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© 2011 Elsevier Ltd. All rights reserved.

Dedicated to Eberhard Triesch

1. Introduction

The bipartite graphs studied in this paper are described as triples
G=(X,Y:E), ECXxY, (1.1)

where X and Y are the two vertex sets, and E is the edge set. It is always assumed that X, called the
first vertex set, is finite and |X| = n. The second vertex set Y is also finite, but variable. As the edge set
E is a subset of X x Y, all the graphs are simple: they have no loops, and no multiple edges. For each
nonempty subset X’ of X define the set of neighbours of X’ by

I'c(X') :={y € Y | 3x € X’ such that (x, y) € E}. (1.2)

Thus, I'c(X’) is the set of all vertices y € Y which are related to at least one vertex in X’ by an edge of
G. Also, let

df (X) = |T6(X")|. (1.3)
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As will be seen, the integral-valued function dg“ : 2X\ @ — 7, further called set function, determines
G up to a permutation of the vertices of Y.

An injective mapping i : X’ — Y such that (x, i(x)) € E for every x € X’ is called a matching of X’
into Y and the pairs (x, i(x))(x € X’) are the edges of the matching. Let m_ (X’) be the number of such
injective mappings (or matchings). The mapping m, : 2X\ ¥ — Zis then another set function. We
show that it also determines G up to a permutation of the vertices of Y, and we prove an easy formula
allowing to calculate the set function m_ with the help of the set function d;/. Moreover, d} can be
calculated with the help of m.

Hall’s classical theorem on matchings in bipartite graphs asserts that G has a matching of X into
Y if and only if df (X') > |X’| forall @ C X’ C X. The existence of a matching trivially implies
dé (X') > |X| forall @ C X’ C X. Therefore, the interesting part of Hall’s theorem can be formulated
as follows:

Ifdf(X') > IX'| V¥ C X CX, thenmg (X) > 1. (1.4)

Let Y’ be a set disjoint from X and Y with |Y/| = |X| = n,and let b : X — Y’ be a bijection. Next,
define the bipartite graph G’ = (X, Y’; E’) by letting E’ be the family of all pairs (x, b(x)) withx € X, so
that G’ has just n independent edges. This implies dg, (X') = X' forall C X" € Xandm_,(X) = 1.
We can then reformulate the interesting part of Hall’s theorem as follows:

Ifdl(X') > d,(X) V¥ cX CX, thenmg(X) > m_(X). (1.5)

This inspired Triesch [25] to conjecture that for arbitrary mutually disjoint finite vertex sets X, Y, Y’
and for arbitrary bipartite graphs G = (X, Y; E), G = (X, Y’; E’) sharing the vertex set X the following
implication holds:

Ifdf(X') = d,(X) V¥ c X CX, thenmg (X) > m_(X). (1.6)

One purpose of this paper is to prove this conjecture for all graphs with sufficiently many edges by
deriving an explicit monotonic formula counting matchings in bipartite graphs.If n = 1and X = {1},
then it is evident that

mg ({1) = d (1)), (1.7)

and this identity implies the conjectured monotonicity immediately. If n = 2 and X = {1, 2}, then we
prove the formula

mg ({1,2) = (d& (1) — 1) (df {2 — 1) + (dF (1, 2) — 1) (1.8)
implying the monotonicity easily. Forn = 3 and X = {1, 2, 3}, we get
mg ({1,2,3) = (df({1h) —2) (dF ({2}) —2) (dF (3D —2)
+ (d&(1,2) = 2) (df({3h - 2)
+ (d&(1,3) —2) (df(2h - 2)
+ (d&(2,3) = 2) (df{1h - 2)
+2(df({1,2,3) —2), (1.9)
and forn = 4 and X = {1, 2, 3, 4}, our formula reads
mg ({1, 2,3,4)) = (df (1) — 3) (dE({2}) — 3) (d& (3D — 3) (df (4D — 3)
+ (dE({1,2) = 3) (d (3D — 3) (d¢ (14D - 3)
+ (df({1,3}) —3) (dF ({2} —3) (dF ({4} — 3
+ (d+({1 4)) = 3) (d¢({2h —3) (df({3) -3
+ (df({2,3)) = 3) (dF (1)) —3) (dF ({4)) — 3
+ (d& (2,4 = 3) (dg 1) = 3) (dg (3D —
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+ (dE ({3, 4) - 3) (dE (1) — 3) (df ({2h - 3)
+ (df({1,2}) —3) (dE ({3.4}) — 3)
+ (d&({1,3) = 3) (df ({2, 4) — 3)
+ (df({1,4)) —3) (dF({2,3}) —3)
+2(df({1,2,3) —3) (df({4h -3
+2(df({1,2,4) —3) (dE(3) — 3
+2(df({1,3,4) —3) (dF({2)) -3
+2(df{2,3,4) —3) (df(1h -3
+6(df({1,2,3,4) —3). (1.10)

For general X = {1, 2, 3, ..., n}, we prove the following new formula.

