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Abstract – These notes were intended for a lecture given at the Kobe summer school in July 2015.
We present the notion of polygraphic presentation for algebras and their properties of confluence and
termination, as introduced in [GHM17]. These presentations, called linear polygraphs, are rewriting
systems that generalize noncommutative Gröbner bases, as studied by Bokut, [Bok76], Bergman,
[Ber78] and Mora, [Mor94], in the sense that the orientation of the rewriting rules does not depend
of a monomial order. We give a description of an algorithm given by Anick, [Ani86], for computing
a free resolution of right modules over an algebra presented by a noncommutative Gröbner basis.
Finally, we briefly sketch a method to compute polygraphic resolutions for an algebra presented by a
confluent and terminating linear polygraph introduced in [GHM17].
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1. Introduction

1. Introduction
The aim of these lecture notes is to provide a summary of the theory of linear rewriting and the application
of this theory to the construction of free resolutions for associative algebras. In Section 2 we present
linear polygraphs as an algebraic setting for linear rewriting without a monomial order and we review
fundamental notion of linear polygraphs. In Section 3 we recall several historical constructions on
linear rewriting systems for associative algebras, and we show how the confluence properties is studied
in these different approaches. We relate the notion of convergent linear polygraph with the notion of
noncommutative Gröbner basis. In Section 4, we describe an algorithmic way to compute free resolutions
for algebras using a method introduced by Anick. Section 5 deals with extension of linear polygraphs,
seen as higher dimensional linear rewriting systems, into polygraphic resolutions for algebras. We show
how to construct such a resolution starting from a convergent presentation. In the last section, we show
how to relate Koszulness for algebras with the property of confluence.

Rewriting and linear rewriting

Rewriting in computer science. The notion of rewriting system comes from combinatorial algebra. It
was introduced by Thue when he considered systems of transformation rules for rewriting combinatorial
objects such as strings, trees or graphs. Its main motivation was to solve the word problem for finitely
presented semigroups by using an orientation of relations, [Thu14]. Afterwards, the word problem have
been considered in many contexts in algebra and in computer science. Far beyond the precursor works on
this decidability problem on strings, rewriting theory has been mainly developed in theoretical computer
science for equational reasoning in various situations: theory of programming languages for analysis,
verification and optimization, automated deduction, automated theorem proving... Rewriting theory is
also present in many others computational formalisms such as Petri nets or logical systems. Depending
on the context of application, rewriting theory has numerous variants corresponding to different syntaxes
of the formulas being transformed: string, term, graph, circuit, term modulo, tree, λ-term, higher-order
term, higher-dimensional term...

Rewriting in algebra. Rewriting appears also on various forms in algebra for universal algebras
(term rewriting in Lawvere theories), [BN98, Klo92, Ter03, MM16], monoids (string rewriting in
monoids), [BO93, GGM15, HM17], monoidal categories, [GM12a], linear structures, such as alge-
bras of various type: commutative, [Buc65, Buc70, Buc06], associative, [Bok76, Ber78], Lie, [Shi62],
as well as on topological objects, such as Reidemeister moves, knots or braids, [Bur01].

These notes focus on various aspects of rewriting in associative algebras. Rewriting theory gives
algorithmic methods to study associative algebras presented by generators and defining relations. The
relations are oriented as rewriting rules providing linear bases of normal forms with respect the defining
relations. In particular, rewriting methods can be used to provide procedures for decision problems,
such as the word problem, ideal membership, or to compute quadratic bases, e.g., Poincaré-Birkhoff-Witt
bases, Hilbert series, syzygies of presentations, homology groups and Poincaré series.

We have to be careful when we rewrite over a field. Rewriting rules that relate elements in a ring or in
an algebra need to be compatible with the linear structure in the following way. For a rewriting rule

f→ g
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1. Introduction

relating two elements of an algebra on a ground field K, then for any scalar λ in K we would like a
rewriting

λf→ λg

and for any other element h of the algebra we would like a rewriting

f+ h→ g+ h.

Taken together, these two reductions lead to losing termination of rewriting. Indeed, it that case from the
rule f→ g, we deduce the reductions −f→ −g and −f+ (f+ g)→ −g+ (f+ g). Finally, we deduce
the following reduction

g→ f.

As a consequence, the system will never terminate. Further to this remark, it is necessary to adapt
the notion of rewriting system to linear situations. In the example presented above the reduction
−f + (f + g)→ −g + (f + g) appears as the source of the nontermination problem. In these notes, we
will see two possibilities to fix this problem.

− By choosing an orientation of the rules induced by a monomial order, which is well-founded by
definition, see 2.4.1. This is the most common used method, in particular in the noncommutative
Gröbner basis theory.

− By using the structure of linear 2-polygraph introduced in [GHM17] and with an appropriated
notion of reduction, explained in Subsection 2.2.

Noncommutative Gröbner bases: applications and generalizations

Gröbner basis theory. Gröbner basis theory for ideals in commutative polynomial rings was introduced
by Buchberger in [Buc65]. A subset G of an ideal I in the polynomial ring K[x] of commutative
polynomials is a Gröbner basis of I with respect to a given monomial order ≺, if the leading term ideal
of I is generated by the set of leading monomials of G, that is

〈 lt≺(I) 〉 = 〈 lt≺(G) 〉.

Buchberger introduced the notion of S-polynomial to describe the obstructions to local confluence and
gave an algorithm for computation of Gröbner bases, [Buc65, Buc06], see also [Buc87] for an historical
account. Any ideal I of a commutative polynomial ring K[x] has a finite Gröbner basis. Indeed, the
Buchberger algorithm on a finite family of generators of an ideal I always terminates and returns a Gröbner
basis of the ideal I.

Shirshov introduced in [Shi62] an algorithm to compute a linear basis of a Lie algebra defined by
generators and relations. He used the notion of composition of elements in a free Lie algebra, that
corresponds to the notion of S-polynomial in the work of Buchberger. He gave an algorithm to compute
bases in free algebras having the computational properties of theGröbner bases. He proved that irreducible
elements for such a basis forms a linear basis of the Lie algebra. This result is called now the Composition
Lemma for Lie algebras.

Subsequently, the Gröbner basis theory has been developed for other types of algebras, such as
associative algebras by Bokut in [Bok76] and by Bergman in [Ber78]. They prove Newman’s Lemma
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1. Introduction

for rewriting systems in free associative algebras compatible with a monomial order stating that local
confluence and confluence are equivalent properties. This result was called Composition Lemma by
Bokut and Diamond Lemma for ring theory by Bergman, see also [Mor94, Ufn95]. In general, the
Buchberger algorithm does not terminate for ideals in a noncommutative polynomial ring K〈x〉. Indeed,
its termination would give a decision procedure of the undecidable word problem. Even if the ideal is
finitely generated it may not have a finite Gröbner basis. However, when K is a field an infinite Gröbner
basis can be computed, [Mor94, Ufn98]. We survey the constructions and the results of Bokut and
Bergman in Section 3.

Note that ideas in the spirit of the Gröbner basis approach appear in several others works. Let us
mention works by Hironaka in [Hir64] and Grauert in [Gra72] that compute bases of ideals in rings
of power series having analogous properties to Gröbner bases but without a constructive method for
computing such bases. In [Coh65], Cohn gave a method to decide the word problem by a normal form
algorithmbased on a confluence property. Finally, Janet [Jan20], Thomas [Tho37] and Pommaret [Pom78]
developed the notion of involutive bases that are particular cases of Gröbner bases in the context of partial
differential algebra. Muchmore recently, Gröbner basis theory was developed in various noncommutative
contexts such as Weyl algebras, see [SST00], or operads [DK10].

Computing normal forms. The main purpose of noncommutative Gröbner basis theory for associative
algebras is to compute linear bases. Consider an algebra A presented by a set of generators X and a set R
of defining relations, that is A is the quotient of the free algebra K〈X〉 by the ideal generated by R. The
set of monomials on X forms a linear basis of the free algebra K〈X〉. One application of the Gröbner
basis theory is to compute a basis of the algebra A in the form of a reduced subset of monomials. The
computation is based on a monomial order on the set of monomials on X and the confluence property of
a rewriting system compatible with this order. The set of monomials in normal form with respect to a
Gröbner basis forms a linear basis of the algebra A.

The Buchberger algorithm that computes Gröbner bases is the analogue of the Knuth-Bendix comple-
tion procedure in a linear setting. Several frameworks unify Buchberger and Knuth-Bendix algorithms,
in particular a Gröbner basis corresponds to a confluent and terminating presentation of an algebra, see
[Buc87]. This correspondence is well known in the case of associative and commutative algebras, as
recalled in the papers by Bokut [Bok76], Bergman[Ber78], Mora [Mor94]. For a fuller treatment on
noncommutative Gröbner bases for associative algebras, we refer the reader to the books [BD16, Chapter
2] and [Ufn95] and to [KR00, Chapter 2] and [BW93, Chapters 4-5] for commutative Gröbner bases.

Computation of free resolutions. In homological algebra, constructive methods based on noncommu-
tative Gröbner bases were developed to compute projective resolutions for algebras. In particular, Anick
and Green constructed small explicit free resolutions for algebras given by noncommutative Gröbner
bases, [Ani85, Ani86, AG87, Gre99]. Their constructions provide resolutions to compute homological
invariants (homology groups, Hilbert and Poincaré series) of algebras presented by generators and re-
lations given by a Gröbner basis. The chains of these resolutions are given by iterated overlaps of the
leading terms of the Gröbner basis and the differentials are constructed by Noetherian induction.

Linear polygraphs. All the constructions mentioned above rely on a monomial order, that is a well-
founded order of the monomials compatible with the multiplication. The termination orders in linear
polygraphs introduced in [GHM17] are less restrictive. A linear polygraph is a higher-dimensional linear
rewriting system for presentation of an algebra that allows more possibilities of termination orders than
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those associated to Gröbner bases using monomial orders. A set-theoretical 2-polygraph describes a
string rewriting system, see [GM18]. It is defined by a data (Σ0, Σ1, Σ2) made of a 1-polygraph, that is
an oriented graph

Σ0 Σ1
t0
oo

s0
oo

where Σ0 and Σ1 denote respectively the sets of 0-cells and 1-cells and s0, t0 denote the source and target
maps, with a cellular extension Σ2 of the free category Σ∗1, that is a set of globular 2-cells relating parallel
1-cells:

p

f
!!

g

<<
ϕ�� q

A 2-polygraph corresponds to a string rewriting system, where the rules are describe by a the globular
2-cells, see [GM18].

