STRING OF COLUMNS REWRITING
AND CONFLUENCE OF THE JEU DE TAQUIN
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Abstract — Schiitzenberger’s jeu de taquin is an algorithm on the structure of tableaux, which
transforms a skew tableau into a Young one by local transformation rules on the columns of
the tableaux. This algorithm defines an equivalence relation on tableaux compatible with the
plactic congruence, and gives a proof of the Littlewood—-Richardson rule on Schur polynomials.
In this article, we introduce the notion of string of columns rewriting system as mechanism of
transformations of glued sequences of columns. We describe the execution of the jeu de taquin
algorithm as rewriting paths of a string of columns rewriting. We deduce algebraic properties on
the plactic congruence and we relate the jeu de taquin to insertion algorithms on tableaux.
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1. INTRODUCTION

Schutzenberger introduced the jeu de taquin as an algorithm on the structure of Young tableaux to
prove the Littlewood—Richardson rule on the multiplicity of a Schur polynomial in a product of Schur
polynomials, namely the multiplicity of an irreducible representation of the general Lie algebra in
a tensor product of two irreducible representations, [22]]. The jeu de taquin has later found many
applications in algebraic combinatorics and probabilistic combinatorics [4} 20} 25], and many similar
algorithms were also introduced on other structures of tableaux, [9,[15] 16} 20, 23] 24]).

A Young tableau is a collection of boxes in left-justified rows filled with elements of the totally
ordered alphabet [n] := {1 < --- < n}, where the entries weakly increase along each row and strictly
increase down each column. A skew tableau is obtained by eliminating boxes from the rows of a Young
tableau starting from top to bottom and from left to right. The eliminated boxes located above and to the
left of two non-empty boxes are called inner corners of the skew tableau. We read tableaux column-wise
from left to right and from bottom to top: the following tableaux
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are respectively skew tableau and Young tableau whose readings are 3121312 and 3213112, and where
the empty red boxes denote the inner corners. The jeu taquin consists in applying successively forward
sliding operations on a skew tableau that move an inner corner into an outer position by keeping the
rows weakly increasing and the columns strictly increasing, until no more inner corners remain in the

initial skew tableau, as follows
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Schiitzenberger proved remarkable properties of the jeu de taquin on skew tableaux, [22]. He proved

that the rectification of a skew tableau by the jeu de taquin is a Young tableau whose reading is equivalent

to the reading of the initial skew tableau with respect the plactic congruence relation generated by the

following Knuth relations, [13]:

zxy =xzy, for 1<x<y<z<n and yzx=yxz, for 1<x<y<z<n

This congruence defines the plactic monoid of type A, [14], which emerged from the works of Schen-
sted [21]] and Knuth [13] on the combinatorial study of Young tableaux. Plactic monoids have found
several applications in algebraic combinatorics, representation theory, probabilistic combinatorics and
rewriting theory, [2H4, [8, 10, [17]. Schiitzenberger proved that the resulting Young tableau does not
depend on the order in which we choose inner corners in the forward slidings. This is the confluence
property of the jeu de taquin. His proof follows the cross-section property of Young tableaux with respect
the plactic congruence, proved by Knuth in [13]], namely two words on [n] are plactic congruent if
and only if they lead to the same Young tableau after applying Schensted’s insertion algorithm, [21]].
Explicitly, if there are two sequences of sliding operations that transform a tableau T into two different
tableaux T, and T, then we continue applying sliding operations until we reach normal forms T; and T,
that is tableaux without inner corners:

/Tl—):fl
T
\>T2—>TE

Since T; and T, are two Young tableaux such that their readings are plactic congruent, following the
cross-section property, we deduce that T, =T

In this article, we introduce a machinery to prove by using a rewriting approach the confluence
of the jeu de taquin. We define the sliding operations as rewriting rules on strings of columns, that
is strings composed by glued sequences of columns, with a gluing map that describes the relative
positions of columns. This combinatorial structure generalizes many structures of tableaux such as skew
tableaux, [22]], Young tableaux of type A, [26]], Young tableaux of type B, C, D and G, [12], quasi-ribbon
tableaux, [19]], and patience sorting structures [1]]. In Subsection [2.2{ we define a string of columns
rewriting system as a binary relation on the set of strings of columns, whose rules are applied with
respect to right and left positions. That is, a set of rules of the following form

|psu|q5 = |PtU|CIt’

where u, v are strings of columns and ps, gs, ps, g are positions in Z. In Subsection [3.2] we present the
jeu de taquin by the rewriting system S, whose rules are of the following form:
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see Subsection for detailed positions of the columns. For instance, the rectification of the above
skew tableau is computed with the following reductions:
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The main result of this article, Theorem[3.2.3] states that

i) The rewriting system S, is confluent and terminating.
ii) The normal forms with respect to FS,, are Young tableaux.

iii) Left and right Schensted’s insertion algorithms coincide with the leftmost and rightmost
normalization strategies of FSy,.

iv) The rewriting system FS,, computes the cross-section property.

The second result of this article, Theorem[3.3.1] proves the compatibility of the rewriting system 7S,
with respect the plactic congruence. Finally, from Theorems and [3.3.1] we recover the cross-section
property of Young tableaux with respect the plactic congruence and the commutation of right and left
Schensted’s insertion algorithms. In particular, we prove that the rectification map defines a surjective
morphism of monoids between the sets of diagonal skew tableaux and the set of Young tableaux equipped
with the corresponding insertion products.

Notations. We will consider the totally ordered set [n] := {1 < --- < n}, for n € Z.(, as ground
alphabet. We denote by [n]* the free monoid of words over [n], whose empty word is denoted by A. We
will denote by |w| the length of a word w over [n]. We will denote by <y the lexicographic order on [n]*
induced by the order on [n], and by <j¢x and <y the lexicographic and the reverse lexicographic
order respectively on tuples of natural numbers.

2. STRING OF COLUMNS REWRITING

This section deals with two-dimensional strings defined by gluing columns by introducing the notion of
string of columns as a generalization of the structure of Young tableaux. We define in Subsection [2.2]the
notion of string of columns rewriting system as a binary relation on the set of string of columns, whose
rules are applied with respect to right and left positions and we show rewriting properties on theses
rewriting systems.

2.1. Strings of columns
2.1.1. Columns. A column (over [n]) is a decreasing string c*...c! over [n], ie., with ¢*1 > ¢,
for 1 < i < k. It is represented by a collection of boxes in left-justified rows, filled with elements of [n],
whose each row contains only one box, and the entries strictly increase down:

i+1
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where 1 < ¢! < ... < ¢k < n, and is also denoted by (c';...;cF). Denote |c| := k the length of c. We
denote by Col,, the set of columns over [n]. A column of length 0 is the empty column denoted by A..

