# Graph homomorphisms between trees

#### Petér Csikvári & Zhicong Lin

2013ICJ

arXiv:1307.6721

Zhicong Lin Graph homomorphisms between trees

A⊒ ▶ ∢ ∃

# Graph homomorphism

Homomorphism: adjacency-preserving map  $f: V(G) \rightarrow V(H)$   $uv \in E(G) \Longrightarrow f(u)f(v) \in E(H)$  Hom(G, H) := the set of homomorphisms from G to H hom(G, H) := |Hom(G, H)|

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

# Graph homomorphism

Homomorphism: adjacency-preserving map  $f: V(G) \rightarrow V(H)$  $uv \in E(G) \Longrightarrow f(u)f(v) \in E(H)$ Hom(G, H) := the set of homomorphisms from G to H hom(G, H) := |Hom(G, H)|Endomorphism: a homomorphism from the graph to itself End(G) := the set of all endomorphisms of G Note: End(G) forms a monoid

・吊り ・ヨン ・ヨン ・ヨ

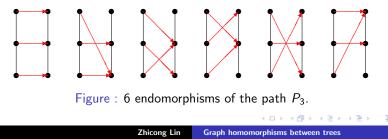
# Graph homomorphism

Homomorphism: adjacency-preserving map  $f: V(G) \rightarrow V(H)$   $uv \in E(G) \Longrightarrow f(u)f(v) \in E(H)$  Hom(G, H) := the set of homomorphisms from G to Hhom(G, H) := |Hom(G, H)|

Endomorphism: a homomorphism from the graph to itself

End(G) := the set of all endomorphisms of G

Note: End(G) forms a monoid



### The Path and the Star

 $P_n :=$  Path on *n* vertices  $S_n :=$  Star on *n* vertices

Theorem (Lin & Zeng, 2011)

$$|\operatorname{End}(P_n)| = \begin{cases} (n+1)2^{n-1} - (2n-1)\binom{n-1}{(n-1)/2} & \text{if } n \text{ is odd} \\ (n+1)2^{n-1} - n\binom{n}{n/2} & \text{if } n \text{ is even} \end{cases}$$

$$|\operatorname{End}(S_n)| = (n-1)^{n-1} + (n-1)$$

How to compute  $|\operatorname{End}(T_n)|$  for general trees  $T_n$ ?

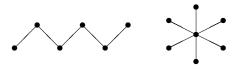


Figure : The path  $P_6$  and the star  $S_7$ .

∢ ≣ ≯

#### Conjecture (from 2008 to 2013)

For all trees  $T_n$  on n vertices we have

 $|\operatorname{End}(P_n)| \leq |\operatorname{End}(T_n)| \leq |\operatorname{End}(S_n)|.$ 

(ロ) (同) (E) (E) (E)

How to count hom(T, G) for a tree T and a graph G? Let  $v \in V(T)$  and  $V(G) = \{1, 2, ..., m\}$ . Define

$$\mathbf{h}(T, \mathbf{v}, \mathbf{G}) := (h_1, h_2, \ldots, h_m),$$

where

$$h_i = |\{f \in \operatorname{Hom}(T, G) \mid f(v) = i\}|.$$

We call  $\mathbf{h}(T, v, G)$  the hom-vector at v from T to G. It is clear that hom $(T, G) = \|\mathbf{h}(T, v, G)\| = \sum h_i$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

3

### The Tree-walk algorithm

An example:

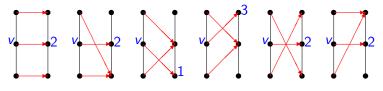


Figure : 6 endomorphisms of the path  $P_3$ .

$$h(P_3, v, P_3) = (1, 4, 1)$$

• 3 >

A ■

< ∃>

Э

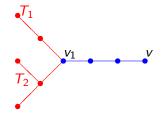
#### Lemma

Let G be a labeled graph and  $A = A_G$  the adjacency matrix of G. Then the (i, j)-entry of the matrix  $A^n$  counts the number of walks in G from vertex i to vertex j with length n.

By this lemma, we have  $\mathbf{h}(P_n, v, G) = \mathbf{1}A^{n-1}$ , where v is the initial (terminal) vertex of the path  $P_n$  and  $\mathbf{1}$  denotes the row vector with all entries 1.

We will generalize this to compute h(T, v, G).

