Completion in Operads via Essential Syzygies

Philippe Malbos
Univ Lyon, Université Claude Bernard Lyon 1
CNRS UMR 5208, Institut Camille Jordan
France

Abstract

We introduce an improved Grébner basis completion algorithm
for operads. To this end, we define operadic rewriting systems as
a machinery to rewrite in operads, whose rewriting rules do not
necessarily depend on an ambient monomial order. A Grébner basis
of an operadic ideal can be seen as a confluent and terminating
operadic rewriting system; thus, the completion of a Grébner basis
is equivalent to the completion of a rewriting system. We improve
the completion algorithm by filtering out redundant S-polynomials
and testing only essential ones. Finally, we show how the notion of
essential S-polynomials can be used to compute Grébner bases for
syzygy bimodules. This work is motivated by the computation of
minimal models of associative algebras and symmetric operads. In
this direction, we show how our completion algorithm extends to
the case of shuffle operads.

CCS Concepts

« Computing methodologies — Combinatorial algorithms;
Algebraic algorithms.

Keywords

Non commutative Grébner bases; computing with syzygies; com-
pletion algorithms; rewriting in operads

1 Introduction

The fundamental theorem of any algebraic rewriting machinery
is the critical branching theorem, or Buchberger criterion, which
characterizes confluence by algebraic obstructions described as
critical branchings or critical pairs in rewriting theory [14, 20], and
as S-polynomials in Grobner basis theory [4, 19]. This theorem is
the core of completion algorithms of a rewriting system, which re-
solve the obstructions in order to reach confluence. The efficiency
of completion algorithms depends on several aspects: 1/ the al-
gebraic structure on which we rewrite (strings, commutative or
non-commutative polynomials, planar trees...), 2/ the strategy used
to orient the rules added during completion, 3/ the choice of which
critical branchings to resolve and the prediction non-essential ones,
4/ the order in which we resolve these critical branchings. For in-
stance, Buchberger’s algorithm consists in exploring all branchings,
but several methods have been introduced to improve completion
by reducing the set to be explored via syzygies of generating poly-
nomials, which describe relations between obstructions [9, 15].
The objective of this work is twofold. Firstly, we introduce a
rewriting machinery for non-symmetric operads that generalizes
the Grobner basis approach of [3, 8] by removing the constraint of a
monomial order for the orientation of the rewriting rules. Secondly,
we define a completion algorithm for rewriting in an operadic con-
text by restricting the examination of critical branchings to essential

Isaac Ren
Ecole Normale Supérieure de Lyon
France

ones. The essential branchings are defined by considering relations
between critical branchings with respect to a monomial order on
contexts. We show that the relations between these branchings
correspond to syzygies of the defining rewriting rules.

This work is aimed at developing rewriting methods for cal-
culating with operads. Operads provide an algebraic language to
describe types of algebras in topology and algebra [16, 18]. They
are usually defined with symmetric actions, which are incompatible
with rewriting, but shuffle operads, introduced by Dotsenko and
Khoroshkin in [7], allow for rewriting methods all while preserv-
ing the information of symmetries. In particular, these rewriting
methods apply to the computation of explicit free resolutions of
operads [7, 17]. The problem of finding a procedure that computes
a minimal model for a given operad is still open. In the rewriting
approach, this calls for a notion of minimal branchings in all di-
mensions of the resolution. In this article, we present our algorithm
in the case of non-symmetric operads, but the shuffle case can be
treated in the same way. Moreover, our notion of essential branch-
ings can also be used to ‘go up in dimension’, and we expect to
deduce an algorithm calculating minimal resolutions of operads.

The paper is structured as follows. In Section 2, we define the
notions of rewriting systems and Grébner bases for non-symmetric
operads. We introduce the notion of essential branchings, and we
give an algorithm to compute essential branchings with respect to a
monomial order on contexts. In Section 3, we show the main result
of this paper, Theorem 3.3, which characterizes the confluence of a
terminating operadic rewriting system in terms of essential branch-
ings. From this result, we deduce a completion algorithm, which
transforms terminating rewriting systems into confluent ones by
resolving essential branchings. In Section 4, we show that essen-
tial syzygies generate the bimodule of all syzygies of a convergent
operadic rewriting system. As a conclusion, in Section 5, we give
an alternative definition of essential branchings, allowing us to
define essential branchings involving n > 2 rewriting rules. We
also explain how to adapt our constructions to the cases of algebras
over operads and shuffle operads.

2 Operadic rewriting systems

In this section, we introduce rewriting systems for non-symmetric
operads, which we relate to the notion of Grébner bases for op-
erads. We define the notion of essential branchings as 'minimal’
obstructions to local confluence, and an algorithm to compute the
essential branchings of an operadic rewriting system.

Operads. A collection is a sequence V = (V(n)), en of spaces (over
a field k) indexed by arities n > 0. We denote by AR(x) the arity of
an element of V. A (non-symmetric) operad is a collection P with
an identity element ¢ in P(1), equipped with composition maps

o:P(k)®P(n1)®...@ P(ng) = P(ny +...+ng)

sending (x,y1,...,yg) toxo (yi, ..., yx) and satisfying identity and
associativity conditions:
i) xo(eg,...,6e)=x=¢ox,

ii) xo (y; o(zi,...,z}(l),...,yj o(z{,...,zij))

:(xo(yl,..l,yj))o(z},..A,Zil,...,z{,...,zij))
For1 < i < k,x € P(k), and y € P(n), denote by x o; y :=
xo(&...,6Y,¢...,€) an elementary composition of x and y.