~—_— ~— ~— ~—

Theorem 1. We have

mZ (X) = Z > H(|B|—1)’ (dfB) —n+1), (1.11)

=1 BBy =X i=1
where the sum is over all partitions of X into k nonempty blocks B+, . . ., B, (W denotes disjoint union).

This theorem implies immediately that m;(X) depends monotonically on the numbers
df(X), 0 c X' C X,ifdf(X) > n— 1forevery ¥ C X' C X. For usual graphs, this condition
is satisfied as soon as the degree dé (x) is at least n — 1 for every vertex x € X. In other words, if
G = (X,Y;E)and G = (X, Y’; E') are bipartite graphs such that dé, (x) > n— 1forevery x € X and
df(X') = df,(X") forall @ C X' € X, then our formula implies m¢ (X) > m,(X). Therefore, it proves
the conjecture imagined by Triesch as soon as dg, (x) > n— 1 for every x € X. On the other hand, this
conjecture follows from Hall’s theorem if dg, (x) < 1forevery x € X. But of course, some cases of the
conjecture remain open between those extreme situations where G’ has few or many edges.

For every ¥ C X' C X, we have introduced di (X’) as the number of vertices y € Y which are
related to at least one vertex in X’ by an edge of G. In an analogous way, we define d; (X) as the
number of vertices y € Y which are related to every vertex in X’ by an edge of G, and we prove that
the integral-valued set function d;; : 2%\ — Z also determines G up to a permutation of the vertices
of Y. More precisely, we prove the formulae

;)= Y ()X ar ), (1.12)
X//gxl

dr(x) =Y (=¥ dzx"), (1.13)
X//EX/

by studying linear transformations between the set functions d, dg and another set function xc.
These considerations of linear algebra for set functions will be explained in Section 2.

In order to go beyond those results, however, linear algebra is not sufficient, and we need the
algebra of set functions. A comprehensive introduction to this algebraic tool explaining, in particular,
the basic product theorem can be found in the preceding article [20] (for other applications of set
functions, see [16-19]). In Section 3, we make use of this product theorem as well as of the linear
algebra explained in Section 2, in order to count matchings in bipartite graphs. In particular, we prove
the following formulae:

n k
me(X) =Y (=D"* Y []uBI—- 1D B, (1.14)
k=1

B1W--WBy=X i=1
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n k— 1) k
dz (X) = Z(—UH En — 1;' Z ng(Bi). (1.15)
k=1 :

By WBy=X i=1

We still introduce one more set function m; and we show how the algebra of set functions allows us
to prove easily lots of relations between all those set functions.

Identity (1.11) of the preceding theorem, however, cannot be proved in this way, because the
“local” factors (dé(B,-) —n+ 1) contain the “global” parameter n = |X|. Therefore, Section 4 is
devoted to a general “global” duality theory for the enumeration of matchings in bipartite graphs,
which follows from a still more general duality theory for the enumeration of functions. We have
explained this theory in the preceding article [20]. With the help of this “global” duality, we finally
get a short and surprising proof of our formula (1.11).

In Section 5, devoted to Rook Theory (see [5]), we show that by means of the duality theory several
results related to [19] can be proved, which generalize works by Chung and Graham [7], Chow and
Gessel [6], Joni, Rota and Zeilberger [15], as well as several articles on Laguerre polynomials by Askey,
Gasper, Ismail, Koornwinder, Even, Gillis, Foata, Zeilberger, Godsil, Jackson, de Sainte-Catherine and
Viennot [2-4,8,10-12,14,23,26].

2. Bipartite graphs as set functions

Let X be a fixed finite set of vertices, n = |X|. We are interested in bipartite graphs G = (X, Y; E),
E C X x Y, where the second finite vertex set Y is considered to be variable.

Let X’ be an arbitrary nonempty subset of X, # C X’ C X. Let x5(X") denote the number of vertices
y € Y for which (x, y) € E ifand only if x € X/, that is, the number of y € Y for which I';(y) = X/,
where I';(y) is the set of neighbours of y. In other words, x;(X’) counts the number of vertices of Y
which are joint by an edge of G to every vertex of X’ and to no vertex of X \ X'. The following lemma
is evident.

