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Abstract

The independence polynomial of a graph G is the polynomial
∑

I
x|I|, summed over all

independent subsets I ⊆ V (G). We show that if G is clawfree, then there exists a Mehler
formula for its independence polynomial. This was proved for matching polynomials in [19]
and extends the combinatorial proof of the Mehler formula found by Foata [9]. It implies
immediately that all the roots of the independence polynomial of a clawfree graph are real,
answering a question posed by Hamidoune [14] and Stanley [28] and solved by Chudnovsky
and Seymour [6]. We also prove a Mehler formula for the multivariate matching polynomial,
extending results of [19].

1 Introduction

Let V be a finite set of vertices, n = |V |, and let G = (V,E) be a simple graph, i.e. E, the set
of edges, is a subset of

(

V
2

)

, the family of all 2-element subsets of V .
An r-matching in G is a set of r edges of G, no two of which have a vertex in common.

Clearly, r ≤ ⌊n/2⌋. Let mr(G) be the number of r-matchings in G, with the convention that
m0(G) := 1. The matching polynomial of G is (see [11] or [10], chapter 1)

MG(x) :=

⌊n/2⌋
∑

r=0

(−1)rmr(G)xn−2r. (1.1)

These polynomials were introduced by Heilmann and Lieb [15], who, motivated by statistical
physics, mainly studied their roots. They obtained many estimations on the locations of those
roots and provided several different proofs for their main theorem that all roots of MG(x) are
real. Another proof of this theorem was obtained by Godsil, which he reproduced in his book [10]
together with all the classical proofs. However, all those proofs rely on a recursive approach
(via the deletion of a vertex) towards the matching polynomial. One of the purposes of our
paper [19] was to give a short proof that avoids this traditional deletion technique.
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If G = (V,
(

V
2

)

), i.e. E =
(

V
2

)

, then G is called a complete graph and denoted by G = Kn,
where n = |V |. Its matching polynomial MKn

(x) is the classical Hermite polynomial. For those
Hermite polynomials the famous Mehler formula affirms that

1 +
∞
∑

n=1

MKn
(x)MKn

(y) · zn/n! =

1√
1− z2

· exp
[

(

x+ y

2

)2

· z

1 + z
−
(

x− y

2

)2

· z

1− z

]

. (1.2)

Foata [9] had the idea to prove this formula in a combinatorial way. He showed the very
surprising result that the Mehler formula, from a combinatorial point of view, reflects nothing
more than the easy and classical fact that the union of two matchings of a complete graph forms
several cycles and paths. This was the beginning of the combinatorial studies of orthogonal
polynomials. In our paper [19] we generalized the combinatorial proof found by Foata [9] to
matching polynomials. Therefore, it seems natural to call our generalization a Mehler formula
for matching polynomials. We showed that it immediately implies that

|MG(x)|2 ≥
[

(ℑm x)2
]n

+ 2|E| ·
[

(ℑm x)2
]n−1

(1.3)

for every x ∈ C, i.e. that all the roots of MG(x) are real. Moreover, this fact holds for a common
generalization of the matching polynomial and the rook polynomial, see [21, 22].

An independent set in a finite simple graph G = (V,E) is a set of pairwise non-adjacent
vertices. Let ir(G) be the number of independent sets with r vertices, in particular i1(G) = |V |
and i0(G) = 1. If α is the maximum number of independent points of G, then its independence
polynomial is the polynomial

IG(x) :=
α
∑

r=0

ir(G) · xr =
∑

I

x|I|, (1.4)

where the sum is over all independent subsets I ⊆ V (see for instance [1, 2, 3, 4, 8, 12, 13, 16,
20, 23, 24, 25] for work on these polynomials). A claw is the graph with vertex set {A,B,C,D}
and three edges AB, AC, AD, and its independence polynomial is

1 + 4x+ 3x2 + x3. (1.5)

Since this polynomial does not have three real roots, it cannot be affirmed that all the roots
of any independence polynomial IG(x) are real. A graph G, however, is said to be clawfree if
no induced subgraph of it is a claw. It was conjectured by Hamidoune [14] and Stanley [28]
and proved by Chudnovsky and Seymour [6] that all the roots of IG(x) are real (and of course
negative) if G is clawfree.