A linear 2-polygraph corresponds to the same notion for rewriting in a free algebra or a free algebroid.
It is constructed in the same manner as a 2-polygraph, but the cellular extension is linear in the sense that
it is constructed on 1-spheres in the free 1-algebroid over generating 1-cells. Explicitly, we define a linear
2-polygraph as a triple (Λ0, Λ1, Λ2) such that (Λ0, Λ1) is a 1-polygraph and Λ2 is a cellular extension of
the free algebroid Λ`1 generated by the 1-polygraph (Λ0, Λ1), that is given by two maps

Λ`1 Λ2
t1
oo

s1
oo

satisfying globular relations s0s1 = s0t1 and t0s1 = t0t1. All the categorical background will be
introduced in Section 2. In the free 2-algebroid Λ`2, any 2-cell being invertible, the notion of rewriting
step induced by a linear polygraph needs to be defined with attention. In Section 2 and Section 3, we
recall from [GHM17] properties of termination, confluence and local confluence for linear 2-polygraphs.
We state the Newman Lemma for linear 2-polygraphs in Theorem 3.2.11 showing that a terminating
left-monomial linear 2-polygraph is confluent if and only if it is locally confluent. We give a formulation
of a critical branching lemma for linear 2-polygraphs in Theorem 3.3.7. The formulation of this result
differs from the critical branching lemma for 2-polygraphs in the sense that the termination hypothesis
is required, as we will explain with several examples in Section 3.3. Finally, we explain how to recover
noncommutative Gröbner bases as a special case of convergent linear 2-polygraphs in Section 3.6.

Polygraphic resolutions of algebroids. We recall in Section 5.1 the notion of linear syzygies for linear
polygraphs. When the linear 2-polygraph is convergent, we show that all the syzygies can be generated
by confluence diagrams induced by the critical branchings, this is the Squier Theorem 5.1.6.

In Section 5.2, we recall from [GHM17] the notion of polygraphic resolution for an algebra giving a
categorical description of higher-dimensional syzygies of its presentations. A polygraphic resolution for
an algebra A is an acyclic polygraphic extension of a presentation of A. That is a linear ∞-polygraph,
which satisfies an acyclicity condition. Theorem 5.2.6 from [GHM17] shows that any convergent linear
2-polygraphΛ extends to an acyclic linear∞-polygraph, presenting the same algebra and whose n-cells,
for n > 3, are indexed by the critical (n− 1)-fold branchings. From this point of view, this resolution is
similar to Anick’s resolution associated with a Gröbner basis.

5



2. Linear rewriting

Finally, we show how a polygraphic resolution of an algebraA induces a free resolution in the category
of right-modules (resp. left-modules, resp. bi-modules) over A.

Confluence and Koszulness. In the last section of these notes, we show how Anick’s resolution leads to
relate the Koszul property for an associative algebra to the existence of a quadratic Gröbner basis for its
ideal of relations. We also show how to prove this property using convergent linear 2-polygraphs.

In Subsection 6.1, we recall the notion of Koszulness for quadratic algebras and N-homogeneous
algebras. Koszulness for quadratic algebras was introduced by Priddy, [Pri70]. A connected graded
algebra A is Koszul if the Tor groups TorAn,(i)(K,K) vanish for i 6= n, where the grading n is the
homological degree and the grading i corresponds to the internal grading of the algebra. This notion was
generalized by Berger to the case of N-homogeneous algebras, [Ber01].

In [Ani86], Anick showed how its resolution can be used to prove Koszulness of a quadratic algebra.
Indeed, if an algebra A admits a presentation whose relations are defined by a quadratic Gröbner basis,
then Anick’s resolution associated to this Gröbner basis is concentrated in the right bidegree, and thus
the algebra A is Koszul, see Theorem 6.2.3. For theN-homogeneous case, a Gröbner basis concentrated
in weightN is not enough to imply Koszulness: an extra condition has to be checked as shown by Berger
in [Ber01].

Finally, we present a sufficient polygraphic condition of Koszulness of graded algebras given
in [GHM17]. Using a graded version of Theorem 5.2.9, one shows that an N-homogeneous algebra
having a `N-concentrated polygraphic resolution is Koszul, Theorem 6.2.7.

2. Linear rewriting
In this section we recall the categorical description of linear rewriting given in [GHM17] using the notion
of linear polygraph. This notion extends to associative algebras the categorical notion of 2-polygraph used
to describe presentations of monoids by generators and relations. This approach is based on presentations
by generators and relations of higher-dimensional categories, independently introduced by Burroni and
Street under the respective names of polygraphs in [Bur93] and computads in [Str76, Str87]. Higher-
dimensional rewriting has unified several paradigms of rewriting. These notes concern only rewriting in
algebras, for a deeper discussion on categorical description of string rewriting systems by 2-polygraphs,
we refer the reader to [GM18]. Note that there is a shift by 1 in the dimension: in these lecture notes the
linear 2-polygraphs are linear 1-polygraphs in [GM18].

2.1. Linear 2-polygraphs

2.1.1. Categories. Recall that a (small) category (or 1-category) is a data C made of a set C0, whose
elements are called 0-cells (or objects) of C, for every 0-cells p and q a set C(p, q), whose elements
are called 1-cells (or arrows) of C with source p and target q, for every 0-cell p a specified 1-cell 1p
in C(p, p), called the identity of p, and for every 0-cells p, q and r a composition map

?p,q,r0 : C(p, q)× C(q, r)→ C(p, r),

that is associative and such that the identities are local units for this composition.
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2.1. Linear 2-polygraphs

AmonoidMwith product · and identity element 1M corresponds to a categoryMwith only one 0-cell,
denoted by ∗, and the 1-cells of M(∗, ∗) are the elements of the monoidM. The identity arrow 1∗ of M
corresponds to the identity element 1M and the composition of u?0 v of 1-cells inM(∗, ∗) corresponds to
the product u ·v in the monoidM. The associativity and unitary properties of the composition, makingM
into a category, are induced by the corresponding properties of the product · of the monoid. In this way,
any monoid can be thought of as a one-0-cell category and a category can be thought of as a "monoid
with many 0-cells". In a similar way, the notion of algebroid describes the concept of associative algebra
with many 0-cells.

2.1.2. Algebroids. A 1-algebroid over a ground field K is a category enriched over the monoidal
category of vector spaces overK with its usual tensor product. Explicitly, a 1-algebroid A is specified by
the following data:

i) a set A0 of 0-cells, that we will denote by p, q...

ii) for every 0-cells p and q, a vector space A(p, q), whose elements are the 1-cells of A, with source p
and target q, that we will denote by f, g...

iii) for every 0-cells p, q and r, a linear map

?0 : A(p, q)⊗ A(q, r) −→ A(p, r)

called the 0-composition ofA and whose image on f⊗g is denoted by f?0g or fg. This composition
is associative, that is the relation:

(f ?0 g) ?0 h = f ?0 (g ?0 h),

holds for any 0-composable 1-cells f, g and h, and unitary, that is, for any 0-cell p, there is a 1-cell 1p
such that for any 1-cell f in A(p, q), the following relation holds

1p ?0 f = f ?0 1q = f.

A 1-cell f with source p and target q will be graphically represented by

p
f
// q

2.1.3. Remarks. An 1-algebra is an 1-algebroid with a single one 0-cell, that can be identified to an
(unital associative) algebras over K. We will denote by Alg the category of algebras over K. The notion
of 1-algebroid was first introduced by Mitchell as ring with several objects calledK-category in [Mit72],
terminology linear category appears also in the literature. A small Z-category is called a ringoid and a
one-0-cell ringoid is a ring.

2.1.4. One-dimensional polygraphs. An algebroid can be defined by generators and relations. The
generators are described by one-dimensional polygraphs. A 1-polygraph is a directed graph

Λ0 Λ1
t0

oo

s0
oo
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2. Linear rewriting

given by a set Λ0 of 0-cells, a set Λ1 of 1-cells together with two maps s0 and t0 sending a 1-cell x on its
source s0(x) and its target t0(x). A 1-polygraph with only one 0-cell will be identified to a set.

We will denote by Λ∗1 the free 1-category generated by the 1-polygraph (Λ0, Λ1). Its set of 0-cells
is Λ0 and for any 0-cells p and q, the elements of the hom-set Λ∗1(p, q) are paths from p to q in the
1-polygraph (Λ0, Λ1). The composition is the concatenation of paths and the identity on a 0-cell p is the
empty path with source and target p. If the 1-polygraph has only one 0-cell, Λ∗1 will be identified to the
free monoid on the set Λ1.

2.1.5. Free 1-algebroid. The free 1-algebroid on a 1-polygraph (Λ0, Λ1) is the 1-algebroid, denoted
byΛ`1, whose set of 0-cells isΛ0, and for any 0-cellsp andq,Λ`1(p, q) is the free vector space onΛ∗1(p, q).
In other words, the space Λ`1(p, q) has for basis the set of paths from p to q in the 1-polygraph Λ. If Λ0
is reduced to only one 0-cell, Λ`1 is the free algebra with basis Λ1. The source and target maps s0 and t0
are extended into maps onΛ`1, denoted by s0 and t0, in a natural way making the following two diagrams
commutative:

Λ0 Λ`1
s0

oo

Λ1

s0

cc

OO

ι1

OO
Λ0 Λ`1

t0
oo

Λ1

t0

cc

OO

ι1

OO

where ι1 denotes the inclusion of 1-cells of Λ1 in the free algebroid Λ`1.

