme la fonction
génératrice des permutations des n − k éléments restants selon le nombre de cycles est (X)n−k,
on obtient donc l’identité (15), i.e.,

∑

|µ|=n

n!

zµ
X l(µ)−1

l(µ)
∑

i=1

Fµi
(r) =

n
∑

k=1

Fk(r)(k − 1)!

(

n

k

)

(X)n−k. (20)

Rappelons le résultat suivant, dû à Berge [3], Foata et Strehl [8] (voir aussi [4, p. 91] et
[5, 6, 11] pour d’autres généralisations récentes) :

∑

f

Xcyc f = (X + k)n−k, (21)

10



où la somme porte sur toutes les injections f : [n−k] → [n] (cyc f est le nombre de cycles de f).
En notant que ces injections peuvent être décomposées en cycles et en k chemins (dont certains
peuvent être vides), on peut en présenter une preuve rapide :

exp



X
∑

i≥1

(i − 1)!
ti

i!







1 +
∑

i≥1

i!
ti

i!





k

= exp [−X log(1 − t)] (1 − t)−k

= (1 − t)−X−k = 1 +
∑

i≥1

(X + k)i
ti

i!
.

Afin d’interpréter le membre de droite de (2) on a besoin d’une notion plus subtile que
celle de décoration. Soit γ′ une β-décoration de α. Associons à γ′ son squelette γ′′ en posant
γ′′(b) = γ′(b) pour tout b de β ainsi que γ′′(a) = γ′(a) pour tout a de α qui n’est pas β-décoré.
En revanche, si a de α est β-décoré, alors nous posons γ′′(a) = γ′p(a) où p est le plus petit entier
positif pour lequel γ′p(a) est β-décoré.

Exemple 4. On reprend l’exemple de la Figure 2: le squelette obtenu a pour cycle (1, 2, 5).

m1
↙

mb←− ma←

m2
↓

mc −→

m3
↘ m4 ↗

m5
↑

me←− md←

m6
↖

=⇒

m1
↙

mb←− ma←

m6
↓

m2mc −→ m5−→

m4
↗

m3 →

me←− md←
↖

Figure 4: Une β-décoration de α et son squelette

On définit de façon analogue le squelette d’une (β1, . . . , βm)-décoration de α, où α, β1, . . . , βm

sont des cycles de supports deux à deux disjoints et βi est de longueur ri pour 1 ≤ i ≤ m.
Interprétons maintenant le membre de droite de (2). Pour construire un L-complexe sur [n] on
peut d’abord former le k-cycle δ du squelette du cycle α décoré. Il y a (k − 1)!

(

n
k

)

manières
différentes de former un tel cycle. On décore ensuite δ de Sk(r) façons (cf. proposition 2),
car le cycle du squelette est par définition β-décoré surjectivement. Enfin, comme la fonction
génératrice des injections de n− k éléments restant dans les k éléments de δ selon le nombre de
cycles est (X + k)n−k (voir (21)), on a établi le résultat suivant.

Théorème 2. La fonction génératrice des L-complexes sur [n] selon le nombre de cycles non
décorés peut s’exprimer comme suit :

∑

|µ|=n

n!

zµ
X l(µ)−1

l(µ)
∑

i=1

Fµi
(r) =

n
∑

k=1

Sk(r)(k − 1)!

(

n

k

)

(X + k)n−k. (22)

Par comparaison avec (2), on en déduit alors que

c
(r)
k =

|r|

k ·
∏

j rj
Sk(r) =

m
∑

j=1

Sk(r) · rj

k · r1 · · · rm
, (23)
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ce qui montre que c
(r)
k est positif et ne dépend pas de n, et par substitution de (19), on retrouve

les formules du corollaire 2, dont la dernière, à savoir (13), montre que c
(r)
k est un entier.

En fait, nous pouvons renforcer le dernier résultat, c’est-à-dire la conjecture de Lassalle en
supposant que le support de chacun des cycles δ, β1, . . . , βm est totalement ordonné.

Théorème 3. Soit Tk(r; j) le nombre de (β1, . . . , βm)-décorations surjectives de δ telles que le
plus grand élément décorant de βj décore le plus grand élément de δ, et le plus grand élément
de tout autre cycle décore le plus grand élément de δ décoré par ce cycle. Alors on a

Tk(r; j) =
Sk(r) · rj

k · r1 · · · rm
, pour 1 ≤ j ≤ m.

Preuve. Il suffit de regarder l’action de la permutation cyclique δ ainsi que l’action de la per-
mutation cyclique βi pour tout i 6= j.

La formule (23) montre par le théorème 3 que nous avons trouvé une interprétation combi-

natoire pour c
(r)
k =

∑m
j=1 Tk(r; j).

On suppose maintenant que p éléments de [n] sont marqués d’une étoile, dont au moins un
par cycle de la permutation de type µ. Ceci donne la fonction génératrice suivante

∑

|µ|=n

〈

µ

p

〉

n!

zµ
X l(µ)−1





l(µ)
∑

i=1

Fµi
(r)



 .