2.1.2. String of columns. Two columns ¢y, ¢; in Col,, can be glued at position p in Z as follows:

C Co = 1 |,i+1
per = [

I+p)

k

!

For 1 < j < p, we say that (c{, c;”) is a full row of length 2 in c1|,c2. A pair ([, cg), fori1<j<i,anda
pair (¢}, [1), for p+1 < j < k, is called a row of length 2, where [ ] denotes the empty box. A string of
columns is a sequence of glued columns:

W = cilp,Calp, - - CmlpmCmit- (2.1.3)

The sequence (p1, p2, - - ., pm) in Z™ is called the gluing sequence of w. Gluing sequences can be defined
in a consistent way by considering a gluing map g : Col,, X Col,, — Z that associates to columns c and ¢’,
a gluing position g(c, ¢’). Given a gluing map g, we define the set of strings of columns constructed with
respect to g as the set of string of columns of the form (2.1.3), where for any 1 < i < m, p; = g(c;, ¢i+1).

The total length of w is the tuple tI(w) = (|c1], ..., lcms1]) € N™. We will denote by ||w|| the number
of columns of w.

For 3 < k < m+1, a connected row of length k is a sequence (clj.ll, .. .,c{]’:) such that (Cz]',l’ c{l’:) is a full
row of length 2 in ¢; |, ¢;,,, for 1 < I < k. A connected row (c{ll, . ,c{l’:) is increasing if c{ll <...< c{l’:

We call a row (over [n]) a string of columns whose gluing sequence is constant equal to 1 and columns
are of length 1. A string of columns is row connected (resp. row increasing) if all its rows are connected
(resp. increasing).

2.1.4. Monoids of string of columns. We will denote by Scol, the set of strings of columns over [n]
and by Scol$ the set of row connected and row increasing string of columns over [n].

Given a fixed gluing map g, we define a concatenation operation with respect to g by the map
‘|g : Scol, X Scol, — Scol,, by setting

(c1 |p1 |pmcm+1) |g (Cilql cee |qnc;+1) =0 |p1 Ipmcm+1|g(cm+1,c'1)ci|q1 |qnc:z+1-

The operation |4 is associative and unitary, where the identity is the empty string of columns denoted
by A.. We denote by Scol?, the set of string of columns in Scol,, whose gluing sequence is given by the
gluing map ¢. In other words, Scol?, is the free monoid on Col,, with respect the product lg-
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2.1.5. The four corner readings. The south-west reading is the map Rgy : Scol,, — [n]* that reads a
string of columns, column-wise from left to right and from bottom to top. There are three other corner
readings Ryw, Rne, Rsw and Rsg defined in a similar way and that read a string of columns, column by
column, with respect right or left and top or bottom directions.

Define the map Fac : [n]* — [n]* sending a word w into the factorization w = w; ... wg, where
each w;, fori = 1,...,k, is a maximal strictly decreasing sequence, that is, the Rgy/-reading of a column
in Col,. For a fixed gluing map g € Z", consider the map

[1g: [n]" — Scol, (2.1.6)

that transforms each word w in [n]* into a string of columns (cy, . .., ¢x) where each column ¢; is filled
by the elements of w; in Fac(w) from bottom to top, for i = 1,..., k, with respect the gluing map g.

2.1.7. Properties of strings of columns. A row connected string of columns w as in 1i is called

i) left-justified (resp. right-justified) if |c;| > |civ1| and |ci11] < pi < |ci| (resp. |civ1]| = |ci| and |¢;| <
pi < ciy1]), forall1 <i < m.

ii) top-justified, (resp. bottom-justified) if p; = |c;1| (resp. p; = |c;|), forall 1 < i < m.
iii) decreasing (resp. increasing) if its gluing sequence is decreasing (resp. increasing).

2.1.8. Example: skew tableaux. A skew tableauwith m+1 columnsis a string of columns ¢y |p, ... |p,,Cm+1
in Scol,f, whose gluing sequence satisfies px < |cr41], forall 1 < k < m. A diagonal skew tableau is a skew
tableau ¢4y, . .. |5,,¢m+1 Whose gluing sequence satisfies p; = 1, for all 1 < k < m. We denote by s the
gluing map for diagonal skew tableaux. We will denote by Sk,, (resp. dSk;,,) the set of skew (resp. diagonal
skew) tableaux over [n]. Any string u over [n] is the Rgy -reading of a unique diagonal skew tableau,
thus the map Rgy defines a bijection from dSk, to [n]*. An inner corner in a skew tableau w is an empty
box located above and to the left of two non-empty boxes. An outer corner in w is an empty box located
to the end of a row or at the bottom of a column.

We define the top (resp. bottom) concatenation of an element x in a column ¢ = (c';...;c¥) as the
skew tableau defined by
clix ifx >cl, (ch...;ckx) ifx >k
cen,x = ) . (resp. x w, ¢ = ).
(x;¢%5...;¢%)  else. x|ic else.

We extend these concatenations into insertion maps on skew tableaux, defined for x € [n] and w =
c1lp, - - - |pmCm in Sk, by setting

wewa X = Cilp, .o p,, (Cm Ve x),  (resp. x e W= (x ~q c)lp, - lpmCm )- (2.1.9)

For any word w = x; ... x, denote by Cysr (w) (resp. Cygse (w)) the diagonal skew tableau obtained
from w by inserting its letters iteratively from left to right (resp. right to left) using the right (resp. left)
insertion starting from the empty tableau:

Casy,(w)
(resp. Case (w)

(0 e~vpa w)
(w ~ope 0)

((- (0 eva xp) evpe ) o xg),
(x1 ’\'\f)lla ( .. ’VV)Ila (Xk W[la 0) .. )))
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Define now an internal product *ja (resp. *;¢) on dSkj, by setting
t xpa t' = (t “wa Rsw (1)), (resp. t ke t' := (Rsw(t") e t)) (2.1.10)

for all ¢, ¢’ in dSk,. By definition the relations t 7« ) = ¢ (resp. txpe 0 =t)and O *at = t (resp. Q)*Ila t=1t)
hold, showing that the product *¢ (resp. x1¢) is unitary with respect to 0.

The top (resp. bottom) concatenation on a diagonal skew tableau w acts only on the last (resp. first)
column of w and do not change the others columns. As a consequence, for all x,y € [n], we have the
following commutation property:

y e (wevpe x) = (Y wre w) evpe x. (2.1.11)
Hence, we deduce that the insertion products *;« and *[a are associative.

2.1.12. Example: Young tableaux. A Young tableau with m + 1 columns is a string of columns
Cilp; - |pmCme1 in Scol§ whose gluing sequence is decreasing and satisfies

Pr = lcks1] forall 1 <k < m. (2.1.13)

We denote by Y the gluing map for Young tableaux, and by Yt, the set of Young tableaux over [n].