Lemma 1. The bipartite graph G = (X, Y; E) is determined up to isomorphism by the set function
xc : 2X \ ¥ — Z Here, x; determines a usual bipartite graph if and only if xc(X’) > 0 for all
gcCcX CX. O

Moreover, let d; (X'), ¥ C X' € X, denote the number of vertices of Y which are joint by an edge
of G to every vertex of X" and possibly to some vertices of X \ X”:

dg :2\0 > 2, d;X)= ) xX") VOCX SX. 2.1)
X/gx//

The set function d/ already mentioned in the introduction and the set function x are related as
follows:

df :2\0 >z, dX)= Y xX')=I[[X) YICX SX. (2.2)
X'NX"" £

We can consider x¢, d; and dg“ as vectors with 21 — 1 = 2" — 1 components, and we want to
study the linear transformations between them. Let [X" C X”'] denote a square matrix with 2" — 1 rows
and 2" — 1 columns indexed by the nonempty subsets of X. More precisely, if a row is indexed by X’
and a column is indexed by X”, then the coefficient corresponding to this row and column equals 1 if
X' C X” and 0 otherwise. Similarly, for the matrix [X’ € X”]1(—1)*¥"\X'|_ the coefficient corresponding
to a row indexed by X’ and a column indexed by X” equals (—1)*"\¥'I if X’ C X” and 0 otherwise.
The coefficients of the matrix [X’ N X" # @] are all 0 or 1. The coefficient corresponding to a row
indexed by X’ and a column indexed by X” is 1 if and only if X" and X” have a nonempty intersection.
The matrices —[X' U X" = X](—1)*™" and —[X’ D X"](—1)X"! are defined in the same way. They
allow us to formulate the following theorem.
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Theorem 2. The linear transformations between the vectors X, d; and d.; are described by the matrices
already introduced. More precisely, we have forally C X' C X:

d; (X') = [X' S X"]-xc(X"), (2.3)
x(X) =X S X" 1(=D¥"WI . dzx"), (2.4)
dfX) =[X'NnX" # 0] - xc(X"), (2.5)
xe(X) = —[X' UX" = X](—=)X ™ at (x"), (2.6)
dg (X)) = =X 2 X" 1(=DX" - df (x"). (2.7)
dr(x) = =[x’ 2 X"1(=D¥" - dg (X"). (2.8)

Proof. First of all, Eqs. (2.3) and (2.5) are immediately equivalent to our definitions of the vectors d

and d;". In order to prove (2.4), we have to show that the matrices [X’ € X"]and [X’ € X"](— X"
are inverse of each other. This is a direct consequence of the inclusion-exclusion principle:

X' C X*]- [X* € X=X = [x' = X", (2.9)

where [X’ = X”] is the identity matrix; in order to find a coefficient of a product of two matrices,
one has to calculate a scalar product, which corresponds to a sum over X* for fixed X" and X” in the
preceding equation. In the same way, we can calculate:

— X' NX* £ 0] [XFUX = X](— )X
=+[X' NX*=0]- [X*UX" =X](— DX =[x = x"], (2.10)
which proves our formula (2.6). The matrix —[X’ 2 X”]1(—1)X"! is inverse of itself:
X' 2 X7 X" 2 X" I(=D¥ X =[x =X, (2.11)
which shows the equivalence of (2.7) and (2.8). Therefore, it remains to deduce (2.7):
de X") = [X' € X*]-xc(X")
= —[X' SX*]- [X*UX" = XI(=DX"™T. dE (x")
= X 2X"1(=DXT. dfx"). O (2.12)

Example. For n = 3 and X = {1, 2, 3}, we use shorthand notations of type d;; = d ({1, 3}). Then
our formulae read as follows.

dy =X +X12 + X13 + X123, (2.13)
di, = X12 + X123, (2.14)
diy; = X123; (2.15)
x=do —dj, —dy + do, (2.16)
xi2 = dj, — ds, (2.17)
X123 = dpy3; (2.18)
dT = X1+ X12 + X13 + X123, (2.19)
diy = X1 4+ %2 + X12 + X13 + Xo3 + X123, (2.20)
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diys = X1 4 X2 + X3 4 X12 + X13 + X23 + X123 (2.21)
X1 = —dj; + diys, (2.22)
X1y = —di +df; +d; —diy, (2.23)
X3 =df +df +df —di, —df; —ds +di; (2.24)
dy =df, (2.25)
dy, = di +d; —di,, (2.26)
dips = df +dy +d5 —dj, —dj; — dy; + di); (2227)
di =dj, (2.28)
df, =dy +d; —dp, (2.29)
diyy=d; +d, +d; —dj, —dj; —dp + dse (2.30)

The following corollaries are immediate consequences of the preceding theorem.