1
The set of (tree) monomials 7 (X) is the term algebra on a graded
set X = (Zn)n>0. Monomials will be written using the Backus-Naur
form

T(2) == {e} [(S(k) | T(E)(m) ... T(2)(np)).

We denote by @ the list of monomials vy, . .., v;. A monomial can
be represented by a planar tree with inputs: for instance,

, N N/
w=(x|£y(z|uv))=1 Z‘/ N, 7
\\x/

is a monomial where AR(x) = 3, AR(y) = 1, and AR(z) = AR(u) =
AR(0) = 2. The size of a monomial u is the number of inner vertices.
For instance, s1ze(w) = 5.

In this work, we rewrite in free operads. We denote by ¥ (2) the
free operad over X, where, for n > 0, ¥ () (n) is the vector space
spanned by monomials of arity n, whose elements are called (ho-
mogeneous) polynomials. The support of f = 3;cy Aju; is the set of
monomials Supp(f) := {u; | i € I} that appear in its decomposition.
The elementary compositions of monomials extend to polynomials
by multilinearity.

A (one-hole) monomial context of ¥ () of inner arity k is a term
C:=wo; (O | w) of T (XU {OL}), where O is a symbol of arity k
that appears exactly once in C. For a polynomial f in F(X)(k), we
denote by C[f] the polynomial w o; (f |). A (one-hole) context of
F () of (inner) arity k is a linear combination of one-hole monomial
context of inner arity k. Similarly, we define a two-hole context
of F(2) inner arities (k,¢) as a linear combination of terms of
T (Zu{Oi} U {Or}) with exactly one occurence of both Oy and O,.
When the arity of D (as a monomial) is equal to the inner arity of C,
we can compose the two contexts, which we denote by CD. Finally,
for monomials u, v, we write u C v when there exists a monomial
context C such that v = C[u].

An F (2)-bimodule M is a collection M equipped with an action
of the collection of contexts of 7 () satisfying compatibility axioms
with respect to the composition of F(Z). An ideal of F(Z) is an
¥ (2)-bimodule contained in ¥ (2). Given a family of polynomials
F={f1,....fs} € F(2), we denote by I(F) the ideal generated by
F and by F(2)(F) the free ¥ (Z)-bimodule generated by F. The
¥ (Z)-bimodule of syzygies of F, denoted by S(F), is the kernel
of the bimodule morphism 7 (2)(F) — ¥ (X). Thus, a syzygy
corresponds to a relation

CilAal+...+Cs[fs] =0,
where the C; are polynomial contexts of ¥ (Z).

Operadic rewriting systems. An operadic rewriting system, or
ORS, is a data X = (2, R) made of a graded set ¥ and a (binary)
relation R € 7(2) X ¥ (X), whose elements are rulesa : u — f

reducing the monomial source s(«) := u to the polynomial target
t(a) = f. We write d = s — t and define the ideal generated by R
as I(R) := (d(a) | @ € R). The operad presented by the ORS X,
denoted by X, is the quotient of the free operad F(Z) by I(R).
We define the graph Rx, whose vertices are the elements of
¥ (Z) and whose edges are the AC[a] + 14 : AC[s(a)] +g —r
AC[t(a)] + g, where a € R, C is a monomial context, A € k\ {0},
and g is a polynomial of 7 (Z). For every edge a of Ry, denote by
a” = s(a) — a + t(a) the edge with source #(a) and target s(a). An
edge of Ry is a rewriting monomial when A = 1and g = 0, and a
rewriting step when C[s(a)] ¢ Supp(g). Denote by R (resp. RS})
the set of rewriting monomials (resp. rewriting steps) of X. Denote
by - the composition of paths in Rx. A composition of rewriting
steps is called a rewriting path of X. A polynomial f in #(Z) is in
normal form wrt X, or reduced, if there is no rewriting step with
source f. Denote by NF(X) the set of reduced polynomials of ¥ (X).
An order relation < on 7 (X) is compatible with R if, for every
a € R and every monomial v € Supp(t(a)), we have v < s(«). The
relation < extends to # (X) by setting, for f,gin 7 (), g < f if the

two following conditions are satisfied:

i) Supp(f) \ Supp(g) # 2,
ii) for all v € Supp(g) \ Supp(f), there exists u € Supp(f) \
Supp(g) such thatov < u.

We denote by <g the smallest partial order relation on 7 (X) stable
by product and compatible with R. The ORS X is terminating if
the relation <g is well-founded. In this case, there does not exist
infinite sequence of rewriting steps of X.

Rewriting monomials form a basis of F(Z)(R), the free ¥ (2)-
bimodule on R, whose elements we call rewriting polynomials. A
syzygy then corresponds to a rewriting polynomial s such that
d(s) = 0. We denote by S(X) the F (Z)-bimodule of syzygies of X,
which corresponds to the bimodule S(9(R)) defined previously.

Monomial orders. A monomial order on 7 (2) is a total order <
stable by product; that is, for all u,u” € 7(2)(k), 0,0’ € T (2)(¢),
and 1 <i<k,u<u',o <o impliesuo; v < u’ o; v’. A monomial
order on 7 (X U {Og }>1) induces a monomial order on contexts of
F(2). Given a monomial order < on 7 (), a monomial order on
contexts, and a total order < on R, we define the rewriting monomial
order <ym on R by setting Cla] <rm D[f] if

i) Cls(a)] < D[s(p)], or
ii) C[s(a)] = D[s(f)] and C < D, or
iii) C[s(a@)] = D[s(B)],C =D, and a < B.

