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Abstract — A coherent presentation of an n-category is a presentation by generators, relations and
relations among relations. Confluent and terminating rewriting systems generate coherent presen-
tations, whose relations among relations are defined by confluence diagrams of critical branchings.
This article introduces a procedure to compute coherent presentations when the rewrite relations
are defined modulo a set of axioms. Our coherence results are formulated using the structure of
n-categories enriched in double groupoids, whose horizontal cells represent rewriting paths, vertical
cells represent the congruence generated by the axioms and square cells represent coherence cells
induced by diagrams of confluence modulo. We illustrate our constructions on rewriting systems
modulo commutation relations in commutative monoids, isotopy relations in pivotal monoidal cate-
gories, and inverse relations in groups.
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1. Introduction

1. INTRODUCTION

Algebraic rewriting aims at providing constructive methods based on rewriting theory to prove properties
on higher algebraic structures given through generators and relations. This approach has been used
to compute linear bases [18) [19], coherent presentations [21), 27] or higher-syzygies [22| 25]. For
diagrammatic algebras, such as Temperley-Lieb algebras [45], Brauer algebras [3]], Birman-Wenzl algebras
[42], Jones’ planar algebras [29]], Khovanov-Lauda-Rouquier algebras and the associated categorifications
of quantum groups [33} 41, and Khovanov’s categorification of the Heisenberg algebra [8, 34], the
presentations have a great complexity due to the number of generators and relations. These structures
have a huge number of relations, leading to a combinatorial explosion of cases in the proof of their
rewriting properties. However, many of these relations are inherent to the algebraic structure itself. For
instance, some of the above algebras can be interpreted as linear 2-categories with an additional pivotal
structure, whose string diagrams representing 2-cells are drawn up to isotopy. The inherent relations
create useless obstructions to rewriting properties, and the classical rewriting approach is not efficient to
study these structures. It is thus necessary to define the rewriting rules modulo some relations and to
study the properties of rewriting modulo these relations.

This work is part of a larger project that aims to develop methods of rewriting modulo in algebraic
rewriting contexts. Algebraic rewriting modulo has already been applied to the computation of linear
bases of linear 2-categories that categorify associative algebras, equipped with a system of idempotents,
see [36]. Linear bases of the spaces of morphisms of a linear 2-category are relevant to prove the
isomorphism between its Grothendieck group and the categorified algebra. Such bases can be computed
from presentations that are confluent modulo a non-oriented part of the relations [[17]].

This article presents a rewriting categorical approach based on rewriting modulo in order to compute
coherent presentations modulo the inherent structure, where coherence encodes generating relations
among relations modulo. Our construction constitutes the first step in the computation of cofibrant
replacements of these structures by polygraphic resolutions.

Coherence by rewriting

A syzygy of a presentation of a higher-dimensional (strict globular) n-category is a relation among
relations, i.e. an equality between two relations that can be deduced from the presentation. For a given
presentation, we would like to compute all the syzygies by making explicit some of them that generate
all the others. The starting presentation extended by a generating family of syzygies is called a coherent
presentation, which we will describe explicitly from now on. First, generators of higher categories
are described by polygraphs [10], also called computads [40l |44]. As a directed graph generates a
1-category, an (n — 1)-polygraph P generates an (n — 1)-category. It is constructed by adjunction of
generating k-cells, for 0 < k < n—1, whose source and target are composites of generating (k—1)-cells.
The relations are defined by a set R of rules, described by generating n-cells that relate composites of
(n — 1)-cells in the free (n — 1)-category P* on P. The data (P, R) is called an n-polygraph, including
both generators and rules, that present a (n — 1)-category, whose underlying (n — 2)-category is freely
generated by the k-cells of P, for 0 < k < n — 2, and the (n — 1)-cells are subject to the relations in R.
A rewriting path with respect to R is interpreted by an n-cell in the free n-category (P, R)* generated by
the n-polygraph (P, R).
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A coherent extension of the n-polygraph (P,R) is a set I" of generating (n + 1)-cells on the free
(n,n — 1)-category (P,R)" on (P, R) that generates all the syzygies of the presentation. In other words,
any n-sphere in the quotient of the free (n,n — 1)-category (P,R)T by the congruence generated by I
is trivial. We say also that the extension I is acyclic. When the n-polygraph (P, R) is convergent, that is
confluent and terminating, it can be extended into a coherent presentation by (1. 4 1)-cells keeping track
of confluence diagrams of critical branchings, which correspond to minimal overlappings of rules in R.
Explicitly, any chosen family of generating confluences, made of (n + 1)-cells

-
u \H/Af,Q ‘\W
g - g'
given by a confluence diagram for each critical branching (f, g), extends the n-polygraph (P,R) to a

coherent presentation. This construction was initiated by Squier in [43] for monoids and generalized to
n-categories in [23} 26]].

Coherence modulo by rewriting modulo

This article extends these constructions to n-categories whose underlying (n — 1)-categories are not
free, using rewriting systems defined modulo a set of fixed relations. Rewriting modulo appears when
studied reductions are defined modulo the axioms of an ambiant algebraic structure, eg. rewriting in
commutative, groupoidal, linear, pivotal, weak structures. Furthermore, rewriting modulo makes the
property of confluence easier to prove. Indeed, the family of critical branchings that should be considered
in the analysis of local confluence is reduced, and the non-orientation of certain relations allows more
flexibility when reaching confluence. The most naive approach of rewriting modulo is to consider the
system gRg of rules of R on congruence classes modulo E. This approach works for associative and
commutative theories. However, it appears inefficient in general for the analysis of confluence. Indeed,
the reducibility of an equivalence class needs to explore all the class, hence it requires all equivalence
classes to be finite. Another way has been considered by Huet in [28]], where rewriting paths involve only
oriented rules and no equivalence steps, and the confluence property is formulated modulo an equivalence
relation. However, for algebraic rewriting systems this approach is too restrictive for computations [31]].
Peterson and Stickel introduced in [39]] an extension of Knuth-Bendix’s completion procedure [35],
to reach confluence of a rewriting system modulo an equational theory, for which a finite complete
unification algorithm is known. They applied their procedure to rewriting systems modulo axioms of
associativity and commutativity, in order to rewrite in free commutative groups, commutative unitary
rings, and distributive lattices. Jouannaud and Kirchner enlarged this approach in [30] with the definition
of rewriting properties for any rewriting system modulo S such that R C S C ¢Rg. They also proved a
critical branching lemma and developed a completion procedure for a rewriting system modulo gR, whose
one-step reductions consist in application of a rule in R using E-matching. Their completion procedure
is based on a finite E-unification algorithm. Bachmair and Dershowitz developed a generalization of
Jouannaud-Kirchner’s completion procedure using inference rules [2]]. Several other approaches have
also been studied for term rewriting systems modulo to deal with various equational theories, see [37,46].

In Section 4] we give a polygraphic formulation of rewriting modulo that is the main notion of this
article:
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Definition An n-polygraph modulo is a data P := (R, E, S) made of

i) an n-polygraph R, whose generating n-cells are called primary rules,

ii) an n-polygraph E such that B¢, ;) = R¢n—) and E;,1 C Ry, whose generating
n-cells are called modulo rules,

iii) a cellular extension S of R}, satisfying the following condition:

Ry €S C gRE.

This means that S contains all the generating n-cells of R, and that every generating n-cell in S can
be written (e, f,e’) with e,e’ € E.! and f in Rl*im. In this way, a presentation modulo is split into two
parts: oriented rules defined by R;, and non-oriented equations defined by E,,. In Section[d], we define the
termination property for polygraphs modulo and we recall from [28]] Huet’s principle of double induction.
We define confluence properties for polygraphs modulo following Huet [28]] and Jouannaud-Kirchner [30].
We give a completion procedure for the n-polygraph modulo (R, E, ¢R) in terms of critical branchings
that implements inference rules for completion modulo given by Bachmair and Dershowitz in [2]]. Proofs
of confluence modulo involve square diagrams whose horizontal edges correspond to rewriting paths
with respect to S and vertical edges correspond to congruences with respect to E. In this work, we extend
this interpretation by considering faces which describe generating syzygies modulo. To this purpose, we
formulate the notion of coherence modulo for an n-category using the structure of n-categories enriched
in double groupoids.

Confluence modulo and double categories

The notion of double category was first introduced by Ehresmann in [20] as an internal category in the
category of categories. The notion of double groupoids, that is internal groupoids in the category of
groupoids, and its higher-dimensional versions have been widely used in homotopy theory, [, 7], see [6]]
and [4] for a complete account on the theory. A double category gives four related categories: a vertical
and a horizontal one, and two categories of squares with either vertical or horizontal cells as sources and
targets. A square cell A is pictured by

LL4>V

el ale

LL*)V

where f, g are horizontal cells, and e, e’ are vertical cells. Sectionformulates the property of confluence
for an n-polygraph modulo P = (R, E, S) using cubical diagrams made of n-cells of the free n-category
(R<n_1,S)* as horizontal edges, and n-cells of the free (n,n — 1)-category (R<y_1, E) " generated by E
as vertical edges. Thus, we formulate our coherence results in the structure of (n — 1)-category enriched
in double groupoids, obtained by adjoining coherence cells modulo, that are given by square cells filling
the confluence diagrams of polygraphs modulo. We define a branching of P as a triple (f, e, g), where f
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and g are n-cells of S* and e is an n-cell of ET, that we picture as follows

L’
u—u

|

v~ v/

Such a branching is confluent modulo E if there exist n-cells f’ and g’ in S* and an n-cell ¢/ in ET as in
the following diagram:

f o, f
u—-u y U
eJ e’

/ v/l
V——v s W
g g’

Coherent confluence modulo

The notion of coherent presentation modulo that we introduce is based on an adaptation of the structure
of polygraphs to the cubical setting. In Section [3 we define a double (n + 2,n)-polygraph as a
data P = (PY, P", P$) made of two (n.+ 1)-polygraphs P and P" with the same underlying n-polygraph,
and a square extension P* made of generating squares of the form

!/

f
—u
vl

o
<&

—
g

where f, g are (n + 1)-cells of the free (n 4 1,mn)-category (P¥)" and e, e’ are (n + 1)-cells of the
free (n + 1,n)-category (P")T. We define a double coherent presentation of an n-category € as a
double (n + 2,n)-polygraph P = (PY, P P$) such that the coproduct of the polygraphs P¥ and P"
is a presentation of the category C and the square extension P* satisfies an acyclicity property defined
in .

Section introduces the notion of confluence of an n-polygraph modulo P = (R, E, S) with respect
to a square extension I of P, that is of the pair of n-categories (E ', S*). We say that P is '-confluent if,
for every S-branching (f, e, g), there exist n-cells f’, g’ in S*, ¢/ in E" and an (n + 1)-cell

f , f
u—u y W
eJ A e’
v—' />w’

9 9

in the free (n — 1)-category enriched in double categories generated by the square extension I" and an
action of E on I" as defined in Subsection[5.1} We deduce coherent confluence of an n-polygraph modulo
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from local coherent confluence properties. In particular, we prove a coherent version of Newman’s lemma
modulo:

Theorem Let P be a terminating n-polygraph modulo, and T" be a square extension
of P. If P is locally T'-confluent, then it is T'-confluent.

Finally, we prove a coherent version of the critical branching lemma modulo, deducing coherent local
confluence from coherent confluence of some critical branchings modulo:

Theorem Let P be a terminating n-polygraph modulo, and " be a square extension of
P. Then P is T-locally confluent if, and only if, it is T'-critically confluent.

Coherent completion modulo

Section E] presents several ways to extend a presentation of an (n — 1)-category by a polygraph modulo
into a double coherent presentation of this category. As stated above, a convergent n-polygraph E extends
to a globular coherent presentation of the (n — 1)-category it presents by adjunction of a chosen family
of generating confluences of E. We define a family of generating confluences of an n-polygraph modulo
P = (R, E, S) as a square extension of P made of square (n + 1)-cells of the form

f !
u—u —w

eJ e

U'T)Vgl)'\/\)/
g

for every critical branching (f, e, g) of P. The main theorem of this section gives conditions to extend a
square extension of P to a coherent extension:

Theorem Let P = (R,E,S) be an E-normalizing n-polygraph modulo, and T be
a square extension of P such that P is T'-diconvergent. Then any Squier extension S(I) is
coherent.

As a consequence of this result, Corollary states that for a diconvergent and E-normalizing
n-polygraph modulo P, and a family I' of generating confluences of P, then any Squier extension 8(T")
is coherent. In particular, when E is empty, we recover Squier’s coherence theorem for convergent n-
polygraphs as given in [23, Thm. 5.2.], see also [24]. We conclude Section[6]by giving another condition
to compute a coherent extension in terms of commuting normalization strategies on P.