Given a graph G, its line graph L(G) is the graph whose vertex set is the set of edges of G,
and two vertices are adjacent if they share an end in G. If G is simple, then L(G) is also simple.
Moreover, the matchings in G are in bijection with the independent sets in L(G), i.e. the sets
of pairwise non-adjacent vertices. Not every simple graph, however, is the line graph of another
simple graph G: if we take an edge of G sharing an end with three other edges, then two of them
must share the same end with it, i.e. those two do not form a matching. Therefore line graphs
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are always clawfree. Moreover, the matching polynomial of G and the independence polynomial
of its line graph L(G) are related by the following identity:

MG(x) = xn · IL(G)(−1/x2), (1.6)

which proves that all roots of MG(x) are real if and only if all roots of IL(G)(x) are real and
negative.

Since Chudnovsky and Seymour [6] showed that all roots of IG(x) are real and negative
as soon as G is clawfree, it is natural to conjecture that a Mehler formula might hold for the
independence polynomial of any clawfree graph. This conjecture is indeed true: it is the purpose
of the first section of this article to prove such a formula, which implies immediately that

|IG(x2)|2 ≥ iα(G) ·
[

4(ℜe x)2
]α

, |IG(−x2)|2 ≥ iα(G) ·
[

4(ℑm x)2
]α

(1.7)

for every x ∈ C. It follows that all the roots of IG(x) are real and negative, if G is clawfree.

If w is a real-valued function on the vertex set of the graph G, then the weighted independence
polynomial is

IG,w(x) :=
∑

I

∏

v∈I

[x · w(v)], (1.8)

where the sum is over all independent subsets I ⊆ V (if I is empty, then the product is 1 by
definition). Engström [7] showed that if w is nonnegative and G is clawfree, then all the roots of
IG,w(x) are real (and of course negative). His proof is in three steps, first for integer weights, then
rational and finally for real weights. More precisely, if w(v) is a positive integer for every vertex,
then it is a classical operation of substitution to replace each v ∈ V by a clique (complete graph)
of size w(v) and to join vertices of different cliques if and only if the original vertices of G were
joined. It is easy to see that this new graph G(w) is still clawfree and that IG(w)(x) = IG,w(x).
Last but not least, Engström [7] had to give some approximation arguments to complete his
proof. We will show at the end of the first section by means of an example that our Mehler
formula approach works perfectly in this weighted case as well. We could have started directly
with the weighted generalization, but preferred not to do so, because we think it is easier to
understand the arguments for the first time on the most important special case.

When talking about independence polynomials with positive vertex weights, one must also
talk about matching polynomials with positive edge weights, and this is what we did already in
the last section of [19]. However, for matching polynomials it is not only possible to introduce
positive edge weights, but one can also introduce additional complex vertex weights and still get
nice results, notably the Heilmann-Lieb theorem [15]. We will show in our last section that even
a Mehler formula holds in this most general context and that it implies this and other classical
theorems. In particular, the most radical specialization gives the Mehler formula for Hermite
polynomials, explaining finally the name of this article.

Of course, one can obtain the univariate polynomials from the multivariate ones by suitable
specializations. But the multivariate polynomials are, despite being more general, in many ways
simpler objects to work with: for instance, they are multiaffine (i.e. of degree 1 in each variable
separately); and a multiaffine polynomial in many variables is in some respects easier to work
with than a general polynomial in one variable (e.g. it may permit simple proofs by induction
on the number of variables). For this and other reasons, the multivariate extension of a single
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variable result is sometimes much easier to prove than its single-variable specialization; and
much additional insight can often be gained by studying the multivariate polynomial, even if one
is ultimately interested in the univariate specialization. This ”multivariate ideology” has borne
great fruit in the study of the Tutte polynomial [17]. Some early examples of what can be gained
by the multivariate approach to the independence polynomial can be found in [26, 27]: notably
the connection to the Lovász local lemma and a simple inductive proof for a zero-free polydisc.
Another example concerns the two simple proofs found by [5] of the multivariate Heilmann-
Lieb theorem [15]. The first proof is by induction on the number of vertices and is based on a
recursion relation associated to deletion of a vertex; it is a slight simplification/improvement of
the inductive proof given by Heilmann-Lieb (in that proof the deletion was limited to certain
special vertices). The second proof is very different and is based on the fact that the ”multiaffine
part” operator preserves the half-plane property. In short, the multivariate result is the natural
Heilmann-Lieb theorem, and has two very simple and elegant proofs. The univariate result that
is most often quoted as ”the” Heilmann-Lieb theorem is a mere corollary. (The situation here
is quite analogous to that concerning the Lee-Yang theorem for ferromagnetic Ising models.
There, too, the univariate corollary is frequently quoted, but it is the multivariate result that is
fundamental. Indeed, the proof of the Lee-Yang theorem imagined in [5] is very closely analogous
to their second proof of the Heilmann-Lieb theorem.)