Note that the third case only occurs if the ORS admits rules with
the same source.

An example of a monomial order is the path-lexicographic order,
defined in [6, 12]. Given a tree monomial, there exists a unique path
from the root to each input. We can write these paths as words in
the alphabet 3: for instance, the monomial w = (x | ey (z | uv))
above gives the paths (x, xy, xzu, xzu, xzv, xzv). Given a total order
< on X, we define the lexicographic order <)y on paths. Then, we
define the path-lexicographic order <paih-lex as the lexicographic
product order of <je, on the list of paths, ordered by the inputs.

We can extend < to a total order <’ on X LI {0 } x> where, for
all1 <k <fandx € 3, O0; <’ Op and O <" x. We can then define

the path-lexicographic order <;)ath—lex on 7 (2 U {Og }), which

restricts to a monomial order <cont-path-lex On monomial contexts.
Fixing a total order on R, this gives a rewriting monomial order

<rm-path-lex-

Grobner bases. Fix a monomial order < on 7 (X). The leading
monomial of a polynomial f of 7 (Z) is the greatest monomial in
the support of f wrt the order <, denoted by Im« (f). We define
the associated rule l;n<(f) slmo(f) — 1/le<(H)(f — Im<(f)),
where lc< (f) denotes the coefficient of Im < (f) in the polynomial f.
For a set of polynomials G of F(X), we denote by 11_‘;1<(G) =
{l;n<(g) | g € G} the corresponding set of rules. We say that G is
a Grobner basis of an ideal I of 7 (Z) if G generates I and the ORS
(X, l;n<(G)) is confluent, or equivalently, if every polynomial f
in I reduces to 0 wrt l;n< (G).

Now, let E be a set of rewriting polynomials. Every element e of E
can be written e = }; 1;C;[;], where A; € k\{0}, C; is a monomial
context, and ; € R. We define the rule 1;11<Im (e) : Im< (e) —
1/lc<, (e)(e =Im<,, (e)), wherelc< (e) denotes the coefficient of
Im<_, (e) in e. Denote by l;n<rm (E) the set of these rules for ¢ € E.
We say that E is a Grébner basis of a submodule M of 7 (Z)(R)
wrt < if E generates M as a ¥ (X)-bimodule and every rewriting
polynomial s in M reduces to 0 wrt lﬁkrm (E).

Branchings and confluence. A branching (resp. local branching)
is a pair (a, b) of rewriting paths (resp. rewriting steps) such that
a # band s(a) = s(b). We classify local branchings into three types:

i) additive branchings: (Aa + ply + 1p, Aly + pb + 1), where

a:u— fib:v—oge R;, A, pu € kK\{0}, h is a polynomial,
u # v,and u,v ¢ Supp(h).

ii) multiplicative branchings: (AC[a, 1] + 1, AC[1y, b] + 1p),
where C is a monomial two-hole context,a : u — f,b :
v — c€RP, A ek\{0}, his apolynomial, and C[u,v] ¢
Supp(h).

iii) intersecting branchings: the rest of the local branchings.

We define a well-founded partial order C on branchings by setting,
for every monomial context C, polynomial h, and A € k\{0},

(a,b) T (AC[a] + 14, AC[B] + 11).

The critical branchings are the minimal intersecting branchings for
this order.

Now, fix a rewriting monomial order <y on RY. An essen-
tial branching of X is a critical branching (C[a], D[f]), where
Cla]l <mm D[] and they are consecutive for this order, that is
there does not exist a rewriting monomial E[y] such that C[a] <m
Ely] <rm D[B]. We denote by E(X) the set of essential branchings
of X. Algorithm 1 computes the essential branchings of an ORS X
with respect to a monomial order.

The S-polynomial of a branching (a, b) of X is the polynomial
S(a, b) := t(a) — t(b). It is called essential when the branching is
so. A branching (a, b) is confluent if there exist two rewriting paths
t(a) — hand t(b) — h with the same target, or equivalently, if its
S-polynomial reduces to 0. The ORS X is confluent (resp. locally con-
fluent) at a polynomial f if all its branchings (resp. local branchings)
with source f are confluent. It is confluent (resp. locally confluent)
if it is so at every polynomial, and convergent if it is confluent and
terminating.

rec BRANCHINGSWITHROOT(Z, R, <¢m, @, 0, i)
Input: An ORS X = (3, R),
an order <y, on R;(”,
a rewriting rule a of R of arity n,
a list of monomials vy, . ..,0, in 7(2),
io < AR(v1) + ...+ AR(vp).
Output: A set of essential branchings whose first rewriting
step contains (« | d), and where the first ig — 1
inputs are untouched.

if s1zE(9) < maxgep |s(B)| then
P — {D[p] € R}
| D[s(B)] = (s(a) | 9), and (e | 3) <mm D[S]};
if P # @ then
‘ return {((« | 3), min(P, <;m))};
else
return

U BRANCHINGSWITHROOT(X, <pm, @, 3 0; X, i);
ig<i
X€Y

else
L return g;

ESSENTIALBRANCHINGS(Z, R, <ym)
Input: An ORS X = (3, R),
A rewriting monomial order <y, on R;.
Output: The set of essential branchings of (3, R).
return |J BRANCHINGSWITHROOT(Z, R, <m, @, &, 1);
a€R
Algorithm 1: ESSENTIALBRANCHINGS and its auxiliary recur-
sive function, BRANCHINGSWITHROOT