Organization of the article

In Section [2] we introduce notations and terminology on higher-dimensional globular n-categories and
globular n-polygraphs. We refer the reader to [23]] for a deeper presentation on rewriting properties
of n-polygraphs. We also recall from [20] the notions of double categories and of double groupoids.
In Section [3] we define the notions of double polygraphs and dipolygraphs, giving double coherent
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presentations of globular n-categories. Following [[15]], we construct the free n-category enriched in
double groupoids generated by a double (n + 2)-polygraph, in which our coherence results will be
formulated. Finally, we explain how to deduce a globular coherent presentation from a double coherent
presentation. As examples, we make explicit the notion of coherent presentation in the cases of groups,
commutative monoids and pivotal categories. Section |4]is devoted to the study of rewriting properties
of polygraphs defined modulo relations. We formulate the notions of termination, confluence, local
confluence and confluence modulo for these polygraphs. Following [2]], we give a completion procedure
in terms of critical branchings for confluence modulo of the polygraph modulo (R, E, ¢R). In Section
we develop the notion of coherent confluence modulo and we prove a coherent version of Newman’s
lemma and critical branching lemma for polygraphs modulo. In Section [6] we define the notion of
coherent completion modulo, and we show how to compute a double coherent presentation of an n-
category by coherent completion. Section [7]shows how to deduce a globular coherent presentation for
an n-category from a double coherent presentation generated by a polygraph modulo. Finally, we apply
our constructions in the situation of commutative monoids, pivotal monoidal categories modulo isotopy
relations, and groups modulo inverse relations.

2. PRELIMINARIES

This preliminary section introduces notations on higher-dimensional categories used in this article. We
recall the structures of polygraphs from [10, 40, i44]] and of double categories from [20]. We refer the
reader to [23], 125, [26]] for rewriting properties of polygraphs and to [[7, 14} [15]] for deeper presentations on
double categories and double groupoids.

2.1. Higher-dimensional categories and polygraphs

Throughout this article, n denotes either a fixed natural number or co.

2.1.1. Higher-dimensional categories. We denote by Cat, the category of (small, strict and globular)
n-categories. If € is an n-category, we denote by Cy the set of k-cells of C. If f is a k-cell of €, then 0_ ; (f)
and 0. ; (f) respectively denote the i-source and i-target of f, while (k — T)-source and (k — 1)-target are
denoted by 0_(f) and 0 (f) respectively. The source and target maps satisfy the globular relations:

0xi0n,it1 = 0xi0B,it1s (2.1.2)

for all o # 3 in {—, +}. Two k-cells f and g are i-composable when 0 ;(f) = 0_;(g). In that case, their
i-composite is denoted by f x; g, or by fg when i = 0. The compositions satisty the exchange relations:

(f1 %1 g1) %5 (f2 %1 g2) = (f1 %5 f2) %1 (91 %5 92), (2.1.3)

for all 1 # j and cells f1, f2, g1, g2 such that both sides are defined. If f is a k-cell, we denote by 1 its
identity (k + 1)-cell. When 1¢ is composed with l-cells, we simply denote it by f for 1 > k + 1.

A k-cell f of an n-category € is i-invertible when there exists a (necessarily unique) k-cell g in C,
with i-source 0. ;(f) and i-target 0_ ;(f), called the i-inverse of f, that satisfies

fxig =1y p and gxf =Ty (g
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When 1 = k — 1, we say that f is invertible and we denote by ™ its inverse. As in higher-dimensional
groupoids, if a k-cell f is invertible and if its i-source u and i-target v are invertible, then fis (i — 1)-
invertible, with (i — 1)-inverse given by v~ xj_1 f~ %1 u ™.

For a natural number p < n, or for p = n = oo, an (n, p)-category is an n-category whose k-cells
are invertible for every k > p. When n < oo, this is an n-category enriched in (n — p)-groupoids
and, when n = oo, an n-category enriched in co-groupoids. In particular, an (n,n)-category is an
n-category, and an (n, 0)-category is an n-groupoid, also called a groupoid forn = 1.

A O-sphere of C is a pair (f, g) of O-cells of C. For 1 < k < m, a k-sphere of C is a pair S = (f, g)
of k-cells of € such that 0_(f) = 0_(g) and 04 (f) = 0+(g). The k-cell f (resp. g) is called the source
(resp. target) of S denoted by 0_(S) (resp. 0(S)). We denote by Sph, (C) the set of k-spheres of C. If
is a k-cell of C, for 1 < k < n, the boundary of f is the (k — 1)-sphere (0_(f), 0 (f)) denoted by 0(f).

2.1.4. Cellular extensions. Suppose n < oo, a cellular extension of an n-category C is a set I' equipped
with a map v : I' — Sph,(€). By considering all the formal composites of elements of I, seen as
(n + 1)-cells with source and target in C, we build the free (n + 1)-category generated by T over C, and
denoted by C[I']. The size of an (n + 1)-cell f of C[T'], denoted by ||f]|r, is the number of (n + 1)-cells
of T" it contains. We denote by C!!) the set of n-cells in € of size 1. We denote by (€)r the quotient of
the n-category C by the congruence generated by T, i.e. the n-category we get from C by identification
of the n-cells 0_(S) and 9, (S), for all n-sphere S of T".

If Cis an (n, p)-category and I' is a cellular extension of C, then the free (n+1, p)-category generated
by T over C is denoted by C(TI") and defined by:

er) = (e[n r_])lnv(r)’

where '™ contains the same (n + 1)-cells as I, with source and target reversed, and Inv(I") is the cellular
extension of € [I; T'"] made of two (n + 2)-cells

f*nf_ — ]ai(f) and f_*nf — ]a+(f),

for every (m+ 1)-cell fin T.
Forp < n, acellular extension I" of C is acyclic if the (n, p)-category C/T is aspherical, i.e. such that,
for every n-sphere S of C, there exists an (n + 1)-cell with boundary S in the (n + 1, p)-category C(T).

2.1.5. Polygraphs. Recall that an n-polygraph is a data P := (Py, Py, ..., P) made of a set Py and, for
every 0 < k < m, a cellular extension Py of the free k-category

Py = Po[P1]... [Py,
whose elements are called generating (k + 1)-cells of P. We will use the following notations:
i) for 0 < k < n — 1, P<y denotes the underlying k-polygraph (Py, P1,. .., Px) of the n-polygraph P,
ii) P* (resp. P") denotes the free n-category (resp. (n,n — 1)-category) generated by P,

iii) P:= (P*_,)p, denotes the (n — 1)-category presented by P.
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Given two n-polygraphs P and Q, a morphism of n-polygraphs from P to Q is a pair (&,—1,n)
where &, is a morphism of (n — 1)-polygraphs from P, 1 to Qy,_1, and f, : P, — Qy is a map such
that the following diagrams commute:

p P

S _ _
Piy e Pr Pry e Py
Fn71 (inq )J, J{fn anl (E»nf1 )J, lfn
Qnoi o Qn g Qn
S t
n—1 n—1

Equivalently, it is a sequence of maps (fy : Px — Qy)x indexed by integers 0 < k < n — 1 such that the
relations
kaE = Ska-H and fkti = tgfk_H

holds for all 0 < k < n — 1. We denote by Pol,, the category of n-polygraphs and their morphisms, and
by UFel: Cat,, — Pol,, the forgetful functor sending an n-category to its underlying n-polygraph.

For 0 < p < m, an (n,p)-polygraph is a data P made of an p-polygraph (Py, ..., Pp), and for every
p < k < m, a cellular extension Py of the free (k, p)-category

PL = Pp(Pnst) - (P,

Note that an (1, n)-polygraph is an n-polygraph.
2.1.6. Contexts in n-categories. A context of an n-category C is a pair (S, C), simply denoted by C,
made of an (n — 1)-sphere S of € and an n-cell C in C[S] such that ||C|[s = 1. Recall from [23] Prop.
2.1.3] that every context of C has a decomposition

frodn1 (fno1*n2 - x1 (f1 %0 S*0 g1) %1 -+ *n—2 gn—1) *n—1 gn,
with S € Sph,,_;(€), and fy, gk € Cn, for every 1 < k < n. Moreover, we choose these cells so that fy
and gy are (the identities of) k-cells. A whisker of € is a context with a decomposition

fo1xn—2 -+ x1 (f1 %0 S%0 g1) %1 -+ *n_2 gn1
such that fy, gx € Cx, forevery 1 < k < n — 1. Given an n-polygraph P, recall from [23] Prop. 2.1.5]
that every n-cell f in P* with size k > 1 has a decomposition
f = Cilvyal*n—1 -+ *no1 Cilvad,

where y1, ..., Yk are generating n-cells of P and Cy, ..., Cy are whiskers of P*.
2.1.7. Rewriting paths. Let P be an n-polygraph, and (u,v) in Sph,_;(P}_;). A Pn-rewriting step

from w to v is an n-cell f in P:Lm such that 0_(f) = wand 9, (f) = v. It can be written f = Cly], where
v is a generating n-cell of P, and C is a whisker of P*_,. An (n — T)-cell w of P}_, is Py-reducible if
there exists a P,,-rewriting step with source u, otherwise u is Pn-irreducible.

A P-rewriting path is a sequence (f;)ic1 of Py -rewriting steps such that 0. (f;) = 9_(fi 1) for every
i € L. A rewriting path (fy, f2,. .., fy) yields an n-cell fj x,_1 f2 *xn—1 ... *n_1 fi in P};. The polygraph
P is terminating if there is no infinite rewriting path. We say that the (n — 1)-cell u Pn-reduces to v if
there is a P, -rewriting path with source u and target v.
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2.2. Double groupoids

In this subsection, we recall the notion of double category introduced in [20]. Recall that an internal
category C in a category 'V with finite limits is a data (Cy, Co, o€, a$, oc, ic), where

06,0¢: ¢y — Cy,  ic:Co—C1,  oc:Cyx¢, C1 — C;

are morphisms of V satisfying the axioms of a category, and C; x ¢, C; denotes the pullback in V over
morphisms 0C and a$. An internal functor from C to D is a pair of morphisms C; — D7 and Cy — Dy
in V commuting in the obvious way. We denote by Cat(V) the category of internal categories in V
and their functors. In the same way, we define an internal groupoid G in 'V as an internal category
(G1, Gy, dC, a(j, oG, 1g) with an additional morphism

(g :G1 = G
satisfying the axioms of groups, that is
%0 ()g=0%, 0%o()g =205, (2.2.1)
igod% =ogol(idx ()g)od, igodf=ogo((-)gxid) oA, (2.2.2)

where A : G; — G7 x Gy is the diagonal functor. We denote by Grpd(V) the category of internal
groupoids in V and their functors.

2.2.3. Double categories and double groupoids. Denote by Cat (resp. Grpd) the category of (small)
categories (resp. groupoids) and functors. The category of double categories (resp. double groupoids)
is defined as the category Cat(Cat) (resp. Grpd(Grpd)). Explicitly, a double category is an internal
category (Cy, Co, 9%, 95, oc, ic) in Cat, that gives four related categories:

sV . s Vv AV v VABRY sh .__ s h Ah h h :h
CV = (C5,C",0Y 1,0 ,0" 1Y), C" = (€5, CM 00,0 oM i,

Vo .__ v 0 AV Y Vv sV ho .__ h o Ah h h :h
C T (C )C aa—,O)a-s-,O)o aIO)) C i (C )C )a—,O)a-i-,O)O )10))

where C" is the category C; and C*° is the category Cy. The sources, target and identity maps pictured
in the following diagram

satisfy the following relations:

10
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i) O Ol | = 3} ,dY ;. forall o, B in {—,+),

o1
.o ,J, -]’] _ -},L ]’] . .
i) 9,1 =170y, forall ein{—,+}and p,m in{v, h},
ese ViV .h.h
iii) 171y = i1,

iv) ag (Ao B) = 82 1(A) o ag 1(B), for all « € {—, +}, u € {v, h}, and squares A, B such that both
sides are defined,

v) The middle four interchange law :
(AVA) oM (Bo'B’) = (Ao B)o¥ (A’ o BY), (2.2.4)
for all cells A, A’, B, B/ in C® such that both sides are defined.

Elements of C° are called point cells, the elements of CM and CV are called horizontal and vertical cells,
and pictured by
X1
f e\
X]— X2 and
X2

respectively. Following relations i), the elements of C* are called square cells and pictured as follows:

oM (A
. *> .
¥ (A)J \MAJ(ai,] (A)
. }1*) .
0} 1(A)
and by the followings squares for identities
f i (x) f -
X1 —X2 X—X X1 —X2 X—X
ig(x1 )J' ﬂiﬁ‘(f)lig(xz) eJ' ﬂi}’(eie or simply by ||J' ﬂ;‘(f) Ju eJ ij(e) Je
X1 —X2 Yy-—Y X1 —/X2 Yy—"yY
f () f

The compositions ¢V (resp. o) are called respectively vertical and horizontal compositions, and can
be pictured as follows

fi fy f1 0 £,

X1 X2 X3 X —X3
e1J ﬂA Jez ﬂB J% 61J ﬂ/\ o' B Jez
Y1 Y2 Y3 Yy—————Y3
g1 92 g1 oh 9

11



2. Preliminaries

for all x4, y; in C°, fi, g; in C", e;in C¥ and A, B in C¥,

f
X1 ——mX2 X]L)Xz
eﬂ Ia Jez I
v /! v !/
yi P €10 e |Ao Allexo e

il —— 2
h

for all x;,yi,zi in C°, f,g,hin C", e, e/ in C¥ and A, A’ in C*.