However, we think that the combinatorics underlying those results can be hidden behind the
many variables. It was Foata’s idea [9] that the classical Mehler formula for Hermite polynomials
has a very simple combinatorial explanation: the union of two matchings of a graph forms several
cycles and paths. It is the aim of this article to show that the same idea allows to obtain more
general results, in one or many variables. It seems natural to us to call those generalizations
also Mehler formulae. In the last section of this article we will see how everything specializes to
the classical Mehler formula for Hermite polynomials.

2 Mehler Formulae for Independence Polynomials of Clawfree

Graphs

Finding a Mehler formula for the independence polynomial of a clawfree graph G means that
we have to be able to interpret combinatorially the product IG(x)IG(y). In other words, if the
variable x is assigned to each vertex of one independent set of G of cardinality r and if the
variable y is assigned to each vertex of another independent set of G of cardinality s, then we
must identify a combinatorial object to which the product xr · ys is assigned. A natural choice
is certainly the subgraph PCC of G induced by the union of our two independent sets (PCC
shall suggest ”path-cycle-configuration”) together with a labeling of its vertices as x, y or xy.
The vertices labeled x or xy form an independent set of vertices of PCC, as do the vertices
labeled y or xy; in particular, the vertices labeled xy must be isolated vertices of PCC. Any
edge of PCC must join a vertex labeled x with a vertex labeled y: PCC is a bipartite graph.
Moreover, the degree of each vertex of PCC is at most two since G is clawfree and PCC is
an induced subgraph. Therefore PCC is an induced subgraph of G that is a disjoint union of
some isolated vertices IV (PCC) labeled xy, some even cycles EC(PCC) (of length at least 4)
labeled alternately with x and y, some even paths EP (PCC) (with at least two vertices) labeled
alternately with x and y, and, last but not least, some odd paths OP (PCC) (with at least one
vertex) labeled alternately with x and y. We want to consider PCC not only as an induced
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subgraph, but as an induced subgraph of G with marked isolated vertices in order to be able to
distinguish isolated vertices from odd paths of length 1. Therefore IV (PCC) and OP (PCC)
are well-defined. The same PCC appears several times in the product IG(x)IG(y). Indeed,
IV (PCC) is fixed once PCC is fixed, but the variables x and y can still be exchanged on each
path and cycle of PCC. Therefore PCC must be counted with the weight

∏

IV (PCC)

[xy]
∏

EC(PCC)

[

2 · x|EC(PCC)|/2y|EC(PCC)|/2
]

∏

EP (PCC)

[

2 · x|EP (PCC)|/2y|EP (PCC)|/2
]

∏

OP (PCC)

[

x(|OP (PCC)|+1)/2y(|OP (PCC)|−1)/2 + x(|OP (PCC)|−1)/2y(|OP (PCC)|+1)/2
]

, (2.1)

where |EC(PCC)|, |EP (PCC)| and |OP (PCC)| denote the number of vertices of the respective
cycle or path. Note that products over empty sets are always 1 by definition. In particular,
PCC can be the empty graph (a pointless concept): its weight is 1. We have proved our main
theorem, a Mehler formula for the independence polynomial of any clawfree graph G.

Theorem 1. We have

IG(x)IG(y) =
∑

PCC

(

∏

IV (PCC)

[xy]
∏

EC(PCC)

[

2 · (xy)|EC(PCC)|/2
]

∏

EP (PCC)

[

2 · (xy)|EP (PCC)|/2
]

∏

OP (PCC)

[

(x+ y) · (xy)(|OP (PCC)|−1)/2
]

)

. (2.2)

The formula becomes easier if we replace x and y by x2 and y2, respectively. Moreover, we
can express IG(x

2)IG(y
2) with the help of the elementary symmetric polynomials

e1 := x+ y, e2 := xy (2.3)

by putting PG(e1, e2) := IG(x
2)IG(y

2). The identity x2 + y2 = e21 − 2e2 implies

PG(e1, e2) =
∑

PCC

(

∏

IV (PCC)

[

e22
]

∏

EC(PCC)

[

2e
|EC(PCC)|
2

]

∏

EP (PCC)

[

2e
|EP (PCC)|
2

]

∏

OP (PCC)

[

e21e
|OP (PCC)|−1
2 − 2e

|OP (PCC)|
2

]

)

(2.4)