Let X be a convergent ORS, < a monomial order on 7 (X), and <
a total order on R, and consider the associated monomial order <y
on rewriting monomials. A normalization strategy p associates to
each polynomial f of #(X) a rewriting path from f to its normal
form as follows. If f is a normal form, then p =1 Otherwise,
write f = Au + g, where u is the greatest reducible monomial of f
wrt <, A € k\{0}, and u ¢ Supp(g), and let C[] be the greatest
rewriting monomial wrt <, that reduces u. We then set

pr = (ACla]l +9) - pact(a))+g-

Since X is terminating, p is well-defined.
Examples.

i) Consider the associative operad presented by one generator
x and one rule:

also written xo;x — xoyx. There is one critical branching,
and so one essential branching, (@ o1 x,x o1 a).

ii) Consider the associative algebra presented by (x | « :
x3 — 0), seen as an operad concentrated in arity 1. The
critical branchings are (ax, xa) and (xxa, axx), and only
the first one is essential.

iii) Consider the ORS with three generators x,y,z and the
following rewriting rule:

(x1yz) = (x| xx)+(y|yy) +(z]z2)

There are no essential branchings. However, this rule can-
not be the result of an orientation by a monomial order,
since there is always a monomial on the righthand side
greater than (x | y z). Note that if we orient this rule by a
monomial order, we would get two essential branchings.

3 Completion using essential branchings

In this section, we show that the obstructions to the confluence of a
terminating ORS can be reduced to the confluence of the essential
branchings, which, as we will explain in the next section, corre-
sponds to existence of essential syzygies. We deduce an improved
completion algorithm for operadic rewriting systems.

LEMMA 3.1 ([11]). Let X be an ORS.
i) For every path a in Ry, there exists a zig-zag sequence of
rewriting steps from s(a) to t(a).

a a a

ii) For every path fy =4 A NN fn of length n such
that X is confluent at f; for all i > 1, there exist rewriting
paths b and ¢ such that b - ¢~ has source fy and target f;.

Proor. Consider an edge a = AC[a] + 14 of Rx. Write g =
p1C[s(a)] + h, where C[s(a)] ¢ Supp(h) and p € k. Then the zig-
zag of rewriting paths

((A+ p)Clal + 1) - (4Clal + 1Ac(e(a) 1+h)

has the same source and target as a. We deduce the first point
immediately.

For the second point, we proceed by induction on the length n
of the path. We have proven the point for n = 1. For n >

the diagram
agan/>fn\‘32
b e
C]\
’

ﬁ)_/gl Vf
by dq

1, consider

The rewriting paths by, c; are given by the first point, and the
rewriting paths by, cz are given by induction hypothesis. Since we
suppose X confluent at fi, we get the rewriting paths dj, d2. Thus
(b1 - d1) - (c2 - d2)™ has source f and target f;. O

LEMMA 3.2. Let X be an ORS, f a polynomial such that X is con-
fluent at every polynomial g <g f, and (a,b) a local branching of
source f. Then (a,b) is confluent if there exist rewriting paths c,d,
one-hole contexts C,D of ¥ (2), and polynomials h, k in ¥ () as in
the following diagram

Proor. We shall construct the following confluence diagram:

ai

Let us consider the top half of the diagram. Writing the rewriting
pathcascy - ... cp and the context C as 23:1 A;Cj, the idea is to

apply each ¢; to each Cj, leaving the other monomials unchanged:

for1 <i<pandl1 < j< g, wechoose the edge in Ry
j-1
cij = Zagc(t(ci)] +4;Cjlei] Z AeCels(c)] +1p,
=1 f=j+1

and write g;,j := t(c;,;) and g 0 = s(c;,1) = t(ci-1,4)- Then we have
the path in Rx

€1,2 Clq €2,1
t(@) =910 — ... — g1, =920 — --.
Cp-1q 1 Cpg

—_ gp—l,q = gp’o —_—> ... gp’q = g

Moreover, for every i, j, gij <gr f, so X is confluent at g; ;. Fol-
lowing the second point of Lemma 3.1, there exist rewriting paths
ap, a1 as in the diagram. Similarly, we show the existence of the
rewriting paths by, b;. Since g <g f, we can apply the confluence
hypothesis to the branching (ao, bo), so we get the rewriting paths
as, bz. m]

THEOREM 3.3. Let X be a terminating ORS. If every essential S-
polynomial reduces to 0, then every S-polynomial reduces to 0.

Proor. It suffices to prove that every branching of X is confluent.
Since every essential S-polynomial reduces to 0, every essential
branching is confluent.

We proceed by well-founded induction on the sources of the
branchings of X, with the order <g, to prove that X is confluent at
every polynomial of ¥(2). A reduced polynomial cannot be the
source of a local branching, so X is confluent at every f € NF(X).
Now, fix a nonreduced polynomial fy of ¥ (X), and assume that X
is confluent at every g <g fo. Then we proceed by case analysis on
the types of local branchings.

Additive branchings. Let (Aa+ply+1p, A1y, +pb+1p) be an additive
branching of source fy, wherea : u — f,b : v —» g € RY,
Ap € k\{0}, and h € F(2), with u # v and u,0 ¢ Supp(h). We
have the following diagram:

Aw»xfﬂwm

fo=Au+po+h

\ 7
/1u+/,tg+h.../1.

Aly +pb+ 1y

The dotted arrows are rewriting paths in context, so by Lemma 3.2,
this local branching is confluent.