Similarly a double groupoid is given by the same data (G, Go, d€, 0%, oG, 1), with an inverse
operation (-);; : G1 — G satisfying relations (2.2.1) and (2.2.2). As a consequence the four related
categories G*V, G*"*, G¥° and G"° are groupoids. For every square cell

in G°, the inverse square cell with respect to oV, for u € {v,h}, is denoted by A™" and satisfy the
following relations

Aok (ATH) =" [(A)),  (ATH) ot A =il(d%,(A)). (2.2.5)

The sources and targets of the inverse squares A~ and A" are given as follows

. 9.
e/J ﬂA_"’Je e_J ﬂﬁ_’hj(e’)
. f) . . T) .
g

2.2.6. Squares. A square in a double category C is a quadruple (f, g, e, e’) such that f, g are horizontal
cells and e, e’ are vertical cells that compose as follows:

The boundary of a square cell A in C is the square (0_h(A),04n(A),0_,(A),04,(A)), denoted
by 0(A). We denote by Sq(C) the set of square cells of C.

12



2.2. Double groupoids

2.2.7. n-categories enriched in double categories. The coherence results for rewriting systems modulo
of this article are formulated using n-categories enriched in double groupoids. Let us expand this notion
for n > 0. We equip the category Grpd(Grpd) with the cartesian product defined by

CxD=(Cy xDy,Cy x Dy, sc X tc,cc X cp,ic X ip),

for all double groupoids C and D. The terminal double groupoid T has only one point cell, denoted by e,
and identities i}(e), i})‘(o), i}’ig(o) = i?ig(o).

An m-category enriched in double groupoids is an n-category C such that for all x,y € C,,_; the
homset Cy, (x,y) has a double groupoid structure, whose point cells are the n-cells in C, (x,y). We denote
by €} ; (resp. GnH, C5.,») the union of sets €y (x,y)” (resp. Cnlx, Y, Cnlx,y)®) for all x,y € Cp_7.
An (n + 2)-cell Ain €}, can be represented by the following diagram:

f
u—v

el Il
u’ —)g v/

with u,u/,v,v/ € €, f,g € C'; and e,e’ € C)_,. The composites of the (n -+ 2)-cells and the
identities (1 + 2)-cells are induced by the functors of double categories

27 Cr(x,y) X Culy, 2) — Calx,2), To: T = Cn(x,x),

Tl

for all x,y,z € Cr_1. The (n — 1)-composite of an (n + 2)-cell A in C,,(x,y) with an (1 + 2)-cell B in
Cn(y, z) of the form

f
14>V1 u24>\12
al e 2| s |
g W

is defined by (n— 1)-composites of n-cells, vertical (n+ 1)-cells and horizontal (n 4+ 1)-cells as follows:

f1 a1 2
Uy hp ] U) ———————— V] A1 V2

€1 *n—1 ez‘ ﬂA *n_1B ‘e{ *n_1 €5

/ / / /
Uq *pn—1 Uy 91 n Vi *n-1V,

-192
By functoriality, the (n — T)-composite satisfies the following exchange relations:

(Ao* A ) xn_q (Bo*B’) = (A %1 B) o* (A’ %1 B'), (2.2.8)

(AoM A") w1 (BO"B) = ((A*n_1B)o" (A" %11 B)) 0" ((Axn1 B') o (A" %1 B)). (2:29)

13



3. Double coherent presentations

Using the middle four interchange law (2.2.4), the identity (2.2.9) is equivalent to the following identity
(A" A") g (BO"B') = ((Axn1B) 0" (Aswn_1B")) 0" (A" xn_1B)o" (A %1 B'))

for all u # 1 in {v, h} and (n + 2)-cells A, A’, B, B/ such that both sides are defined.

We denote by DbCat-Cat,, (resp. DbGrpd-Cat,,) the category of n-categories enriched in double
categories (resp. double groupoids) and enriched n-functors.

2.2.10. 2-categories as double categories. From a 2-category C, we can deduce two canonical double
categories, by setting the vertical or horizontal cells to be only identities of C. In this way, 2-categories
can be considered as special cases of double categories. The quintet construction associates to € a double
category, called the double category of quintets in C and denoted by Q(C). The vertical and horizontal
categories of Q(C) are both equal to G, and there is a square cell

in Q(C) whenever there is a 2-cell A : f xg k = g xo hin C. This defines a functor Q : Cat, — DbCat.
Similarly, for n > 2 we associate to an n-category an (n — 2)-category enriched in double categories by
the quintet construction.

3. DOUBLE COHERENT PRESENTATIONS

Recall that a coherent presentation of an n-category € whose underlying (n — 1)-category is free is an
(n + 2,mn)-polygraph P such that the underlying (n + 1)-polygraph P, 1 is a presentation of € and
P.12 is an acyclic extension of the free (n + 1,mn)-category Pg(nH)T. In this section, we introduce
the structure of dipolygraph in order to define coherent presentations of n-categories whose underlying
(n — 1)-categories are not free. We also introduce double (n + 2)-polygraphs as systems of generators
for n-categories enriched in double groupoids. Finally, we define double coherent presentations of n-
categories, that we will use to deduce coherent presentations from polygraphs modulo, whose generating
horizontal cells describe primary rules, generating vertical cells are algebraic axioms, and square cells
correspond to generating relations among primary reductions modulo the axioms.

3.1. Double polygraphs and dipolygraphs

3.1.1. Square extensions. Let (C¥,C"") be a pair of n-categories with the same underlying (n — 1)-
category B. A square extension of (C¥,C") is a set I" equipped with four maps dn, with & € {—,+}

14



3.1. Double polygraphs and dipolygraphs

and p € {h, v}, as depicted by the following diagram:

(o h
Y a+

and satisfying the following relations:

v v _ Aah h
aoc,n—la n o aﬁ,n—lacx,n’

for all &, 3 in {—, +}. The point cells of a square A in I" are the (n — 1)-cells of B of the form

a;,n—1 ag,n(A)
with o, 3 in {—, 4}, and n, i in {h, v}. Note that by construction these four (n — 1)-cells have the same
(n — 2)-source and (n — 2)-target in B respectively denoted by 0_,,_>(A) and 04 > (A).
A pair of n-categories (C¥, C") has two canonical square extensions, the empty one, and the full one
that contains all squares on (C", C"), denoted by Sq(C", C"). The Peiffer square extension of (C", C")
is the square extension, denoted by Peiff(C¥, C""), made of squares of the forms

!/

fxiv ’ W ki f /
UKkiV——U KV WHhit— Wkt
U e I r. i
i U *ie e xt e xt
Uk v ——u X v Wkt ———w x t
fxiv Wk f

for all n-cells e, e’ in C¥ and n-cells f, f in CM.
3.1.2. Double polygraphs. We define a double (n + 2)-polygraph as a data P := (PY, P, P$) made of

i) two (n + 1)-polygraphs P” and P", such that PY, = PZ

<

ii) a square extension P* of the pair of free (n + 1)-categories ((P¥)*, (P")*).
For 0 < k < m, the generating k-cells of the polygraphs P¥ and P" are called the generating k-cells
of P. The generating (n. + 1)-cells of P (resp. P") are called the generating vertical (resp. horizontal)
(n 4+ 1)-cells of P, and the elements of P* are called the generating square (n + 2)-cells of P.

A morphism of double (n 4 2)-polygraphs from (P¥, P, P%) to (QY, QM, Q%) is a triple (f", f, %)
made of two morphisms of (1. + 1)-polygraphs

P —QY, P QN

15



3. Double coherent presentations

and a map f* : P$ — Q? such that the following diagrams commute:

a”—:P 1 FLyP 1
B - s B +n s
Pn+1 «——FP Pn+1 P
in S i S
e ow
i S W N
T Q Q T Q Q
af,nf1 a+,n71

for win {v, h}. We denote by DbPol,, ,, the category of double (n + 2)-polygraphs and their morphisms.

Let us define extensions of the notion of double polygraphs used in the sequel to formulate coherence
and confluence results modulo. We define a double (n + 2,n)-polygraph as a double (n + 2)-polygraph
whose square extension P* is defined on the pair of (n 4 1,n)-categories ((P¥)T, (P")T). We denote by
DbPol(,, 12 n) the category of double (n+2,n)-polygraphs. In some situations, we will also consider dou-
ble (n+2)-polygraphs whose square extension is defined on the pair of (n+1)-categories ((P¥) ", (P")*)
(resp. ((PY)*, (P™M)T)). We respectively denote by DbPol} ,, (resp. DbPoIT}{ ) the categories they form.

A double (n+2)-polygraph (resp. (n+2,n)-polygraph) (P¥, P, P$) can be pictured by the following
diagram

3.1.3. Dipolygraphs. We define dipolygraphs as presentations by generators and relations for oo-
categories whose underlying k-categories are not necessarily free. Note that a similar notion was
introduced by Burroni in [9]]. We define n-dipolygraphs by induction onn > 0. A 0-dipolygraph is a set.
A 1-dipolygraph is a triple ((Po, P1), Q1), where (Py, Q1) is a T-polygraph and P; is a cellular extension
of the quotient category (Pg3)q,. Forn > 2, an n-dipolygraph is a data (P, Q) = ((Pi)o<i<n, (Qi)1<i<n)
made of

i) a 1-dipolygraph ((Po, P1), Q1),

ii) for every 2 < k < n, a cellular extension Qy of the (k — 1)-category

[Pr—2]0,_; [Px—1l,

16



3.1. Double polygraphs and dipolygraphs

where [Py_;]q, , denotes the (k — 2)-category
((((P3)q, P11, [P2D) s + - - [Px—2D) Qv 1>
iii) for every 2 < k < n, a cellular extension Py of the (k — 1)-category
[Pr_1lq,-
For 0 < k < n — 1, we denote by (P, Q)< the underlying k-dipolygraph ((Pi)o<i<k, (Qi)1<i<k)-
3.1.4. For 0 < p < n, an (n,p)-dipolygraph is a data ((Pi)o<i<n, (Qi)1<i<n) such that:
i) ((Pi)o<i<p+1, (Qi)1<icpr1) is a (p + 1)-dipolygraph,
ii) forevery p + 2 < k < n, Qy is a cellular extension of the (k — 1, p)-category
(IPplQy. 1) (Pp+1)Qpya - - - (Px—1),
iii) for every p + 2 < k < n, Py is a cellular extension of the (k — 1, p)-category
(((IPplQpsi ) (Pp41))Qpis - - - (Pr=1)) @y -
3.1.5. We define a morphism of (n, p)-dipolygraphs
((Pi)o<i<n, (Qi)1<icn) = ((PHo<icn, (Qf)1<icn)

as a family of pairs ((fx, gk))1<k<n, Where f : Py — P/ and gx : Qx — Q. are maps such that the
following diagrams commute

Qr —= [Px—2lq,_, [Px—1] Py — = [Px1lq,
gk[ \?k1 fk| \[fk—”gk
Qr —=3 [Pealqy, [Prl Pe ——= [Pralo;

for every 1 < k < p + 1, and such that the following diagrams commute

Qi — =3 ([Pplq, ) (Pp+1)Qps - - - (Pr—1) P — =3 (((IPplQ, 1 ) (Pp+1))Qpa - - - (Pi—1)) Qi

gk\ \?k1 fk‘ J[fkﬂgk

QL == (Phloy) (Ppidqy, - (P)  PL=—3(((Pflgy.. ) (Ppai)ay,, -+~ (Pio)gy

for every p + 2 < k < m, where the map fk 1 is induced by the map fy_; and the map [fy_ 1] gy 18 defined
by the followmg commutative diagram:

((PplQpst ) (Pp+1))Qpys - - - (Pr—1) T, (((IPplQy.y ) (Pp+1))Qpas « -« (Pr=1))Qu

Fk]J \[fk]]gk

((1P}lgy.,)(PpaNlay,, -+ (Phr) — (((Pflay, )(Phi)lay, -+ (Phry

We denote by DiPol,, ,) the category of (n, p)-dipolygraphs and their morphisms.
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3. Double coherent presentations

3.1.6. Presentations by dipolygraphs. The (n — 1)-category presented by an n-dipolygraph (P, Q) is
defined by

(P, Q) == ([Pn-1lQ.)p,-

A presentation of an (n. — 1)-category C is an n-dipolygraph (P, Q) whose presented category (P, Q) is
isomorphic to C. A coherent presentation of C is an (n + 1,n — 1)-dipolygraph (P, Q) such that

i) the underlying n-dipolygraph (P<n, Q<y) is a presentation of C,

ii) the cellular extension Py 7 is acyclic and the cellular extension Q.7 is empty.