=
∑

OPC





∏

OP (OPC)

e21e
|OP (OPC)|−1
2



 · PG\[OPC∪Γ(OPC)](0, e2), (2.5)

where the last sum is over all odd-path-configurations, i.e. over all induced subgraphs of G
that are formed by a disjoint union of some odd paths. Indeed, if we develop the last product
of (2.4) by distributivity, OPC corresponds to the odd paths for which we have chosen the term

e21e
|OP (PCC)|−1
2 . This must be multiplied by PH(0, e2) (we have replaced e1 by 0 in order to

forbid any further appearances of the term e21e
|OP (PCC)|−1
2 ), where H = G\[OPC ∪ Γ(OPC)]

is the subgraph of G induced by all vertices of G\OPC which are not adjacent to any vertex
of OPC. We remove Γ(OPC) (vertices adjacent to at least one vertex of OPC) because PCC
is an induced subgraph. Note that PH(0, e2) = 1 if H is the empty graph.
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Lemma 1. For any graph G, we have

PG(0, e2) = IG((i
√
xy)2)IG((−i

√
xy)2) = IG(−e2)

2. (2.6)

Proof. If we want to replace e1 by 0 (leaving e2 unchanged), then we have to replace x and y
by i

√
xy and −i

√
xy, respectively.

If we apply our lemma to our induced subgraphs H we get the following theorem.

Theorem 2. We have

IG(x
2)IG(y

2) =
∑

OPC





∏

OP (OPC)

e21e
|OP (OPC)|−1
2



 · IG\[OPC∪Γ(OPC)](−e2)
2, (2.7)

where e1 = x+ y and e2 = xy.

Corollary 1. Let G be a clawfree graph with iα(G) maximal independent sets. Then

|IG(x2)|2 ≥ iα(G) ·
[

4(ℜe x)2
]α

, |IG(−x2)|2 ≥ iα(G) ·
[

4(ℑm x)2
]α

(2.8)

for every x ∈ C. In particular, all the roots of IG(x) are real and negative.

Proof. If we replace y by x, then e21 = 4(ℜe x)2 ≥ 0 and e2 = |x|2 ≥ 0. Therefore, every term of
the sum

|IG(x2)|2 = IG(x
2)IG(x

2) =

∑

OPC





∏

OP (OPC)

e21e
|OP (OPC)|−1
2



 · IG\[OPC∪Γ(OPC)](−e2)
2 (2.9)

is nonnegative. In particular, each of the iα(G) maximal independent sets of G is an odd-path-
configuration with α paths of length 1 and contributes to the sum [e21e

0
2]
α = [4(ℜe x)2]α, because

IH(−e2)
2 = PH(0, e2) = 1 if H is the empty graph. This proves the first inequality. The second

one follows immediately if we replace x by i · x.
Finally, if z is a complex number that is neither a real negative number nor zero, then there

exists x ∈ C such that z = x2 and ℜe x > 0. Therefore,

|IG(z)|2 = |IG(x2)|2 ≥ iα(G) ·
[

4(ℜe x)2
]α

> 0. (2.10)

In other words, IG(z) can be zero only if z is a real negative number, because IG(0) = 1.

Let us finally consider an example, namely the graph with vertex set {A,B,C} and two
edges AB and AC. Moreover, we want to attach the weights a, b and c to its vertices A, B
and C, respectively. As explained in the introduction, if a, b and c are positive integers, this
corresponds to replacing the vertices A, B and C by cliques (complete graphs) of sizes a, b and
c, respectively, where all vertices of the clique of size a are joined with the vertices of the cliques
of sizes b and c, but there are no edges between the cliques of sizes b and c. In general, however,
a, b and c can be arbitrary positive (or even nonnegative) real numbers (if a number is 0, it
corresponds to the fact that the vertex is deleted). The weighted independence polynomial of
this graph is

IG,w(x) = 1 + x · a + x · b + x · c + x2 · bc. (2.11)
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An easy multiplication gives the following formula:

IG,w(x)IG,w(y) = 1 + (x+ y) · a + (x+ y) · b + (x+ y) · c + 2xy · ab + 2xy · ac
+(x+ y)2 · bc + (x+ y)xy · abc + xy · a2 + xy · b2 + xy · c2
+xy(x+ y) · b2c + xy(x+ y) · c2b + (xy)2 · b2c2. (2.12)

Here a corresponds to an odd path of length 1, ab corresponds to an even path of length 2,
bc corresponds to two odd paths of length 1, abc corresponds to an odd path of length 3, a2

corresponds to an isolated vertex, b2c corresponds to an isolated vertex and an odd path of
length 1 and b2c2 corresponds to two isolated vertices. Altogether, this reflects exactly our first
theorem. To go on, we put e1 = x+ y and e2 = xy and obtain