2.1.6. Quivers and path algebras. The terminology directed graph is used in graph theory. The same
notion is also called quiver in representation theory. A linear representation of a quiver (Λ0, Λ1) is
a functor ρ from the free category Λ∗1 to the category Vect of vectors spaces. The path algebra of a
quiver (Λ0, Λ1) is the category algebra of the free category Λ∗1. That is, it is the K-algebra whose
underlying space is spanned by the set of 1-cells in Λ∗1 and the product on the basis elements is defined
by u · v = u ?0 v if u and v are 0-composable 1-cells in Λ∗1 and u · v = 0 otherwise. When the set Λ0 is
finite, then

∑
p∈Λ0

1p is the identity of the path algebra. Note that, we can obtain the path algebra of a
quiver Λ from the free 1-algebroid Λ`1 by forgetting the 1-category structure.

2.1.7. Linear 2-polygraph. A cellular extension of the 1-algebroid Λ`1 is a set Λ2 equipped with two
maps

Λ`1 Λ2
t1

oo

s1
oo

such that, for every α in Λ2, the pair (s1(α), t1(α)) is a 1-sphere in Λ`1, that is, the following globular
relations hold

s0s1(α) = s0t1(α) and t0s1(α) = t0t1(α).

An element of the cellular extension Λ2 will be graphically represented by a 2-cell with the following
globular shape

p

f

��

g

@@
α
��

q
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2.1. Linear 2-polygraphs

that relates parallel 1-cells f and g in Λ`1, also denoted by f
α %9 g or by α : f⇒ g.

We define a linear 2-polygraph as a triple (Λ0, Λ1, Λ2), where (Λ0, Λ1) is a 1-polygraph and Λ2 is a
cellular extension of the free 1-algebroid Λ`1:

Λ0 Λ`1
t0

oo

s0
oo

Λ1
t0

cc

s0

cc

OO

ι1

OO

Λ2
t1

cc

s1

cc

The elements of Λ2 are called the 2-cells of Λ, or the rewriting rules of Λ.

In the sequel, we will consider polygraphs with one 0-cell denoted ∗.

2.1.8. Presentations of algebras by generators and relations. Given a linear 2-polygraph Λ. The
algebra presented by Λ is the quotient algebra of the free algebra Λ`1 by the cellular extension Λ2. That
is, it is the algebra A obtained by identifying in Λ`1 all the 1-cells s1(a) and t1(a), for every 2-cell a in
Λ`2. We denote by f the image of a 1-cell f ofΛ`1 through the canonical projection π : Λ`1 −→ A. We say
that a linear 2-polygraph Λ is a presentation of an algebra A if the algebra presented by Λ is isomorphic
to A. Two linear 2-polygraphs are said to be Tietze equivalent if they present isomorphic algebras.

2.1.9. First toy example. Here our first toy example that we will use through this lecture:

Λ = 〈 ∗ | x, y, z | xyz
γ %9 x3 + y3 + z3 〉.

The free 1-algebroid generated by Λ1 = {x, y, z} is the free algebra K〈x, y, z〉. The algebra presented by
the linear 2-polygraph Λ is the quotient of the free algebra K〈x, y, z〉 by the ideal generated by the 1-cell
xyz− x3 − y3 − z3.

2.1.10. Other toy examples. We will consider the two following Tietze equivalent linear 2-polygraphs:

Λ = 〈 ∗ | x, y | x2
β %9 yx 〉, Λ ′ = 〈 ∗ | x, y | yx

β ′ %9 x2 〉.

2.1.11. Two-dimensional algebras. We define a 2-algebra A as an internal 1-category in the cate-
gory Alg. Explicitly, it is defined by a diagram

A1
i2

//
A2

t1
oo

s1
oo

A2 ×A1
A2

?1
oo (1)

where A2 ×A1
A2 is the algebra defined by the following pullback diagram in the category Alg:

A2 ×A1
A2 //

��

A2
s1
��

A2
t1

// A1
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2. Linear rewriting

Elements of the algebra A2 ×A1
A2 are pairs (a, a ′) of 1-composable 2-cells a and a ′, that is satisfying

t1(a) = s1(a
′). Themorphisms of algebras s1, t1 and ?1 satisfy the axioms in such away that Diagram (1)

defines a 1-category. Explicitly, the following diagrams commute in the category Alg:

A1
i2
//

id
  

A2

s1
��

A1

A1
i2
//

id
  

A2

t1
��

A1

A2 ×A1
A2

?1
//

π1
��

A2

s1

��

A2 s1
// A1

A2 ×A1
A2

?1
//

π2
��

A2

t1
��

A2
t1

// A1

A2 ×A1
A2 ×A1

A2
?1 ×A1

id
//

id×A1
?1
��

A2 ×A1
A2

?1
��

A2 ×A1
A2 ?1

// A2

A1 ×A1
A2

i2 ×A1
id
//

π2
''

A2 ×A1
A2

?1
��

A2 ×A1
A1

id×A1
i2

oo

π1
wwA2

where π1 and π2 denote respectively first and second projection. Note that the linear structure and the
product in the algebra A2 ×A1

A2 are given by

(a, a ′) + (b, b ′) = (a+ b, a ′ + b ′),

λ(a, a ′) = (λa, λa ′),

(a, a ′)(b, b ′) = (ab, a ′b ′),

for all pair of 1-composable 2-cells (a, a ′) and (b, b ′) and scalar λ in K.

2.1.12. Notations. For a 1-cell f, the identity 2-cell i2(f) is denoted by 1f, or f if there is no possible
confusion. The 1-composite ?1(a, a

′) of 1-composable 2-cells a and a ′, will be denoted by a ?1 a
′.

Elements of the algebra A1, called 1-cells of A, are graphically pictured as follows

∗
f

..

g

��
h

||

or ∗
f

##
g //

h

;; ∗

The elements of A2, called 2-cells of A are graphically represented by

∗

s1(a)

##

t1(a)

;;a
��

∗

Given 2-cells

∗

f
##

f ′

;;a
��

∗ and ∗

g

##

g ′

;;b
��

∗

10



2.1. Linear 2-polygraphs

we denote by ab their product in the algebra A2. The source and target maps s1 and t1 being morphisms
of algebras, we have

s1(ab) = s1(a)s1(b), and t1(ab) = t1(a)t1(b),

and for any scalars λ and µ in K, we have

s1(λa+ µb) = λs1(a) + µs1(b), and t1(λa+ µb) = λt1(a) + µt1(b).

Hence

∗

fg

##

f ′g ′

;;ab
��

∗ ∗

λf+ µg

&&

λf ′ + µg ′

88λa+ µb
��

∗

Given 1-cells h, f, f ′ and k in A1 and a 2-cell a in A2 such that

∗ h
// ∗

f
��

f ′

@@
a
��
∗ k

// ∗

we will denote by hak : hfk⇒ hf ′k the 0-composite 1h ?0 a ?0 1k.

2.1.13. Properties of 1-composition. Given 1-composable 2-cells:

∗

f

��

f ′ //

f ′′

AA

a��

a ′��

∗ and ∗

g

��

g ′ //

g ′′

AA

b��

b ′��

∗

in A2 ?A1
A2, the 1-composition ?1 being linear, a ?1 a

′ + b ?1 b
′ is a 2-cell from f + g to f ′ + g ′ and

we have
(a+ b) ?1 (a

′ + b ′) = a ?1 a
′ + b ?1 b

′.

and, for any scalar λ in K, λ(a ?1 a
′) is a 2-cell from λf to λf ′′ and we have

(λa) ?1 (λa
′) = λ(a ?1 a

′).

Finally, the compatibility with the product induces the following relation:

(a ?1 a
′)(b ?1 b

′) = ab ?1 a
′b ′. (2)

Relation (2) corresponds to the exchange law in the 2-algebra A between the 1-composition and the
product.

11



2. Linear rewriting

2.1.14. Remarkable identities in a 2-algebra. The following properties hold in a 2-algebra A

i) for any 1-composable 2-cells a and a ′ in A, we have

a ?1 a
′ = a+ a ′ − t1(a), (3)

ii) any 2-cell a in A is invertible for the ?1-composition, and its inverse is given by

a− = −a+ s1(a) + t1(a). (4)

iii) for any 2-cells a and b in A, we have

ab = as1(b) + t1(a)b− t1(a)s1(b) = s1(a)b+ at1(b) − s1(a)t1(b). (5)

Relation (3) is a consequence of the linearity of the 1-composition ?1. Indeed, for any (a, a ′)
in A2 ×A1

A2, we have

a ?1 a
′ = (a− s1(a

′) + s1(a
′)) ?1 (t1(a) − t1(a) + a

′),

= a ?1 t1(a) − s1(a
′) ?1 t1(a) + s1(a

′) ?1 a
′,

= a− t1(a) + a
′.

2.1.15. Exercice. Show identities (4) and (5).

2.1.16. The free 2-algebra on a linear 2-polygraph. The free 2-algebra over a linear 2-polygraph Λ
is the 2-algebra, denoted by Λ`2, defined as follows. In dimension 1, it is the free 1-algebra Λ`1 over Λ1.
For dimension 2, we consider the following diagram in the category of Λ`1-bimodule

Λ`1
i2

//
ΛM
2

t1
oo

s1
oo

where ΛM
2 is the Λ`1-bimodule

(
Λ`1 ⊗KΛ2 ⊗Λ`1

)
⊕Λ`1 and where the maps s1, t1 and i2 are defined by:

s1(fαg) = fs1(α)g, t1(fαg) = ft1(α)g and s1(h) = t1(h) = i2(h) = h,

for all 2-cell α in Λ2, and 1-cells f, g, h in Λ`1. The quotient of the Λ`1-bimodule ΛM
2 by the equivalence

relation generated by

as1(b) + t1(a)b− t1(a)s1(b) ∼ s1(a)b+ at1(b) − s1(a)t1(b),

for all a and b in Λ`1⊗KΛ2⊗Λ`1, has a structure of algebra, denoted by Λ`2, and whose product is given
by

ab = as1(b) + t1(a)b− t1(a)s1(b).