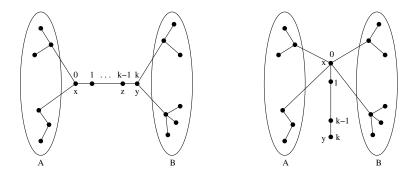
### The Tree-walk algorithm



- $\mathbf{h}(T_1 \cup T_2, v_1, G) = \mathbf{h}(T_1, v_1, G) * \mathbf{h}(T_2, v_1, G)$  $\mathbf{a} * \mathbf{b} := (a_1 b_1, \dots, a_n b_n)$  is Hadamard product
- $h(T, v, G) = h(T_1 \cup T_2, v_1, G)A^3$

- < ≣ > -

## **KC**-transformation

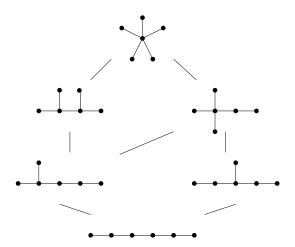


KC-transformation (Csikvári): A transformation on trees with respect to the path  $0, 1, \ldots, k$ 

A⊒ ▶ ∢ ∃

-≣->

# **KC**-transformation



The KC-transformation give rise to a graded poset of trees on n vertices with the star as the largest and the path as the smallest element.

 $C_n$ :=Cycle on *n* vertices

#### Theorem (Csikvári, 2010)

Let T be a tree and T' be a KC-transformation of T. Then

 $\operatorname{hom}(\mathcal{C}_m, T') \geq \operatorname{hom}(\mathcal{C}_m, T)$ 

for any  $m \ge 1$ .

The extremal problem about the number of closed walks in trees:

#### Corollary (Csikvári, 2010)

Let  $T_n$  be a tree on n vertices. We have

 $\operatorname{hom}(\mathcal{C}_m, \mathcal{P}_n) \leq \operatorname{hom}(\mathcal{C}_m, \mathcal{T}_n) \leq \operatorname{hom}(\mathcal{C}_m, \mathcal{S}_n).$ 

ヘロン 人間 とくほど くほとう

### Theorem (Bollobás & Tyomkyn, 2011)

Let T be a tree and T' be a KC-transformation of T. Then

 $\operatorname{hom}(P_m, T') \geq \operatorname{hom}(P_m, T)$ 

for any  $m \geq 1$ .

The extremal problem about the number of walks in trees:

Corollary (Bollobás & Tyomkyn, 2011)

Let  $T_n$  be a tree on n vertices. We have

 $\operatorname{hom}(P_m, P_n) \leq \operatorname{hom}(P_m, T_n) \leq \operatorname{hom}(P_m, S_n).$ 

A natural question arises: Does the above inequalities still true when replacing  $P_m$  by any tree?

### Generalize to Tree-Walks

Starlike tree: at most one vertex of degree greater than 2

#### Theorem

Let T be a tree and T' the KC-transformation of T with respect to a path of length k. Then the inequality

 $hom(H, T') \ge hom(H, T)$ 

holds when

- k is even and H is any tree
- or k is odd and H is a starlike tree.

#### Corollary

Let H be a starlike tree and  $T_n$  be a tree on n vertices. Then

 $\operatorname{hom}(H, P_n) \leq \operatorname{hom}(H, T_n) \leq \operatorname{hom}(H, S_n).$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

### Counterexamples to the odd case

 $\operatorname{hom}(T, P_n) \leq \operatorname{hom}(T, T_n) \leq \operatorname{hom}(T, S_n)?$ 

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

### Counterexamples to the odd case

 $\operatorname{hom}(T, P_n) \leq \operatorname{hom}(T, T_n) \leq \operatorname{hom}(T, S_n)?$ 

Counterexamples to the second inequality:

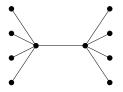


Figure : The doublestar  $S_{10}^*$ 

For  $k \ge 5$  we have hom $(S_{2k}^*, S_{2k}^*) > hom(S_{2k}^*, S_{2k})$ . Note that  $S_{2k}$  can be obtained from  $S_{2k}^*$  by a KC-transfromation.

伺 と く き と く き と

### Counterexamples to the odd case

 $\operatorname{hom}(T, P_n) \leq \operatorname{hom}(T, T_n) \leq \operatorname{hom}(T, S_n)?$ 

Counterexamples to the second inequality:

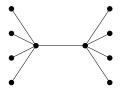


Figure : The doublestar  $S_{10}^*$ 

For  $k \ge 5$  we have hom $(S_{2k}^*, S_{2k}^*) > hom(S_{2k}^*, S_{2k})$ . Note that  $S_{2k}$  can be obtained from  $S_{2k}^*$  by a KC-transfromation. Question: Is the first inequality holds for any tree T?