IG,w(x
2)IG,w(y

2) = 1 − 2e2 · a − 2e2 · b − 2e2 · c + 2e22 · ab + 2e22 · ac
+4e22 · bc − 2e32 · abc + e22 · a2 + e22 · b2 + e22 · c2
− 2e32 · b2c − 2e32 · c2b + e42 · b2c2
+ e21 · b ·

[

1 − 2e2 · c + e22 · c2
]

+ e21 · c ·
[

1 − 2e2 · b + e22 · b2
]

+ e21 · a + e21e
2
2 · abc + e41 · bc (2.13)

=
[

1 − e2 · a − e2 · b − e2 · c + e22 · bc
]2

+ e21 · b · [1 − e2 · c]2 + e21 · c · [1 − e2 · b]2

+ e21 · a + e21e
2
2 · abc + e41 · bc. (2.14)

Here bc corresponds to two odd paths of length 1, abc corresponds to an odd path of length 3, a
corresponds to an odd path of length 1 and b corresponds to an odd path of length 1 which must
be multiplied by the square of the weighted independence polynomial of C evaluated at −e2.
Last but not least, 1− e2 · a− e2 · b− e2 · c+ e22 · bc is the weighted independence polynomial of
the whole graph evaluated at −e2. Altogether, this reflects our second theorem.

As we see, it causes no problem to introduce nonnegative real multiplicative weights for
every vertex (see [7]): they just make the notations slightly more complicated, but the proofs
and theorems remain the same.

3 Mehler Formulae for Multivariate Matching Polynomials

To state and derive our extension of the Mehler formula for matching polynomials [19] to allow
not only nonnegative real edge weights but also complex vertex weights, we need an adequate
algebraic tool, the algebra of generating functions for set functions. We introduce them in the
following subsection without supposing any knowledge of algebra at all. When we use some
classical expressions such as A-algebra or projective limit (see [18] for definitions), it is only for
the convenience of readers knowing them. Everything can also be understood easily without
knowing them, because we define all our objects in our concrete setting explicitly.

Finally, we study the applications to multivariate matching polynomials of this algebraic
formalism, which was already very useful in [19, 20, 21, 22].
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3.1 Algebraic Preliminaries

Let V be a finite set, and let A be a commutative ring with identity element. Let F(2V , A) be
the A-algebra of functions f : 2V → A, equipped with the multiplication

(fg)(W ) =
∑

W1⊎W2=W

f(W1)g(W2) (3.1)

(where ⊎ denotes disjoint union) and the obvious pointwise addition and scalar multiplication.

Next let A[V ] be the A-algebra of multiaffine (= square-free) polynomials

F (ν) =
∑

W⊆V

aW νW (3.2)

in indeterminates ν = (νv)v∈V , where we use the shorthand notation

νW =
∏

v∈W

νv, ν∅ := 1. (3.3)

This algebra is equipped with the usual multiplication of polynomials followed by extraction of
the multiaffine part (i.e. discarding all monomials that are not of the form νW for some W ⊆ V ),
that is





∑

W⊆V

aW νW



 ·





∑

W⊆V

bW νW



 =
∑

W⊆V

∑

W1⊎W2=W

aW1
bW2

νW , (3.4)

together with the usual addition and scalar multiplication. Note that A[V ] is isomorphic in an
obvious way to the quotient algebra A[{νv}]/〈{ν2v}〉.
Remark. In a more combinatorial way (see [19, 20, 21, 22]), we could have defined the multi-
plication of monomials for all W1,W2 ⊆ V by

νW1 · νW2 := νW1+W2 , where (3.5)

W1 +W2 :=

{

W1 ∪W2, if W1 ∩W2 = ∅,
†, if W1 ∩W2 6= ∅, where

(3.6)

†+W := †, †+ † := †, and ν† := 0. (3.7)

Here † corresponds to multisets that are systematically discarded.

Finally, the map f 7→ Ff that associates to each f ∈ F(2V , A) its generating polynomial
Ff ∈ A[V ], i.e.

Ff (ν) =
∑

W⊆V

f(W )νW , (3.8)

is manifestly an algebra isomorphism of F(2V , A) onto A[V ]. Many applications of A[V ] in dif-
ferent parts of enumerative graph theory can be found in [19], [20], [21] and [22]. See [5], Section
4.7, for further results on the ”multiaffine part” operator, and see [5], Remark 4 after Theorem
10.1, for a simple proof of the multivariate Heilmann-Lieb theorem for matching polynomials
that is based on it.
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For |V | = ∞ let (2V )fin be the partially ordered set of finite subsets of V . We have the
canonical projections pW1,W2