We prove that the source and target maps are compatible with this quotient, so giving a structure of
2-algebra:

Λ`1
i2

//
Λ`2

t1
oo

s1
oo

12



2.1. Linear 2-polygraphs

2.1.17. Monomials. A monomial in the free 2-algebra Λ`2 is a 1-cell of the free monoid Λ∗1 over Λ1.
The set monomials of Λ`2, also denoted by Λ∗1, forms a linear basis of the free algebra Λ`1. As a
consequence, every nonzero 1-cell f of Λ`1 can be uniquely written as a linear combination of pairwise
distinct monomials u1, . . . , up:

f = λ1u1 + . . .+ λpup

with λi ∈ K \ {0}, for all i = 1, . . . , p. The set of monomials {u1, . . . , up} will be called the support of f
and denoted by Supp(f).

2.1.18. 2-monomials. A 2-monomial of a free 2-algebra Λ`2 is a 2-cell of Λ`2 with shape uαv, where α
is a 2-cell in Λ2, and u and v are monomials in Λ∗1:

∗ u
// ∗

s1(α)

""

t1(α)

<<α
��

∗ v
// ∗

By construction of the free 2-algebra Λ`2, and by freeness of Λ`1, every non-identity 2-cell a of Λ`2 can be
written as a linear combination of pairwise distinct 2-monomials a1, . . . , ap and of an 1-cell h of Λ`1:

a = λ1a1 + . . .+ λpap + h. (6)

2.1.19. Exercise. Prove that the decomposition in (6) is unique up to the following relations

as1(b) + t1(a)b− t1(a)s1(b) = s1(a)b+ at1(b) − s1(a)t1(b), (7)

for all 2-monomials a and b in Λ`2.

2.1.20. Monomial linear 2-polygraphs. A linear 2-polygraph Λ is left-monomial if, for every 2-cell α
of Λ2, the source s1(α) is a monomial in Λ∗1 \ Supp(t1(α)). Note that a non-left monomial linear
2-polygraph would produce useless ambiguity only due to the linear structure.

A linear 2-polygraph Λ is monomial if it is left-monomial and for every 2-cell α of Λ2, t1(α) = 0

holds. A monomial algebra is an algebra admitting a presentation by a monomial linear 2-polygraph.

2.1.21. Degrees and length. Formonomialsu and v inΛ∗1, we denote byOccv(u) the number of different
occurrences of the monomial v in the monomial u. For instance Occx2(x4) = 3 and Occy(x4) = 0. For
a subsetM of monomials in Λ∗1, we denote

OccM(u) =
∑
v∈M

Occv(u).

The length of a monomial u in Λ∗1, denoted by `(u), is equal to OccΛ1
(u).

2.1.22. Exercise. Show that any linear 2-polygraph is Tietze equivalent to a left-monomial linear 2-
polygraph.

13



2. Linear rewriting

2.1.23. Examples. The linear 2-polygraph Λ given in Example 2.1.9 is left-monomial. The linear 2-
polygraph 〈 ∗ | x, y | x2 + y2 ⇒ 2xy 〉 is not left-monomial, but it is Tietze equivalent to the following
left-monomial 2-polygraph:

Λ ′ = 〈 ∗ | x, y | xy
α ′ %9 1

2
(x2 + y2) 〉.

The linear 2-polygraphs 〈 ∗ | x | x2 ⇒ 0 〉 and 〈 ∗ | x, y | xy⇒ 0 〉 are monomials.

2.2. Linear rewriting steps

2.2.1. Elementary 2-cells. LetΛ be a linear 2-polygraph. An elementary 2-cell of the free 2-algebraΛ`2
is a 2-cell of Λ`2 with shape

λ ∗

s1(a)

��

t1(a)

BB
a�� ∗ + ∗

g
//∗

where a is a 2-monomial, g is a 1-cell of Λ`1 and λ is a nonzero scalar in K.

2.2.2. Example. With the polygraph Λ ′ of Example 2.1.23, the 2-cell

2xα ′y+ y3 : 2x2y2 ⇒ x3y+ xy3 − y3

is elementary and the 2-cell

xα ′ + α ′y : x2y+ xy2 ⇒ 1

2
(x3 + xy2 + x2y+ y3)

is not elementary.

2.2.3. Exercise. Show that any 2-cell in a free 2-algebraΛ`2 can be decomposed into a 1-composition of
elementary 2-cells of Λ`2

2.2.4. Rewriting steps. Let Λ be a left-monomial linear 2-polygraph. A rewriting step of Λ is an
elementary 2-cell

λ ∗

u

��

f

BB
a�� ∗ + ∗

g
//∗

of Λ`2 such that λ is a nonzero scalar and u is not in the support of g.

14



2.2. Linear rewriting steps

2.2.5. Examples. For the linear 2-polygraph given in Example 2.1.9, the 2-cell

3xγ− 3xz3 : 3x2yz− 3xz3 %9 3x4 + 3xy3

is a rewriting step. For a linear 2-polygraph having a rule α : u⇒ f, the 2-cell

−α+ (u+ f) : −u+ (u+ f) %9 − f+ (u+ f)

is not a rewriting step because the monomial u appears in the context u+ f.

2.2.6. Exercise, [GHM17, Lemma 3.1.2]. Let Λ be a left-monomial linear 2-polygraph and let a be an
elementary 2-cell of the 2-algebra Λ`2. Show that a can be factorised in the 2-algebra Λ`2 into

a
�3

b  4
c

j~

=

where b and c are either identities of rewriting steps.

2.2.7. Example. Let Λ be a linear 2-polygraph and let α : u ⇒ v be a 2-cell of Λ2. The 2-cell
−α+ (u+ v) and α+ (5u+ 4v) are not rewriting steps of Λ. They can be decomposed respectively as
follows:

−u+ (u+ v)

−α+ (u+ v)
$8

v �3

−v+ (u+ v)

αk�
(1− 1)u+ v

=

u+ (5u+ 4v)

α+ (5u+ 4v)
$8

6α+ 4v !5

v+ (5u+ 4v)

5α+ 5vj~
10v

=

2.2.8. Rewriting sequences. A 2-cell a of Λ`2 is positive, or a rewriting sequence, if it is an identity or
a 1-composite

f0
a1 %9 f1 %9 · · · %9 fk−1

ak %9 fk

of rewriting steps of Λ.

2.2.9. Reduced cells. A 1-cell f ofΛ`1 is called reduced, or irreducible, with respect toΛ2, if there is no
rewriting step of Λ with source f. As a consequence, a 1-cell is reduced if and only if it is the zero 1-cell
of Λ`1, or a linear combination of reduced monomials in Λ∗1. The reduced 1-cells of Λ`1 form a vector
subspace ofΛ`1, denoted byΛir1 . SinceΛ is left-monomial, the set of reduced monomials ofΛ∗1, denoted
by Λirm1 , forms a basis of the vector space Λir1 .

We denote by s1(Λ) the set of redex of a reduced left-monomial linear 2-polygraph Λ defined by

s1(Λ) = {s1(α) | α in Λ2}.

In [Ani86], a redex is called an obstruction. The number of possible application of rules of Λ2 to a
monomial u is Occs1(Λ)(u).
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2. Linear rewriting

2.2.10. Reduced linear 2-polygraphs. We say that a linear 2-polygraph Λ is left-reduced if, for every
2-cell α in Λ2, the 1-cell s1(α) is reduced with respect to Λ2 \ {α}. We say that Λ is right-reduced
if, for every 2-cell α of Λ, the 1-cell t1(α) is reduced. The linear polygraph Λ is reduced if it is both
left-reduced and right-reduced.

2.2.11. Exercise. Show that any left-monomial linear 2-polygraph is Tietze equivalent to a reduced
left-monomial linear 2-polygraph.

2.2.12. Normal forms. If f is a 1-cell ofΛ`1, a normal form for f with respect toΛ2 is a reduced 1-cell g
of Λ`1 such that there exists a positive 2-cell a : f⇒ g in Λ`2.

2.3. Termination of linear 2-polygraphs

We recall the notions of rewrite relation and termination for linear 2-polygraphs from [GHM17, 3.2]. Let
us fix a left-monomial linear 2-polygraph Λ.

2.3.1. Termination. The rewrite relation of Λ is the smallest transitive binary relation on Λ∗1, denoted
by ≺Λ, such that

i) the relation ≺Λ is compatible with Λ2, that is w ≺Λ u for every 2-cell α : u ⇒ f of Λ and every
monomial w in Supp(f),

ii) the relation ≺Λ is compatible with products, that is u ′ ≺Λ u implies vu ′w ≺Λ vuw for every
monomials u, u ′, v and w of Λ∗1.

We say that the 2-polygraph Λ terminates if the rewrite relation ≺Λ is well-founded, that is, there is
no infinite descending chains in Λ∗1:

u1 �Λ u2 �Λ . . . �Λ un �Λ un+1 �Λ . . .

2.3.2. Example. Consider the linear 2-polygraphΛ = 〈 ∗ | x, y | xy
α %9 x2+y2 〉. We have xy �Λ x2

and xy �Λ y2. Following compatibility with products we have

x2y �Λ xy2 �Λ x2y.

Hence the relation≺Λ is not well-founded and the polygraph Λ is not terminating. Note that, we have an
infinite sequence of rewriting steps:

x2y
xα %9 x3 + xy2

x3 + αy%9 x3 + y3 + x2y %9 . . .

2.3.3. The rewrite relation on 1-cells. The rewrite relation ≺Λ is extended to the 1-cells of Λ`1 by
setting, for any 1-cells f and g, g ≺Λ f if the following two conditions hold

i) there exists a monomial in Supp(f) which is not in Supp(g),

ii) for any monomial v in Supp(g)\Supp(f), there exists a monomial u in Supp(f)\Supp(g), such
that v ≺Λ u
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2.4. Monomial orders

2.3.4. Proposition. The rewrite relation ≺Λ is well-founded on 1-cells if and only if it is well-founded
on monomials.

If Λ terminates, then for every rewriting step a of Λ, we have t1(a) ≺Λ s1(a). This implies that the
2-algebra Λ`2 contains no infinite sequence of pairwise 1-composable rewriting steps

f0
a1 %9 f1 %9 · · · %9 fk−1

ak %9 fk %9 · · ·

so that every 1-cell of Λ`1 admits at least one normal form with respect to Λ2.