3.2. Double coherent presentations

We introduce the notion of a double coherent presentation of an n-category. We first make explicit the
construction of a free n-category enriched in double categories generated by a double (n -+ 2)-polygraph.

3.2.1. What is a free double category like ? The question of the construction of free double categories
was considered in several works [13H16]]. In particular, Dawson and Pare gave in [[15]] constructions of free
double categories generated by double graphs and double reflexive graphs. Such free double categories
always exist, and they show how to describe their cells explicitly in geometrical terms. However, they
show that free double categories generated by double graphs cannot describe many of the possible
compositions in free double categories. They fixed this problem by considering double reflexive graphs
as generators.

3.2.2. The coherence results in Section @ will be formulated in free n-categories enriched in double
categories generated by double (n + 2)-polygraphs. For every n > 0, let us consider the forgetful functor

W, : DbCat-Cat,, — DbPol,, ., (3.2.3)
sending an n-category enriched in double categories C to the double (n + 2)-polygraph, denoted by
Wn(e) = ( 1\14,-] (e)) Wr}t-l,-] (€)> WTSH-Z(G)))

where W} (C) (resp. wh +1(€)) is the underlying (n + 1)-polygraph of the (n + 1)-category obtained
as the extension of the underlying n-category of € by the vertical (resp. horizontal) (n + 1)-cells
and W;,_,(C) is the square extension generated by all squares of €. Explicitly, for u € {v,h}, con-
sider C}_; the (n + 1)-category whose

i) underlying (n — 1)-category coincides with the underlying (n — 1)-category of C,

ii) set of n-cells is given by

(eﬁJr])n = H (en(x7y))0)

X,UEGnq

iii) set of (n + 1)-cells is given by

(ei+1)n+1 = H (Cnlx,y))™.

X)Ueenfl
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3.2. Double coherent presentations

The (n — 1)-composite of n-cells and (n+ 1)-cells of C, K 1 are defined by enrichment. The n-composite
of (n + 1)-cells of C¥ ny1 are induced by the compos1t10n ot. We define W (@) as the underlying

n+1
(n + 1)-polygraph of the (n + 1)-category €L, ; :

WH

n-H(e) fﬂ}](eu

n+1)

Finally, the square extension W, ,(C) is defined on the pair of (n + 1)-categories (C} . ;, 62 L1) by

n+2 H Cn Xy

;yGCn 1

3.2.4. Proposition. For every n > 0, the forgetful functor Wy, defined in (3.2.3) admits a left adjoint
functor Fy, : DbPol,, ., — DbCat-Cat,.

The proof is based on an explicit construction of the free n-category enriched in double categories
generated by a double (n + 2)-polygraph given in (3.2.3) and proof (3.2.6) of universal property of free
object.

3.2.5. Free n-categories enriched in double categories. Let P be a double (n + 2)-polygraph. We
construct the free n-category enriched in double categories on P, denoted by PO, as follows:

i) the underlying n-category of P is the free n-category P},

ii) for all (n — 1)-cells x and y of P*_, the hom-double category P"(x,y) is constructed as follows

n—1°
a) its point cells are the n-cells in P}, (x,y),
b) its vertical (resp. horizontal) cells are the (n + 1)-cells of the free (n + 1)-category (PY)* (resp.
(PM)*) with (n — 1)-source x and (n — 1)-target y,
¢) its square cells are defined recursively and contains
— the square cells A of P* such that 0_,_1(A) =xand 0, , 1(A) =,
— the square cells C[A] for all context C of the n-category P;, and A in P*, suchthat 9_ ,_1(C[A]) =
xand 3, 1(CIA]) =,
— identities square cells i(f) and ij(e), for all (n + 1)-cells f in (PM)* and e in (P¥)* whose
(n — 1)-source (resp. (n — 1)-target) in P};_; is x (resp. y),
— all formal pastings of these elements with respect to compositions o* and ¢".

d) two square cells constructed as such formal pastings are identified modulo associativity, identity
axioms of compositions ¥ and o and the middle four interchange law (2.2.4)),

iii) for all (n — 1)-cells x,y, z of P*_,, the composition functor

n—1°

_1:PP(x,y) x PP(y,z) — PY(x,2)

is defined for all
Uy L) Vi up L’ V2
e]l ﬂ/ﬁ Je{ in P”(x,y), and eZJ ﬂAzleé in P2(y, z),
RN g
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3. Double coherent presentations

by
1 *n1 12
Upkp g Uy ——————— IV *pn 1 W2
€] *n_1 ez{ ﬂAl *n_1 A2 Je{ *n_1 €5

/ / / /
— B ——— —
u] *n 1 uz g] *n_1 gz V] *n 1 Vz

where the square cell Ay x,,_1 A is defined recursively using exchanges relations (2.2.8H2.2.9) from
functoriality of the composition x;,_1, and the middle four interchange law (2.2.4)),

iv) for all (n — 1)-cell x of P%_,, the identity map T — P"(x,x), where T is the terminal double
groupoid, sends the one point cell o to x and the identity il (e) on ik(x) for all u € {v, h} and

o« e{0,1}.

3.2.6. The functor F,, : DbPol,,;, — DbCat-Cat,, defined by F,(P) = P" for every double (n + 2)-
polygraph P, satisfies the universal property of a free object in DbCat-Cat,. Indeed, given a double
(n + 2)-polygraph P, a morphism np : P — W,,(F,,(P)) of double (n + 2)-polygraphs, an n-category
enriched in double categories C, and a morphism ¢ : P — W, (€) of double (n + 2)-polygraphs, there
exists a unique enriched morphism @ : F,,(P) — € such that the following diagram commutes

P W, (Fu(P))

S Wal@
Wa(e)

P

The functor @ = (@x)o<k<n+2 is defined as follows.

i) By construction, the morphism ¢ induces morphisms of (n + 1)-polygraphs @* : P* — W} (@),

for u € {v,h}. The morphism @" extends by universal property of free (n + 1)-categories into a
functor @* : (PM)* — Giﬂ. We set @ = @}, = @I for 0 < k < n, and

i (f) = @"(f), Poni1(e) = @"(e),
for every horizontal (n + 1)-cell f and every vertical (n + 1)-cell e.

ii) By construction, every square (n + 2)-cell A in F,,(P) is a composite of generating square (n + 2)-
cells in P® with respect to the compositions ¢V, o and x,,_1. Moreover, following [14, Thm. 1.2], if
a compatible arrangement of square cells in a double category is composable in two different ways,
the results are equal modulo the associativity, identity axioms of compositions ¢” and o", and the
middle four interchange law (2.2.4). We extend the functor ¢ to the functor ¢ by setting

P(AMB)=¢(A)* 0(B),  ©(A*nB)=@(A)*n_1 @(B),

forall u € {v, h}and square generating (n+2)-cells A, B in P® whenever the composites are defined.
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3.3. Globular coherent presentations from double coherent presentations

3.2.7. Free n-categories enriched in double groupoids. With a construction similar to the one for
the free n-category enriched in double categories on a double (n + 2)-polygraph given in (3.2.3), we
construct the free n-category enriched in double groupoids generated by a double (n+ 2, n)-polygraphP,
that we denote by P™. It is obtained as the free n-category enriched in double categories PE having in
addition

i) inverse vertical (n + 1)-cells e~ for every vertical (n + 1)-cell e in PY,
ii) inverse horizontal (n + 1)-cells f~ for every horizontal (n + 1)-cell f in P",
iii) inverse square (n + 2)-cells A™H for every square (n + 2)-cell A in PZ,

satisfying the inverses axioms of groupoids for vertical and horizontal cells and relations (2.2.5) for square
cells.

Finally, we will also consider the free n-category enriched in double categories, whose vertical
v

category is a groupoid, generated by a double (n + 2)-polygraph P in DbPol} , ,, that we denote by pTv.
In that case, we only require the invertibility of vertical (n + 1)-cells and the invertibility of square
(n + 2)-cells with respect to o*-composition.

3.2.8. Acyclicity. Let P be a double (n + 2,n)-polygraph. The square extension P® of the pair of
(n + 1,n)-categories ((PY) ", (PM)T) is acyclic if for every square S over ((PY)T, (PM)T) there exists a
square (n 4 2)-cell A in the free n-category enriched in double groupoids P" such that d(A) = S. For
example, the set of squares over ((P")T, (PM)T) forms an acyclic extension.

3.2.9. Double coherent presentations of n-categories. Recall that a presentation of an n-category C
is an (1 + 1)-polygraph P whose presented category P is isomorphic to C. We define a double coherent
presentation of C as a double (n + 2, n)-polygraph P satisfying the following two conditions:

i) the (n + 1)-polygraph (P<n, Py, U PEH) is a presentation of C,

ii) the square extension P? is acyclic.

3.3. Globular coherent presentations from double coherent presentations

3.3.1. We define a quotient functor
V : DbPol ;12 1) — DiPol 12 ) (3.3.2)
that sends a double (n + 2, n)-polygraph P to the (n + 2, n)-dipolygraph
V(P) = ((Po, ..., Pns2), (Qi1, .-+, Qny2)) (3.3.3)
defined as follows:
i) (Po,...,Pn) is the underlying n-polygraph PY, = Pgn,

ii) for every 1 < i < n, the cellular extension Q; is empty,
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3. Double coherent presentations

0"
iii) Qn.1 is the cellular extension P}, g —3PL,
A%
+,n
5h
—n ~ .
iv) Ppq is the cellular extension P, *?’ (PR)py , » where agm = aﬁ}n o, for every win {—, +},
a+,n
and7t: Py — (PR)py ., denotes the canonical projection sending an n-cell win Py, to its class modulo

h

P} . 1, denoted by [u]”. Foran (n+1)-cell f:u — vin P},

corresponding element in P, 1,

we denote by [f]Y : [u]¥ — [v]Y the

v) the cellular extension Q4 is empty,

%

$
vi) P,., is defined as the cellular extension P* *ﬁ (P.[*l)p; B

t
defined by the following commutative diagrams:

(P‘T}L +1) » where the maps § and f are

(Phiy)

(Ph+1)T T’ (PT*I)P;M

h h

where the maps g_’n and d +,n are induced from 5E,n and ’51‘71, and the (n + 1)-functor F is defined

by:
a) Fis the identity functor on the underlying (n — 1)-category P} _,,

b) F sends an n-cell uin P}, to its equivalence class [u]” modulo |4 41

¢) Fsends an (n + T)-cell f : u — v in (P;‘ﬂ)T to the (n + 1)-cell [f]Y : [u]Y — V]V in
(Pr)py . (PR 1) defined as follows

— for every f in PL‘ 1 [f]V is defined by iv),

— Fis extended to the (n + 1)-cells of (PI', ;)" by functoriality by setting

[Clgl Y = [xnl¥ *n—1 Xn—1 *n—2 ... %1 (X1 %0 [g]" %0 Y1) *1 + .. %n—2 Yn—1 *n—1 [Ynl",
for all whisker C = Xy %1 ... %7 (X1 %0 —*0 Y1) *1 -+ . *n_1Yn Of (PT}{Jr1 )T and (n + 1)-cell
gin (Ph, )7, and

[f1 %n T2V = [f1]Y *n [f2]",

for all (n+ 1)-cells fy, 2 in (PR ;).
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3.3. Globular coherent presentations from double coherent presentations

3.3.4. Given a generating square (n + 2)-cell

L’
u—u

QJ A jk

v——v/
h

of P*, we denote by [A]Y the generating (n + 2)-cell of the globular cellular extension P,.» on
(P{)pv (PM ;) defined in (3.3.3) as follows:

n+1 n+1

Note that by construction, in the (n + 2, n)-category ((P};)pv PR +1))(Pny2) the relations

n+1 (
Al s AT = AV AT, AT w1 [ATY = [A SN AT,
hold for all generating square (n + 2)-cells A, A’ in P® such that these compositions make sense.

3.3.5. Proposition. Let P be a double (n + 2,n)-polygraph. If the square extension P* is acyclic then
the cellular extension Py of the (n + 1)-category (P} )pv . ( Ph ) defined in (3:33) is acyclic.
In particular, if P is a double coherent presentation of an n-category C. Then, the (n + 2,n)-

dipolygraph V(P) is a globular coherent presentation of the quotient n-category (P;"L)pxﬂ, that is the

n-category is isomorphic to V(P) (1) and P is an acyclic extension of (P;"l)pTvH] (Pl}l 1)

Proof. Given an (n + 1)-sphere v := ([f]Y,[g]") in (P}"l)pﬁ+1 (P;‘H), by definition of the functor V
in (3.3.2), there exists an (n + 1)-square

in ((P} 4 )T (PHH
there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids (P, P", PS)Tr
such that 0(A) = S. Then [A]Y is an (n + 2)-cell in (P;)Per] (P;‘H))(PTHZ) such that 9([A]Y) = v.
Finally, the fact that V(P) (1) is a presentation of the quotient n-category (P;)P¥L+] follows from the
definition of the functor V and the fact that the (n + 1)-polygraph (Pn, P} ; U ph 1) is a presentation

of C. O

)T), such that F(f) = [f]” and F(g) = [g]" and V(S) = y. By acyclicity assumption,
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3. Double coherent presentations

3.4. Examples

We show how to define coherent presentations of algebraic structures in terms of dipolygraphs in the
cases of groups, commutative monoids and pivotal categories.