: A[W1] → A[W2] (W1,W2 ∈ (2V )fin,W1 ⊇ W2) and define

A[V ] := lim
←−

A[W ], W ∈ (2V )fin (3.9)

with the help of the projective limit. This means nothing else than working with generating
functions of the form

F (ν) =
∑

W∈(2V )fin

aW νW . (3.10)

Now for any V (finite or infinite), we consider the particular element

V :=
∑

v∈V

ν{v} =
∑

v∈V

νv (3.11)

in A[V ] : it is the generating function for the indicator function of the subsets of V of cardinal-
ity 1. Then, in the product Vk in the algebra A[V ], each set of cardinality k occurs k! times, so
that Vk/k! is the generating function for the indicator function of the subsets of V of cardinal-
ity k. If now g : N → A is an A-valued function on the natural numbers, the identity

∞
∑

k=0

g(k) · Vk/k! =
∑

W∈(2V )fin

g(|W |)νW (3.12)

provides an embedding of the algebra A![[V ]] of generating functions of exponential type (usually
the variable is called x instead of V) into our algebra A[V ] if and only if |V | = ∞. Indeed, if
k > |V |, then Vk/k! = 0. If |V | = ∞, the image of this embedding is the subalgebra of A[V ]
consisting of generating functions Ff of set functions f where the value depends only on the
cardinality of the set, i.e. f(W ) = g(|W |) for every W ∈ (2V )fin. This embedding is at the origin
of (almost?) all the applications of A![[V ]] in combinatorics, but it requires the existence of an
infinite combinatorial model depending just on cardinalities. Consequently, A[V ] provides more
flexibility and closeness to combinatorics; it is also ideally suited for computer calculations.

Remark. The ring Z![[V ]] is not Noetherian, but it contains the important functions exp(V)
and log(1 + V).

Example 1. If char A = 2, then we have

(1 + V)−1 =
∞
∑

k=0

(−1)kk! · Vk/k! (3.13)

≡ 1 + V and (3.14)

log(1 + V) =
∞
∑

k=1

(−1)k−1(k − 1)! · Vk/k! (3.15)

≡ V + V2/2 (3.16)

in the ring A![[V ]]. These identities are at the origin of lots of results of parity in combinatorics,
see [22].
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For all t ∈ A we put (tν)W := t|W |νW , W ∈ (2V )fin, and therefore

Ff (tν) =
∑

W∈(2V )fin

f(W ) t|W |νW , (3.17)

where f : (2V )fin → A is an arbitrary set function. It is evident that this definition is compatible
with the addition and the multiplication. Most important are the special cases t = −1 and
t = 0: Ff (0) = Ff (0 · ν) = f(∅).

If Ff (0) = 0, then Ff (ν)
k/k! is defined for any ring A, because a partition into k nonempty

subsets can be ordered in k! different ways. Thus we have an operation of A![[V ]] on A[V ] via
the substitution G(Ff (ν)) defined for any G ∈ A![[V ]].

Finally, define for any f, g : (2V )fin → A the function f ∗ g : (2V )fin → A by

(f ∗ g)(W ) := f(W ) · g(W ) (3.18)

for each W ∈ (2V )fin and define the Hadamard product to be

Ff (ν) ∗ Fg(ν) := Ff∗g(ν). (3.19)

3.2 Application to Matching Polynomials

From now on every edge {u, v} ∈ E of our finite graph G = (V,E) will get a weight w{u,v} ∈ A
(we can assume that the two-element subsets of V which are not edges get the weight zero).
Moreover, every vertex v ∈ V will get a weight xv ∈ A. As always, A is a commutative ring
with identity element. This weighted graph will be denoted by Gx,w = (Vx, Ew). Now Ew will
be identified with the generating function of the set function which attributes the value 0 to all
subsets of V with the only exception of the edges of Gx,w, which get their own weights. Moreover,
Vx will be identified with the generating function of the set function which attributes the value
0 to all subsets of V with the only exception of the vertices of Gx,w (subsets of cardinality 1),
which get their own weights. Of course, we have the following identities:

Vx =
∑

v∈V

xv · ν{v}, Ew =
∑

{u,v}∈E

w{u,v} · ν{u,v}. (3.20)

We define the (multivariate weighted) matching polynomial of Gx,w by

MG(x,w) :=
∑

matchings M





∏

{u,v}∈M

(−w{u,v})









∏

v∈V \(
⋃

M)

xv



 (3.21)

We see that every matching is counted with respect to its weight : the product of minus the
weights of its edges multiplied by the product of the weights of the vertices which are not
covered by the matching. The classical matching polynomial (1.1) is obtained if all variables xv
equal x whereas all variables w{u,v} equal 0 or 1. For every induced subgraph of Gx,w, and in
particular for Gx,w itself, the (weighted) matching polynomial can be calculated with the help
of its generating function.
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Lemma 2. We have