Corollary 1. The bipartite graph G = (X, Y; E) is determined up to a permutation of the vertices of Y by
the set function d.. : 2X\ @ — 7. Here, d. determines a bipartite graph if and only if

%X = > (DXWazx) =0 VACX CX. O (2.31)
X/gx//
Corollary 2. The bipartite graph G = (X, Y; E) is determined up to a permutation of the vertices of Y by

the set function dé : 2X\ ¥ — Z. Here, dé determines a bipartite graph if and only if

xX)= > —(D¥™Mdfx) =0 VocX cX. O (2.32)
X'UX"=X

Corollary 3. For

D)= Y dgX)-x* and D{(x) = Y df(X)-x¥. (2.33)
#cx X #cx X
we have
Df(x) = —Dg(—x) -exp(X) and Dg(x) = —DE(—x) - exp(X). O (2.34)

3. Matchings in bipartite graphs

Now our purpose is to calculate the set function mg : 2% \ § — Z defined in the introduction. To
this end, we define

Mg (O =Y mgX)- x*. (3.1)
pcxX'cx

The product theorem of [20] implies the following lemma.

Lemma 2. Let
x =" x". (32)

xeX’



B. Lass / European Journal of Combinatorics 33 (2012) 199-214 205

Then
T+Mz (0 = [] 1+ x)e® (3.3)
X' X
x|
=[] Zx X"k (3.4)
X' X k=

where xc(X)X = xc(X)(x¢(X") — 1) (xc(X") —2) - - - (xc(X") — k + 1) by definition.

Proof. Forevery ¥ C X’ C X, we have

NxeX) _ X XG(X) X
(14 )X =3 Zx X"k O (3.5)

k=0

We next calculate the logarithm of the product displayed in (3.3):

log(1+Mz (X)) = Y xc(X)-log(1+ ')

#cX' X
= > EDXITX = D dg () - XK (36)
#cX'cX
We can now define
DGO = Y (X' =D!dgX) - x* (3.7)

#cxX' X

and immediately get the following theorem.

Theorem 3. We have the identities:

1+ Mg (x) = exp (—Dg(—x)), (3.8)
log (14 Mg (x)) = =Dz (=), (3.9)
M () = —(1+M; () - *D;!(—x) VxeX, (3.10)
Mg (x) = —(1+ Mg (x)) - D5 !(—x). D (3.11)

Corollary 4. We have

n k
m) =Y (=D"* Y []uBI—- 1B, (3.12)
k=1

By W---WBy=X i=1

dz (X) = Z( 1)”?‘ 1;" > HmG(B) (3.13)

B1W---wBr=X i=

In particular, the bipartite graph G = (X, Y; E) is determined up to a permutation of the vertices of Y by
the set functionmg :2X \ ) > Z. O
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Example. Forn = 3 and X = {1, 2, 3}, we use shorthand notations of type m{; = m ({1, 3}). Then
our formulae read as follows.

my =dj, (3.14)

myy =dydy, —dy,, (3.15)

My =dydydy —dydy —dizdy, — dyzdy + 2d5,5; (3.16)
, =my, (3.17)
12 = Mymy — My, (3.18)
_ o 1 _ _ 1 _ 1 _ 1

dip3 = mymymy — 5m12m3 - 5m13m2 - 5’"23’"1 + 5”7123- (3.19)

Remark. With our method of set functions, it is possible to study most questions for matchings in
bipartite graphs also for permanents of matrices. It seems that the only result known along those
lines (without using set functions) is the analogue of formula (3.12); see [21].

Our preceding formula (3.12) implies, in particular, that m_ (X) is a polynomial in the variables
d: (X'), % C X' € X. Moreover, m; (X) is also a polynomial in the variables dé(X’), g c X CX,
as well as in the variables x;(X’), # C X’ C X. This can be seen easily if we replace the variables
dg (X’) using formulae (2.7) or (2.3). In particular, everything is well defined for negative integers
xc(X'), ¥ C X' C X (more generally, x;(X") € A for an arbitrary commutative ring A with 1 is
sufficient). We can give the following traditional combinatorial interpretation for this situation.

We can consider X as a set of persons and to every subset X’ C X associate a job for which all the
persons of the subset X’ are qualified, and nobody else (the qualification of a person x € X for a job
y € Y is indicated by an edge (x, y) € E in our bipartite graph G = (X, Y; E)). This job has the usual
capacity xg(X’), which means that at most xg(X’) persons can work there. More precisely, if k persons
want to work there, then this is possible in x¢ (X)X = x¢(X") (xc(X) = 1) (xc (X)) =2) - - - (x¢(X") —k+1)
different ways, that is, every person taking the job reduces its capacity by 1. In this way, m (X) counts
the number of possibilities to find jobs for everybody, as reflected by our formula (3.4) of the preceding
lemma.