3.4.1. Coherent presentations of groups. A presentation of a group G by generators X and relations R
is a (2, 1)-dipolygraph ((Po, P1,P2), (Q1, Q2)) such that

i) Py is a singleton, the cellular extension Q7 is empty, and the generating 1-cells in Py are elements
of X seen as loops on the 0-cell,

ii) the cellular extension Q; of P} is made of the generating 2-cells
xx =1, X x =1,
for every x in Py,

iii) the cellular extension P; on the free group P; ’éz is made of generating 2-cells of the form r = 1 and
v~ = 1, for r = 1 being a relation in R.

A coherent presentation of G is a (3, 1)-dipolygraph ((P;i)o<i<3, (Qj)1<j<3) such that the underlying
(2, 1)-dipolygraph ((Py, P1, P2), (Q1, Q2)) is a presentation of G, the cellular extension Q3 is empty, and
P3 is an acyclic extension of Py 62 (Ps).

3.4.2. Coherent presentation of commutative monoids. A presentation of a commutative monoid M
by generators X and relations R corresponds to a (2, 1)-dipolygraph ((Po, P1,P2), (Q1, Q2)) such that

i) Py is a singleton, the cellular extension Q7 is empty, and the generating 1-cells in P are elements
of X seen as loops on the O-cell,

ii) the cellular extension Q; of P} is made of the generating 2-cells
Kij *XiXj = XjXi,
for all x{, xj in Py, such that x; > x; for a given total order > on Py,

iii) the cellular extension P, on the free commutative monoid P; 6 , is made of relations in R with a
chosen orientation.

A coherent presentation of M is a (3, 1)-dipolygraph ((P;)o<i<3, (Qj)1<j<3) such that the underlying
(2, 1)-dipolygraph ((Py, P1, P2), (Q1, Q2)) corresponds to a presentation of M, the cellular extension Q3
is empty, and P;3 is an acyclic extension of the 2-category Py ?2 ,(P2).

3.4.3. Coherent presentation of monoidal pivotal categories. Recall that a (strict monoidal) pivotal
category C is a monoidal category, seen as 2-category with only one O-cell, in which every T-cell p has a
right dual 1-cell P, which is also a left-dual, that is there are 2-cells

N, :1=Pxp, Ny:1=pxP, g :Prop=1, and el :prop =1, (3.4.4)
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3.4. Examples

respectively represented by the following diagrams:

p P P P
O, U, Y, ama ) (34.5)
These 2-cells satisfy the relations

(5:; *0 ]p) *1 (1p *0 n;) = ]p = (1p *0 5;) *1 (Tl; *0 1p)>

(ep %0 1p) %1 (Tpxomy) = Tp = (Tpxomy ) %1 (N, %0 Tp),

that can be diagrammatically depicted as follows

sg e & saf
J-1-U - U= 1-U)
Pn, p n, P P ny P M, P

Any 2-cell f : p = q in C is cyclic with respect to the biadjunctions p - p - p and q F q - G, defined
respectively by the family of 2-cells (n;;,ny, €, €5) and (g, g, €q, €4)- Thatis, f* = *f, where f*
and *f are respectively the right and left duals of f, defined using the right and left adjunction as follows:

&g P P &g
= N, * = m
q ny n, §

We refer the reader to [[12]32] for more details about the notion of pivotal monoidal category.
A presentation of a (strict) monoidal pivotal category by generating 1-cells X7, generating 2-cells X;
and relations R corresponds to a (3, 2)-dipolygraph ((P;)o<i<3, (Qj)1<j<3) such that

i) Py is a singleton, the cellular extension Q is empty, and P; = X; U )?1, where )A(1 ={P|peX}is
the set of bi-duals of elements of Xj,

ii) the cellular extension Q; on Py is empty, and P, = X; U {ng ,nf{ yEp> sf; | p € X}, where the
2-cellsm,,, My, €,, &) are defined by (3:4.9),

iii) the cellular extension Q3 on P;[P] is made of the following generating 3-cells:

&g P P P eg p
LIRS TN
qny q n, 4 q

for every generating 2-cell f in X or f is an identity cell,
iv) the cellular extension P3 is made of relations in R with a chosen orientation.

A coherent presentation of Cis a (4, 2)-dipolygrah ((P;)1<i<4, (Qj)1<j<4) such that the underlying (3, 2)-
dipolygraph ((P;)1<i<3, (Qj)1<j<3) is a presentation of C, the cellular extension Q4 is empty and Py is
an acyclic extension of Py [P,](P3).
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4. Polygraphs modulo

4. POLYGRAPHS MODULO

We introduce the notion of polygraphs modulo and define their main rewriting properties.

4.1. Polygraphs modulo

4.1.1. Cellular extensions modulo. Let E and R be two n-polygraphs such that E<,_ = R<n—2 and

En_1 € Ry_1. Recall that Rflm denotes the set of R,,-rewriting steps. We define the cellular extension

vER: gR = Sph, ;(R%_,),

n—1

where the set gR is defined by the following pullback in Set:

Eq Xg: | Ry T2, Ry

x| |a_

+

and the map vy £R is defined by YR (e, f) = (0_(e), 0, (f)), forall e in E,| and f in Rflm. Similarly, we
define the cellular extension

YRE: Re — Sphy, 4 (R} 1),
where the set Rg is defined by the following pullback in Set:

*(1) T T2 T
Rn XR:;—I En — En

S

R:ﬁm —— R
o

and the map yRE is defined by yRe(f,e) = (0_(f),d(e)), for all e in E;[ and f in R:Im. Finally, we
define the cellular extension
VERE : ERE — Sphn—] (R* )a

n—1

where the set ¢Rg is defined by the following composition of pullbacks in Set:

*(1 (7[2 7-[3) *(1 v
ET—[ XR:A Rn( ) XRTF] ET—[ ! Rn( ) XR;A ET—[ 4)15;[
(71,702) @ ha
*(1 > *(1 *

EI XR*71 Rn( ) Rn( ) n—1

n a+

S| 0_
e} - R
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4.2. Termination modulo

and the map y ER® is defined by y ERe (e, f, ') = (d_(e), 0, (e’)).
4.1.2. Polygraphs modulo. An n-polygraph modulo is a data P := (R, E, S) made of
i) an n-polygraph R, whose generating n-cells are called primary rules,

ii) an n-polygraph E such that E¢(,,_5) := R¢n—) and E 1 C Ry, whose generating n-cells are
called modulo rules,

iii) a cellular extension S of R}, satisfying the following conditions:

Ry €S C gRe.

This means that S contains all the generating n-cells of R,, and that every generating n-cell in S can be
written (e, f,e’) with e,e’ € E! and f in REY. The (n — 1)-category presented by P, denoted by P, is
the category presented by the n-polygraph (R<n_1, En, U Ry).

4.1.3. We will consider in the sequel the following categories with respect to P:
i) the free n-category R* _|[Rn, En [ E; 11/Inv(En, E;1), denoted by R*(E).
ii) the free n-category generated by S, denoted by S*,

iii) the free (n,n — 1)-category generated by S, denoted by S'.

4.1.4. Rewriting and normal forms. Recall from (2.1.7) that the size of an n-cell f in $* is the positive
integer ||f||s corresponding to the number of elements of S contained in f. Seen as a S-rewriting path,
the size of f corresponds to the length of the path, that is the minimal number of n-cells of S needed
to write f as an (n — T)-composite of elements of S. By definition of S, we have [/f|[s = ||f||g,,. Let
(u,v) € Sph,,_;(R}_;), recall that a S-rewriting step from u to v is an n-cell f in $* with source u and
target v such that ||f||s = 1, and a S-reduction path is a sequence (f;)ic; of normal S-rewriting step such
that, forevery i € I, 0, (f;) = 0_(fi11). A S-normal form of an (n—1)-cell win R}, is a S-irreducible
(n — 1)-cell v such that u S-reduces to v. We denote by Irr(S) the set of S-irreducible (n — 1)-cells of
R _,, and by NF(S,u) the set of S-normal forms of .

4.1.5. Square extensions of a polygraph modulo. A square extension of the pair of n-categories
(ET, $*) will be called a square extension of P. A coherent extension of P is an acyclic square extension
of the pair of (n,n — 1)-categories (ET,ST).

4.2. Termination modulo

This subsection deals with the property of Noetherianity of polygraphs modulo. In particular, we give
a method to prove the termination with respect to an order compatible modulo rules. We also recall the
double induction principle introduced by Huet in [28] that we will use in many proofs in the sequel. Let
P = (R, E, S) denote an n-polygraph modulo.
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4. Polygraphs modulo

4.2.1. Termination. The n-polygraph modulo P is ferminating if the n-polygraph (R<n_1, eRg) is
terminating. When S # R, the termination of P is equivalent to the termination of the n-polygraphs
(R<n—1,RE), (Ren—1, eR), and (R<n—1,S). An order relation < on the set of (n — 1)-cells of R _; is
compatible with S modulo E if it satisfies the following two conditions for (n — 1)-cells u,vin R} _;:

i) v < u if there exists an n-cell u — v in S*,

ii) if v < u, then v/ < u’ holds for all (n — 1)-cells u/,v’ in R¥_; such that there exist n-cells
e:u—uande’:v— v inE]l.

A termination order for P is a well-founded order relation on R}, _,, compatible with S modulo E.

In this work, many constructions will be based on the termination of the n-polygraph modulo
(R, E, ¢Rg), which can be proved by constructing a termination order for one of the n-polygraphs
(R<n—1, €R), (Ren—1,Re) and (Ren—1, eRe). It can be also proved by constructing a termination order
for P. Such an order can be constructed as an order < on R} _;, stable by context, satisfying 0 (f) < 9¢(f)
for every f in R,,, and stable by the n-cells of E;,.

4.2.2. Noetherian induction. If P is terminating, then every (n — 1)-cell of RY_, has at least one
S-normal form. In that case, we can prove a property I’ on an (n — 1)-cells u of R* _; by Noetherian
induction. For that, we prove the property [P on S-normal forms. Then, we assume that [P holds for every
(n — 1)-cell v such that u S-reduces to v, and we prove, under those hypotheses, that the (n — 1)-cell u
satisfies the property P.

Let us recall the double Noetherian induction principle introduced by Huet in [28]], and that we will
use to prove properties of confluence modulo from local confluence modulo assumptions. We consider
an auxiliary n-polygraph S™ as follows. For 0 < k < n — 1, we set

St =Sy x Sy,

and S is the set of n-cells (u,v) — (u’,v’), for all (n — 1)-cells u,u’,v,v’ in R? _, in any of the
following situation:
i) there exists an n-cellu — w in S* and v = v/,
ii) there exists an n-cellv — v/ in $* and u = u’,
iii) there exist n-cellsu — u’ and w — v’ in S*,
iv) there exist n-cellsv — u’ and v — v’ in §*,

v) there exist n-cells eq, e, and e3 in E' as in the following diagram

€1 €2 ;€3 /
u v u A%

such that ||e1 ||E > ||63||1:_.

Note that this definition implies that, if there exist n-cells u — u’ and v — v’ in S*, then there is an
n-cell (u,v) — (u’,v’) in S™ given by the following composite:

(u,v) = (u',v) = (u,v')

Following [28], Prop. 2.2], if P is terminating, then so is S'. In the sequel, we will apply this Noetherian
induction on S" with the following property:
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4.3. Confluence modulo

forallm-cells f:u —>u',g:v—oVvinS ande:u — vin ET, there exist n-cells
flou = u” g v s w'inS*and e’ : 1" — w" inET, and a square (n + 1)-cell A in
a given (n — 1)-category enriched in groupoids, as depicted in the following diagram:

f ! f/ 1
u——u YU
!
eJ ﬂ/\ e
! v//
V—V W
9 9

In Section we will formulate this property for a branching (f, e, g) of P in terms of coherent confluence
modulo.

4.3. Confluence modulo

This subsection deals with properties of confluence and local confluence of polygraphs modulo. We
define the notion of branching for polygraphs modulo and we give a classification of the local branchings.
Let ? = (R, E, S) denote an n-polygraph modulo.