Given a row r (resp. a column c), we denote by ROWINSERT(r, x) (resp. COLUMNINSERT(c, x)) the
procedure that inserts an element x in a row r (resp. column c) and returns a pair (r’,y) (resp. (¢’,y))
made of the resulting row r’ (resp. column ¢’) and the bumping element y that can be empty, as follows.
If x is bigger or equal (resp. strictly bigger) than all the elements of r (resp. c), then r’ (resp. ¢’) is
obtained by adding x to the end (resp. the bottom) of r (resp. ¢) and y is empty. Otherwise, let y be
the smallest element of r (resp. ¢) such that x < y (resp. x < y), then r’ (resp. ¢’) is obtained from r
(resp. c) by replacing y by x. The right (resp. left) insertion algorithm computes a tableau (t «~gs, x)
(resp. (x ~g, t)) as follows,[21]]:

RIGHTINSERTYT (2, x) LErTINSERTYT(Z, x)
Input: A Young tableau t and x in [n]. Input: A Young tableau t and x in [n].
Output: The Young tableau (¢ ¢~g, x). Output: The Young tableau (x ~g, f).
y=x;t':=0; y=x;t':=0;
while y # 1 do while y # A do
r:=t[1]; c:=1n];
t:=t/r; b=t
(r",y) := ROWINSERT(r, 1) (¢’,y) :== CoLUuMNINSERT(c, i)
t = (t';r") t' = [t";c']
end end
return (t';t) return [t';t]
Algorithm 1: Schensted’s right algorithm Algorithm 2: Schensted’s left algorithm

where t[i] (resp. t[;]) denotes the i-th row (resp. column) of the tableau t, and ¢/t[1] (resp. ;) the
Young tableau obtained from ¢ by removing its first row (resp. column), and where (¢;t’) (resp. [t;t'])
denotes the Young tableau obtained by concatenating ¢ over (resp. to the right of) a Young tableau ¢’
when the concatenation defines a Young tableau.
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For any word w = x; ... x, denote by Cyr (w) (resp. Cy< (w)) the Young tableau obtained from w by
inserting its letters iteratively from left to right (resp. right to left) using the right (resp. left) insertion
starting from the empty tableau:

CYZ (W) :
(resp. Cye (w) :

(0 s, w) = ((-.. (0 e~s, x1) €5, .)€, Xk),
(W S 0) = (xl S, ( LW, (xk S 0) .. )))

Define now an internal product *s, (resp. *xs,) on Yt, by setting
t g, t = (¢ g st(t,)), (resp. t *g, t = (st(t,) wg, t)) (2.1.14)

for all t, " in Yt,. By definition the relations ¢t x5 0 =t (resp. t x5, 0 = t) and O xs, t =t (resp. O x5, t = 1)
hold, showing that the product *s_(resp. *s,) is unitary with respect to 0.

Let ¢ be a column of length p, the Schiitzenberger involution of ¢, denoted by c*, is the column of
length n — p obtained by taking the complement of the elements of c. This involution is extended

to string of columns by setting (c1|...[c,)" = cf|...|c], forall cy,...,c, in Col,. If 1]y ... |yc, s a
Young tableau, then (¢i|y ...|yc,)" = ¢fly ... |yc] is also a Young tableau. Moreover, the following
equality (c; *s, ... s, ¢;)* = (cj *s, ... *s, ¢]) holds, for all ¢y, ..., ¢, in Col,. In particular, for three

columns ¢;, ¢; and ¢ in Col,, we have (c; *s, ¢j x5, cx)* = (c;; *s, C: s, ¢;), see [10, Remark 3.2.7].

2.2. String of columns rewriting

2.2.1. Rewriting steps. Let define Scolf = Z X Scol, X Z, whose elements are triples (p, u, q) where p, q
are positions in Z and u is a string of columns, that we will denote by |,u|,. We define a string of columns
rewriting system, called rewriting system for short in the sequel, as a binary relation on Scolf. That is, a
set of rules of the form

a: |Psu|‘IS = |Pt0|qt’ (2.2.2)

where u, v are strings of columns in Scol,, and py, gs, p;, q; are positions in Z. The pair (ps, gs) (resp. (ps, q:))
is called the source (resp. target ) positions, and u (resp. v) is called the string of columns source (resp.
target) of the rule a, denoted by s(«) (resp. t()).

A string of columns w is said to be reducible with respect to a, if there is a factorization w =
Wilp,S(@)]g, w2 in Scol,,. In that case, w reduces into w’ = w1, t(a)|q, w2. Such a reduction is denoted by
Wil p, &g, W2, or a if there is no possible confusion. Given a rewriting system R, the set of all reductions
defines a binary relation on Scol,, called the R-rewrite relation that we will denote by =, or = if there
is no possible confusion. The elements of =g are called R-rewriting steps, and have the form

lpyWilpss(@) g walp, = [pywilp, t(@)]g,w2lp,, (2.2.3)

for all « in R and w1, w, in Scol,,. In the data |, w1, — |q, W2lp, is called the context of the rule a.
If we denote by C this context, the reduction can be also denoted by C[«].

We denote by =7, the reflexive and transitive closure of the relation =g, whose elements are called
R-rewriting paths.
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2.2.4. Rewriting properties. A rewriting system R is terminating if there is no infinite R-rewriting
path. A local branching (resp. branching) of R is a pair (¢, 1) of R-rewriting steps (resp. R-rewriting
paths) having the same source as depicted in the following reduction diagram:

¢
/ |P1W1|Q1

|pW|q

¢\ |P2W2|¢ZZ

Such a branching is confluent if there exist R-rewriting paths ¢’ and ¢/’ with a common target as follows:

@ ¢’
lpiWilg,
/ P Wilg T (225

|pW|q Ip’W’Iq’

¢\> a2, /¢

We say that R is locally confluent (resp. confluent) if any local branching (resp. branching) of R is
confluent, and that R is convergent if it is confluent and terminating. A string of columns w is in normal
form with respect to R, if there is no rule that reduces w. When R is convergent, any string of columns w
has a unique normal form, denoted by Nf (w, R).

2.2.6. Critical branching. A local branching of the form (¢, ¢) is called aspherical. A local branch-
ing (¢, ¥) is called orthogonal if the source of ¢ does not overlap with the source of i/, that is the source of
the branching is of the form | ,, w1, (@) |g, W2lp,s(¥)|g, W3lp,, With wy, wz, w3 in Scol,,. A local branching
that is neither aspherical nor orthogonal is called overlapping. There are three shapes of overlapping

branchings (¢, §/), where s(¢) = |p,w1lp,s(@)|g,w2lp,» and s(¥) = |5 wilp;s(B)lg,wslp,, with a, f € R,
described by the following situations:

i) (position overlapping) qs = qz,
ii) (string overlapping) s(a) = |p, ualp,valq, and s(B) = |y 0alq,upslq;,
iii) (inclusion) s(f) = |pupglp,s(a)|q,vplq;-

An overlapping branching that is minimal for the relation T on branchings generated by

0 lprulpelqvly |yl p wilgi0lg »
/} lpiwilg,

lpwlg C  lpulpwlgvly

T el Ll TS bl wel0ly
for any branching (¢, /) and context u|, — |40 of reductions ¢, /, is called a critical branching.