This combinatorial interpretation motivates us to study the following slight modification. We
continue to consider X as a set of persons and with every subset X’ C X to associate a job for
which all the persons from X’ are qualified, and nobody else. But we give this job the alternative
capacity x¢(X’), which means that if k persons want to work there, then this is possible in x¢(X')* =
XXX + 1D (xc(X') +2) - - - (x¢(X") + k — 1) different ways, that is, every person taking the job
increases its capacity by 1. (This is completely analogous to the problem of choosing k elements among
xc(X') ones: if repetitions are not allowed, then the number of different ways is xc(X")X/k!; if they are
allowed, then we have x¢(X’)*/k! different choices.) If we work with those alternative capacities, then
we denote the number of possibilities to find jobs for everybody by mg (X).IfX’ C X, then the number
of ways to find a job (with alternative capacities) for every person x € X’ (for which this person is
qualified) is m¢ (X'). This defines a new set function m : 2X\ ¢ — Z we want to study:

MEGO = Y mEX) - x¥. (3.20)
X' X

Our preceding discussion proves an analogue of our preceding lemma.

Lemma 3. We have

1X'| _ ok
1+MEGo = [] D% 2 (3.21)

|
PCX'CX k=0 k!
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= [] a-x)=%, (3.22)
X' X
where xc(X)¥ = xc(X) xc (X)) + D(xc(X)) +2) - - - (xc(X") + k — 1) by definition.
Proof. Forevery ¥ C X’ C X we have

IX| Kk IX'| v Kk
D0 G = v )t G
& <_XG(X/)> nk N\—xg(X")
=Y (=X = (1= x) o (3.23)
k=0 k

Identities (3.4) and (3.22) show that by choosing negative integers for x;(X'), ¥ C X’ C X, we get
(—1)“m§(X) with n = |X| instead of m (X). This proves the following theorem.

Theorem 4. We have

1+MIG)=(1+M;(-0) . O (3.24)

Corollary 5. We have

n k
mEO) =Y (D" Y [[me . (3.25)
k=1

B1W--WBy=X i=1

n k
me () =Y (D" Y [[mE®. (3.26)
k=1

By WBy=X i=1

In particular, the bipartite graph G = (X, Y; E) is determined up to isomorphism by the set function
m¢ 12X\ ) — Z. Moreover, the identity (14 M (—x)) (1+ Mg (x)) = 1 means

ED¥mEE) +mz0 + Y ¥ ImEX) meX\X)=0. O (3.27)
pcx'cx

The two preceding theorems imply the following results.

Theorem 5. We have the identities:

1+MZ(x) = exp (D5 !(x)) . (3.28)
log (1+MZ(x)) = D;!(x), (3.29)
IMEG) = (1+ME(x)) - 9*Ds1(x) VxeX, (3.30)
IME(x) = (1+ME(G0) - 8D;(x). O (3.31)

Corollary 6. We have

mg (X) = Z > ]_[(IBI—l)'d (B, (3.32)

=1 By WBy=X i=1

I ! k
dg(X) = Z( 1)’”5‘ 1;, > [ mé. (3.33)

By WBy=X i=1
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Therefore, m:{ (X) depends monotonically on the numbers d; (X'), ¥ C X" C X, if d; (X") = 0 for every
@ C X' C X, ie.in particular if xc(X") > 0 for every @ C X’ C X, which are the defining inequalities for
bipartite graphs. O

Remark. It is possible to interpret formula (3.32) in such a way, that we sum over all permutations
of X the number of functions from X to Y which respect the edges E of our bipartite graph and which
are constant on the cycles of the permutations. This provides a link to Pélya’s Counting Theory.

Example. Forn = 3 and X = {1, 2, 3}, we use shorthand notations of type mE = m;f({l, 3}). Then
our formulae read as follows.

mi =dy, (3.34)
my, = dyd, +d, (3.35)
mi,; = dyd, dy +dd; +did, + dyydy + 2d;,s; (3.36)
T =m, (3.37)
dy, = —mimy +mj,, (3.38)
- oo 1o 1o 1o, T
123 = MMy M3 — §m12m3 - 5’”13’”2 - 5m23m1 + 5”7123' (3.39)

The end of this section is not necessary for understanding the rest of the article: it is written only
for readers interested in exponential generating functions. If we want to work with them instead of
working with set functions, we must use an infinite set X. Moreover, everything must depend just on
the cardinalities of the finite subsets of X and not on those subsets themselves. For our bipartite graph
G = (X, Y; E), this means that every vertex of Y is either joint to all vertices of X or to just one vertex
of X:if avertexy € Y isjointtox € X and to X’ with @ C X’ C X \ {x}, then, by permuting the
elements of X \ {x}, we see that there must be infinitely many vertices y € Y each of which is joint
to x and to a subset X” of X \ {x} in bijection with X’. Therefore, x would get an infinite degree, which
makes it impossible to count matchings.