2.4. Monomial orders

2.4.1. Monomial orders. A total order ≺ on the set of monomials Λ∗1 is a monomial order if the
following conditions are satisfied

i) ≺ is a well-order, that is, there is no infinite descending chains in Λ∗1.

u1 � u2 � u3 � . . . � un � un+1 � . . .

ii) ≺ is compatible with the multiplicative structure on monomials, that is

u ≺ u ′ implies vuw ≺ vu ′w,

for all monomials u, u ′, v and w in Λ∗1.

2.4.2. Example. Given a total order relation≺ onΛ1, we define the left degree-wise lexicographic order
generated by ≺, or deglex order generated by ≺, as the order ≺deglex on Λ∗1 that compare two monomials
first by degree and then lexicographically. It is defined by

i) y1 . . . yp ≺deglex x1 . . . xq, if p < q,

ii) y1 . . . yj−1yj . . . yp ≺deglex y1 . . . yj−1xj . . . xp, if yj ≺ xj.

2.4.3. Exercise. Show that the order ≺deglex is a monomial order.

2.4.4. Exercise. Explain why the pure lexicographic order is not a monomial order. Show that it is
neither a well-order nor compatible with the product of monomials.

2.4.5. Polygraph compatible with a monomial order. A linear 2-polygraph Λ is say to be compatible
with a monomial order ≺ if for every 2-cell α : u ⇒ f of Λ2, then w ≺ u for any monomial w in the
support of f. The monomial order ≺ is thus a well-founded rewrite relation for Λ. It follows that any
linear 2-polygraph compatible with a monomial order is terminating. The converse is false in general as
we will see in Exercise 2.4.7.

2.4.6. Example. Consider the linear 2-polygraph Λ = 〈 ∗ | x, y | x2
α %9 xy − y2 〉. It is Tietze

equivalent to the linear 2-polygraph of Example 2.3.2, but it is terminating. Indeed, having xy ≺ x2 and
y2 ≺ x2, the linear 2-polygraph Λ is compatible with the deglex order ≺deglex induced by y ≺ x, hence
it is terminating. An other way to prove that Λ is terminating, is to count the number of occurrence of x
in monomials. For any u in Λ∗1, let denote by A(u) the number of occurrence of x in u. To prove that
the linear 2-polygraph Λ terminates, it is sufficient to check that, for every rewriting step a : s1(a)⇒ f,
we have A(s1(a)) > A(v), for any monomial v in Supp(f).
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2. Linear rewriting

2.4.7. Exercise, [GHM17, Ex. 3.2.4]. Show that the linear 2-polygraph Λ given in Example 2.1.9 is
terminating. Show that Λ is not compatible with a monomial order.

2.4.8. Exercise, [Ber78, Ex. 5.2.1.]. Examine termination of the linear 2-polygraph 〈 ∗ | x, y | α 〉 in
each of the following situations

x2y
α %9 yx, yx

α %9 x2y, x2y2
α %9 yx, yx

α %9 x2y2.

2.4.9. Noetherian induction principle. Let us recall the principle of noetherian induction for termi-
nating rewriting systems, see [Hue80] for more details. Let Λ be a left-monomial terminating linear
2-polygraph. The principle can be used to prove by induction a property formulated on the 1-cells of Λ`1.
Given a property P(f) of the 1-cells f of Λ`1. In order to show that P(f) holds for any 1-cell f of Λ`1, it
suffices to show that

i) P(f) holds for f reduced with respect to Λ2,

ii) P(f) holds under the assumption that P(g) is hold for every g ≺ f.

2.4.10. Leading terms. Let Λ`1 be a free algebra over a set Λ1 and let ≺ be a monomial order on Λ`1.
For a nonzero 1-cell f of Λ`1, the leading monomial of f with respect to ≺ is the monomial of f, denoted
by lm(f), such that w ≺ lm(f), for any monomial w in the support of f. The leading coefficient of f is
the coefficient lc(f) of lm(f) in f, and the leading term of f is the 1-cell lt(f) = lc(f) lm(f) of Λ`1. We
also define lt(0) = lc(0) = lm(0) = 0.

Note that for any 1-cells f and g in Λ`1, we have f ≺ g if and only if either lm(f) ≺ lm(g) or
(lm(f) = lm(g) and f− lt(f) ≺ g− lt(g)). The following property

lt(fg) = lt(f) lt(g),

for any 1-cells f and g is also useful.

2.4.11. Leading polygraph. Given a monomial order ≺ on Λ`1 and a nonzero 1-cell g in Λ`1, we define
the 2-cell:

αg,≺ : lm(g) %9 lm(g) −
1

lc(g)
g.

For any set G of nonzero 1-cells in Λ`1, the leading 2-polygraph associated to G with respect to ≺ is the
linear 2-polygraph Λ(G,≺) whose set of 1-cells is Λ1 and

Λ(G,≺)2 = {αg,≺ | g ∈ G}.

By definition, the leading polygraph Λ(G ≺) is compatible with the monomial order ≺.
A monomial w in Λ∗1 is G-reduced with respect to the monomial order ≺ if it reduced with respect

to Λ(G,≺)2, that is, there is no factorization w = u lm(g)v, with u and v monomials in Λ∗1 and g in G.
A set G of 1-cells is reduced with respect to the monomial order ≺ if for any 1-cell g in G, any monomial
in the support of g is (G \ {g})-reduced.
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3. Convergence in linear rewriting systems

3. Convergence in linear rewriting systems

3.1. Ideal of a linear 2-polygraph

3.1.1. The ideal of a linear 2-polygraph. Given a linear 2-polygraph Λ. We denote by I(Λ) the
two-sided ideal of the free algebra Λ`1 generated by the following set of 1-cells

{s1(α) − t1(α) | α ∈ Λ2}.

The ideal I(Λ) is made of the linear combinations

p∑
i=1

λiui(s1(αi) − t1(αi))vi,

for pairwise distinct 2-monomials u1α1v1, . . . , upαpvp ofΛ`1, and nonzero scalars λ1, . . . , λp. Note that
the algebra presented by Λ is isomorphic to the quotient of the free algebra Λ`1 by the ideal I(Λ).

3.1.2. Exercise. Let Λ be a linear 2-polygraph. Given 1-cells f and g in Λ`1, show that the 1-cell f − g
belongs to I(Λ) if and only if there exists a 2-cell a : f⇒ g in Λ`2.

3.1.3. Suppose that Λ is a terminating left-monomial linear 2-polygraph. Every 1-cell f of Λ`1 admits
at least a normal form f̃. That is, f̃ is reduced and there exists a positive 2-cell a : f ⇒ f̃ in Λ`2. As a
consequence, we have a decomposition f = f̃+(f− f̃), with f̃ inΛir1 and f− f̃ in I(Λ) by Exercice 3.1.2.
It follows that the vector space Λ`1 admits the following decomposition

Λ`1 = Λ
ir
1 + I(Λ). (8)

3.1.4. Example. Note that the decomposition (8) is not direct in general. Indeed, consider the linear
2-polygraph Λ from Example 2.1.10. It is terminating thanks to the deglex order generated by x > y.
Consider the two following reduction sequences reducing the 1-cell x3:

yx2
yβ %9 y2x

x3

βx (<

xβ
#7 xyx

Thus the 1-cell
xyx− y2x = (x2 − yx)x− x(x2 − yx) + y(x2 − yx)

is both in Λir1 and I(Λ). It follows that the sum Λir1 + I(Λ) is not direct. We will see in the next section a
sufficient condition on the linear 2-polygraph Λ to have a direct decomposition.
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3. Convergence in linear rewriting systems

3.2. Confluence and convergence

3.2.1. Branchings and confluence. LetΛ be a left-monomial linear 2-polygraph. A branching ofΛ is a
non-ordered pair (a, b) of positive 2-cells ofΛ`2with a common source s1(a) = s1(b). A branching (a, b)
is local if both a and b are rewriting steps of Λ. A branching (a, b) of Λ is confluent if there exist
positive 2-cells a ′ and b ′ of Λ as in the following diagram

g a ′

�+
f

a &:

b
$8

f ′

h b ′

5I

We say that Λ is confluent (resp. locally confluent) if every branching (resp. local branching) of Λ is
confluent. An immediate consequence of the confluence property is that every 1-cell of Λ`1 admits at
most one normal form.

Under termination hypothesis, we have the following characterization of the confluence.

3.2.2. Proposition. Let Λ be a terminating left-monomial linear 2-polygraph. The following conditions
are equivalent.

i) Λ is confluent.

ii) Every 1-cell of I(Λ) admits 0 as a normal form with respect to Λ2.

iii) The vector space Λ`1 admits the direct decomposition Λ
`
1 = Λ

ir
1 ⊕ I(Λ).

Proof. i) ⇒ ii). Let f be a 1-cell in the ideal I(Λ), then there exists a 2-cell a : f ⇒ 0 in Λ`2. The
polygraph Λ being confluent, the 1-cells f and 0 have the same normal form. Finally, 0 being reduced,
this implies that 0 is a normal form for f.

ii)⇒ iii). Prove that Λir1 ∩ I(Λ) = 0. If f is in Λir1 , then f̂ = f is reduced and, thus, admits itself as
normal form. If f is in I(Λ), then f̂ = 0 by ii). Hence Λir1 ∩ I(Λ) = 0.

iii) ⇒ i). Given a branching (f
a %9 g, f

b %9 h). Since Λ terminates, the 1-cells g and h admit
normal forms, say g1 and h1 respectively, and there exist positive 2-cells a1 and b1 in Λ`2:

g
a1 %9 g1

f

a &:

b
$8 h

b1
%9 h1

with g1 and h1 reduced. It follows that g1−h1 is also reduced. Moreover, the 2-cell (a?1a1)− ?1 (b?b1)
has g1 as source and h1 as target. This implies that g1 − h1 is also in I(Λ). As Λir1 ∩ I(Λ) = 0, we
have g1 − h1 = 0, hence the branching (a, b) is confluent.
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3.2. Confluence and convergence

3.2.3. Convergence. We say that a left-monomial linear 2-polygraphΛ is convergent if it terminates and
it is confluent. In that case, every 1-cell f of Λ`1 has a unique normal form, denoted by f̂, such that f = g
holds in Λ if and only if f̂ = ĝ holds in Λ`1.