2.2.7. Lemma. A rewriting system R is locally confluent if and only if all its critical branchings are
confluent. Moreover, if R is terminating with all its critical branchings are confluent, then it is confluent.
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Proof. The first statement is the critical branching lemma. Suppose that all the critical branchings of R are
confluent and prove that any local branching of R is confluent. By definition, every aspherical branching
is trivially confluent, and every orthogonal local branching is confluent. Consider an overlapping but
not minimal local branching (¢, /), there exist factorizations ¢ = C[¢’] and ¢ = C[¢’], where (¢’, §/’)
is a critical branching of R. By hypothesis, this branching is confluent, and there are reductions paths
" :t(¢’) = wand ¥ : t(y’) — w that reduce targets of ¢’ and ¥/’ to the same string of columns w. It
follows that the reductions paths C[¢”’] and C[¢"'] make the branching (¢, {) confluent.

The second statement is an immediate consequence of Newman’s lemma, [18]], that proves that any
locally confluent terminating rewriting system is confluent. O

2.2.8. Normalization strategies. A reduction strategy for a rewriting system R specifies a way to
apply the rules in a deterministic way. When R is normalizing, a normalization strategy is a mapping
o of every string of columns |,w|, to a rewriting path o}, with source |,w|q and target a chosen
normal form of |, w|, with respect to R. For a reduced rewriting system, we distinguish the leftmost
reduction strategy and the rightmost one, according to the way we apply first the rewriting rule that
reduces the leftmost or the rightmost string of columns. They are defined as follows. For every string
of columns |,w|g, the set of rewriting steps with source |,w|; can be ordered from left to right by
setting ¢ < 1/, for rewriting steps ¢ = |, w1|p, &|q, W2lq and ¢ = [, W], Blg, w5lq such that [[wi]| < [[w]]].
If R is finite, then the order < is total and the set of rewriting steps of source |, w|y is finite. Hence this
set contains a smallest element o7,,,|, and a greatest element 77| ,,,| , respectively called the leftmost and
the rightmost rewriting steps on |, w|q. If, moreover, the rewriting system terminates, the iteration of &
(resp. 1) yields a normalization strategy for R called the leftmost (resp. rightmost) normalization strategy
of R:
Pr(Upwl) = 01wty PR (E(011,)  (xesp. p(1pwlg) = 01yl IR (LT 1) ).

The leftmost (resp. rightmost) rewriting path on a string of columns |,w|, is the rewriting path obtained
by applying the leftmost (resp. rightmost) normalization strategy pg, (resp. pz). We refer the reader
to [6l] and [[7] for more details on rewriting normalization strategies.

2.2.9. Top-left sliding order. A way to prove termination of a string of columns rewriting system R is
to consider a map f : Scol, — (X, <), where (X, <) is a well-ordered set satisfying, for all w, w’" € Scol,,

w =g w implies f(w’) < f(w).

We will use the following termination order. Let w = ui]p, ... |»,,_,um be in Scol,. Denote by hy, the
number of empty boxes between the top box of the column uy and the top position of w, shown by the

blue line in the following picture
e
IRRE
0

Define the top deviation of w as the sequence d' (w) = (hy,, ..., hy, ) € N™. Denote by <, the total
order on Scol,, defined by w <y, w’ if and only if

tl(W) <revtex tH(w') or (tl(w) =tl(w’) and d"(w) <jex d' (W')).



3. Convergence of the jeu de taquin

In order to prove the termination of top-left sliding operations presented in 3.2.1] we define the total
order < on Scol, by setting, for w, w’ in Scol,,, w <, w’ if and only if

lwll < 1Iw'll or (llwll = [lw’ll and W <jex W’).

3. CONVERGENCE OF THE JEU DE TAQUIN

In this section, we study the confluence of the jeu de taquin through a rewriting system defined by
column slidings. We show that this rewriting system is convergent and we present the jeu de taquin as
a surjective map from the set of diagonal skew tableaux to the set of Young tableaux using insertion. We
recover properties relating the jeu de taquin to the plactic congruence and insertion algorithms on the
structure of Young tableaux.

3.1. Jeu de taquin

3.1.1. Plactic monoids. Recall that the plactic monoid (of type A) of rank n, introduced in [14]], and
denoted by P, is generated on [n] and submitted to the following Knuth relations, [13]:

zxy=xzy, for 1<x<y<z<n and yzx=yxz, for 1<x<y<z<n (3.1.2)

Knuth in [13] described the congruence ~p, generated by these relations in terms of Young tableaux
and proved the cross-section property for the monoid P,,.

3.1.3. Forward sliding, [22]]. A forward sliding is a sequence of the following slidings:

Wy - forx <y, <—> for x < y, <—>, <—>
| L] []

starting from a skew tableau and one of its inner corners, and moving the empty box until it becomes
an outer corner. The jeu de taquin on a skew tableau w consists in applying successively the forward
slide algorithm starting from w until we get a string of columns without inner corners denoted 7;4(w),
which is shown to be a Young tableau. In this way, the jeu de taquin defines a map

Tq * Skn - Ytn,

also called the rectification of skew tableaux. Schiitzenberger proved in [22]] many properties of the
jeu de taquin. These properties are also presented by Fulton in [4], as follows. For any w € Sk, the
following conditions hold

i) [4, Proposition 2]. Rsw (w) =p, Rsw (7rq(W)),
ii) [4 Corollary 1]. The rectification 7;4(w) is the unique Young tableau satisfying i),

iii) [4, Claim 2]. The map 7,4 does not depend on the order in which the inner corners are chosen.