1 +
∑

∅⊂W⊆V

MG[W ](x,w) · νW = exp[Vx − Ew]. (3.22)

A Hamiltonian cycle of Gx,w is a cyclic order of V and its weight is the product of the
weights of its n = |V | edges corresponding to two consecutive vertices in the cyclic order. In
particular, if the edge corresponding to two consecutive vertices in the cyclic order does not
belong to the graph (equivalently, has weight zero), then the weight of that ”Hamiltonian cycle”
is equal to zero. Let cyc(Gx,w) be the sum of the weights of all Hamiltonian cycles of Gx,w,
with the convention that cyc(Gw) = 1 if n = 1. We assume that the weight of each edge in the
complete graph Kn is equal to 1, so that cyc(Kn) = (n− 1)!.

A Hamiltonian path of Gx,w is a linear order of V and its weight is the product of the weights
of its n− 1 edges corresponding to two consecutive vertices in the linear order. Let linu,v(Gx,w)
be the sum of the weights of all Hamiltonian paths of Gx,w from u to v (u is the first vertex of
the linear order whereas v is its last one). We use the convention that linu,u(Gx,w) = 1 if n = 1.
Moreover, we define

lin(Gx,w) :=
∑

u,v∈V

linu,v(Gx,w), (3.23)

i.e. lin(Gx,w) is the sum of the weights of all Hamiltonian paths of Gx,w. Clearly, lin(Kn) = n!.

Let us define for every u, v ∈ V

cycw(ν) :=
∑

∅⊂W⊆V

cyc(Gx,w[W ]) · νW , linu,v,w(ν) :=
∑

{u,v}⊆W⊆V

linu,v(Gx,w[W ]) · νW , (3.24)

linw(ν) :=
∑

∅⊂W⊆V

lin(Gx,w[W ]) · νW =
∑

u,v∈V

linu,v,w(ν). (3.25)

Considering the infinite graph K∞ yields

∞
∑

n=1

cyc(Kn) · Vn/n! = − log(1− V),
∞
∑

n=1

lin(Kn) · Vn/n! =
V

1− V . (3.26)

Usually (in undirected graphs) one does not distinguish between the two different directions of
Hamiltonian cycles or paths. In this sense cycw(ν) and linw(ν) count them ”twice”.

Now we can prove our generalization of the Mehler formula.

Theorem 3. Let xv and yv be two families of vertex weights. Using the Hadamard product ∗
we have:

exp [Vx − Ew] ∗ exp [Vy − Ew] = exp

[

1

2
· cycw(ν) +

1

2
· cycw(−ν)

]

·

exp
∑

u,v∈V

[

−xu − yu
2

· xv − yv
2

· linu,v,w(ν)−
xu + yu

2
· xv + yv

2
· linu,v,w(−ν)

]

. (3.27)
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Proof. A pair of matchings of G to be considered on the left-hand side of (3.27) (one with
weights x,w and the other with weights y, w) provides a partition of V into even cycles (to be
counted ”twice”, because the matchings can be interchanged), even (according to the number
of vertices) paths between u and v (to be counted with the factor −xuxv or −yuyv, because
the number of edges of the paths is odd) and odd paths (to be counted with the factor xuyv
or yuxv). These cycles and paths become Hamiltonian cycles and paths for the corresponding
induced subgraphs. Thus the left-hand side of (3.27) is equal to

exp

[

cycw(ν) + cycw(−ν)

4
· 2
]

·

exp





∑

u,v∈V

linu,v,w(ν) + linu,v,w(−ν)

4
· (−xuxv − yuyv)



 ·

exp





∑

u,v∈V

linu,v,w(ν)− linu,v,w(−ν)

4
· (xuyv + yuxv)



 . (3.28)

Indeed, if we divide linu,v,w(ν) − linu,v,w(−ν) by 2, then we count odd paths from u to v once.
However, if u and v are different, then linu,v,w(ν) = linv,u,w(ν) and we have to divide by 4 before
multiplying with xuyv+yuxv. If u = v, then we have to divide by 2 only before multiplying with
xuyu (there are no matchings to be interchanged), but this is of course equivalent to dividing
by 4 and multiplying with xuyu + yuxu. So in every case the preceding expression is correct for
the left-hand side of (3.27), and it is evident that it is also equal to its right-hand side.