On peut d’autre part commencer par choisir les p éléments marqués, et noter i (resp. j) le
nombre d’éléments marqués (resp. non marqués) parmi les µi du cycle choisi pour être décoré.
Si l’on isole les éléments non marqués de tous les autres cycles, alors la fonction génératrice est

(

n

p

) p
∑

i=1

n−p
∑

j=0

Fi+j(r)(i + j − 1)!

(

p

i

)(

n − p

j

)

(X)p−i.

Comme il y a (p − i)(p − i + 1)(p − i + 2) · · · (n − i − j − 1) = (p − i)n−p−j manières différentes
de réintroduire les n − p − j éléments restants, on a démontré l’identité suivante

∑

|µ|=n

〈

µ

p

〉

n!

zµ
X l(µ)−1





l(µ)
∑

i=1

Fµi
(r)





=

(

n

p

) p
∑

i=1

n−p
∑

j=0

Fi+j(r)(p − i)n−p−j(i + j − 1)!

(

p

i

)(

n − p

j

)

(X)p−i,

qui est exactement l’identité (16).

Remarque. Lorsque m = 1 une preuve analogue de (16) a été donnée dans [17].
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4 Liens avec les coefficients de linéarisation

Remarquons d’abord qu’en posant X = 0 dans l’équation (1) nous obtenons

m
∏

i=1

(n)ri

ri!
=

1

|r|

|r|
∑

k=0

k c
(r)
k

〈n〉k
k!

. (24)

Comme c
(r)
k est indépendant de n, la détermination de c

(r)
k apparâıt donc comme le calcul des

coefficients du développement du polynôme (x)r1
· · · (x)rm dans la base (〈x〉k)k≥0. De plus, si

nous pouvons démontrer autrement que les nombres c
(r)
k sont indépendants de n, cette approche

fournirait une nouvelle preuve de la conjecture de Lassalle.
Supposons x entier positif et considérons m ensembles E1, E2, . . . , Em, deux à deux disjoints

et tels que card(Ei) = ri pour tout i ∈ [m]. Nous appelons une famille de fonctions (f1, . . . , fm),
fi : Ei → [x] pour tout i ∈ [m], injective si et seulement si chaque fonction fi est injective. Le
nombre de familles de fonctions injectives vaut 〈x〉r1

· · · 〈x〉rm . D’autre part, nous pouvons poser
E = E1∪· · ·∪Em et faire correspondre, de façon bijective, à chaque famille de fonctions injectives
une fonction f : E → [x] telle que, pour tout j ∈ [x] et tout i ∈ [m], card(f−1(j) ∩ Ei) ∈ {0, 1}.
Appelons de manière générale un sous-ensemble T ⊆ E transversal si card(T ∩Ei) ∈ {0, 1} pour
tout i ∈ [m]. Ceci démontre le théorème suivant.

Théorème 4. Soit dk(r1, . . . , rm) le nombre de manières différentes de partitionner E en
k transversaux non-vides, alors

〈x〉r1
· · · 〈x〉rm =

∑

k≥0

dk(r)〈x〉k. (25)

En particulier, nous avons la formule de linéarisation classique :

〈x〉r1
〈x〉r2

=
∑

k≥0

(

r1

k

)(

r2

k

)

k!〈x〉r1+r2−k. (26)

En effet, pour m = 2, s’il y a k transversaux de cardinal deux et si le nombre total de transversaux
vaut r1 + r2 − k, alors nous pouvons les choisir de

(

r1

k

)(

r2

k

)

k! façons distinctes, c’est-à-dire

dr1+r2−k(r1, r2) =

(

r1

k

)(

r2

k

)

k!.

Il est encore plus simple de choisir directement, de façon indépendante, m sous-ensembles
de [x] de cardinaux r1, . . . , rm, respectivement. Ceci est possible de

(

x
r1

)

· · ·
(

x
rm

)

manières
distinctes et montre le théorème suivant.

Théorème 5. Soit d̃k(r) le nombre de manières différentes de choisir m sous-ensembles de [k]
de cardinaux r1, . . . , rm, respectivement, de sorte que chaque élément de [k] soit choisi au moins
une fois. Alors

(

x

r1

)

· · ·

(

x

rm

)

=
∑

k≥0

d̃k(r)

(

x

k

)

, d̃k(r) =
k! dk(r)

r1! · · · rm!
. (27)

En particulier, on a

d̃r1+r2−k(r1, r2) =

(

r1 + r2 − k

k, r1 − k, r2 − k

)

.
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On peut aussi donner une preuve directe de ce dernier résultat. En effet, choisir deux sous-
ensembles E1 et E2 de [x] tels que |E1| = r1, |E2| = r2 et |E1 ∩ E2| = k équivaut à choisir un
sous-ensemble de [x] de cardinal r1 + r2 − k et puis le partitionner en trois blocs de cardinaux
k, r1 − k, r2 − k, respectivement. D’où d̃r1+r2−k(r1, r2) =

(

r1+r2−k
k,r1−k,r2−k

)

.
Au lieu de choisir, de façon indépendante, r1, . . . , rm éléments de [x] sans répétition,

choisissons-les maintenant avec des répétitions possibles. Comme le nombre de façons de choisir
n éléments dans [x] avec des répétitions possibles, c’est-à-dire le nombre de n-multi-ensembles
sur [x] d’après Stanley [16, p. 15], est

((

x

n

))

=

(

x + n − 1

n

)

=
(x)n

n!
, (28)

le nombre de scénarios distincts est donc égal à
((

x
r1

))

· · ·
((

x
rm

))

. D’autre part, le nombre de

façons de choisir k éléments dans [x] sans répétition est
(

x
k

)

. On en déduit le résultat suivant.