Note that condition ii) is a consequence of the cross-section property for P, proved in [13] and
condition i). Moreover, condition iii) is a consequence of conditions i) and ii). In the rest of this section,
we show that conditions i) and ii) are direct consequence of a confluence property of a rewriting system
that computes the map 74, and without supposing the cross-section property for P, which will be also
consequence of this confluence property.
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3.2. Jeu de taquin as rewriting

3.1.4. Example. The jeu de taquin on the following skew tableau w starting with the inner corner |
applies three occurrences of forward sliding, where B denotes the empty box, and [ the outer corner:

1]1]2] [1]1]2] [1]1]2] 1[1]2]
_ 1]3] 2[3 2]3] 1]2]3] 1[2]3
w = T1]z2] = = 1 ; 1 = = 3
3 3 3 ]
1]1]2] 1[1]1]2] 1[1]1]2 1[1]1]2]
1]2]3 — 2|3] — 23] — 213 = mq(w

3.2. Jeu de taquin as rewriting

3.2.1. Rules of the jeu de taquin. The jeu de taquin map 7,4 is described by the union of rewriting
systems FS, = LS, U IS, UTS, whose sets of rules are defined as follows.

i) LS, the set of left-sliding rules that move sub-columns to the left in the following two situations:

1 1
Cj Cj
c! o
a) aee; ¢y |1 g = |p L] |g, indexed by columns c;, ¢;, and positions p’, ¢’, such
cf‘ cr ¢l 4
m+1 C'-"“
Cj J
12 j
¢; J

i . . . <
that (c;, c;.") is a row, iy < m < iy and ¢;|(j,+i,-m)c; € Scol,,.

cl c}
o g
a . HE P . o s ’or
b) 501_’0]_ pr : ¢ = lp . |¢+(p—q)> indexed by columns ¢;, ¢, and positions p’, q’,
Ci Cl Cj
c;’ c?
;! cg @ L‘;
+1
- 7
cf
. iy
<
i
cjz

such that ¢;(j,1i,-q)Cj & Scol}, and m is maximal such that Cil (iy+is—p)Cj € Scol$ and i; < p.

ii) 7S, is the set of insert-sliding rules performing insertion in the following two situations:

11



3. Convergence of the jeu de taquin

1 1
Cj C]-
c! cl
a) ﬁci,cj Sy ¢ = lp |¢» indexed by columns c;, ¢;, and positions p’, ¢’, such
c=tem cl=tlem=1
J L J
Cf C}"H o C;_nﬂ
. Cg C;n+2
T
ch c;.z
k—1| .02
c} c}z
i
c;!
c;!

that c;|xc; € Scol§ with 1 < k < i; and k < iy, and [ is minimal such that (cl{, c;.””) is a row

and cf_l << cf.

‘! ol
1 1 -1
c; @ c]’.
b) 8. ] |19 indexed by col d posi
) Seic; tlpr ~ g = | L l¢/+(i1+i—p—q)» indexed by columns c;, ¢;, and posi-
Cj :
I et
C‘-’ ct ct+l
1
i q q
Ci Cj Cj
iy iz
Cj Cf Cj
iy
¢

tions p’, ¢, such that ¢;|(;, 4i,—q)¢j ¢ Scol$, where p is maximal such that c;| »Cj € Scol$, and n

is minimal such that (c?, cj.“) is a row with ¢! < c§ <ch

iii) 78, is the set of left top sliding rules that move columns to the top as follows:

1 1
Cj Cj
@ e |
a) Yeue; * lp : gy = lp—s—rn 1 1lg, indexedby columns c;, c;and positionsp’,q’,
@ cl
cl cj.z G cj.z
@ cj‘
i
Ci

< . . . . 3 .
such that ¢;|,c; € Scol;; with 1 < r < iy, or ¢;|,c; is not row connected with c} < c;.z, and s is
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3.2. Jeu de taquin as rewriting

maximal such that c;|sc; € Scol,f and s < i,.

1 1 1

Ci Ci Cj
of | ¢ e
. i : . frs ’
b) Scic; : |y e | - |¢/+(is—p)» indexed by columns c;, ¢;, and positions p’, q’,
Cl Cj Ci
C;l C::l c;l
i iy
C]l CJZ

such that ¢;|(;,+i,-p)cj € Scol,f and c;l;,c; € Scolfl, Or Cil(i4ip—p)Cj € Scol,f and iy > p, or ¢;|c;

is not row connected with k > i; and c? < c}.

In the sequel, if there is no possible confusion, we will omit the subscripts c;, ¢; in the notation of the
rules. Moreover, for any rule y in 8, we will denote by p* any composition of rewriting sequences
involving the rules y and ending on a normal form with respect to p.

3.2.2. Example. The rectification of the skew tableau w from Example is computed with the
following reduction of #Sy:

1]2] 1]1]2] 11
_ 1[3 Yea,es 2 Yeier [1
W= T1]2 — [ = [3

3 3

1]1]2]
3 aC2,6‘3
o f—t

—_

1]2]
= mg(w).

w
[ S}
w

2]
ﬁC‘l;CZ
frm—

[oo] o]~
IW DO =
w

3.2.3. Theorem. The rewriting system ¥ S, satisfies the following conditions:
i) 7S, is convergent.
ii) The normal form of any skew tableau with respect to ¥ S, is a Young tableau.
For every word w in [n]*, we have
i) (0 s, w) = plg, ([wl,) and (w s, 0) = pig, ([Wl,),
iv) Cuy (w) = NE([wly, S5) and Cs (w) = NE([wl, FS,).

The rest of this subsection is devoted to the proof of this result. Lemmata [3.2.8/and [3.2.9) show that
the rewriting system ¥S,, is convergent. As a consequence, we obtain that the normal forms are Young
tableaux. We prove in that right and left Schensted’s insertion algorithm coincide respectively
with the leftmost and rightmost normalization strategy of #S,. Condition iii) and convergence of ¥S,
yield Condition iv).

3.2.4. Lemma. Foranyrule|c; |c;,| = |cj |c),| in FS,, the following equality |c; xs, c;,| = p;s (Iej,lej, D)

_ (A1 iy (A1 2\
holds. Moreover, for all c; = (c;,...,c;') andc; = (cj, e, cj) in Col,,, we have

Ci X5, Cj = P;Sn (cilicj), Cjxs; Ci = P(,ltsn (cilicj). (3.2.5)
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3. Convergence of the jeu de taquin

Proof. Prove that for any rule [c; [c;,| = [cj,|cj,| in FS,, we have |c;, *s, ¢;,| = p;_Sn(|cj1|cj2|). The

rules ac,c;, 5?,-,cj’ Be;.c; and (Sfi,cj followed by f* yield to the Young tableau |c; *s, c;|. Consider now the
rule y¢, ;- If [c;| < el and ¢4 |c;|¢c; € Scol, then the target of y., ¢, is equal to |c; *s, c;l. If |c;| < [cj]
and c¢i||¢;ic; € Scolp, then the rule y,; is followed by the rule a,.; in order to obtain |c; *s, cj|.
If ¢i|c;|c; ¢ Scol, then the rule y., ., followed by a, ., and then by f*, or only followed by f* yield
to |c; xs, c;|. Consider finally the rule J, ;. If |c;| < |c;| then the target J, ., is equal to |c; *s, c;l.
Otherwise, if |c;| < |c;| then 561.’0_/. is followed by Uy c; I order to obtain |c; s, ¢jl.