Specializing (3.27) to K∞ and xv = x, yv = y for all v ∈ V and using (3.26) yields the
classical Mehler formula, because Hermite polynomials can be defined as matching polynomials
of complete graphs.

Corollary 2. (Mehler). We have

1 +
∞
∑

n=1

MKn
(x)MKn

(y) · Vn/n! =

1√
1− V2

· exp
[

(

x+ y

2

)2

· V
1 + V −

(

x− y

2

)2

· V
1− V

]

. (3.29)

Now specialize to A = C. Replacing the variables yv for every v ∈ V in the previous theorem
by the complex conjugate numbers xv yields the following theorem.

Theorem 4. Let xv be a family of complex vertex weights. We have

exp [Vx − Ew] ∗ exp [Vx − Ew] = exp

[

1

2
· cycw(ν) +

1

2
· cycw(−ν)

]

·

exp
∑

u,v∈V

[(ℑm xu) · (ℑm xv) · linu,v,w(ν)− (ℜe xu) · (ℜe xv) · linu,v,w(−ν)] . (3.30)
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If we replace in (3.30) xv and xv both by ℜe xv for every v ∈ V , then ℑm xv becomes 0
whereas ℜe xv remains unchanged. Therefore we get the identity :

exp [Vℜe x − Ew] ∗ exp [Vℜe x − Ew] = exp

[

1

2
· cycw(ν) +

1

2
· cycw(−ν)

]

·

exp
∑

u,v∈V

[−(ℜe xu) · (ℜe xv) · linu,v,w(−ν)] . (3.31)

Now we can use our last identity (3.31) in order to simplify the right-hand side of (3.30). This
proves the following theorem.

Theorem 5. Let xv be a family of complex vertex weights. We have

exp [Vx − Ew] ∗ exp [Vx − Ew] =
(

exp [Vℜe x − Ew] ∗ exp [Vℜe x − Ew]
)

·

exp





∑

u,v∈V

(ℑm xu) · (ℑm xv) · linu,v,w(ν)



 . (3.32)

Corollary 3. Let MG(x,w) be the weighted matching polynomial with complex vertex weights
xv and nonnegative real edge weights w{u,v}. If ℑm xv > 0 for every v ∈ V or if ℑm xv < 0 for
every v ∈ V , then we get the inequality

|MG(x,w)|2 ≥
(

∏

v∈V

(ℑm xv)
2

)



1 +
∑

{u,v}∈E

2 · w{u,v}
(ℑm xu)(ℑm xv)



 . (3.33)

Proof. Extracting the coefficient of νV in the generating-function identity (3.32) we obtain

|MG(x,w)|2 =
∞
∑

k=0

1

k!

∑

W0⊎W1⊎···⊎Wk=V

MG[W0](ℜe x, w)2 ·

k
∏

i=1

∑

u,v∈Wi

(ℑm xu)(ℑm xv)linu,v(Gx,w[Wi]), (3.34)

where 1/k! comes from the exponential function and reflects the fact that there are k! possibilities
to permute the necessarily nonempty sets W1,. . . ,Wk (W0 can be empty). (Indeed, lin on the
empty set is 0, whereas every matching polynomial on the empty set is 1.)

Under the given hypotheses on x and w, all the contributions on the right-hand side of (3.34)
are nonnegative, so a lower bound can be obtained by taking some of them. Here we keep only
the terms where W0 = ∅ and consider the two cases in which V is partitioned either into n = |V |
paths of length 1, or n− 2 paths of length 1 and one path of length 2. In the first case, we get
the contribution

∏

v∈V

(ℑm xv)
2 (3.35)

whereas in the second case, we get the contribution
∑

{u,v}∈E

(ℑm xu)(ℑm xv)(2w{u,v})
∏

t∈V \{u,v}

(ℑm xt)
2. (3.36)
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The sum of those expressions is equal to the right-hand side of (3.33). This finishes the proof of
this corollary.

Corollary 4. ([15]) Let MG(x,w) be the weighted matching polynomial with complex vertex
weights xv and nonnegative real edge weights w{u,v}. If ℑm xv > 0 for every v ∈ V or if
ℑm xv < 0 for every v ∈ V , then |MG(x,w)|2 > 0, i.e. the weighted matching polynomial
cannot be zero in that case.

Remark. The complex vertex variables of the weighted matching polynomial could be hidden
in the edge variables but could also be recovered from them by multiplying and dividing edge
weights alternatingly along odd cycles. Therefore it does not seem possible to obtain a beautiful
generalization of the complex vertex variables for clawfree graphs.

Acknowledgements: I would like to thank most cordially Theresia Eisenkölbl and the referees
for many useful and stimulating remarks.
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