In other words, we can suppose that there is one y € Y of capacity a joint to every x € X, and for
every vertex x € X, thereisavertexinY of capacity i joint only to x. Let us denote this infinite bipartite
graph by G(a, i). It is evident that 1 4 MG_(LO)(X) =1+ Xand 1+ M&Oql)(x) = exp(X). Therefore
the product theorem implies the following proposition.

Proposition 1. We have

T4 Mgy (X) = (1+ %) exp(i - %), (3.40)

1+ My (0 =1+ Mg_o_y(=x) = (1= %) "exp(i- X). O (3.41)

Example. Let G,(2) be the number of connected 2-regular bipartite multigraphs (i.e. multiple edges
are allowed) G = ({1, 2,...,n},{1,2,...,n}; E) with fixed marked vertices, then G{(2) = 1 and
Gn(2) = nl(n — 1)!/2 for n > 1: if we choose every second edge of such a cycle, then we get an
arbitrary first permutation, and a second permutation which is cyclic with respect to the first one.

Let H,(2) be the number of arbitrary 2-regular bipartite multigraphs G = (X, Y; E) with fixed
marked vertex sets of cardinality n. By permuting the vertices of Y, we get

k
H,(2) _ Z 1—[ G (2) _ mg(l/z’l/z)(x). (3.42)

N
B1W---WBk=X i=1 [Bil!
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Therefore our preceding proposition implies (see Stanley’s book [24, 3.15.1.d]):

S X" —1/2
Y Hi(@) = (1= %) exp(%/2). (3.43)
i (n})

4. Duality for matchings in bipartite graphs

Let us come back to our study of bipartite graphs G = (X, Y; E) with the help of set functions. Until
now, we have never used x¢ (), that is the number of vertices y € Y which are joint to no x € X at all.
If we want to construct the bipartite complement of G, however, or just a partial complement Cy/ (G)
with ¥ C X’ C X, then x¢ () will become indispensable. In fact, for every # C X” C X, we have the
identity

X, (X") = xc(X'AX"),  and in particular xz(X") = xc(X \ X"). (4.1)
Therefore it is convenient to choose x¢ (%) in a useful way, namely in such a way that we get normality
in the sense of the duality theory of [20].

Proposition 2. The set of injective functions from X to Y, that is the set of functions with usual capacities
xc(X"), ¥ C X' C X is normal if and only if

Z xcX) = |X| = 1. (4.2)

[/ v ¢

Proof. Since the edges of our bipartite graph have no importance at all for the question of normality
(see [20]), it is sufficient to consider the situation with a single job of capacity

Z xc(X)). (4.3)

BTX' X
If everybody except one person has already chosen this job, then the last person has
( > xc<><’)> —(X|=1) (4.4)
BTX'CX
choices to take this job, and the situation is called normal if and only if the last numberisequalto0. O

The same kind of argument proves the analogous result for alternative capacities.

Proposition 3. The set of functions from X to Y with alternative capacities x;(X'), ¥ C X' C X is normal
if and only if

Z xxX)=1—1X|. O (4.5)

BTX' X
These propositions, together with the duality theory of [20], imply the following theorems.

Theorem 6 (Duality Theorem for Usual Matchings in Bipartite Graphs). If xc(9) is chosen in such a way
that

> xX) =X -1, (4.6)

wexX X
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then
Me X)) =—-mg(X) VxeX, (4.7)
me,o®) = DX Imcx) VX' CX, (4.8)
mz (X) = D)¥mzx). O (4.9)

Theorem 7 (Duality Theorem for Alternative Matchings in Bipartite Graphs). If x(9) is chosen in such a
way that

D> xX)=1-IX], (4.10)
BTX' X

then
ma(c)(x):_mé(x) VXEX, (411)
mé X = (DX ImE) VX S X, (4.12)
mg(X)z(—U‘X‘mg(X). O (4.13)

It is evident that for every ¥ C X’ C X we have
dg () +dE(X) = d(X) +diX) = D XX, (4.14)
gcX” X
This identity allows us to prove the following two corollaries easily.