Prove the first equality of (3.2.5) by induction on |c;|, the proof being similar for *s,. Suppose
that |c;| = 1, we consider the following two cases. If c} < c}, then c;|ic; is equal to ¢; *s, c;. If cjl. < cil,
then by applying 6# on cilic; we obtain ¢; *s, c;. Suppose the equality holds when |c;| = iz — 1, and
prove it when |c;| = i,. First consider the case when ¢} < c;.z. Suppose that by induction we have

c? X1 | Y1
T ; _ Pl — 2 iz
p‘FSn( . ) = " =Cj ks, (Cj,...,cj),
Ci Cj
C;l Xs
ct
J
X1
. T P _
where x; and y; are elements of ¢; and ¢; with t < s. We prove that pTS,,( , ) =ci xs, ¢j, by
t
Xs
considering the following two cases.
Case 1. x; < c} and xp41 < yg, forallk =1,...,t - 1:
c} X1 cjl. X1 c}
X1 | %1 é X2 | Y1 é X2 | Y1 =¢; *Sr cj, for s =t
Xs | Yt Xs Yr-1 Xs Yr-1
Yt Yt
c}. X1 c}
X1 | Y1 Y X2 | Y1 — . )
or L = L =ciks ¢ for s > t.
Yr Yt
Xs Xs

14



3.2. Jeu de taquin as rewriting

Case 2. x; < c} (resp. c}. < x1) and let x; be minimal such that x;_; < y;—; < x;:

c} X1 c} c} c} Y

X1 | X2 | Y1 X1 | Y ﬁ X1 | Y2
B L = ¢j *s, Cj. ( resp. L == L =¢j *s, Cj. )
Xi-1|Yi-1 S Yi-1| Yi Yt Yt
Xi | Yi Xi |Yiv1
Xs Xs

Yt Y

Xs Xs

Suppose finally that ¢; > cj.z. We obtain: [ [n| = = [&]| =ci%s, cj. ]

3.2.6. Proof of Theorem iii). We prove the first equality by induction on the number of columns
in [w]s, the proof being similar for the insertion S;. When [w]; is of length 2, then the equality is a
consequence of Lemma([3.2.4] For k > 3, suppose that the equality holds for words of length k — 1, and
consider [w]s = c1]; ... |1ck. By the induction hypothesis, we have (0 e~s, w) = p;sn (c1l1 ... l1ck=1)*s,
k. Let us show that

Pchsn(Clh o ]ickor) *s, o = PgTrsn (crl - iew)- (3.2.7)

Since inserting c into p;s (c1l1 - - l1ck—1) consists into inserting its elements one by one from bottom
to top, it suffices to prove 4} for ¢, = (x). If x is bigger or equal than the last element xil of
the first row of p;sn (cili...]ick=1), then p;sn(clll ... lick-1)11[x] is a Young tableau which is equal
to p;s (c1l1-..l1ck—1) *s, [x]. Otherwise, if x < x', we first apply a rule 8% in order to slide the box

containing x to the top of the one containing xil. We then apply the following reduction rules as shown
in the following reduction diagrams. Note that, the elements in the colored boxes represent the ones
that are bumped when inserting x into the tableau p}s (c1l1 .. lick=1).

xi” f’*‘ | x f‘” x;“

x) R xf’ f‘“ x;" f‘“ O IO s O P U [P A IO x;" 2}“‘“ xf‘ f‘“

X | xy x;’“ x;“ f"‘” xf" f"” e | xy x;’“ x;(’

x x;’ x x;’

: : ﬁ* : :
x5 XL - X XL

x) x)! xik xi

B X;i|
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3. Convergence of the jeu de taquin

X L xlk“ xf‘ﬂ | x f‘” x‘;“ f‘” | x {“H | X
x Xt x;“ 5‘“ x;“ é"“ xf‘ ;"5“ x;‘ s‘”
X xf’
* : *
4
B X :a
x;k
)
x|l 7 O P P
X B x’:* f’“ Ll x f‘“ A TE’ x; x;‘“ xf’ f‘“ | ox i““
x5 x;" xi“ xf’” xi” xf‘” R ? x;’ xf‘ ;“” xf" ;‘"“
x> x;’ x5
5ﬁ : : ﬁ*
o A [ LA I
X;k X x[" ki
0
x;k Xifl x;r x;’“ ;r+1
| xt T? x L x‘kj f”l | x f‘“ | X L x:" ‘k”" | x f‘“ L x
x| xf’ x§3 x;“ f‘“ xi“ f‘” xf‘ ’;‘H x?‘ I;‘“
y* x;k xf‘ x;’ a*
= P =
x)* xlk_zl ..
X J‘Ik‘
x;" X;AH ;m xf"
et | [
x§k x;‘“
5* Xk x‘:k”
= :
x;k x;”l
- |*a x;“

The resulted Young tableau is equal to p;s (cil1 - .- l1ck—1) *s, [x], showing the claim.
3.2.8. Lemma. The rewriting system FS,, is terminating.

Proof. We prove that for any reduction w = w’ with respect to ¥S,,, we have w <;; w’ for the order <,
defined If w = w’ is a reduction with respect to LS, then ||w|| = ||w’|| and t](w) <ievlex
tl(w’), showing that w <;; w’. Suppose now that the reduction is with respect to 7S,. There are
two cases depending on the number of columns in the targets of the rules f and 67. If the targets
consist only of one column then ||w|| < ||w’||. If they consist of two columns then ||w|| = ||w’||
and t1(w) <peptex tI(w’). Then, if w = w’ is a reduction with respect to 7S, we obtain w <, w’.
Finally, for any reduction w = w’ with respect to 7S,,, we have ||w|| = |[|[w’||, tl(w) = tI(w’) and
d"(w) <jex dT(w’), showing that w <;; w’. m|

3.2.9. Lemma. The rewriting system FS,, is confluent.

Proof. Following Lemma [2.2.7} we prove that the rewriting system ¥, is confluent by showing the
confluence of all its critical branchings. Consider first the rewriting system R(Col,, Y’ ) whose rules are
of the form y. s : |c|c’| = |c*s, ¢’|, for all ¢, ¢’ in Col, such that c|yc” # ¢ s, ¢’. Prove that starting from
a string of columns consisting of three columns |c;|c;|ck|, we lead to the Young tableau |c; s, ¢; s, ck|
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3.3. Jeu de taquin as morphism of monoids

after applying at most three steps of reductions with respect R(Col,, Y})) starting from the left or from
the right. We prove this result using Schiitzenberger’s involution on columns as in [10, Remark 3.2.7]. In
one hand, by definition of Schensted’s insertion S,, starting from |c;|c;|c|, we lead to |c; *s, c; *s, ck|
after applying at most three steps of reductions with respect R(Col,, Y7}) starting from the left. That is,
we have

YCi,Cj |Ck Cnl)/Cn/,ck Yen.cs |Cs’
lcilejlex]l = lenlyewlerl = lenleslyes]l = lei ks, ¢j *s, ckl.