Multiplicative branchings. Let (AC[a, 1,] + 13, AC[1y,b] + 13) be
a multiplicative branching of source fy, where C is a monomial
two-hole context,a:u — f,b:0v — g € RY, 1 € k\{0}, h € F(3),
and C[u,v] ¢ Supp(h). We have the following diagram:

ACla, 1,] + 13,

AC[f,o] +h .
o
ﬁ) :AC[u,U] +h Ac[f’g]-f-h
T
AC[u,g] + b
ettt A cClagl + 1y,

The dotted arrows are rewriting paths in context, so by Lemma 3.2,
this local branching is confluent.

Critical branchings. Let (C[a], D[f]) be a critical branching of
source fo. If the branching is essential, then it is confluent by hypoth-
esis. Otherwise, there exists a rewriting monomial E[y] such that
Cla] <m Ely] <rm D[f], and we get two branchings (C[a], E[y])
and (E[y], D[S]). The branching (C[«], E[y]) is either multiplica-
tive or intersecting. If it is multiplicative, then it is confluent by
the multiplicative case. Otherwise, it is either non-minimal for
or a critical branching. In the non-minimal case, there exists a
factorisation

C1Co[a]

_—aGl) &[af

= C1Eo[s(y)] Ci[hol

_) C1Eo[t(y)] c/l[b:]

CiEoly]

C1Co[s(a)]

where (Co[a], Eo[y]) is a critical branching and C; is a monomial
context. In the critical case, the branching is either essential, or not.
If it is essential, then it is confluent by hypothesis. Otherwise, we
proceed by induction on the number of rewriting monomials F[J]
such that C[a] <rm F[6] <m Ely]-

We proceed similarly for the branching (E[y], D
case, we can write

— thebranching (C[a], E[y]) as (C1Co[a], C1Eo[y]), with C;
amonomial context and (Cy[e], Eo[y]) a confluent branch-
ing,

— the branching (E[y], D[]) as (D1E;ly], D1Do[f]), with
D1 a monomial context and (Eg[y], Do[f]) a confluent
branching.

[B]): in every

We can then construct the confluent diagram

C1[ao]
C _
%qc@[twn il Cilhol — ¢
Cls(a)] Ely] E[t(y)

/

where the left squares are the aforementioned confluent branchings
in context and the right square is given by induction hypothesis.

D[B] ~ DiDo[t(B)] ¥/7
Dl[0]

Non-critical intersecting branchings. Finally, let (AC[a]+1,, AD[B]+
15,) be an intersecting branching of source fj that is not critical,
where ¢ : u = f,f : v — g € R, C,D are monomial contexts,
A € k\{0}, and h € F(Z), such that C[u] ¢ Supp(h). Let Cy, C1, Do
be the monomial contexts such that C;Cy = C, C1Dy = D, and
(Colal,Do[B]) is a critical branching. By the previous case, we
have the confluence diagram

/ Colf
Colu] = ho

\)DO

Applying the context AC; and adding h, we get the following dia-
gram

AC[a] +1p, ACi[ag] + 1y

A el

AC[u] +h=AD[ov] +h

e ik

AD[S] + 13, ACl[bé] +1p

Applying Lemma 3.2, we conclude that the local branching is con-
fluent.

Thus we have shown that the ORS X is locally confluent at f;. To
conclude the induction step, we show that X is confluent at fy by
the diamond lemma. Let (a, b) be a non-local branching of source
fo, and write a = ag - a1, b = by - b1, where ao, by are rewriting steps
and ay, by are rewriting paths. We construct the confluence diagram

a
go _ g1 —22
/ ao\ \
fo s 0 c—go

as follows. By the previous arguments, the local branching (aq, bo)
is confluent, yielding the rewriting paths ag, b;. Since both fy >
go and fo > ho, the induction hypothesis applies to the branch-
ing (a1, a(’)) to gives the rewriting paths ay, ¢, and then to the branch-
ing (by - ¢, b1) to give the rewriting paths d, by. O

As a consequence of Theorem 3.3 and [6, Thm. 1], we have the
following result.

COROLLARY 3.4. LetI be an ideal of ¥ (2) and (2, R) a convergent
ORS such that R is compatible with a monomial order and I(R) = 1.
If the set of essential S-polynomials reduces to 0, then dR is a Grobner
basis of 1.

Completion algorithm. From Theorem 3.3, we deduce a comple-
tion algorithm CompLETE, Algorithm 2, which transforms a termi-
nating ORS into a convergent one presenting the same operad. The
algorithm only tests essential S-polynomials, using the algorithm
EssENTIALBRANCHINGS defined above. The essential branchings are
computed with respect to a monomial order on rewriting monomi-
als <rm given by the function REWRITINGMONOMIALORDER(<2,),

which takes as arguments a monomial order <% on 7°(Z) and a
total order 4 on R, and returns the monomial order on rewriting
monomials induced by <2, 4, and the path-lexicographic order on
contexts.

CoMPLETE(Z, R, <1, <2, 4)
Input: An ORS (3, R) compatible with <!, monomial orders
<1, <2 on 7(X), and a total order 4 on R.
Output: A convergent ORS (Z, T) such that
I(Z,R) = I(3,T).
T <« R;
<rmé— REWRITINGMONOMIALORDER(<2, 4);
B « ESSENTIALBRANCHINGS(Z, T, <ym);

while B # 0 do
Choose (a,b) in B;
B« B8\ {{ab}};
u — NF, 1 (t(f),T);
v — NF, 1(t(9), T);
Y — l;n<1(u —0);
if y # 0 then

B —

UPDATEESSENTIALBRANCHINGS (2, T, B, <rm., ¥);
T« TU{y}

return (3, T);

Algorithm 2: The completion algorithm COMPLETE

Note that we extend and update during the total order on R to a
total order on the rules of T. Indeed, the sources of the new rules
y never coincide the other rules in T. The algorithm COMPLETE re-
quires Algorithm 3, which updates the essential branchings during
completion.