Corollary 7. We have

n k
mi) =Y (=% > J](BI— D! (diB)+n—1). (4.15)
k=1

ByW---WB=X i=1
Proof. If we are in a normal situation, then the preceding duality theorem for alternative matchings
in bipartite graphs and our formula (3.32) imply
m¢X) = (=)¥miX)

X

= (- 1)‘*‘2 > ]'[(|Bl — 1)ldZ (B)

=1 By WBy=X i=1

X

k
=Y =X S JTasl =D —1X|—di®)). O (4.16)
k=1

B¢ WBy=X i=1
In the same way, we obtain the formula already mentioned in the introduction.
Corollary 8. We have
k
mg (X) = Z > JJuBl=nr(diB) —n+1). (4.17)
=1 ByW---wWB=X i=1

Therefore, m_ (X) depends monotonically on the numbers d (X'), ¥ C X' C X, if df(X') > n — 1 for
every® C X' C X, i.e. inparticular, if x;(X') > Oforally C X' € Xandd{ (x) = d (x) = dg(x) > n—1
forallx € X, where the last condition is satisfied as soon as xq(X') € Zand xg(X") > Oforall C X' C X.
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Proof. If we are in a normal situation, then the preceding duality theorem for usual matchings in
bipartite graphs and our formula (3.12) imply

me (X) = (=) Imz (X)

X1 k
= DM X Y TTaBl— 1)z B)
k=1

By&---WBy=X i=1

X1

k
=y 0 > JTusl=D(XI-1-di®)). O (4.18)
k=1

B W--WBy=X i=1

The conjecture imagined by Triesch [25] does not follow in all cases from the preceding corollary
because it affirms that m_ (X) depends monotonically on the numbers dé“ X"), ¥ c X’ C X,as soon as
xc(X') € Z and xg(X') > 0forall @ C X’ C X.If we consider bipartite graphs as integer points in the
cone defined by the inequalities xc(X") > 0 forall @ C X’ C X, then we have proved the conjecture
for all points which are not on the boundary of the cone.

It is possible to prove the monotonicity directly, if just one component of the vector dg isincreased
by 1.Ideas of this kind can also be used in order to give a more elementary (but less instructive) proof
of our formula (4.17). If we increase d} (X'), # C X’ C X, by 1, then all x¢(X"), ¥ C X" C X, with
X" U X' = X are modified: they decrease by 1 if |X” N X’| = 0(mod 2) and they increase by 1 if
X" NX’| = 1(mod 2); see our formula (2.6). In particular, in order to accomplish this transformation
without violating the conditions x¢(X”) € Z and xc(X”) > Oforall @ C X’ C X, we need the
conditions dg(x) > 2X'1=1 forallx € X \ X and dg(x) > 2" forallx € X" if |[X'| > 1.

If we increase only components of dé’ of the same parity (the parity of the component dé’ (X") is by
definition the parity of |X’|), then the monotonicity follows directly from what has already been said.
If we increase just two arbitrary components, then it can also be shown directly.

The right hand side of (4.17) looks perfect if dg X'y > n—1forevery ¥ C X' C X, but far from
perfect if some of the numbers dg (X") —n+1 are negative, since a lot of cancellation occurs. A natural
way to avoid it consists in replacing d& (X') — n + 1by (df (X) —n + 1)+, where (x); := max(x, 0)
denotes the maximum of x and O for any real number x. More precisely, we conjecture that an identity
of the following type holds:

n k
mg (X) = > TIrdy(didy—n+1),, (4.19)

k=1 ByW---WB=X i=1

where f(X"),? C X’ C X, depends monotonically on the numbers d('f(X”), # C X" C X'.In other
words, formula (1.11) can be replaced by a monotonic interpolation with multidimensional spline
functions.

Our conjectured formula would imply, as a corollary, that any bipartite graph G = (X, Y; E) with
|X| = |Y| = n has at most (n — 1)! perfect matchings (matchings covering every vertex of G), if for
any partition of X into two nonempty blocks X’ and X” we have d} (X') <n—lord!(X") <n—1.
This corollary can indeed be proved by induction on n. Moreover, if G really has those (n — 1)! perfect
matchings, then either there exists an x € X such that d;f(X \ {x}) = n — 1orGisisomorphic to G, a
circle with 6 vertices.

Let us conclude this section with an easy example for exponential generating functions.

Example. Let D(n) be the number of fixed point free permutations of the set {1, 2, ..., n} = X (or,
equivalently, the number of possibilities to put n letters into n envelopes in such a way, that no
letter will be in the correct envelope). In other words, D(n) is the number of perfect matchings of
the complete bipartite graph K; , from which one perfect matching has been removed. This situation
can be normalized with an additional vertex y € Y of weight —1, which is not joined to any vertex
of X, that is xg(¥) = —1. Now our duality theorem for usual matchings in bipartite graphs proves



212 B. Lass / European Journal of Combinatorics 33 (2012) 199-214

D(n) = (—=1)"m¢_, ;,(X), and the last proposition of Section 3 implies

[e9) XN
> " Dn)- “ =1 Mo (-0 = (- )" exp(— ), (4.20)
n=0 :

one of the most classical results of enumerative combinatorics, which can be found in [1] or [24], for
example.