#### Theorem (Sidorenko, 1994)

Let G be an arbitrary graph and let  $T_m$  be a tree on m vertices. Then

$$\operatorname{hom}(T_m, G) \leq \operatorname{hom}(S_m, G).$$

- Fiol & Garriga (2009) reproved the special case  $T_m = P_m$ .
- Use Wiener index and some easy observations we (rediscover and) give a new proof of Sidorenko's theorem.
- We constructe some special trees G to disprove the inequality

$$\operatorname{hom}(P_m, G) \leq \operatorname{hom}(T_m, G).$$

#### Definition (Markov chains)

Let G be a graph with  $V(G) = \{1, 2, ..., n\}$ . Then  $P = (p_{ij})$  is a Markov chain on G if:

$$\sum_{i\in \mathcal{N}(i)} p_{ij} = 1$$
 for all  $i\in V(G),$ 

where 
$$p_{ij} \ge 0$$
 and  $p_{ij} = 0$  if  $(i, j) \notin E(G)$ .

#### Definition (Stationary distribution)

Distribution  $Q = (q_i)$  is the stationary distribution of P if:

$$\sum_{j\in N(i)} q_j p_{ji} = q_i \quad ext{ for all } i\in V(G).$$

#### Definition (Entropy)

We define the following three entropies:

$$H(Q) = \sum_{i \in V(G)} q_i \log rac{1}{q_i},$$

and

$$H(D|Q) = \sum_{i \in V(G)} q_i \log d_i,$$

where  $d_i$  is the degree of i and let

$$H(P|Q) = \sum_{i \in V(G)} q_i \left( \sum_{j \in N(i)} p_{ij} \log \frac{1}{p_{ij}} \right).$$

A (1) > (1) > (1)

< ≣⇒

# Markov chains and homomorphisms

#### Theorem

If  $T_m$  is a tree with  $\ell$  leaves and m vertices, where  $m \ge 3$ , then

$$\hom(T_m, G) \ge \exp\left(H(Q) + \ell H(D|Q) + (m-1-\ell)H(P|Q)\right).$$

#### Corollary

Let G be a graph with e edges and degree sequence  $(d_1, \ldots, d_n)$ . Then for any tree  $T_m$  with m vertices we have

$$\hom(T_m, G) \geq 2e \cdot C^{m-2},$$

where  $C = \left(\prod_{i=1}^{n} d_i^{d_i}\right)^{1/2e}$ .

Sketch of proof: Consider the classical Markov chain:  $p_{i,j} = \frac{1}{d_i}$  if  $j \in N(i)$ .

#### Theorem

If  $T_n$  is a tree on n vertices with at least 4 leaves, then

 $\operatorname{hom}(T_m, T_n) \geq \operatorname{hom}(T_m, P_n).$ 

Proof: Indeed,

$$\hom(T_m, T_n) \ge (n-2)2^{m-1} + 2 = \hom(S_m, P_n) \ge \hom(T_m, P_n),$$

where the first inequality by the following lemma and the second inequality by Sidorenko's theorem on extremality of stars.

#### Lemma

Let  $T_m$  and  $T_n$  be trees on m and n vertices, respectively. If the tree  $T_n$  has at least four leaves, then

hom
$$(T_m, T_n) \ge (n-2)2^{m-1}+2.$$

### Trees with 4 leaves

#### Lemma

If the tree  $T_n$  has at least four leaves, then

hom
$$(T_m, T_n) \ge (n-2)2^{m-1}+2.$$

Ideals of the proof:

• Fact: If G is a graph and  $G_1, G_2$  are induced subgraphs of G with possible intersection, then for any graph H we have

 $\hom(H, G) \ge \hom(H, G_1) + \hom(H, G_2) - \hom(H, G_1 \cap G_2).$ 

We can reduce  $T_n$  to trees with exactly 4 leaves.

- Use a generalization of even KC-transformation, that we call LS-switch, we can further reduce  $T_n$  to 6 classes of special trees with 4 leaves.
- Construct some special Markov chains on the 6 classes of trees and use the lower bound related to Markov chains.

Bollobás & Tyomkyn's theorem:

$$\operatorname{hom}(P_n, P_m) \leq \operatorname{hom}(P_n, T_m) \leq \operatorname{hom}(P_n, S_m).$$

#### Theorem

Let  $T_m$  be a tree on m vertices and let  $T'_m$  be obtained from  $T_m$  by a KC-transformation.

(i) If n is even, or n is odd and diam $(T_m) \leq n-1$ , then

 $\operatorname{hom}(T_m, P_n) \leq \operatorname{hom}(T'_m, P_n).$ 

(ii) For any m, n,

$$\hom(P_m, \frac{P_n}{n}) \leq \hom(T_m, \frac{P_n}{n}) \leq \hom(S_m, \frac{P_n}{n}).$$



Figure : The trees  $T_6$  (left) and  $T'_6$  (right).