As a consequence, if Λ is a convergent presentation of an algebra A, the assignment of every 1-cell f
of A to the normal form f̂, defines a section ι : A −→ Λ`1 of the canonical projection π : Λ`1 −→ A. The
section ι is a linear map, i.e., it satisfies ̂λf+ µg = λf̂ + µĝ, and it preserves the identities because Λ
terminates.

3.2.4. Exercise. Show that the section ι is not a morphism of algebras in general.

3.2.5. Suppose that Λ is a convergent linear 2-polygraph. By Proposition 3.2.2 the following sequence
of vector spaces is exact:

0 // I(Λ) // Λ`1
// Λir1

// 0.

The vector space Λir1 admits Λirm1 as a basis, hence Λirm1 forms a linear basis of the quotient alge-
bra Λ`1/I(Λ). The polygraph Λ being convergent, any 1-cell of Λ`1 has a unique normal form, hence the
product defined by f · g = f̂g is associative. Indeed, for any 1-cells f, g and h, we have

(f · g) · h = f̂g · h =
̂̂
fgh = f̂ĝh = f · ĝh = f · (g · h).

It follows that this product equips Λir1 with a structure of algebra in such a way that Λir1 is isomorphic to
the quotient algebra Λ`1/I(Λ). We have thus proved the following result.

3.2.6. Theorem ([GHM17, Thm 3.4.2]). Let A be an algebra andΛ be a convergent presentation of A.
The set Λirm1 of reduced monomials is a linear basis of A. Moreover, the vector space Λir1 equipped with
the product defined by f · g = f̂g, for any 1-cells f and g in Λir1 , is an algebra isomorphic to A.
3.2.7. Exercise. Compute a linear basis of the algebra presented by 〈 ∗ | x, y | xy = x2〉.

3.2.8. Exercise. Compute a linear basis for the symmetric algebra on k variables presented by

〈 x1, . . . , xk | xixj
τij %9 xjxi | 1 6 i < j 6 k 〉

and for the skew-polynomial algebra on k variables presented by

〈 x1, . . . , xk | xixj
τij %9 qjixjxi | 1 6 i < j 6 k 〉,

where the qji are scalars in K.

3.2.9. Exercise: Poincaré-Birkhoff-Witt theorem, [Bok76, §1], [Ber78, Thm. 3.1]. Consider an
ordered bases x1 ≺ x2 ≺ . . . ≺ xk of a Lie algebra g. Consider the following ideals of the free tensor
algebra T(g) over g:

I = 〈 xjxi − xixj | 1 6 i < j 6 k 〉,
J = 〈 xjxi − xixj + [xi, xj] | 1 6 i < j 6 k 〉.

Show that the symmetric algebra S(g) = T(g)/I and the enveloping algebra U(g) = T(g)/J are isomor-
phic as vector spaces.
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3. Convergence in linear rewriting systems

3.2.10. From local to global confluence. The Newman lemma, also called the diamond lemma, states
that for terminating rewriting systems local confluence and confluence are equivalent properties. This
result was proved by Newman in [New42] for abstract rewriting systems. A short and simple proof of
this result was given by Huet in [Hue80] using the principle of noetherian induction. Let us recall the
arguments of this proof for linear 2-polygraphs.

3.2.11. Theorem (Newman’s Lemma). Let Λ be a terminating left-monomial linear 2-polygraph.
Then Λ is confluent if and only if it is locally confluent.

Proof. The proof works as for abstract rewriting systems. One implication is trivial. Suppose Λ locally
confluent and prove that it is confluent at every 1-cell f of Λ`1. We proceed by noetherian induction on f
using the principle given in 2.4.9. If f is reduced, the only branching with source f is (1f, 1f) which is
confluent.

Suppose that f is a nonreduced 1-cell of Λ`1 and such that Λ is confluent at every 1-cell g ≺ f.
Consider a branching (a, b) of Λ with source f. If a or b is an identity, then (a, b) is confluent.
Otherwise, we prove that the branching (a, b) is confluent by induction. Since a and b are not identities,
they admit decompositions a = a1 ?1 a2 and b = b1 ?1 b2 where a1 and b1 are rewriting steps, and a2
and b2 are positive 2-cells. By local confluence, the local branching (a1, b1) is confluent. Hence there
exist positive 2-cells a ′1 and b ′1 as indicated in the following diagram

f
b1

�'

a1

s�
g1

a2

{� a ′1 �0

Local
confluence h1

b ′1q�

b2


�
g

a ′2 �3

Induction f ′1

ch|

h

b ′2
m�

g ′

d "6

Induction

f ′

We have g1 ≺Λ f and h1 ≺Λ f. Then we apply the induction hypothesis on the branching (a2, a ′1) to get
positive 2-cells a ′2 and c, and, then, to the branching (b ′1 ?1 c, b2) to get positive 2-cells d and b ′2, which
complete the proof.

3.2.12. Example, [Hue80]. The requirement of noetherianity is necessary to prove confluence from
local confluence. Indeed, consider the 2-polygraph generated by the following four 2-cells

g f
bey

a
�,

f ′
b ′ %9

a ′

Vj
g ′

It is locally confluent but it is not confluent.
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3.3. Critical branching lemma

3.3. Critical branching lemma

3.3.1. Local branchings. A case analysis leads to a partition of the local branchings of a left-monomial
linear 2-polygraph Λ into the following four families, see [GHM17, 3.3.2] for details.

i) Aspherical branchings, for all 2-monomial a : u ⇒ f of Λ`2, nonzero scalar λ, and 1-cell h of Λ`1
such that the monomial u is not in the support of h:

λu+ h

λa+ h

�*

λa+ h

5Iλf+ h

ii) Additive branchings, for all 2-monomials a : u⇒ f and b : v⇒ g of Λ`2, nonzero scalars λ and µ,
and 1-cell h of Λ`1 such that the monomials u and v are not in the support of h:

λf+ µv+ h

λu+ µv+ h

λa+ µv+ h &:

λu+ µb+ h $8 λu+ µg+ h

iii) Peiffer branchings, for all 2-monomials a : u ⇒ f and b : v ⇒ g of Λ`2, nonzero scalar λ, and
1-cell h of Λ`1 such that the monomial uv is not in the support of h:

λfv+ h

λuv+ h

λav+ h %9

λub+ h $8 λug+ h

iv) Overlapping branchings, for all 2-monomials a : u ⇒ f and b : u ⇒ g of Λ`2 such that the
branching (a, b) is neither aspherical nor Peiffer, and all nonzero scalar λ and 1-cell h of Λ`1 such
that the monomial u is not in the support of h:

λf+ h

λu+ h

λa+ h %9

λb+ h
%9 λg+ h
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3. Convergence in linear rewriting systems

3.3.2. Critical branchings. A critical branching of a left-monomial linear 2-polygraph Λ is an over-
lapping branchings, as defined in 3.3.1, with λ = 1 and h = 0, and that is minimal for the relation on
branchings defined by

(a, b) v (waw ′, wbw ′) for any w and w ′ in Λ∗1.

By case analysis on the source of critical branchings, they must have one of the following two shapes

//   //
FF

//

α
EY

β ��

//
��
//

BB
//

α
EY

β��

with α, β in Λ2. When the linear 2-polygraph Λ is reduced, the first case cannot occur since, otherwise,
the monomial s1(α) would be reducible by β.

3.3.3. Exercise. Let Λ be a reduced linear 2-polygraph. Show that for any critical branching

u
//

��v
//

BB
w
//

α
EY

β��

the monomial u, v and w are reduced and cannot be identities or null.

3.3.4. Critical branching lemma. ByNewman’s lemma 3.2.11, for terminating rewriting systems, local
confluence and confluence are equivalent properties. It turns out that one can decide whether a rewriting
system is convergent by checking local confluence. For string rewriting systems, that is 2-polygraphs,
the critical branching lemma states that local confluence is equivalent to the confluence of all critical
branching, see [GM18, 3.1.5] for details. For linear 2-polygraphs the critical branching lemma given in
[GHM17] differs from the case of 2-polygraphs. Indeed, in the linear setting the termination hypothesis
is required. Moreover, nonoverlapping branchings may be non confluent as illustrated by the following
example in which an additive branching is nonconfluent.

3.3.5. Example. Some local branchings can be nonconfluent without termination, even if critical con-
fluence holds. Indeed, consider the linear 2-polygraph

〈 ∗ | x, y | x
α %9 y, y

β %9 − x 〉

It has no critical branching, but it has a nonconfluent additive branching:

2y

x+ y

α+ y &:

x+ β
$8 0
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3.3. Critical branching lemma

Here another example from [GHM17, Rem. 4.2.4] for instance the following linear 2-polygraph

〈 ∗ | x, y, z, t | xy α %9 xz, zt
β %9 2yt 〉

has no critical branching, but it has a nonconfluent additive branching:

4xyt
4αt

%9 4xzt
4xβ
%9 · · ·

2xzt

2xβ )=

xzt+ xβ
�,

xyt+ xzt

αt+ xzt )=

xyt+ xβ
!5

= xzt+ 2xyt

3xyt αt+ 2xyt

2F

3αt
!5 3xzt

3xβ

%9 6xyt
6αt

%9 · · ·

3.3.6. If a linear 2-polygraph Λ is terminating and with any critical branching confluent, we can show
that such an additive branching is confluent by noetherian induction on the sources of the branchings.
Let consider an additive branching (λu+µv+h, λu+µg+h) as in 3.3.1 and suppose thatΛ is locally
confluent at every g ≺Λ λu+ µv+ h. By linearity of the 1-composition, the following equation

(λa+ µv+ h) ?1 (λf+ µb+ h) = (λu+ µb+ h) ?1 (λa+ µg+ h)

holds in the free 2-algebra Λ`2:

λf+ µv+ h

a ′1

!5

λf+ µb+ h
�2

f ′ a ′2

	�
Inductionλu+ µv+ h

λa+ µv+ h *>

λu+ µb+ h  4

= λf+ µg+ h

c

/C

d
�/

=

=

k

λu+ µg+ h

λa+ µg+ h

,@

b ′1

)= g ′ b ′2

AU

Note that the dotted 2-cells λa + µg + h and λf + µb + h may be not positive in general. Indeed, the
monomial u can be in the support of g or the monomial v can be in the support of f, as illustrated in
Example 3.3.5. However, those 2-cells are elementary, hence there exist, see Exercise 2.2.6, positive
2-cells a ′1, b ′1, c and d that satisfy

a ′1 = (λf+ µb+ h) ?1 c and b ′1 = (λa+ µg+ h) ?1 d.
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3. Convergence in linear rewriting systems

We have f ≺Λ u and g ≺Λ v, hence λf + µg + h ≺Λ λu + µv + h. Thus, the branching (c, d) is
confluent by induction hypothesis, yielding the positive 2-cells a ′2 and b ′2.