Algorithm 2 adds to the set of rules R the rules needed to resolve
the essential critical branchings. By construction, the added rules
do not change the presented operad. At the output of the algorithm,
we get a convergent set of rules T. Termination follows from the
fact that all added rules are oriented with respect the monomial
order <!. Note that T may be infinite if the completion algorithm
loops indefinitely.

This algorithm improves Buchberger’s completion algorithm [4]
when there are non-essential branchings. However, when the algo-
rithm starts with an ORS whose rules’ sources are all of size two
and are pairwise distinct, then every branching is essential.

Example. Consider the ORS

a:(x|yyl) - (x| zz1),
Bi(xlyly) — (x|z1z),

y:(x|1lyy) = (x| 1z2)

There are three critical branchings: (a o3 y, f 02 y), (@ 03 y,y 01
Y), (B o2 4,y o1 y). The contexts involved, in path-lexicographic
order, are 03 03y < O3 02 y < O3 01 y. Thus CoMPLETE will execute
as follows:

X2, Y1, 21

— The initial set of essential branchings is 8 = {(@ 03 y, f 02
y). (@o3y,yo1y)}.

rec UPDATEBRANCHINGSWITHROOT(Z, T, B, <rm, &, ¥, 0, ip)
Input: An ORS X = (3, T),
an order <y, on 72)'?,
the set B of essential branchings of (2, T),
a rewriting rule & of R of arity n,
a rewriting rule y,
a list of monomials vy, ..., 0y,
ip < AR(v1) + ...+ AR(vp).
Output: An updated set of essential branchings whose first
rewriting step contains (a | 9), and where the first
ig — 1 inputs are untouched.

if s1zE(9) < maxgeg |s(B)| then
if there exists ((« | 3), D[f]) € B then
Q « {E[yl e RY
| (@ |3) <mm Ely] <em DIB]} U{D[B]};
return {((a | 9), min(Q, <ym))};
else
Q « {Ely]l e RY
| E[s(e)] = (s(a) | 9) and (a | 3) <m E[y]}:
if Q # @ then
| return {((a | 3), min(Q, <rm))};

else
return
U UppateBrancHINGSWITHROOT(Z, T, B,
ip<i
XEX
<rms 0, Y, 0 0f X, 0);

else
L return @;

UPDATEESSENTIALBRANCHINGS (2, T, B, <rm, ¥)
Input: An ORS X = (3, R),

A rewriting monomial order <y, on ‘R)"g.
Output: The set of essential branchings of X.

return

U UPDATEBRANCHINGSWITHROOT(Z, T, B, <rm, @, ¥, & 1);
a€R

Algorithm 3: UPDATEESSENTIALBRANCHINGS and its auxiliary
recursive function, UPDATEBRANCHINGSWITHROOT

— Consider the first essential branching (« o3 y, f 02 y): the
targets of these rewriting monomials are already in normal
form,soweadd §: (x| zyz) — (x| zzy).

— No new branchings are created, so B remains unchanged.

— There remains one essential branching (« o3 y,y o1 y).
Similarly, the targets of the two rewriting monomials are
already in normal form, sowe add { : (x | yzz) — (x|
zzYy).

— There are no new essential branchings. 8 is empty, so we
return the convergent ORS ({x,y,z},{a, f,vy,98,{}).

4 Grobner bases for syzygies

In this section, we show that essential and multiplicative syzygies
generate the bimodule of syzygies of a convergent ORS X. In par-
ticular, when the rules of X are compatible with a monomial order,
we show how to construct a Grobner basis of this bimodule with
respect a fixed normalization strategy.

Syzygies as loops. Let X be an ORS. A loop of X is a zig-zag
a= a‘il -...-a" of rewriting steps, where a; = 1;C;[a;] + 14, and
¢; = %1, such that s(a‘il) = t(ai). To such a loop, we associate
the syzygy 2.7, £;A;Ci[;]. Conversely, for a syzygy .1 4;Ci[ai],
consider the following path in the graph Rx:

a= (Aa1 +AC[s(a2)] +...+ AnCls(an)])
“(MC[t(a1)] + A2az + ... + AnC[s(an)])
. (11C[t(0{1)] + AzC[t(O{z)] +...+ /1,,0(,,)

We have s(a) = t(a) = C[s(a1)] +...+C[s(an)]. By the first point
of Lemma 3.1, there exists a zig-zag sequence of rewriting steps
that loops on s(a) = t(a). In particular, a confluence diagram can
be seen as a loop, and so it is associated to a syzygy.

Given a normalization strategy p, for each essential branch-
ing (f.g), let (f - pf,g - pg) be the confluence given by p, and
take the corresponding essential syzygy. For each multiplicative
branching (C[a, s(f)], C[s(@), f]), take the multiplicative syzygy
Cla,a(p)] — C[a(a), f]. Denote by Syz(X, p) the set of essential
and multiplicative syzygies. This notion of syzygy allows us to
reformulate Theorem 3.3 as follows:

ProPOSITION 4.1. Let X be a terminating ORS and let p be a
normalisation strategy. For every branching of X, there is a confluence
diagram such that the associated syzygy is generated by Syz(X, p).

The proof of this result is obtained following the arguments
of the proof of Theorem 3.3 and keeping track of the syzygies
corresponding to each confluent diagram.