The KC-transformation does not always increase the number of homomorphisms to the path  $P_n$  when n is odd. In the figure, we have hom $(T_6, P_3) = 20 > 16 = hom(T'_6, P_3)$ .

 $hom(P_m, P_n) \le hom(T_m, P_n) \le hom(S_m, P_n)$ Our proof is very complicated...

白 と く ヨ と く ヨ と …

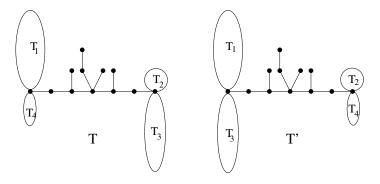


Figure : LS-switch.

→ 御 → → 注 → → 注 →

æ

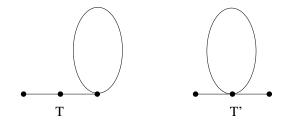
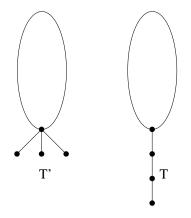


Figure : Short-path shift.

▲ 御 ▶ → ミ ▶

< ≣⇒

æ



#### Figure : Claw-deletion.

▲周 → ▲ 三 →

-< 注 → - 注

#### Theorem

Let  $T_m$  be a tree on m vertices and let  $T'_m$  be obtained from  $T_m$  by a KC-transformation.

(i) If n is even, or n is odd and  $diam(T_m) \le n - 1$ , then

$$\operatorname{hom}(T_m, P_n) \leq \operatorname{hom}(T'_m, P_n).$$

(ii) For any m, n,

 $\operatorname{hom}(P_m, P_n) \leq \operatorname{hom}(T_m, P_n) \leq \operatorname{hom}(S_m, P_n).$ 

Ideals of the proof:

- (i) by the symmetry and unimodality of  $h(T_m, P_n)$ .
- (ii)  $\operatorname{hom}(P_m, P_n) \leq \operatorname{hom}(T_m, P_n)$ 
  - n even: by (i).
  - n odd: by the symmetry, bi-unimodal, log-concavity of  $h(T_m, P_n)$  using the LS-switch, Short-path shift and Claw-deletion.

 $\begin{array}{c|c} \hom(P_n, P_n) \leq \hom(P_n, T_n) \leq \hom(P_n, S_n) \\ \land & ? & \land \\ \hom(T_n, P_n) \leq \hom(T_n, T_n) \times \hom(T_n, S_n) \\ \land & \land & \land \\ \land & \land & \land \\ \hom(S_n, P_n) \leq \hom(S_n, T_n) \leq \hom(S_n, S_n) \end{array}$ 

Figure : Trees with the same size

The number of endomorphisms:

 $|\operatorname{End}(P_n)| \leq |\operatorname{End}(T_n)| \leq |\operatorname{End}(S_n)|.$ 

$$\begin{array}{c|c} \hom(P_m,P_n) \leq \hom(P_m,T_n) \leq \hom(P_m,S_n) \\ \land \mid & X & \land \mid \\ \hom(T_m,P_n) \stackrel{(*)}{\leq} \hom(T_m,T_n) & X \hom(T_m,S_n) \\ \land \mid & \land \mid & \land \mid \\ \hom(S_m,P_n) \leq \hom(S_m,T_n) \leq \hom(S_m,S_n) \end{array}$$

Figure : Trees with different sizes. The (\*) means that there are some well-determined (possible) counterexamples which should be excluded.

(本間) (本語) (本語) (語)

### Further work

#### Conjecture

Let  $T_n$  be a tree on n vertices, where  $n \ge 5$ . Then for any tree  $T_m$  we have

 $\operatorname{hom}(T_m, P_n) \leq \operatorname{hom}(T_m, T_n).$ 

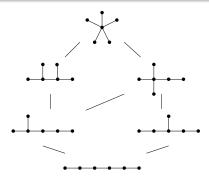


Figure : EL-Shellable? Cohen-Maculay? Möbius functions on the intervals alternate in sign?

### References

 B. Bollobás and M. Tyomkyn Walks and paths in trees, J. Graph Theory, 70 (2012), 54-66.
P. Csikvári On a poset of trees,

Combinatorica, 30 (2010) 125-137.

Z. Lin and J. Zeng On the number of congruence classes of paths, Discrete Math., 312 (2012), 1300-1307.

### 📄 A. Sidorenko

A partially ordered set of functionals corresponding to graphs, Discrete Math., 131 (1994), 263-277.

伺い イヨト イヨト

# Merci!

Zhicong Lin Graph homomorphisms between trees

æ