In an other hand, we have

l|ycj Ck Yc~,cl|cl’ cm|}/c r,cp
ilejlek il(cjkxs, ck ilerlyer| |(ciks,c)ler] = lemlyemler] =" leml(cnks,cr)l.
leilejlekl il (cj*xs, ci)l = leilellyer] =

Let us show that |c,, | (¢ *s, c)| = |ci ks, ¢j *s, ck|. By applying the involution on tableaux, we obtain
exleileil = [(cx *s, c)lei| = leplycrle;]l = lep|(c) *s, )| = leplepylyeml = (¢} *s, cpy)lcpl-

By definition of S, we have |c} xs, c;f *s, ¢; | = [(c} s, ¢3,)| ey, | Since (cf *s,C *s, ¢;) = (ci*xs, cj*xs, ck)",
we deduce that |(c; s, ¢j *s, ck)*| = [(c}, *s, c,)|cp,|- Finally, by applying the 1nvolut10n on tableaux,
we obtain |(c; xs, ¢j *s, cx)| = |em|(cm *s, cr)l.

Following Lemma 4} for any rule |c; [c;,| = |cj [c),| in FS,, we have [c;, ks, ¢;,| = p;sn(lcj1 lcj, 1)
Hence, any critical branching of 7S, has the following confluence diagram

S, (cjley) S, (cxr|cin) pTS (ckler)
lejlejr |ch=> |ck|yck/|c,~T=> lexlerlyer =22 e e lep| <Semcr

|cilci[ci] |c; s, civ *s, cir

lenlee] == Il = Il legd == g lrlyer| ~Tocer
PFs, (Cm|cm (Cz Prs, (cslen

where ¢; and ¢, are 7 S,,-reductions and where some indicated rules can correspond to identities, such
that ci|ycr = cj*s, cjr, cilycr = cp ks, cin, i |ycrr = ci ks, c1, CplyCp = Cm X5, Coy, Crr|y €y = € ks, Cn
and cpr|ycp = cy *s, . O

3.3. Jeu de taquin as morphism of monoids

In this subsection, we prove the compatibility of the rewriting system #S,, with the plactic congruence.

3.3.1. Theorem. The rectification map ;g : dSk, — Yt, is a surjective map that satisfies the following
two properties:

i) foranyruled = d’ in ¥S,, we have Rsw (d) ~p, Rsw(d’),
ii) forallw,w’ € [n]*, w =p, W’ implies Nf([w]s, FSp) = Nf([w']s, FSy).

Proof. The surjectivity of 7,4 is a consequence of the relation ;4 ([Rsw (d)]s) = d, that holds for any d
in Yt,. Prove first that for any rule d = d’ in ¥8,,, we have Rsw (d) ~p, Rsw(d’). It suffices to show
that Rsw (s(17)) ~p, Rsw(t(n)), for every rule n in ¥S,. This is obvious for y and §. For the rule «,
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3. Convergence of the jeu de taquin

consider Rsw (s(a)) = ¢}’ ...cl.lc;.2 . c;."“c;" c and Rsy (t(a)) = c . .c;.”“c;l .. .c}c;.". c}. On one
hand, we have

i 2.1 .12 m+1 m. 1 3'1'2 3'1‘2 iy Jip i1— 1 2.1 -1 m+1,.m 1

;' epeief el e T =l T gt

- - 11 ip Jip—1 i1—1 2.1 022 m+1_.m 1 BL2)
) e et cejepelT et e TS
745 G J j j
Cizcilciz—lcil 1 Czclclz -2 Cm+1cm cl - - CmHCmcl clem-1 cl
telel e e e ) J el ee e
i 1 - - —

In an other hand, we have cj2 .. c}"”c1 clzclc;“. 1 ) ¢ ...c}””c}”cil cllc;" 1...c}.

Hence, Rsw (s(a)) =~p, Rsw(t(«)). Similarly, we show the property for rules 8, % and 7.

Prove now that for all w, w” € [n]*, w ~p, w’ implies Nf([w]s, FS,,) = Nf([w']s, FSp). Since FS,
is convergent, we show that for all w,w’ € [n]*, w =p, w’ implies [w]s =#s, [w']s. Suppose first
that w = ux;xzyy0 and w’ = uxyzxyyo, forall1 < x < y <z < n,u,0 € [n]* and x1,y; € [n], and
show that [w]s ##s, [w']s. We consider the following cases:

Case 1. x; < xand y < y;.

uxlzxyyw = UX1XZYY 0
[w]st Lw]s
[uxi]s | zy” [yio]s  [uxi]s |\x ff | [y10]s

a had
[uxl]s | xé | [ylv]s

Case 2. x; < x and y > y;. Suppose that v =y, ... y,y'0" such thaty; >y, > ... > ysand y, < ¢

UX1ZXYY 0 =—= UX1XZYY10
[wll LIwls
yJ 1,7 gll 1,7
[ux]s ’ L | [y'0']s [ux]s | i | [y'v’]s
i |Y1]
x|y | y
W W
W% m
X \Yi ‘x Yi
ol [ | ol (wade | L] [yo')s
m v
1Y 2]
Case 3. x < z < x; and y < y;. Suppose that u = u’x"x, ... x; such that x” < x, and x;, > ... > x.
UX1ZXY Y10 =——= UX]XZYY 0

'] [ v

[w'x']s | ﬁy” [y10] E[
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3.3. Jeu de taquin as morphism of monoids

The case x < z < x; and y > y; is studied in the same way.
Case 4. x < x; < zand y > y;. We study similarly the case x < x; < zand y < y;. Suppose
thatu = u'x'x, ... x;and o =y, ... ygy'v" such that x’ < x, > ... > x;andy; > ... >y, < y'.

UXZXYY 10 = UX1XZYY10V

wxls | Pyl wxls| ]yl
m m
Yy Yy
X1| z x|z
X1
& ]
xi
Mf 5P ap
[wx'ls| B[y 7 [wx'ls | 2] [y'o's
; Y1
x|zl|y Y
ﬂ X |z
: X1
b B
fo

Suppose now that w = uy;yzxx;v and w’ = uy;yxzxo, forall1 < x <y < z < n,u,0 € [n]*
and x1,y; € [n], and show that [w]; =¢s, [W']s. If y1 < y and x < xq, then

UYYZXX10 = YY1 YXZX10V
[wlsl Lw'Ts

(], | g3 | Dol § Luml | 51| ool

The cases (y; > y and x > x1), (y; < y and x > x1) and (y; > y and x < x7) are studied similarly. ]

As a consequence of Theorem [3.2.3]and Theorem we recover that the set of Young tableaux
satisfies the cross-section property for the plactic monoid, we also deduce the commutation of Schensted’s
left and right insertion algorithm and that the rectification map defines a surjective morphism of monoids
between the sets dS}, and Y}, equipped with the insertion products *7« and *sg, .