PrOPOSITION 4.2. Let X be a convergent ORS and p a normal-
ization strategy. The set Syz(X, p) generates the ¥ (X)-bimodule of
syzygies S(X).

PROOF. Let a be a rewriting step in R;'(. By Proposition 4.1,
the associated syzygy of the confluence diagram of the branching

(pf-a-pg):

a
— A\

f f
N o

is generated by Syz(X, p). Now consider a syzygy s of X. As shown

above, it corresponds to 2?21 ¢id(a;), where a; € R;{ and ¢ = +1
such that af - a5 - ... - aj, is a loop in Gx. This loop can be drawn

as a circular pie

£

)
ﬁ /Nf-z
a£
/
1/ P Vi \
fo—Pri—f :
A X\
a;\ pnfl pfniz /
fnfl ~$_/fnfz
g

where j? is the unique normal form of the polynomials f;. Each ’slice’
of the pie defines a syzygy generated by Syz(X, p). Combining these
syzygies, we conclude that the syzygy s is generated by Syz(X, p).

m}

Considering the operad presented by X, we compute syzygies
modulo the multiplicative syzygies, and we get the following result.

COROLLARY 4.3. Let X be a convergent ORS, p a normalisation
strategy, and X the operad presented by X. The set of essential syzygies
generates the X -bimodule of syzygies S(X).

Let us prove the main result of this section, which corresponds
to a non-commutative version of Schreyer’s syzygy theorem [21],
already apparent in Janet’s approach [13].

THEOREM 4.4. Let X be a convergent ORS compatible with a mono-
mial order < and p a normalisation strategy. The set Syz(X, p) forms
a Grobner basis of the F (X)-bimodule S (X) with respect t0 <yp,.

Proor. Lets = X7, A;Ci[a;] be a syzygy in S(X), where A; €
k\{0}, Ci € RY and a; € R. Reduce s to a normal form wrt
Syz(X, p) and the order <;p, which we write t = Z‘;’:l uiD;[B;],
with pj € k\{0}, Dj € RY and a; € R. To show that Syz(X, p)
forms a Grobner basis of S(X), it suffices to show t = 0.

Forall1 < j < j' < p,Dj[s(B;)] # Dj[s(fj)]. Otherwise, this
would give a local branching of the form (D;[;], D [Bj]). By
convergence of X, this would give a syzygy whose leading term
is either D;[f;] or Dj/[Bj/]. By Proposition 4.2, the set Syz(X, p)
generates all syzygies, so in particular, the previous syzygy could
be reduced by an element of Syz(X, p). This would contradict the
fact that t is a normal form.

As a consequence, the monomials D;[s(f;)] in t cannot cancel
each other out. Moreover, by definition of syzygies,

p n
D wiDi[a(B)1 = > LCila(an)] = 0.
j=1 i=1
The only possibility is p = 0, so t = 0. O

5 Further developments

In this article, we have introduced a notion of rewriting systems for
non-symmetric operads whose rules do not depend on a monomial
order. We have shown how to optimize a completion procedure that
given a terminating ORS produces a convergent one by resolving
only essential S-polynomials. We also have proved how to compute
a Grobner basis of the bimodule of syzygies using essential syzy-
gies. Several improvements of these constructions and results are

possible. In particular, some variations are possible on the notion of
essential S-polynomials. Moreover, we can extend our completion
algorithm to algebras over operads and shuffle operads.

Essential branchings: continuation. One of the objectives of the
rewriting approach developed in this work is to compute explicit
free resolutions, and more generally cofibrant replacements for
associative algebras [1, 2, 11] and operads [7, 17]. In this direction,
it is necessary to extend the definition of essential branchings to
higher dimensions. To do so, we consider an alternate definition of
essential branchings based on the notion of crowns.

Let X = (3, R) be an ORS. A reducible divisor ofu € T(X) is a
minimal non-reduced monomial v such that v € u. Denote by D(u)
the set of reducible divisors of u. When the composition (u | 9) is
defined, we say that ¢

i) creates reducible divisors if D(u |) \ D(u) is nonempty,
ii) creates reducible divisors context-minimally if, in addition,
for all submonomials w; of v; and monomials W’ # £ such
that (u | 9) = ((u | w) | W), D(u | W) = D(u),
iii) isa crown onu if the monomials in 9 are reduced and create
reducible divisors context-minimally.

By definition, essential branchings correspond to critical branchings
of the form ((a | ¥), D[f]) where @ is a crown on s(a). In this way,
essential branchings can be generalized to a notion of essential
overlappings involving n rewriting rules as done in [17], where
the authors show that higher dimensional essential overlappings
generate higher dimensional syzygies on the presented operad X,
providing a resolution of the operad presented by the ORS X, and
thus extending Corollary 4.3 to higher dimensions.

Algebras over operads. Our approach can be adapted to rewrit-
ing systems for algebras over non-symmetric operads. Indeed, an
algebra A over a non-symmetric operad P can be represented by
the polynomials of arity 0 of an operad whose generators are those
of P and A, the latter being of arity 0, satisfying the relations of the
operad and those of the algebra [8]. Grobner bases have been devel-
oped for algebras over certain operads, including the commutative
operad and associative operad for usual algebras, as well as the Lie
operad [5] and the free operad on a binary generator, which defines
non-associative non-commutative algebras [10]. We expect that
our approach is a first step towards a unified definition of critical
branchings for rewriting systems in algebraic structures.

