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Graph homomorphism

Homomorphism: adjacency-preserving map

f : V (G )→ V (H)

uv ∈ E (G ) =⇒ f (u)f (v) ∈ E (H)

Hom(G ,H) := the set of homomorphisms from G to H

hom(G ,H) := |Hom(G ,H)|

Endomorphism: a homomorphism from the graph to itself

End(G ) := the set of all endomorphisms of G

Note: End(G ) forms a monoid
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Figure : 6 endomorphisms of the path P3.
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The Path and the Star

Pn :=Path on n vertices
Sn :=Star on n vertices

Theorem (Lin & Zeng, 2011)

|End(Pn)| =

{
(n + 1)2n−1 − (2n − 1)

( n−1
(n−1)/2

)
if n is odd

(n + 1)2n−1 − n
( n
n/2

)
if n is even

|End(Sn)| = (n − 1)n−1 + (n − 1)

How to compute |End(Tn)| for general trees Tn?
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Figure : The path P6 and the star S7.
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A conjecture

Conjecture (from 2008 to 2013)

For all trees Tn on n vertices we have

|End(Pn)| ≤ |End(Tn)| ≤ |End(Sn)|.
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The Tree-walk algorithm

How to count hom(T ,G ) for a tree T and a graph G?
Let v ∈ V (T ) and V (G ) = {1, 2, . . . ,m}. Define

h(T , v ,G ) := (h1, h2, . . . , hm),

where
hi = |{f ∈ Hom(T ,G ) | f (v) = i}|.

We call h(T , v ,G ) the hom-vector at v from T to G . It is clear
that hom(T ,G ) = ‖h(T , v ,G )‖ =

∑
hi .
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The Tree-walk algorithm

An example:
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Figure : 6 endomorphisms of the path P3.

h(P3, v ,P3) = (1, 4, 1)
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The Tree-walk algorithm

Lemma

Let G be a labeled graph and A = AG the adjacency matrix of G.
Then the (i , j)-entry of the matrix An counts the number of walks
in G from vertex i to vertex j with length n.

By this lemma, we have h(Pn, v ,G ) = 1An−1, where v is the initial
(terminal) vertex of the path Pn and 1 denotes the row vector with
all entries 1.
We will generalize this to compute h(T , v ,G ).
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The Tree-walk algorithm
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h(T1 ∪ T2, v1,G ) = h(T1, v1,G ) ∗ h(T2, v1,G )
a ∗ b := (a1b1, . . . , anbn) is Hadamard product

h(T , v ,G ) = h(T1 ∪ T2, v1,G )A3
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KC-transformation

kk−1. . .

k−1

k

B A BA

x z

y

x

y

0 1

0

1

KC-transformation (Csikvári): A transformation on trees with
respect to the path 0, 1, . . . , k
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KC-transformation

The KC-transformation give rise to a graded poset of trees on n
vertices with the star as the largest and the path as the smallest
element.
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KC-transformation: Closed Walks

Cn:=Cycle on n vertices

Theorem (Csikvári, 2010)

Let T be a tree and T ′ be a KC-transformation of T . Then

hom(Cm,T
′) ≥ hom(Cm,T )

for any m ≥ 1.

The extremal problem about the number of closed walks in trees:

Corollary (Csikvári, 2010)

Let Tn be a tree on n vertices. We have

hom(Cm,Pn) ≤ hom(Cm,Tn) ≤ hom(Cm,Sn).
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KC-transformation: Walks

Theorem (Bollobás & Tyomkyn, 2011)

Let T be a tree and T ′ be a KC-transformation of T . Then

hom(Pm,T
′) ≥ hom(Pm,T )

for any m ≥ 1.

The extremal problem about the number of walks in trees:

Corollary (Bollobás & Tyomkyn, 2011)

Let Tn be a tree on n vertices. We have

hom(Pm,Pn) ≤ hom(Pm,Tn) ≤ hom(Pm,Sn).

