ISFA

Processus stochastiques - M1 Actuariat Semestre automne 2019-2020 Vincent Lerouvillois lerouvillois@math.univ-lyon1.fr math.univ-lyon1.fr/homes-www/lerouvillois/

TD no 6

FORMULE D'ITÔ ET THÉORÈME DE GIRSANOV.

Exercice 1 : Le retour du théorème d'arrêt

On considère l'équation stochastique :

$$X_0 = 1, dX_t = \frac{1}{2}e^{-X_t^2}dt + e^{-X_t^2/2}dB_t.$$

Que dire de e^{-X_t} ? Soit τ le temps d'atteinte par X_t de $\{0,2\}$. On admettra que $\tau < +\infty$ p.s.. Quelle est la probabilité que $X_{\tau} = 0$? (Indication : On rappelle qu'une martingale locale bornée est une martingale et on appliquera le théorème d'arrêt.)

Exercice 2: Martingale Exponentielle

Soit X_t processus d'Itô issu de 0. On considère l'équation différentielle stochastique suivante :

$$\begin{cases}
 dZ_t = Z_t dX_t \\
 Z_0 = 1
\end{cases}$$
(1)

- 1. En applicant la formule d'Itô à $Y_t = \ln(Z_t)$, calculer l'unique solution de (1) noté $\mathcal{E}_t(X)$ et appelée exponentielle de Doléaus-Dade de X.
- 2. Si θ est un bon processus local, exprimer $\mathcal{E}_t(\theta * B)$ (où $\theta * B_t = \int_0^t \theta_s dB_s$). Pourquoi est-ce une martingale locale?
- 3. Qu'obtient-on pour $\theta = \lambda$ avec $\lambda \in \mathbb{R}$? Appliquer la condition de Navikov pour retrouver que $\exp(\lambda B_t \frac{1}{2}\lambda^2 t)$ est une vraie martingale.
- 4. Faire l'analogie avec la solution de l'équation de Black-Scholes.

Remarque : La martingale exponentielle de Doléaus-Dade $\mathcal{E}_t(X)$ intervient dans le changement de probabilité du théorème de Girsanov.

Exercice 3 : Changement de Probabilité et Théorème de Girsanov.

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités filtré. Soit B un mouvement Brownien standard. On pose

$$L_t = \exp\left(\int_0^t \theta_s dB_s - \frac{1}{2} \int_0^t \theta_s^2 ds\right)$$

pour $t \leq T$ et θ une fonction déterministe dans $L^2([0,t])$ pour tout $t \geq 0$ (= L^2_{loc}).

- 1. Montrer que L est une martingale.
- 2. Justifier comment L peut définir un changement de probabilité.
- 3. Calculer $\mathbb{E}_{\mathbb{P}}[B_t L_T]$ en fonction de t et de θ .
- 4. En déduire la valeur de $\mathbb{E}_{\mathbb{P}}[B_t \exp(B_t)]$.

Exercice 4 : Probabilité neutre au risque.

On considère deux actifs : un actif sans risque $(S_t^0)_{0 \le t \le T}$ de taux de rendement r > 0 et un actif risqué $(S_t)_{0 \le t \le T}$ de taux de rendement $\mu > 0$ et de volatilité $\sigma > 0$. On fait l'hypothèse que le taux d'actif risqué évolue selon la formule de Black-Scholes. Autrement dit :

$$dS_t^0 = S_t^0 r dt,$$

et:

$$dS_t = S_t \, \left(\mu \, dt + \sigma \, dB_t \right) \,,$$

où $(B_t)_{t\geq 0}$ est un mouvement Brownien standard. On appelle actif risqué actualisé le processus

$$\left(\widetilde{S}_t\right)_{0 \le t \le T} := \left(\frac{S_t}{S_t^0}\right)_{0 \le t \le T}.$$

Pour simplifier les expressions, on suppose que $S_0^0 = S_0 = 1$.

- 1. Calculez S_t^0 .
- 2. En appliquant la formule d'Itô à $\ln(S_t)$, montrez que $S_t = \exp\left((\mu \frac{\sigma^2}{2})t + \sigma B_t\right)$.
- 3. Donnez l'équation stochastique satisfaite par \widetilde{S}_t .
- 4. On note \mathbb{P} la probabilité sous-jacente (sous-laquelle $(B_t)_{t\geq 0}$ est un mouvement Brownien). Soit \mathbb{Q} la probabilité définie sur \mathcal{F}_T par

$$d\mathbb{Q} = \exp\left(\frac{r-\mu}{\sigma}B_T - \frac{1}{2}\left(\frac{r-\mu}{\sigma}\right)^2T\right)d\mathbb{P}.$$

Que pouvez-vous dire de $(W_t := B_t - \frac{r-\mu}{\sigma} t)_{0 \le t \le T}$ sous \mathbb{Q} ?

5. Montrez que $(\widetilde{S}_t)_{0 \leq t \leq T}$ est une martingale sous \mathbb{Q} et écrire $(\widetilde{S}_t)_{0 \leq t \leq T}$ comme processus d'Itô sous \mathbb{Q} (à l'aide de W_t). On appelle \mathbb{Q} la **probabilité neutre au risque**.