Under terminating hypothesis, all local branching given in 3.3.1 are confluent if all critical branching
are confluent, see [GHM17, 4.2] for a proof of this result.

3.3.7. Theorem (Critical branching lemma, [GHM17, Cor. 4.2.2]). A terminating left-monomial
linear 2-polygraph is locally confluent if and only if all its critical branchings are confluent.

As consequence of the critical branching lemma and of Newman’s lemma 3.2.11, a terminating
left-monomial linear 2-polygraph is confluent if all its critical branchings are confluent. In particular a
terminating left-monomial 2-polygraph with no critical branching is convergent.

3.3.8. Example. The linear 2-polygraph given in Example 2.1.9 is terminating, see Exercise 2.4.7.
Moreover, it does not have critical branching, hence it is convergent.

3.3.9. The Knuth-Bendix completion procedure. Let us recall the completion procedure introduced
in [KB70] to the setting of linear 2-polygraphs. Let Λ be a left-monomial linear 2-polygraph compatible
with a monomial order ≺ on Λ∗1. A Knuth-Bendix completion of Λ is a linear 2-polygraph KB(Λ)
obtained by the following procedure that examines the confluence of the set of critical branchings.

Input: Λ be a left-monomial linear 2-polygraph compatible with a monomial order ≺ on Λ∗1.
KB(Λ) :=Λ
Cb := { critical branchings with respect to Λ2 }
while Cb 6= ∅ do

Picks a branching in Cb:

v

u

f $8

g
&: w

Cb := Cb \ {(f, g)}
Reduce v to a normal form v̂ with respect to KB(Λ)2
Reduce w to a normal form ŵ with respect to KB(Λ)2

v %9 v̂

u

f $8

g
%9 w %9 ŵ

g = v̂− ŵ
if g 6= 0 then

KB(Λ)2 := KB(Λ)2 ∪ {αg,≺ : lm(g)⇒ lm(g) − 1
lc(g)g }

Cb := Cb ∪ { critical branching created by αg,≺ }
end

end
If the procedure stops, it returns a finite convergent left-monomial linear 2-polygraph KB(Λ).

Otherwise, it builds an increasing sequence of left-monomial linear 2-polygraphs, whose limit is also
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3.3. Critical branching lemma

denoted byKB(Λ). Note that, if the starting linear 2-polygraph Λ is convergent, then the Knuth-Bendix
completion of Λ is Λ itself. The linear 2-polygraph KB(Λ) obtained by this procedure depends on
the order of examination of the critical branchings. Finally, since all the operations of adding new rules
performed by the procedure are Tietze transformations, the linear 2-polygraphKB(Λ) is Tietze-equivalent
to Λ.

3.3.10. Exercice, [GHM17, Rem. 4.2.4]. Prove that the following linear 2-polygraph has a nonconfluent
Peiffer branching

〈 ∗ | x, y, z | xy α %9 2x, yz
β %9 z 〉.

3.3.11. Weyl algebras. LetK be a field of characteristic zero. TheWeyl algebra of dimension n overK
is the algebra presented by the linear 2-polygraph whose 1-cells are

x1, . . . , xn, ∂1, . . . , ∂n

and with the following 2-cells:

xixj ⇒ xjxi, ∂i∂j ⇒ ∂j∂i, ∂ixj ⇒ xj∂i, for any 1 6 i < j 6 n,

∂ixi ⇒ xi∂i + 1, for any 1 6 i 6 n.

This polygraph is convergent with the following six families of confluent critical branchings:

xjxixk %9 xjxkxi

!
xixjxk

)=

!5

xkxjxi

xixkxj %9 xkxixj

;O

∂j∂i∂k %9 ∂j∂k∂i

�"
∂i∂j∂k

*>

!5

∂k∂j∂i

∂i∂k∂j %9 ∂k∂i∂j

;O

xj∂ixk %9 xjxk∂i

�"
∂ixjxk

)=

!5

xkxj∂i

∂ixkxj %9 xk∂ixj

;O

∂j∂ixk %9 ∂jxk∂i

�"
∂i∂jxk

)=

!5

xk∂j∂i

∂ixk∂j %9 xk∂i∂j

;O

xi∂ixj + xj %9 xixj∂i + xj

�(
∂ixjxk

,@

"6

xjxi∂i + xj

∂ixjxi %9 xj∂ixi

Ui

∂j∂ixj %9 ∂jxj∂i

�(
∂i∂jxj

(<

�2

xj∂j∂i + ∂i

∂ixj∂j + ∂i %9 xj∂i∂j + ∂i

4H

where 1 6 i < j 6 n.
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3. Convergence in linear rewriting systems

3.3.12. Exercice. In his seminal paper on the diamond lemma, Bergman point out that he was first
led to the ideas of his paper with the following American Mathematical Monthly Advanced Problem
5082, [Ber78, 2.1.].

Let R be a ring in which, if either x+ x = 0 or x+ x+ x = 0, it follows that x = 0. Suppose
that a, b, c and a+ b+ c are all idempotents in R. Does it follows that ab = 0?

Solve this problem.
[
Hints. Consider the following linear 2-polygraph:

Λ = 〈 ∗ | a, b, c | a2 ⇒ a, b2 ⇒ b, c2 ⇒ c, ba⇒ −ab− bc− cb− ac− ca 〉.

1/ List all critical branchings of Λ. 2/ Compute a convergent left-monomial linear 2-polygraph KB(Λ)
by applying the Knuth-Bendix completion procedure toΛ. 3/ List all irreducible monomials with respect
to KB(Λ)2. 4/ Conclude that ab 6= 0.

]
3.4. Composition Lemma

3.4.1. Compositions in free Lie algebras. Shirshov introduced in [Shi62] an algorithm to compute a
linear basis of a Lie algebra defined by generators and relations. He used the notion of composition
of elements in a free Lie algebra, that corresponds to the notion of S-polynomial in the work of Buch-
berger, [Buc65]. This work remained unknown outside the USSR and the two theories were developed
in parallel. The algorithm completes a given set of elements in a free algebra by adding all nontrival
compositions. This algorithm corresponds to the completion algorithm given by Knuth-Bendix for term
rewriting systems, [KB70], and by Buchberger for commutative polynomials, [Buc65]. The Shirshov
completion constructs a set, that may be infinite, such that every composition of its elements is trivial.
Such a subset is called a Lie Gröbner-Shirshov basis. The key result in [Shi62] states that the set of
irreducible elements for a Gröbner-Shirshov basis S forms a linear basis of the Lie algebra with defining
relations S. This result is called now the Composition-Diamond Lemma for Lie algebras. For a recent
account of the theory of Gröbner-Shirshov we refer the reader to [BC14].

In this subsection we summarize without proofs an analogue of Shirshov’s composition-diamond
lemma for associative algebras given by Bokut in [Bok76].

3.4.2. Compositions. Bokut introduced in [Bok76] the notion of composition of elements of a free
associative algebra as follows. Let Λ`1 be a free algebra over a set Λ1 and let ≺ be a monomial order on
Λ`1. Given two 1-cells f and g in Λ`1 and a monomial w in Λ∗1. There are two kinds of compositions:

i) if w = lm(f)v = u lm(g) with `(lm(f)) + `(lm(g)) > `(w), for some monomials u and v in Λ∗1,
then the 1-cell

(f, g)w =
1

lc(f)
fv−

1

lc(g)
ug

is called the intersection composition of f and g with respect to w.

ii) if w = lm(f) = u lm(g)v, for some monomials u and v in Λ∗1, then the 1-cell

(f, g)w =
1

lc(f)
f−

1

lc(g)
ugv

is called the inclusion composition of f and g with respect to w.
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3.5. Reduction operators

A composition (f, g)w can also be called an S-polynomial of f and gwith respect tow. A composition
(f, g)w is either zero or satisfy (f, g)w ≺ w. Moreover the composition (f, g)w is in the ideal 〈 f, g〉
generated by f and g. Note that a composition (f, g)w depends on the two polynomials f and g as well as
the monomialw. Indeed, in some cases two polynomials f and gmay overlap with different combinations
creating several compositions.

3.4.3. Example. Consider the polynomial f = x2 − xy. With respect to the deglex order generated
by x > y, we have

(f, f)x3 = x3 − xyx− x3 + x2y = x2y− xyx.

Compare with Example 3.1.4.

3.4.4. Gröbner-Shirshov bases. Let G be a set of nonzero 1-cells in Λ`1. Given a monomial w in Λ∗1, a
1-cell h is trivial modulo (G, w) if there exists a decomposition

h =
∑
i∈I
λiuigivi,

with λi in K \ {0}, ui, vi in Λ∗1 and gi in G such that ui lm(gi)vi ≺ w.
A set G of nonzero 1-cells inΛ`1 is aGröbner-Shirshov basiswith respect to the monomial ordering≺

if every composition (f, g)w of 1-cells in G is trivial modulo (G, w). A Gröbner-Shirshov basis G is
minimal if there is no inclusion composition with elements of G. A minimal Gröbner-Shirshov basis G is
called closed under composition in [Bok76]. Finally, a Gröbner-Shirshov basis G is reduced if the set G
is reduced with respect to the monomial order ≺.

3.4.5. Exercise. Let G be a minimal Gröbner-Shirshov basis in a free algebra Λ`1. Suppose that there
exists a decomposition

w = u1 lm(g1)v1 = u2 lm(g2)v2,

with u1, v1, u2, v2 ∈ Λ∗1 and g1, g2 ∈ G. Show that u1g1v1 − u2g2v2 is trivial modulo (G, w).