4.3.1. Branchings. A strict S-branching is an pair (f,g), where f,g are n-cells of $* such that
oM . 4(f) =0" ,(g), and depicted by

"J (4.3.2)

Such a strict branching is also denoted by (f, g) : u = (u’,v’), and the (n—1)-cell wis called the source
of the strict branching. A S-branching is a triple (f, e, g) where f, g are n-cells of S* with f non trivial
and e is an n-cell of ET. Such a branching is depicted by

£ £
u—mu u—mmu
eJ (resp. eJ ) (4.3.3)
v——v’ v
g

when g is non trivial (resp. trivial) and denoted by (f, e, g) : (u,v) = (u/,v’) (resp. (f,e) : u = (u',v)).
The pair of (n — 1)-cells (u,Vv) (resp. (u,u)) is called the source of this branching. Note that any strict
branching (f, g) is a branching (f, e, g) where e = i‘{(a}j)(nq)(f)) = q(ah)mf”(g)).
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4. Polygraphs modulo

4.3.4. Confluences and confluences modulo. A strict S-confluence is a pair (f';g’) of n-cells of $*
such that af;,(nf” (f') = ai,(nfn (g’), depicted by

and denoted by (f’,g’) : (u/,v') = w. A S-confluence is a triple (f’,e’,g’), where f’, g’ are n-cells
of $* and e’ is an n-cell of ET such that a‘;’(nq)(f’) = a‘ij(ni])(e’) and a‘;)mq)(g’) = a‘i’(nin(e’),
depicted by

|

v — w’

9
and also denoted by (f’,e’,g’) : (u/,v') = (w,w’). The strict S-branching @.3.2)) is strictly confluent
(resp. confluent) if there exists a strict S-confluence (f/, g’) (resp. S-confluence (', e’ g’)) as follows:

/

f , f f , f
u—u YW u—u y W
“J’ J" (resp. “J’ e/ ).
u—v' yw' u—v' >v;’

g g’ g g’

f ;!
u—u YW
eJ e’
v——v/ sw'
g 9’

4.3.5. Local branchings. A strict S-branching (f, g) is local if f,g € $*(). A S-branching (f, e, g) is

local if f € S*1), and the n-cells g of S* and e of ET satisfy ||g||s + |le]le = 1. Local S-branchings
belong to one of the following families:

i) local aspherical strict S-branchings of the form:

f
—

ge——¢g
<e—<

—
f

where f is an n-cell of $*11);
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4.3. Confluence modulo

ii) local Peiffer strict S-branchings of the form:

fxiv ,
UkiV——U *§V

/
UkXiV— U KXV
t Uuxig t

where 0 <1< n— 2, fand g are n-cells of s,
iii) local Peiffer S-branchings of the forms:

fxiv W ki f ,

UxiVv——u % v Wi U —— WA U (4.3.6)
u*ﬂl e’*iul
/ /
UHiV w’ xu

where 0 < i < n — 2, where f is an n-cell of $*(1) and e, e’ are n-cells of ET,

iv) overlapping strict S-branchings are the remaining local strict branchings:

where f and g are n-cells of $*(1),

v) overlapping S-branchings are the remaining local branchings:

w—t 4.3.7)

where f is an n-cell of S*(") and e is an n-cell of ET(V),

Let (f, g) (resp. (f, e, g)) be astrict S-branching (resp. S-branching) with source u (resp. (u,v))anda
whisker C of R¥ _; composable with uwandv. Then, the pair (C[f], C[g]) (resp. triple (C[f], C[e], C[g])) is
a strict S-branching (resp. S-branching). If the S-branching (f, e, g) is local, then so is (C[f], Cle], C[g]).
We denote by C the order relation on S-branchings defined by (f,e,g) C (f’,e’, g’) if there exists a
whisker C of RY,_; such that (C[f], Cle], Clg]) = (f', €', g’). A strict S-branching (resp. S-branching) is
minimal if it is minimal for the order relation C. A strict S-branching (resp. S-branching) is critical if it
is a minimal overlapping strict S-branching (resp. S-branching).
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4. Polygraphs modulo

4.3.8. Confluence properties of polygraphs modulo. The n-polygraph modulo P is called
i) locally confluent if each of its local S-branchings is confluent,
ii) confluent if each of its S-branchings is confluent,

iii) convergent if it is both terminating and confluent,

iv) diconvergent when its is convergent and the n-polygraph E is convergent,
v) JK confluent if every strict S-branching is confluent,

vi) JK coherent if every S-branching of the form (f, e) : w = (u/,v) is confluent:

o
—
®

e
3

in such a way that g’ is a non-trivial n-cell in S*.

Note that when P is confluent, every (n — 1)-cell of RY_; has at most one S-normal form. Under
the confluence modulo hypothesis, an (n — 1)-cell may admit several S-normal forms, which are all
equivalent modulo E. The notions of JK confluence and JK coherence were introduced by Jouannaud
and Kirchner in [30]. Following [30], there exists a local version of JK-confluence E and JK coherence,
given by properties a) and b) of Proposition and we will prove in the next section that all these
notions are equivalent.

4.4. Completion procedures for polygraphs modulo

In this subsection, we define a procedure that completes a non confluent n-polygraph modulo (R, E, gR)
into a confluent n-polygraph modulo (R, E, ¢R).

4.4.1. Completion of ¢R. The property of JK coherence is trivially satisfied for the n-polygraph modulo
(R, E, gR). Indeed, every gR-branching of the form (f, e) is trivially confluent as follows:

w— v (4.4.2)

evL N lu

e -f

where e - fis a gR-rewriting step. Following Theorem|5.2.3| we define a completion procedure to reach
confluence of the n-polygraph modulo (R, E, ¢R), similar to the Knuth-Bendix completion. From (#.4.2))
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4.4. Completion procedures for polygraphs modulo

and Theorem|5.2.3] when (R, E, gR) is terminating, it is confluent if, and only if, all its critical branchings
(f, g) with fin (gR)*") and g in R*("Y) are confluent, as depicted by:

fe (R f e (eR)
u—-—v YV

||J e’
V/

u—-mw , *>W
g e R g’ € (eR)

/

We denote by CP( R, R) the set of such critical branchings.

4.4.3. Completion procedure for ¢R. Consider an n-polygraph modulo (R, E, ¢R) with a termination
order <. The following procedure computes a completion R of the n-polygraph R such that the n-
polygraph modulo (R, E, ¢R) is confluent. We denote by {LER a ¢ R-normal form of an element u in RY ;.

For all (n — 1)-cells u,vin R} _,, we denote u ~¢ v if there exists an n-cell e : u — vin ET.

Input:
R and E two n-polygraphs such that R¢;,_1 = E<1.
< a termination order for (R, E, gR) that is total on the set of gR-irreducible (n — 1)-cells.
begin
C « CP(gR,R);
while € # () do
Pick a branching ¢ = (f : u = v, g : u = w) in C, with f in ¢R* and g in R*;
Reduce v to a gR-normal form 9 ER;
Reduce w to a gR-normal form WER;
€« C\{c};
if 9kR =~ WER then
if WER < 9ER then
| R RU{a:9ER = weRy
end
if 9ER < WER then
| R RU{ox: WER = DRy
end
end
€ « CU{(gR, R)-critical branchings created by oc};

end

end

This procedure may not be terminating. However, it does not fail because the order < is total on the
set of gR-irreducible (n — 1)-cells.

4.4.4. Proposition. When it terminates, procedure (¢.4.3) returns a confluent n-polygraph modulo.

Proof. The proof of soundness of the completion procedure for (R, E, ¢R) is a consequence of the
inference system given by Bachmair and Dershowitz in [2] in order to get a set of rules R such that
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4. Polygraphs modulo

(]VQ, E, £R) is confluent. Given a termination order < on (R, E, gR), their inference system is given by the
following six elementary rules:

1) Orienting an equation:

(AU{s =t} R) ~ (A,RU{s = t}) if s>t.

2) Adding an equational consequence:

(A,R) o (AU{s =1t},R)if s «—pruUE U —ruE t.
3) Simplifying an equation:
(AUfs=t},R) ~  (AU{u=tLR) if s 5w

4) Deleting an equation:

(AUu{s =t}LR) ~ (A,R) if s~ t.
5) Simplifying the right-hand side of a rule:
(A,RU{s > t}) ~  (A,RU{s—u}) ift 5w
6) Simplifying the left-hand side of a rule:

(A,RU{s 5t}) ~  (AU{u=tLR) ifs 5w

The soundness of Procedure (4.4.3)) is a consequence of the following arguments:

i) For every critical branching (f : w — v, g : u — w) in CP( ¢R, R), we can add an equation v =w
using the elementary rule 2), and simplify it to 9 ER = @ ER using the elementary rule 3).

ii) IfDER ~p WER, we can delete the equation using the elementary rule 4).

iii) Otherwise, we can always orient it using the elementary rule 1).

Thus, each step of the procedure comes from one of these inference rules. Following [2], it returns a
confluent n-polygraph modulo (R, E, gR). O

4.4.5. Completion procedure for ¢Rg. By definition, the polygraph modulo (R, E, ¢R) is confluent if,
and only if, the polygraph modulo (R, E, ¢Rg) is confluent. The completion procedure (4.4.3) extends to
polygraphs modulo (R, E, ¢Rg). In that case, the critical branchings of the form (f, e) with f in ERE“) and
e in ET(" are still trivially confluent. The gRg-critical branchings of the form (f, g), with f in (¢Rg)*("
and g in R*(") can be written as a pair (f' - e, g), where (f’, g) is a critical branching in CP( ¢R,R) and
e is an n-cell in ET. The completion procedure (@.4.3)) for ¢R can therefore be adapted to the polygraph
modulo (R, E, gRe). In that case, the procedure differs from (4.4.3) by the fact that when adding a rule
o :u = vin R, we can choose as target of « any element of the E-equivalence class of v. We prove in the

same way that if the procedure terminates, it returns an n-polygraph modulo (R, E, g Rg) that is confluent.
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5. COHERENT CONFLUENCE MODULO

This section deals with the property of coherent confluence for an n-polygraph modulo defined by the
adjunction of a square cell for each confluence diagram. We prove a coherent version of Newman’s
lemma [38]] for polygraphs modulo relating coherent confluence to coherent local confluence. We prove
also a coherent version of the critical branching lemma reducing local coherent confluence to the coherent
confluence of a reduced set of critical branchings. Let P = (R, E, S) denote an n-polygraph modulo.

5.1. Coherent Newman’s lemma modulo

5.1.1. Action on branchings. Let I" be a square extension of P. Every n-cell f in S* can be written
f = ey *n_1 f1 *n_1 €2 *n_1 T2 in the free n-category (R U E)*, with f; in R*(M), f, in S* such that
|If2lls = |flls — 1, and e7, e; are n-cells in E' possibly identities. Thus, a S-branching (f, e, g) with a
S-confluence (', e’,g’) may correspond to different squares in Sq(E ", S*). For example, if the n-cell
g of S* can be decomposed as €1 *,_1 g1 *n—1 €2, the following squares in Sq(ET, S$*) are different
S-branchings, but we would like them to be equivalent because they provide the same relation among
relations when quotienting by E:

f ! / f ! /
U——v v U——v Vv
eJ e’ and € *n_1 e{ e’
u——wow U ——w yw'

9 g 9162 9/

These two squares are not equal in the free n-category enriched in double groupoids generated by the
double (n 4+ 1,n — 1)-polygraph (E,S,T U Peiff(ET, S*)). However, in the computation of a coherent
extension of P, we do not want to add a square cell for each of these confluence diagrams, since they
would give the same relation among relations in the quotient modulo the axioms. We then define a
biaction of E" on Sq(E T, S*). For all n-cells e7, e; in ET and square (n 4 1)-cell

L’
u—u

eJ A le/

UTV/

in Sq(ET, S*) satisfying the following conditions
i) 04 n (e1) = a}_l’n_1 a\i,n(A) and 0 ;1 (e2) = aiynqa\i‘n(A),

i) e10"  (A) € Sande; o (A) €8,
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5. Coherent confluence modulo

we define the square (1 + 1)-cell ¢l A as follows:

€1f ’
u —u

e1ee2J ﬂg;A Je’
wuy —— v’
e g
where u; = 0_1(e7) and up = 04 n—1(ez). For a square extension I' of P, we denote by E x I the
set containing all elements ?ZA, for A in T and ej, e; n-cells in ET, whenever it is well defined. For all
n-cells e7, e, in ET and square A, A’ in T, the following equalities hold whenever both sides are defined:

!
e]e1
exe)

) 5(EA) =1 A,
i) ¢ (AoVA’) = (bA) oV A,
i) ¢ (AOMAY) = (JTA) oM (LAY

€2

5.1.2. Coherent confluence modulo. Let us denote by

r" .= (ES,Ex FUPeiﬂ(ET,S*))T’V

the free (n — 1)-category enriched in double categories, whose vertical n-cells are invertible, generated
by the double (n + 1)-polygraph (E, S, E x I' U Peiff(E", $*)) in DbPol), ;. The S-branching @3.3) is
I-confluent if there exist n-cells f/, g’ in S*, e/ in ET and an (n + 1)-cell A in I'" as in the following
diagram:

f ;!
U——u y W
eJ ﬂ/\ e

! !
VgV " y W

We say that the n-polygraph modulo P is
i) T-confluent (resp. locally T'-confluent) if every S-branching (resp. local S-branching) is I'-confluent,
ii) T-convergent if it is terminating and I'-confluent,
iii) T'-diconvergent if it is I'-convergent and the n-polygraph E is convergent.