A natural question arises: Does the above inequalities still true
when replacing Pm by any tree?
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Generalize to Tree-Walks

Starlike tree: at most one vertex of degree greater than 2

Theorem

Let T be a tree and T ′ the KC-transformation of T with respect
to a path of length k. Then the inequality

hom(H,T ′) ≥ hom(H,T )

holds when

k is even and H is any tree

or k is odd and H is a starlike tree.

Corollary

Let H be a starlike tree and Tn be a tree on n vertices. Then

hom(H,Pn) ≤ hom(H,Tn) ≤ hom(H,Sn).
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Counterexamples to the odd case

hom(T ,Pn)≤ hom(T ,Tn)≤ hom(T ,Sn)?

Counterexamples to the second inequality:

Figure : The doublestar S∗10

For k ≥ 5 we have hom(S∗2k ,S
∗
2k)> hom(S∗2k ,S2k). Note that S2k

can be obtained from S∗2k by a KC-transfromation.
Question: Is the first inequality holds for any tree T?
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Sidorenko’s theorem on extremality of stars

Theorem (Sidorenko, 1994)

Let G be an arbitrary graph and let Tm be a tree on m vertices.
Then

hom(Tm,G ) ≤ hom(Sm,G ).

Fiol & Garriga (2009) reproved the special case Tm = Pm.

Use Wiener index and some easy observations we (rediscover
and) give a new proof of Sidorenko’s theorem.

We constructe some special trees G to disprove the inequality

hom(Pm,G ) ≤ hom(Tm,G ).
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Markov chains and homomorphisms

Definition (Markov chains)

Let G be a graph with V (G ) = {1, 2, . . . , n}. Then P = (pij) is a
Markov chain on G if:∑

j∈N(i)

pij = 1 for all i ∈ V (G ),

where pij ≥ 0 and pij = 0 if (i , j) /∈ E (G ).

Definition (Stationary distribution)

Distribution Q = (qi ) is the stationary distribution of P if:∑
j∈N(i)

qjpji = qi for all i ∈ V (G ).
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Markov chains and homomorphisms

Definition (Entropy)

We define the following three entropies:

H(Q) =
∑

i∈V (G)

qi log
1

qi
,

and
H(D|Q) =

∑
i∈V (G)

qi log di ,

where di is the degree of i and let

H(P|Q) =
∑

i∈V (G)

qi

( ∑
j∈N(i)

pij log
1

pij

)
.
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Markov chains and homomorphisms

Theorem

If Tm is a tree with ` leaves and m vertices, where m ≥ 3, then

hom(Tm,G ) ≥ exp

(
H(Q) + `H(D|Q) + (m − 1− `)H(P|Q)

)
.

Corollary

Let G be a graph with e edges and degree sequence (d1, . . . , dn).
Then for any treeTm with m vertices we have

hom(Tm,G ) ≥ 2e · Cm−2,

where C =
(∏n

i=1 d
di
i

)1/2e
.

Sketch of proof: Consider the classical Markov chain: pi ,j = 1
di

if
j ∈ N(i).
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Trees with 4 leaves

Theorem

If Tn is a tree on n vertices with at least 4 leaves, then

hom(Tm,Tn) ≥ hom(Tm,Pn).

Proof: Indeed,

hom(Tm,Tn)≥(n − 2)2m−1 + 2 = hom(Sm,Pn)≥ hom(Tm,Pn),

where the first inequality by the following lemma and the second
inequality by Sidorenko’s theorem on extremality of stars.

Lemma

Let Tm and Tn be trees on m and n vertices, respectively. If the
tree Tn has at least four leaves, then

hom(Tm,Tn) ≥ (n − 2)2m−1 + 2.
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Trees with 4 leaves

Lemma

If the tree Tn has at least four leaves, then

hom(Tm,Tn) ≥ (n − 2)2m−1 + 2.