The case of shuffle operads. In this article, for simplicity’s sake,
our algorithms are written for non-symmetric operads. However, it
would work for other types of operads, such as shuffle operads and
colored versions of non-symmetric and shuffle operads. Shuffle oper-
ads, which encode symmetric actions explicitly, were introduced by
Dotsenko and Khoroshkin in [6] to study homological properties of
linear symmetric operads by a rewriting approach. They introduced
a notion of Grobner bases for shuffle operads with respect to a total
order on tree monomials and a completion algorithm that extends
Buchberger’s completion algorithm.

A free shuffle operad consists of the same monomials as a non-
symmetric operad, except that we allow certain permutations of

inputs: a shuffle monomial is of the form

in im0 dkng
N ~ ~ ~

X1 . Xk
~_ % _—

where the inputs are permuted such that ij; < --+ < ijp; for
all1 < j < kand iy < -+ < igy. Our constructions and al-
gorithms on non-symmetric operads can be extended to shuffle
operads: in particular, we have an analogous notion of essential
branchings. The key modification consists in the definition of the
set of monomials 7 (X) by taking into account the shuffle compo-
sition: (xo |f X1 ... xt), where f is the surjection associated to
the permutation on the inputs. The shuffle composition extends to
contexts and the confluence properties work as well. Theorems 3.3
and 4.4 still apply, and the algorithms ESSENTIALBRANCHINGS and
CoMPLETE can be adapted to the shuffle case.

References

[1] David J. Anick. On the homology of associative algebras. Trans. Amer. Math.
Soc., 296(2):641-659, 1986.

[2] David J. Anick and Edward L. Green. On the homology of quotients of path
algebras. Comm. Algebra, 15(1-2):309-341, 1987.

[3] Murray R. Bremner and Vladimir Dotsenko. Algebraic operads. CRC Press, Boca
Raton, FL, 2016. An algorithmic companion.

[4] Bruno Buchberger. An Algorithm for Finding the Basis Elements in the Residue
Class Ring Modulo a Zero Dimensional Polynomial Ideal. PhD thesis, University
of Innsbruck, 1965. J. Symbolic Comput. Vol. 41 (3-4): 475-511, 2006.

[5] W.A. de Graaf and J. Wisliceny. Constructing bases of finitely presented lie alge-
bras using grobner bases in free algebras. In Proceedings of the 1999 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’99, page 37-43, New
York, NY, USA, 1999. Association for Computing Machinery.

[6] Vladimir Dotsenko and Anton Khoroshkin. Grobner bases for operads. Duke
Math. 7., 153(2):363-396, 2010.

[7] Vladimir Dotsenko and Anton Khoroshkin. Quillen homology for operads via
Grébner bases. Doc. Math., 18:707-747, 2013.

[8] Vladimir Dotsenko and Bruno Vallette. Higher Koszul duality for associative
algebras. Glasg. Math. J., 55(A):55-74, 2013.

[9] Rudiger Gebauer and H. Michael Méller. On an installation of Buchberger’s
algorithm. J. Symbolic Comput., 6(2-3):275-286, 1988. Computational aspects of
commutative algebra.

[10] Lothar Gerritzen. Tree polynomials and non-associative Grébner bases. J.
Symbolic Comput., 41(3-4):297-316, 2006.

[11] Yves Guiraud, Eric Hoffbeck, and Philippe Malbos. Convergent presentations
and polygraphic resolutions of associative algebras. Math. Z., 293(1-2):113-179,
2019.

[12] Eric Hoffbeck. A Poincaré-Birkhoff-Witt criterion for Koszul operads.
Manuscripta Math., 131(1-2):87-110, 2010.

[13] Maurice Janet. Sur les systémes d’équations aux dérivées partielles. Journal de
mathématiques pures et appliquées, 8(3):65-151, 1920.

[14] Donald Knuth and Peter Bendix. Simple word problems in universal algebras.
In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages
263-297. Pergamon, Oxford, 1970.

[15] Viktor Levandovskyy, Tobias Metzlaff, and Karim Abou Zeid. Computation
of free non-commutative Grobner Bases over Z with Singular:Letterplace. In
ISSAC 2020 - International Symposium on Symbolic and Algebraic Computation,
Kalamata, Greece, July 2020.

[16] Jean-Louis Loday. La renaissance des opérades. Astérisque, 237:Exp. No. 792, 3,

47-74, 1996. Séminaire Bourbaki, Vol. 1994/95.

Philippe Malbos and Isaac Ren. Shuffle polygraphic resolutions for operads.

preprint, arXiv:2012.15718, December 2020.

J. P. May. The geometry of iterated loop spaces. Springer-Verlag, Berlin-New York,

1972. Lectures Notes in Mathematics, Vol. 271.

[19] Teo Mora. An introduction to commutative and noncommutative Grébner bases.

Theoret. Comput. Sci., 134(1):131-173, 1994. Second International Colloquium on

Words, Languages and Combinatorics (Kyoto, 1992).

Maurice Nivat. Congruences parfaites et quasi-parfaites. In Séminaire P. Dubreil,

25e année (1971/72), Algébre, Fasc. 1, Exp. No. 7, page 9. Secrétariat Mathématique,

Paris, 1973.

Frank-Olaf Schreyer. Die berechnung von syzygien mit dem verallgemeinerten

weierstrass’schen divisionssatz. Diplom Thesis, University of Hamburg, Ger-

many, 1980, 1980.

(17

[18

[20

[21

	Abstract
	1 Introduction
	2 Operadic rewriting systems
	3 Completion using essential branchings
	4 Gröbner bases for syzygies
	5 Further developments
	References