When " = Sq(ET, S*) (resp. ' = Sph(S*)), the property of I'-confluence corresponds to the property of
confluence (resp. strict confluence) defined in (@4.3).

In the sequel, the proofs of confluence results will use Huet’s double Noetherian induction principle
on the n-polygraph S defined in (#.2.2) and the property P on R* ; x R*_; defined by

P(w,v) : every S-branching with source (\,Vv) is T'-confluent, (5.1.3)

for all u,vin R}_;.
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5.1. Coherent Newman’s lemma modulo

5.1.4. Proposition (Coherent half Newman’s modulo lemma). Let P = (R, E,S) be a terminating
n-polygraph modulo, and T be a square extension of P. If P is locally T'-confluent, then the following two
conditions hold

i) every S-branching of the form (f, e), with f in S*V) and e in €T, is T-confluent,
ii) every S-branching of the form (f, e), with f in S* and e in ET), is T-confluent.

Proof. We prove condition i), the proof of condition ii) is similar. Suppose that P is locally I'-confluent,
we proceed by double induction.

We denote by u the source of the branching (f, e). If u is S-irreducible, then f is an identity n-cell,
and the branching is trivially I'-confluent. Suppose that f is not an identity and assume that for every pair
(u',v’) of (n — 1)-cells in R%_; such that there is an n-cell (u,u) — (u/,v’) in SY, every S-branching
(f';e’sg’) of source (u’,v’) is I'-confluent.

Prove that the branching (f, e) is '-confluent. We proceed by induction on |lellg > 1. If [le|jg = 1,
(f,e) is a local S-branching and it is I'-confluent by hypothesis. Now, let us assume that for k > 1, every
S-branching (f”, e”) such that ||e”||g = k is I'-confluent, and let us consider a S-branching of the form
(f, e) with source u, such that ||e|[g =k + 1. Let us write e = ej %1 e, withe; in ET(V and e, in ET.
Using local I'-confluence on the S-branching (f, e;) of source u, there exist n-cells f’ and f; in S*, an
n-cell €] : ty_1(f') — tn1(f1) in ET and an (n + 1)-cell A in T'" such that a‘;n(A) = fxn_7 f’ and
a};’n(A) = f;. Then, write f1 = f} *n—1 f% with f} in $*(V) and f% in S*. Using the induction hypothesis
on the S-branching (f} ,€2) with source u; := tn_1(e1) = sp_1(ez), there exist n-cells f] and g in S*,
ann-cell e; : th—1(f]) — th_1(g)in ET and an (n+ 1)-cell B in " such that a}j‘n(B) = f} *n_1 f] and
ai’n( B) = g. This can be represented by the following diagram:

u f u’ f’ u”
e Local T-confluence Je{
u f] u 12 uf

I ir(f]) Jn
w f] u f] u
e Induction on ||e||g Jeé
v g v/

Now, there is an n-cell (u,u) — (uj,uj)in S™ given by the composite
(w,u) = (w,wr) = (w,ug) = (ug,ug)
where the first step exists because |[ej][g > O and the remaining composite is as in (4.2.2). Then, we

apply double induction on the S-branching (f3, f]) of source (1], 1]): there exist n-cells f; and f} in S*
and an n-cell e3 : th_1(f2) — tn_1(f}) in E'. By a similar argument, we can apply double induction
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5. Coherent confluence modulo

on the S-branchings (f2, (e7)™) and (f}, e5), so that there exist n-cells f”,f3, f; and g’ in S* and n-cells
el 1 thq(f”) — tn_1(f3) and e) : th_1(f;) — ta_1(g’) as in the following diagram:

f ! "
" o W u"
/ . . "
e Local T'-confluence J‘ﬁ Double induction J‘ﬁ
W ] ug i uy f2 Wi f3 wj
gl . .
I it (fy) I Double induction €3
u f] u f] u) f) W, £} wj
. / . . "
e Induction on ||el|g Jez Double induction Jez
v \)/ v//
9 g'

We can then repeat the same process using double induction on the S-branching (f3, e3, f3) with source
(w1,w3), and so on. This process terminates in finitely many steps, otherwise it leads to an infinite S-
rewriting path with source wy, which is not possible since P is terminating. This proves the I'-confluence
of the branching (f, e). O

5.1.5. Theorem (Coherent Newman’s lemma modulo). Letr P be a terminating n-polygraph modulo,
and T be a square extension of P. If P is locally T'-confluent, then it is T'-confluent.

Proof. We set P = (R, E,S) and we prove that every S-branching (f, e, g) is I'-confluent. Let us choose
such a S-branching and denote by (u, V) its source. We assume that every S-branching modulo (f’,e’, g’)
with source (u’,v’) such that there is an n-cell (u,v) — (u’,v’) in SU is I'-confluent. We follow the
proof scheme used by Huet in [28, Lemma 2.7]. Denote by n := |[|f|[s and m := [|g|ls. We assume
without loss of generality that n > 0 and we set f = f1 x,_1 f2, with f; in $*( and f; in S*.

If m = 0, by Proposition on the S-branching (f1, ), there exist n-cells f{, g’ in $*, an n-cell
e’ :th_1(f]) = tn_1(g’) andan (n+1)-cell A in T such that a}l’n(A) = f1*n_1 f] and 6}}“n(A) =g’
Then, since there is an n-cell (u,u) — (uy,uy) in ST with u; := t,_(f;), we can apply double
induction on the S-branching (f3, f}) as in the following diagram:

u fi e f2 w f2 u)
I i) \II Double induction J

u fi uj f] u 1 u
e Proposition Je’

v 7 v

We finish the proof of this case with a similar argument than in (5.1.4), using repeated double inductions
that can not occur infinitely many times since P is terminating.
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5.1. Coherent Newman’s lemma modulo

Now, assume that m > 0 and we set g = g7 *n—1 g2, With g7 in S*(1) and g2 in S*. By Step 1 on
the S-branching (f1, e), there exist n-cells f{, h; in $*, an n-cell e; : th_1(f]) — th_1(hy) in ET, and
an (n + 1)-cell A in T'" such that ah,n(A) = f1 *n_1 f] and ai’n(A) = hy. We distinguish two cases
whether h; is an identity or not.

If hy is an identity n-cell, the I'-confluence of the S-branching (f, e, g) is given by the following
diagram

u fi U f2 ) 2 uy
l it (fy) Ju Double induction [

u f uj f] u f3 usz fa Uy fs Us
e Proposition | e/ Proposition J(ﬁ Double induction [

v Iy Vg gl g W
I i(1,) II‘ it(g7) J'II Double induction |

v T v g V] a0 V2 o W)

where the S-branchings (7, e) and (g1, e’) are I'-confluent by Proposition|5.1.4] double induction applies
on the branchings (f2, f{ *n—1 3), (g1, 92) and (f4, e1, g{’) since there are n-cells

(u)\)) - (u)u) — (u1,u1) ) (u,v) - (V)V) — (V,V]/) - (V]/,V],) and (u,v) - (ug,\)) - (LL3,V]”)

in S and we check that this process of double induction can be repeated, and terminates in a finite
number of steps since P is terminating. This gives a I'-confluence of the S-branching (f, e, g).

If hy is not an identity n-cell, let us write h; = h} *1—] h% with h} in $*(V) and h% in S*. The
I'-confluence of the S-branching (f, e, g) is given by the following diagram:
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5. Coherent confluence modulo

S | DNV - S w
[ i?(ﬁ ) [II Double induction \

u fi U f] u f3 u3 4 Uy
e Proposition J Double induction J

v hl Vi h? wi hy w) h) w;
[l it(hl) Jn Double induction L

v hi Vi h; wj h;3 ws3 h} wj
Il Local T'-confluence J Double induction J

V91—V ——gi—— V] ——g;—— V) —— g3 V3
I it(g7) J" Double induction l

v g1 v 92 V2 93 3

where the S-branching (fy, e) is I'-confluent by Proposition the S-branching (h} , g1) is I'-confluent
by assumption of local I'-confluence of P, and we check that double induction applies on the S-branchings
(f2, 1), (h%, hi), (g1, 92), (f3, h2) and (h3, g5). This process of double induction can be repeated, and
gives a '-confluence of the S-branching (f, e, g) in a finite number of steps, since P is terminating.  [J

5.2. Coherent critical branching lemma modulo

In this subsection, we prove coherent local confluence of an n-polygraph modulo from coherent confluence
of some critical branchings.

5.2.1. Proposition. Let P = (R, E,S) be a terminating n-polygraph modulo, and T be a square extension
of P. Then P is I'-locally confluent if, and only if, the following two conditions hold:

a) every local strict S-branching (f, g) with f in S*V) and g in R*1V) is T-confluent,
a) every local S-branching (f, e) with f in S*V) and e in ET) is T-confluent.

Proof. We proceed by double induction. The only part is trivial because properties a) and b) correspond
to I'-confluence of some local S-branchings. Conversely, assume that P satisfies properties a) and b) and
prove that every local S-branching is I'-confluent. We consider a local S-branching (f, e, g), and assume
without loss of generality that f is a non-trivial n-cell in S*{!). There are two cases: either g is trivial,
and the local S-branching (f, e) is I'-confluent by b), or e is trivial. In that case, if g is in R*1) then
I'-confluence of the branching (f, g) is given by a). Otherwise, let us write g = €7 *n_1 g’ *_1 €2 with
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5.2. Coherent critical branching lemma modulo

er,e2in ET and g’ in R*(V). Now, let us prove the confluence of the S-branching

f
u——v

o

u’/—w’
ge

where g’ 51 €7 is an n-cell in S*('). We will then prove the I'-confluence of the branching (f, g) using
the biaction of E" on Sq(ET, S*). Using Proposition on the S-branching (f, e7), there exist n-cells
f/,f1in S*, ann-celle’ : t,,_1(f') — t_1(f;) andan (n+1)-cell A inT"" such that a}_‘,n(A) = foap_1f’
and ai’n(A) = f;. Using property a) on the local S-branching (g’, g’ *n_1 €2) with g’ in R*!) and
g’ *n_1 €z in $*1) and the trivial confluence given by the right vertical cell e;, there exists an (n+ 1)-cell
B in I'" such that a}j)n(B) = ¢’ and ai’n(B) = g’e;. Let us choose a decomposition f; = ] ;1 2,
with f] in $*(V) and f2. By property a) on the local S-branching (f], g’), there exist n-cells f; and g/ in
S*,ann-cell e” : tn_1(f]) — tn_1(g}) and an (n+ 1)-cell C in I'" such that all)n(C) = f] 41 f] and
af;m(c ) = g’ *n—1 g as depicted on the following diagram:

f f'
u u u”

/
e ﬂA Je1
Ul — Pl
e
1 / / /
w 7f]4) Wy 7f14> w
[ JLC Jeé
v—g'—V ———W

I JLB Jez 92

vV— v/

ge

There are n-cells (u,u) — (ug,u;) and (u,u) — (vi,v1) in S™ given by the following composites
(uvu) - (LL],LL]) — (LL],U],) — (u{>u1/)

(u,u) = (ur,w) = (u,v) = (vv) = (vyv1) = (vi,vq)

so that we can apply double induction on the S-branchings (f3, f{) and (g5, €2), and we finish the proof
of I'-confluence of the S-branching (f, e7, g’e;) using repeated double inductions, terminating in a finite
number of steps since P is terminating.
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5. Coherent confluence modulo

Now, we get the I'-confluence of the S-branching (f, g) by the following diagram:

f f’
u u’ u"

/

I ;Aﬂ J{e1
uy —erflou) —f—uy
e [»

] / / /
w —efi2uy —fi—u;

el
I er Cﬂ Jeﬁ
v —e1g 'SV ——— W

I BJL Jez 92

vV— v
€i1g e

since the top rectangle is by definition tiled by the (n + 1)-cell ]e] A, the bottom rectangle is tiled by the
(n+1)-cell 21 B and the remaining rectangle is tiled by the (n + 1)-cell Zl C. The rest of the confluence
1

1
diagram is tiled in the same way as above. O

5.2.2. Coherent critically confluence. Given I" a square extension of P, we say that P is I'-critically
confluent if it satisfies the following two conditions:

ag) every strict S-critical branching (f, g) with f in $*(V) and g in R*(") is I'-confluent,
by) every S-critical branching (f, e) with f in $*(") and e in ET(") is I'-confluent.

5.2.3. Theorem (Coherent critical branching lemma modulo). Ler P be a terminating n-polygraph
modulo, and T be a square extension of P. Then P is I'-locally confluent if, and only if, it is I'-critically
confluent.