5. Rook Theory

Let G = (X, Y; E) be a simple bipartite graph with |X| = n. We denote by G + z the graph obtained
from G by adding to Y one vertex with the usual capacity z which is joined to every x € X by an edge.
Let G, be a graph for which x¢ (%) has been chosen in such a way that

> x%X) =X +a (5.1)

[/l =9 ¢

Then our duality theorem for usual matchings in bipartite graphs implies the following lemma.

Lemma 4. We have

m_ (X) = (—D)¥mg _, X). O (5.2)

We can define the factorial Rook polynomial easily by

p\(Ga, 2) =g, ,(X) = ) p(Gg, 12", (5.3)
r=0

where 2"~ = z(z — 1)(z — 2)---(z — n + r 4+ 1) and where p(G,, r) denotes the number of
r-matchings of G4, p(G4, 0) := 1. An r-matching is a set of r independent (i.e., mutually non adjacent)
edges. Traditionally, one considers X and Y as rows and columns of a checkerboard so that r-matchings
become placements of non-attacking Rooks; see [5] for an introduction to Rook Theory. It is classical
(see the book by Riordan, [22, Chapter 7.7]), that the numbers p(G,, r) are determined by the numbers
p(Gq, r). No simple relation between them, however, has been found yet. Inspired by the definition of
Chung and Graham'’s cover polynomial [7], Chow [6] (and Gessel) have introduced our factorial Rook
polynomial, which proved already to be useful in the work of Foata and Schiitzenberger [9] on Ferrers
relations, because in that case, it factorizes naturally (see [ 13] and Stanley’s book [24, Theorem 2.4.1]).
Our preceding lemma implies the following duality relation for the factorial Rook polynomial, which
was imagined by Chow [6] (and Gessel) in the case a = 0.

Proposition 4. We have

p(Ga,2) = (—1D)"p(Gg, —z —a —1). O (5.4)

The classical Rook polynomial can be found, for example, in Godsil’s book [11, Chapter 1.3]. We will
define it as follows:

n

p(Ga, 1) =Y (=1)p(Ga, )" (5.5)

r=0

Let G4[X’] be the simple bipartite graph formed by the vertices of X’ (4§ C X’ C X), the edges of G
incident with them and the second endpoints (in Y) of those edges. Our main theorem of Section 3,
i.e. identity (3.8), implies the following lemma.
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Lemma 5. We have

1+ Y pGalX10)- XX = exp(t- %) - (14 Mg, (—x)) (5.6)
@ g
=exp(t-X—Dg!(x). O (5.7)

It allows us to prove the last theorem of this article.

Theorem 8. We have

/ £ e p(Ge, )dt = (=1)"pGe, —z —a—1) - Iz +a+1) (5.8)
0

= p!(Gg,2) - T'z+a+1). (5.9)

In particular, if a = —1, then p!(G_1,2) - I'(z) = (—1)"p!(G_1, —2) - I'(2) is the Mellin transform of
e 'p(G_q,t).

Proof. The first identity can be proved easily with the algebra of set functions:
o0
/ %™ exp (t - X) - (14 Mg, (—x)) - dt
0

= (1+Mc—ﬂ(—x))/ % exp (—t(1 — X)) dt
0

_ v- 00 s z+a ds
= ( + Gﬂ(_X))‘/0 <m) exp (—s) T x

o0
= (1+Mgﬂ(—x))(1—x)*2*“*‘/ sHe=Sds
0

=(1+Mg_, o 1(=x)) - T'@z+a+1). (5.10)
The second identity is nothing else but the preceding proposition. 0O

The preceding theorem is closely related to results of [19]. Its special case a = z = 0 was found by
Joni, Rota and Zeilberger [ 15], since p!(Gg, 0) = m(;o(x ) counts the number of perfect matchings of Gy.

This result makes it possible to interpret combinatorially integrals of products of generalized Laguerre
polynomials; see [2-4,8,10-12,14,23,26]. Following Godsil [11], we can define Laguerre polynomials
as Rook polynomials of complete bipartite graphs K, , :== (X, Y; X x Y) with |[X| = nand |Y| = m.
More precisely, for every a € N we define

Lel” (t) == p(Kn.nta: 1) (5.11)

Since p(Kynta ¥ Kntam, t) = t- Le,(f) (t) - Lefﬁ)(t), the identity of Joni, Rota and Zeilberger implies
that

o
0! Knnta W Knram, 0) = f L@ (t) - Le@(t) - te"dt (5.12)
0

(see [12]). This proves in particular the orthogonality of our polynomials Leff) (t) with respect to

t%~tdt. Therefore our definition of Laguerre polynomials corresponds to the classical definition. Qur
normalization, however, is chosen in such a way that the first coefficient (i.e. the coefficient of t") is
equal to 1.
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