Théorème 6. Soit c̃k(r) le nombre de manières différentes de choisir r1, . . . , rm éléments de [k]
avec des répétitions possibles, de sorte que chaque élément de [k] soit choisi au moins une fois,
alors

((

x

r1

))

· · ·

((

x

rm

))

=
∑

k≥0

c̃k(r)

(

x

k

)

. (29)

On en déduit en particulier pour m = 1

c̃k(r1) =

(

r1 − 1

r1 − k

)

, (30)

d’après (28), et pour m = 2

c̃k(r1, r2) =
∑

k1+k2=k+l

(

k

l, k1 − l, k2 − l

)(

r1 − 1

r1 − k1

)(

r2 − 1

r2 − k2

)

. (31)

En effet, supposons que les choix de r1 et r2 éléments dans [k] avec répétitions possibles ont
respectivement k1 et k2 éléments distincts et l éléments communs. Comme chaque élément de
[k] doit être choisi au moins une fois, ceci donne des couples (E1, E2) de parties de [k] tels que

|E1| = k1, |E2| = k2, |E1 ∩ E2| = l, E1 ∪ E2 = [k].

Il y a clairement
(

k
l,k1−l,k2−l

)

tels couples. Nous appliquons ensuite (30) à E1 et E2 respective-

ment, ce qui donne le nombre
(

r1−1
r1−k1

)(

r2−1
r2−k2

)

de choix correspondant au couple (E1, E2).

Notons que l’identité (26) s’écrit encore

(x)r1

r1!

(x)r2

r2!
=

∑

l≥0

(−1)l

(

r1 + r2 − l

l, r1 − l, r2 − l

)

(x)r1+r2−l

(r1 + r2 − l)!
. (32)

En reportant (32) dans (1) nous déduisons le résultat suivant.

Lemme 3. Les coefficients c
(r)
k satisfont la relation de récurrence suivante :

c
(r1,r2,r3,...,rm)
k

r1 + r2 + r3 + · · · + rm
=

∑

l≥0

(−1)l

(

r1 + r2 − l

l, r1 − l, r2 − l

)

c
(r1+r2−l,r3,...,rm)
k

r1 + r2 − l + r3 + · · · + rm
. (33)

En particulier, comme c
(r1)
k =

(

r1

k

)

(voir (14)), les coefficients c
(r)
k sont indépendants de n.
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En vue de déduire une nouvelle preuve de la conjecture de Lassalle, nous introduisons
quelques notations supplémentaires. Pour tout polynôme p(x) définissons les opérateurs E,
I et ∆ comme suit :

Ep(x) = p(x + 1), Ip(x) = p(x) et ∆ = E − I.

Pour tout k ≥ 0 posons ∆0 = I et ∆k+1 = ∆(∆k). La formule binomiale implique alors que

∆np(x) = (E − I)np(x) =
n

∑

k=0

(−1)k

(

n

k

)

p(x + n − k), (34)

et d’autre part nous avons le développement de Taylor suivant :

p(x) =
∑

k≥0

∆kp(0)

k!
〈x〉k. (35)

En appliquant (34) et (35) au polynôme p(x) = (x)r1
· · · (x)rm nous obtenons

m
∏

i=1

(x)ri
=

|r|
∑

k=0





1

k!

k
∑

j=0

(−1)j

(

k

j

) m
∏

i=1

(k − j)ri



 〈x〉k. (36)

Grâce au lemme 3 la comparaison de (24) avec (29) et (36) montre le théorème suivant.

Théorème 7. On a d’une part

c
(r)
k =

r1 + · · · + rm

k
c̃k(r), (37)

et d’autre part la formule explicite (13), c’est-à-dire,

c
(r)
k =

m
∑

j=1

k
∑

i=1

(−1)k−i

(

k − 1

i − 1

)(

i + rj − 1

rj − 1

) m
∏

l=1,l 6=j

(

rl + i − 1

rl

)

. (38)

Il résulte respectivement de (38) et (37) que c
(r)
k est entier et positif.

Remarque. Il est évident que (29) et (9) fournissent exactement les mêmes interprétations

combinatoires pour les nombres c
(r)
k . Enfin, des q-analogues naturels de ces coefficients ont été

introduits dans [9].
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nymes pour leurs conseils avisés concernant la rédaction de la troisième section.
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