Ideals of the proof:

Fact: If G is a graph and G1,G2 are induced subgraphs of G
with possible intersection, then for any graph H we have

hom(H,G ) ≥ hom(H,G1) + hom(H,G2)− hom(H,G1 ∩ G2).

We can reduce Tn to trees with exactly 4 leaves.

Use a generalization of even KC-transformation, that we call
LS-switch, we can further reduce Tn to 6 classes of special
trees with 4 leaves.

Construct some special Markov chains on the 6 classes of
trees and use the lower bound related to Markov chains.

Zhicong Lin Graph homomorphisms between trees



A dual inequality

Bollobás & Tyomkyn’s theorem:

hom(Pn,Pm) ≤ hom(Pn,Tm) ≤ hom(Pn,Sm).

Theorem

Let Tm be a tree on m vertices and let T ′m be obtained from Tm

by a KC-transformation.

(i) If n is even, or n is odd and diam(Tm) ≤ n − 1, then

hom(Tm,Pn) ≤ hom(T ′m,Pn).

(ii) For any m, n,

hom(Pm,Pn) ≤ hom(Tm,Pn) ≤ hom(Sm,Pn).
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A dual inequality

Figure : The trees T6 (left) and T ′6 (right).

The KC-transformation does not always increase the number of
homomorphisms to the path Pn when n is odd. In the figure, we
have hom(T6,P3) = 20 > 16 = hom(T ′6,P3).
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A dual inequality

hom(Pm,Pn) ≤ hom(Tm,Pn) ≤ hom(Sm,Pn)

Our proof is very complicated...
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A dual inequality

T

T

T

T

TT

T

1 1

2 2

3 3

4

T T’
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Figure : LS-switch.
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A dual inequality

T T’

Figure : Short-path shift.
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A dual inequality

T’ T

Figure : Claw-deletion.
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A dual inequality

Theorem

Let Tm be a tree on m vertices and let T ′m be obtained from Tm

by a KC-transformation.

(i) If n is even, or n is odd and diam(Tm) ≤ n − 1, then

hom(Tm,Pn) ≤ hom(T ′m,Pn).

(ii) For any m, n,

hom(Pm,Pn) ≤ hom(Tm,Pn) ≤ hom(Sm,Pn).

Ideals of the proof:

(i) by the symmetry and unimodality of h(Tm,Pn).
(ii) hom(Pm,Pn) ≤ hom(Tm,Pn)

n even: by (i).
n odd: by the symmetry, bi-unimodal, log-concavity of
h(Tm,Pn) using the LS-switch, Short-path shift and
Claw-deletion.
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Summary of our results: trees with the same size

hom(Pn,Pn) ≤ hom(Pn,Tn) ≤ hom(Pn, Sn)

≥ ? ≥

hom(Tn,Pn)≤ hom(Tn,Tn) X hom(Tn, Sn)
≥ ≥ ≥

hom(Sn,Pn) ≤ hom(Sn,Tn)≤ hom(Sn,Sn)

Figure : Trees with the same size

The number of endomorphisms:

|End(Pn)| ≤ |End(Tn)| ≤ |End(Sn)|.
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Summary of our results: trees with different sizes

hom(Pm,Pn) ≤ hom(Pm,Tn) ≤ hom(Pm, Sn)
≥ X ≥

hom(Tm,Pn)
(∗)
≤ hom(Tm,Tn) X hom(Tm, Sn)

≥ ≥ ≥

hom(Sm,Pn) ≤ hom(Sm,Tn) ≤ hom(Sm,Sn)

Figure : Trees with different sizes. The (∗) means that there are some
well-determined (possible) counterexamples which should be excluded.

Zhicong Lin Graph homomorphisms between trees



Further work

Conjecture

Let Tn be a tree on n vertices, where n ≥ 5. Then for any tree Tm

we have
hom(Tm,Pn) ≤ hom(Tm,Tn).

Figure : EL-Shellable? Cohen-Maculay? Möbius functions on the
intervals alternate in sign?
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