3.3.2. Corollary (cross-section property). The following conditions hold
i) forallw,w’ in [n]*, we have w ~p, w’" if and only if Cyr (w) = Cyr,(w'),
ii) the equality Cyr, (Rsw(d)) = Cyr (Rsw (7q(d))) holds in Yt,, for any d in dSk,.

Proof. Prove Condition i). Consider two words w and w’ over [n]. If w ~p, w’, then by Theorem 3.3.1|
we have Nf([w]s, FS,) = Nf([w']s, FS,) and thus Cyr (w) = Cyr,(w’) by Theorem [3.2.3] Suppose
now that Cyr (w) = Cyr, (w’). Following Theorem 3.2.3} we have Nf([w]s, FS,) = Nf([w’];, FS,), and
then w ~p, w’ by Theorem[3.3.1]

Prove Condition ii). Following Theorem for any d in dSk,, we have 7;4(d) = Cyr (Rsw (d)),
showing the claim. ]
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3. Convergence of the jeu de taquin

3.3.3. Corollary (commutation of insertion algorithms). i) For all d in dSk, and x in [n], we
have m;q(d e~ x) = miq(d) €~s, x and m,q(x o d) = x s, myq(d).

ii) The insertion algorithms S, and S; commute, that is the following equality
Y v, (t oS, X) = (y S, t) oS,
holds in Yt,, for all t in Yt, and x in [n].

Proof. Prove Condition i). By Theorem [3.3.1} we have Rsw (7:q(d ¢~ja x)) ~p, Rsw(d e~ x).
Moreover, we have Rsy (d ¢~ja x) = Rsw (d)x, hence Rsw (71:4(d ¢~ x)) ~p, Rsw(d)x . On the other
hand, the following equalities holds in Yt,:

mq(d) e~s, x = Cyr, (Rsw (1mq(d))x) = NE([Rsw (71q(d))x]s, FSn).
Then 7,4(d) «~s, x s, [Rsw(714(d))x]s, and thus by Theorem 3.3.1] we deduce
Rsw (1q(d) e~s, x) =p, Rsw(mq(d))x =p, Rsw(d)x,
showing that Rsy (7:¢(d ©~1a x)) ~p, Rsw (7:q(d) s, x). Finally, following the cross-section property,
we obtain 7;4(d ¢~pe x) = m44(d) €~pe x. Similarly, we show that ;4 (x o d) = x w5, miq(d).
Prove Condition ii). Following Condition i), we have

Tiq(y ~ore (d ovpe x)) =y~ (Mig(d g x)) =y ws, (mig(d) o, x),
and

Tq(y wra (d ovpe x)) = mq((y ~wore d)) e, x = (Y ws; miq(d)) o, X,
for all d in D and x, y in [n]. By commutation of I and I¢, we deduce the following equality

y v, (mq(d) evs, x) = (y ws, ﬂtq(d)) s, X.

The map ;4 being surjective, we deduce that S, and S; commute. O

3.3.4. Corollary (morphism of monoids). The map ;4 induces a morphism of monoids between (dS;,, x1a)
and (Y}, *s, ).

Proof. Following Condition i) of Corollary 3.3.3] we first prove that 7,4 (d e~pe u) = m,4(d) evs, u, for
all d in dSk, and u in [n]* by induction on |u|. Suppose the equality holds when |u| = k — 1, then for y
in [n] we have

ﬂtq(d e uy) = ﬂtq((d ewpa u) e~va ) = ﬂtq((d ewpa u)) e, Y
= (mq(d) e~s, u) s, y) = mq(d) e~s, uy.

In an other hand, following Condition ii) of Corollary[3.3.2] we have Cyr (Rsw(d")) = Cyy (Rsw (7114(d"))),
for all d" in dSk,, hence Cyr (Rsw (7tq(d))Rsw(d’)) = Cyr (Rsw (71q(d))Rsw (71q(d"))). As a conse-
quence, we have

Trq(d *pe d’) = mpq(d ©~p@ Rsw (d') = mq(d) s, Rsw(d’)
= mq(d) «~s, Rsw(mg(d’) = miq(d) ks, mq(d’),

for all d,d’ in dSk,, showing the claim.
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3.3.5. Remark. Note that Schensted’s insertion algorithms are related to the jeu de taquin by the
following formulas

tens x = mg([Rew ()]s e~e x), X ~og t = Mg(x e [Rsw(8)]s),

for all t in Yt, and x in [n]. Note also that the associativity of %, is also deduced from the morphism 7.
Indeed, for all ¢ in Yt,, and x in [n], we have t ewg x = mq(t]1[x]), and thus t x5, t' = m4(t]st"), for
all t,t’ € Yt,. By Theorem|3.2.3] we obtain

(txs, t') ks, 1" = mq(tlst']st") = t ks, (' *s, 1),

for any t,t’,t” € Yt,.

4. CONCLUSION AND PERSPECTIVES

In this article, we have introduced the notion of string of columns rewriting system as rewriting
systems over glued sequences of columns. This gives a rewriting framework to prove the confluence of
Schiitzenberger’s jeu de taquin algorithm defined on the structure of tableaux. Our construction leads
us to formulate several perspectives:

e In [10], we make explicit the relations among the relations of the Knuth relations for the plactic
monoid of type A. We expect that the rewriting presentation of the jeu de taquin introduced in
this article could make explicit the relations among the relations for the cross-section property on
sequence of columns for the plactic monoid of type A. Such a study of the relations among the
relations for the presentations of a monoid constitutes the first step in an explicit construction of
a cofibrant approximation of the monoid in the category of (w, 1)-categories and of actions of the
monoid on categories, see [[5}[6] 10} [1T]].

e Schiitzenberger’s jeu de taquin gives a proof of the Littlewood—-Richardson rule which is a com-
binatorial description of the coefficients that arise when decomposing a product of two Schur
polynomials as a linear combination of other Schur polynomials. In particular, these coefficients
count certain types of skew tableaux that are rectified by the jeu de taquin to Young tableaux.
We except that these coefficients could be also described by a rewriting approach using a zigzag
sequences of reductions from certain types of skew tableaux to their normal forms with respect
to the rewriting presentation of the jeu de taquin introduced in this article.

e The construction applied in this article on the jeu de taquin could be also applied on similar
algorithms defined on other structures of tableaux, [9,[15} 16} 20} 23} 24]. In particular, we expect
constructive proofs by rewriting of the properties relating these algorithms to the plactic monoids
of classical types and the super plactic monoid which are respectively related to the representations
of the finite dimensional semisimple Lie algebras of classical types and the general Lie superalgebra.
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