Proof. By Proposition the local I'-confluence is equivalent to both conditions a) and b). Let us
prove that the condition a) (resp. b)) holds if, and only if, the condition ag) (resp. byg)) holds. One
implication is trivial. Suppose that condition bg) holds and prove condition b). The proof of the other
implication is similar. We examine all the possible forms of local S-branchings given in (.3.3). Local
aspherical S-branchings and local Peiffer S-branchings of the form (#.3.6)) are trivially confluent:

fxiv w ki f
UkiV—— U %V Wk ——— Wk u
U el Ju *i € e’*iul Je *u/
w v/ —HJ, *i v/ w’ *1u—>w *u
fxiv w ki f

and '-confluent by definition of I'-confluence. The other local S-branchings are overlapping S-branchings
of the form (f,e) : u = (u’,v) as in @3.7), where f is an n-cell of S*(' and e is an n-cell of ET(.
By definition, there exists a Whlsker C on R!_; and a critical S-branching (f',e’) : up = (u{,vo) such
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6. Coherent completion modulo

that f = C[f’] and e = Cl[e’]. Following condition by) the branching (', e’) is I'-confluent, that is there
exists a I'-confluence:

f/ f//
U—v yv'
e/J \/A e”
u’ ) W
9
inducing a '-confluence for (f, e):
Clf’ Cl”
Chu] L> v] [ ]> v/
clel| CIAl  Cle”
\/ ~
Clu'] . YW
Clg’]
This proves the condition b). O

6. COHERENT COMPLETION MODULO

We construct a double coherent presentation of an (n — 1)-category, starting with one of its presentations
by an n-polygraph modulo, and by adding square cells given by the confluence diagrams of some of its
critical branchings modulo. Let P = (R, E, S) denote a n-polygraph modulo.

6.1. Coherent completion modulo

Let us recall the notion of coherent completion of a convergent n-polygraph. We then define the notion
of Squier’s extension for polygraphs modulo.

6.1.1. Coherent completion. Recall from [23] that a convergent n-polygraph E can be extended into a
coherent globular presentation of the (n — 1)-category E. Explicitly, if an n-polygraph E is critically
confluent, we define a family of generating confluences of E as a cellular extension of the free (n,n—1)-
category ET that contains one globular (n 4 1)-cell

e v €1
O e

for every critical branching (e, e’) of E, where (e, e}) is a chosen confluence. Any (n+ 1,n)-polygraph
obtained from E by adjunction of a family of generating confluences of E is a globular coherent presentation
of the (n — 1)-category E, [23]]. This result was originally proved by Squier in [43] for n = 2. We
will consider a double (n + 1,n — 1)-polygraph (E, (), S(E)), where S(E) is a square extension of the
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6. Coherent completion modulo

(n,n — 1)-categories (ET, 1) seen as an n-category enriched in double groupoids that contains exactly
one square (n + 1)-cell

uinl,
| | e
v E !

e’V
(] ]/ 61/

~

W e W

for every critical branching (e, e’) of E, and where (e1, 1) is a chosen confluence.

6.1.2. Squier’s extensions modulo. A family of generating confluences of P is a square extension of P
whose elements are the square (n + 1)-cells Af,g and B¢ of the following forms:

/ /
u—>u 1:—wv u*>u f—)W (6.1.3)
||J \H/Afg Je’ eJ ﬂBfe Je’
u—w—wv v4>w
g’

for all critical strict S-branching (f, g) and critical S-branching (f, e), where f, g and e are n-cells of $*(1)
R*1) and ET() respectively. Such a family is not unique in general and depends on the n-cells f/, g’, e’
chosen to obtain the confluence of the critical S-branchings.

In the rest of this article, we show how to extend a family of generating confluences I of P to a
coherent extension of P. The coherent extension will contain the squares obtained by the biaction of E"
defined in (5.1.1)) on T', the Peiffer squares defined in (3.1.1)), and the square extension S(E). Therefore,
we define a Squier’s extension of I as a square extension of P:

$(I') := E x TUPeiff(E", $*) US(E),

where 8(E) is a square extension as in (6.1.T).

6.2. Coherence by E-normalization

We construct a coherent extension of P under an assumption of confluence and normalization of S with
respect to E.

6.2.1. Normalization in polygraphs modulo. Let us recall the notion of normalization strategy for
an n-polygraph P. Consider a section s : P — P} of the canonical projection 7t : P;, — P. For an
(n — 1)-cell u in P we denote {l := s(u), so that 7t({l) = u. When P is convergent, a normalization
strategy for P with respect to s is a map

(O P;i] — P;kl

that sends an (n — T)-cell wof P};_; to an n-cell oy, : u — 1l

The n-polygraph modulo P is normalizing if every (n — T)-cell w in R _; admits at least one S-
normal form, that is NF(S, w) # (). It is E-normalizing if NF(S,u) NIrr(E) # O for every E-irreducible
(n —1)-cell uwof R} _,. Note that when S = gRg, if P is normalizing then it is E-normalizing.
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6.2. Coherence by E-normalization

6.2.2. Theorem. Let P = (R,E,S) be an E-normalizing n-polygraph modulo, and T be a square
extension of P such that P is T-diconvergent. Then any Squier extension S8(I") is coherent.

Proof. Letus denote by C the free n-category enriched in double groupoid (E, S, 8(T") )"
double (n+ 1,n—1)-polygraph (E, S, 8(T")). We denote by u the unique normal form of an (n —
win RY_; with respect to E and we fix a normalization strategy p, : u — 1 for E.

Since P is terminating, the n-polygraph (R<y_1, S) terminates and thus it is normalizing. Moreover,
as P is E-normalizing, we can define a normalization strategy oy, : uw — {i for the polygraph (R<n_1,S)
such that 1 € NF(S,u) NIrr(E), for every u € Irr(E). Consider a square

generated by the
1)-cell

f
u——v

el Je’ (6.2.3)

u ——'
g
in C. By definition the n-cell f in ST can be decomposed (in general in a non unique way) into a
zigzag sequence T = fo kn 1 T *n 1 -+ *n1 fon *n onH, where the fyr @ up — U1 and
fora1 : Woka2 — Wk, for all 0 < k < n are n-cell of $*, with ug = wand uy,2 =v.
By TI'-confluence of P, there exist n-cells ey, in E" and (n + 1)-cells of, in € as in the following
diagrams:

fax Ouperr . far1 Owpeir .
Wik — 2 W1 —— W2k 41 W2k+2 Wok+1 W2k+1
pqul ﬂGka € puZHZJ, H/O‘kaH €forr
Uzk o — Uz U2k+2 U2k+2
2k Wok2
for all 0 < k < n. By definition of the normalization strategy o, for every 0 < Zn +1, the
(n—1)-cell U is an E-normal form, and by convergence of the n-polygraph E it follows that ul u1+1

Moreover, for every 1 < i < 2n + 1, there exists a square (n + 1)-cell in € as in the following

diagram:

A — A
Ui — Uiq

J HEH] J fin

W —— Wi

We define a square (n + 1)-cell of in C as the following ¢V-composite:

of, ' E1 oY of, oY 0,

v % % %
OV .. 0V Oy, © Eong1 07 Oty

where for an even integer i > 0, we have
i Ouipg — = _— Ouyy fi-‘r] fi—‘rz Ouiys =
uy Ui Wi Uit Ui Wip2 Uit3 ui}3 uil3
pu{ M/Ufl er, J ﬂE O Jeﬂﬂ ﬂcfm quz ﬂdflﬂ w{ ﬂE% J firs
Ui 0= = Wi — Ui2 Wi Uits
ui Wit2 Wit
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In this way, we have constructed a square (n + 1)-cell

u -
0705

pul ﬂ(rflpv

Similarly, we construct a square (n + 1)-cell o4 as follows:

_ 005 _
u——v

pu’T /H\Gg Tpv’
u —v

g

using that 1 = u/ and V = v’ by convergence of the n-polygraph E. We obtain a square (n + 1)-cell

Ec 0¥ (o7 o 0y) o¥ E, filling the square (6.2.3), as in the following diagram:

|
—h
|

|
@
I

O
6.2.4. Corollary. Let P = (R, E,S) be a diconvergent and E-normalizing n-polygraph modulo, and T" a
family of generating confluences of P. Then any Squier extension 8(T") is coherent.

Note that, when the n-polygraph E is such that E,, is empty in Corollary we recover Squier’s
coherence theorem [43, Thm. 5.2] for convergent n-polygraphs, [23| Prop. 4.3.4].

6.2.5. Decreasing orders for E-normalization. We give a method to prove that the set Irr(E) is E-
normalizing, laying on the definition of a termination order for R. A decreasing order operator for an
n-polygraph P is a family of functions

indexed by pairs of (n — 2)-cells p and q in P, _, satisfying the following three conditions:

i) If there existsann-cell f : uw — vin P}, (p, q), then @y, 4(u) > @ 4(v), where > is the lexicographic
order on N™4) We denote by >1ex the partial order on P;_; defined by u >ex v if u and v have
same source p and target q and @, 4(u) > Oy 4(v),

*

ii) For all u,vin P;_; and whisker C on P}_,,

U >pex v implies that Clu] >x C[v],

iii) The normal forms in P}, (p, q) with respect to P are sent to the tuple (0,...,0) in N™{P.a),

Note that an n-polygraph admitting a decreasing order operator is terminating.
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6.3. Coherence by commutation

6.2.6. Proving coherence modulo using a decreasing order. Suppose that the n-polygraph E is termi-
nating. A decreasing order operator @ for E is compatible with R if for every n-cell f : u — v in R}, the
inequality @, 4(u) > @, 4(v) holds. In that case, the n-polygraph modulo (R, E, R) is E-normalizing.
Indeed, if u is an E-normal form in R},_;, ®p, 4(u) = (0,...,0) in N™P4) and by compatibility with R,
for every n-cell f : u — vin R*, we get @, 4(v) = (0, ...,0) so that v is also an E-normal form. We can
also prove that the n-polygraph modulo (R, E, ¢R) is E-normalizing if moreover, for every R-irreducible
(n—1)-cell winIrr(E), any (n—1)-cell u’ such that there is an n-cell w — u’in E ' is also R-irreducible.
This is for instance the case if R is left-disjoint from E, that is for every (n — 1)-cell win s(R), we have

Gr(uw) NEn_1 = 0 where:
i) s(R) is the set of (n — T)-sources in R? _; of generating n-cells in Ry,

*

ii) for every uwin R} _;, Gr(u) is the set of generating (n — 1)-cells in R,,_; contained in 1.

With these conditions, we can apply Theorem [6.2.2]to obtain coherent extensions of polygraphs modulo
(R,E,R) or (R, E, gR).

6.3. Coherence by commutation

We give another method to compute a coherent extension of P based on normalization strategies for the
n-polygraphs (R<n—1,S) and (R<n—1, E) satisfying a commutation property.

6.3.1. Commuting normalization strategies. Let o (resp. p) be a normalization strategy of the n-
polygraph (R<n—1,S) (resp. (Re<n—1, E)). We say that o and p weakly commute if, for every u in R*

n—1°
there exists an n-cell 1, in S* as in the following diagram:
w2 q
Pu Jpﬁ (6.3.2)
U e U

We then denote by N(o, p) the square extension of P made of squares of the form (6.3.2)), for every
(n—1)-cell win RY ;. We say that o and p commute if ,, = oy holds for every (n —1)-cell win R},_;.

The definition is motivated by the fact that o and p commute if, and only if, the equality U = U holds for
every (n —1)-cell wof RY ;.

6.3.3. Theorem. LetP = (R, E,S) be an n-polygraph modulo, and T be a square extension of P such that
P is T-diconvergent. If o and p are weakly commuting normalization strategies for S and E respectively,
then any square extension 8(I') U N(0, p) is coherent.

Proof. Denote by C the free n-category enriched in double groupoids (E, S, 8(T") UN(o, p) )™, Foruwin
R* _;, we denote by N,, the square (n + 1)-cell in € corresponding to the square (6.3.2)). We prove that
for every n-cell f: uw — v in S*, there exists a square (n + 1)-cell o5 in € of the following form

Oy f 0;
u v

v
ﬂgf JPG
;\;\

S
enNe——ge)

47



6. Coherent completion modulo

The square (n + 1)-cell o7 is obtained as the following composite:

GLL f O-V = _= f

u u v v v v v
A e Il e .
pl ﬂNu qu \H/T]f M Ee"ﬂi’e‘) Hhad \H/’Yv Jpv

a u v y—— % v

Mu Nu 0= = 0=

where the n-cell e, and the square (n + 1)-cell n¢ (resp. the n-cell ey and the square (n + 1)-cell yy)
belongs to € by I'-confluence of P, and the square (n + 1)-cell E¢, ., belongs to S(E).
Now, let consider a square

U——v (6.3.4)

in €. By definition, the n-cell fin ST can be decomposed (in general in a non unique way) into a zigzag
sequence

f =1 *n_1 f? *n—1 - Hn—1 fon *n_1 f2n+1’

where the f @ Wy — W1 and oy 