3.4.6. Theorem (The Composition Lemma, [Bok76, Prop. 1 & Cor. 1]). LetΛ`1 be a free algebra and
let ≺ be a monomial order on Λ`1. Let G be a set of 1-cells in Λ`1 and let I be the ideal generated by G.
The following conditions are equivalent

i) G is a Gröbner-Shirshov basis,

ii) For any f in I, there exists a factorization lm(f) = u lm(g)v for some u, v in Λ∗1 and g in G,

iii) The set of G-reduced monomial forms a linear basis of the algebra given by the quotient of the free
algebra Λ`1 by the ideal I.

3.5. Reduction operators

3.5.1. Reduction operators. Another approach of rewriting in associative algebras were developed by
Bergman in [Ber78]. With a functional description of linear rewriting reductions he obtained an equivalent
result of the composition lemma 3.4.6. Given Λ`1 a free algebra over a set Λ1, he defines a reduction
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3. Convergence in linear rewriting systems

system as a set S of pairs σ = (wσ, fσ), where wσ is a monomial of Λ`1 and fσ is a 1-cell of Λ`1. Given
σ in S and two monomials u, v in Λ∗1, he considers the K-linear map ruσv : Λ`1 −→ Λ`1 defined by

ruσv(w) =

{
ufσv if w = uwσv,

w otherwise.

The endomorphism ruσv is called reduction by σ. Note that this notion of reduction corresponds to the
notion of rewriting step given in 2.2.4.

A 1-cell f in Σ`1 is irreducible under S if every reduction by elements of S acts trivially on f, that
is uwσv is not in the support of f, for any σ in S and monomials u, v in Σ∗1. As in the case of linear
2-polygraphs, we denote by Λir1 the vector subspace of Λ`1 of all irreducible 1-cells of Λ`1.

3.5.2. Reduction-unique. Bergman introduced the notion of confluence for reduction systems as follows.
A finite sequence of reductions r1, . . . , rn is final on a 1-cell f, if the 1-cell rn . . . r1(f) is irreducible.
A 1-cell f of Λ`1 is reduction-finite if for any infinite sequence (rn)n>1 of reductions, ri acts trivially on
ri−1 . . . r1(f) for a sufficiently large i. A 1-cell f is reduction-unique if it is reduction-finite and if its
images under all final sequences of reduction are the same. This common image is denoted by rS(f). A
reduction system S is reduction-unique if all 1-cells of Λ`1 are reduction-unique under S.

3.5.3. Exercise, [Ber78, Lemma 1.1.].

1) Show that the set of reduction-unique 1-cells of Λ`1 forms a subspace of Λ`1 denoted by Λru1 and that
rS : Λ

ru
1 → Λirr

1 defines a linear map.

2) Given monomials wf, wg and wh in the support of the 1-cells f, g and h respectively, such that the
product wfwgwh is in Λru1 . Show that for any finite composition of reductions r, then fr(g)h is in
Λru1 and that rS(fr(g)h) = rS(fgh) holds.

3.5.4. Ambiguities. A 5-tuple (σ, τ, u, v,w) with σ, τ in S and u, v,w monomials in Λ∗1, such that
wσ = uv and wτ = vw (resp. σ 6= τ, wσ = v and wτ = uvw) is an overlap ambiguity (resp. inclusion
ambiguity) of S. Such an ambiguity is resolvable if there exist compositions of reductions r and r ′ that
satisfy the confluence condition:

r(fσw) = r
′(ufτ)

(
resp. r(ufσw) = r

′(fτ)
)
.

3.5.5. Reduction system compatible with a monomial order. The diamond lemma obtained by
Bergman concern reduction systems compatible with a monomial order. A reduction system S is
compatible with a monomial order ≺, if for any σ = (wσ, fσ) in S, we have w ≺ wσ for any monomial
w in the support of fσ.

Given a reduction system compatible with a monomial order ≺. For a monomialw in Σ∗1, we denote
by I≺w the subspace of Λ`1 defined by

I≺w = SpanK
(
u(wσ − fσ)v | (wσ, fσ) ∈ S and uwσv ≺ w

)
.

An overlap ambiguity (resp. inclusion ambiguity) (σ, τ, u, v,w) is resolvable relative to ≺ if

fσw− ufτ ∈ I≺uvw,
(
resp. ufσw− fτ ∈ I≺uvw

)
.
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3.6. Noncommutative Gröbner bases

Let G be a subset of 1-cells of Λ`1 and let ≺ be a monomial order on Λ`1. We denote by S(G,≺) the
reduction system generated by G with respect to ≺ defined by

S(G,≺) = { (lm(f), lm(f) −
1

lc(f)
f) | f ∈ G }.

3.5.6. Theorem (The Diamond Lemma, [Ber78, Thm. 1.2]). Let S be a reduction system compatible
with a monomial order ≺. The following conditions are equivalent.

i) All the ambiguities of S are resolvable.

ii) All the ambiguities of S are resolvable relative to ≺.

iii) S is reduction-unique.

A fourth equivalent condition is given in [Ber78, Thm. 1.2] as follows. Consider the algebra A given
as the quotient of the free algebra Λ`1 by the two-side ideal

I(S) = {wσ − fσ | σ ∈ S }.

If the reduction system S is compatible with a monomial order≺, the confluence conditions i) - iii) above
hold if and only if the set Λirm1 of irreducible monomial under S is a linear basis of the algebra A. In this
case, the K-algebra A is isomorphic to the K-algebra Λir1 , whose product is given by f · g = rS(fg), for
any 1-cells f and g in Λir1 .

3.6. Noncommutative Gröbner bases

3.6.1. Noncommutative Gröbner bases. LetΛ`1 be a free algebra over a setΛ1 and let≺ be a monomial
order on Λ`1. A (noncommutative) Gröbner basis of an ideal I of Λ`1 with respect to the monomial order
≺ is a subset G of I such that the ideal generated by the leading monomials of the 1-cells of I coincides
with the ideal generated by the leading monomials of the 1-cells of G:

〈 lm(I) 〉 = 〈 lm(G) 〉.

Equivalently, for every 1-cell f in I, there exists g in G with lm(f) = u lm(g)v, where u and v are
monomials of Λ`1.

The two following results show that the notion of noncommutative Gröbner basis corresponds to the
notion of left-monomial convergent linear 2-polygraph compatible with a monomial order.

3.6.2. Proposition. Let Λ be a convergent left-monomial linear 2-polygraph, compatible with a mono-
mial order ≺ on Λ`1. The set of 1-cells {s1(α) − t1(α) | α ∈ Λ2} is a Gröbner basis of the ideal I(Λ) for
the monomial order ≺.
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3. Convergence in linear rewriting systems

3.6.3. Exercise. Prove Proposition 3.6.2.

3.6.4. Proposition. Let I be an ideal of a free 1-algebra Λ`1. Let G be a Gröbner basis for I with respect
to a monomial order ≺. Then the leading 2-polygraph Λ(G,≺) is convergent and I(Λ(G,≺)) = I holds.

Proof. Suppose that G is a Gröbner basis of the ideal I with respect to ≺. By definition, the ideal
I(Λ(G,≺)) is equal to the ideal I generated by G. Prove that the linear 2-polygraphΛ(G,≺) is convergent.
Its termination is a consequence of its compatibility with the monomial order ≺. The monomials in Λ∗1
reduced with respect to Λ(G,≺) are the monomials that cannot be decomposed as u lm(g)v with g in G

and u and v monomials in Λ∗1. As a consequence, if a reduced 1-cell f of Λ`1 is contained in the ideal I,
its leading monomial must be 0, because G is a Gröbner basis of I. By Proposition 3.2.2, we deduce that
the linear 2-polygraph Λ(G,≺) is confluent.

The following theorem summarizes results obtained in this section. Note that some equivalences are
tautological or reformulations.

3.6.5. Theorem. Let I be an ideal of a free algebraΛ`1 over a setΛ1. Let≺ be a monomial order onΛ`1.
For a subset G of I, the following conditions are equivalent.

i) The set G is a Gröbner basis with respect to ≺.

ii) The leading polygraph Λ(G,≺) is convergent.

iii) The leading polygraph Λ(G,≺) is confluent.

iv) The leading polygraph Λ(G,≺) is locally confluent.

v) All the critical branchings of the leading polygraph Λ(G,≺) are confluent.

vi) The set G is a Gröbner-Shirshov basis with respect to ≺.

vii) All the ambiguities of the reduction system S(G,≺) are resolvable.

viii) All the ambiguities of the reduction system S(G,≺) are resolvable relative to ≺.

ix) The reduction system S(G,≺) is reduction-unique.

x) Λ`1 = Λir1 ⊕ I.

xi) Every 1-cell of I admits 0 as a normal form with respect to Λ(G,≺)2.

xii) For any f in I, there exists a decomposition lm(f) = u lm(g)v for some u, v in Λ∗1 and g in G.

xiii) The set of G-reduced monomials forms a linear basis of the algebra given by the quotient of Λ`1 by
the ideal I.

3.6.6. Exercise. Prove the equivalences of Theorem 3.6.5.
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3.6. Noncommutative Gröbner bases

3.6.7. Example. Consider the linear 2-polygraphΛ given in Example 2.1.9. For the deglex order≺deglex
induced by the alphabetic order x ≺ y ≺ z, the leading monomial of f = z3 + y3 + x3 − xyz is z3, so
that

Λ({f},≺deglex) = 〈 ∗ | x, y, z | z3
αf %9 xyz− x3 − y3 〉.

The left-monomial linear 2-polygraph Λ({f},≺deglex) is compatible with the monomial order ≺deglex,
hence it is terminating. It is not confluent, because neither of its two critical branchings is confluent:

xyz2 − x3z− y3z

z4

αfz *>

zαf  4 zxyz− zx3 − zy3

xyz3 − x3z2 − y3z2
xyαf − x

3z2 − y3z2 %9 xyxyz− xy4 − xyx3 − x3z2 − y3z2

z5

αfz
2 (<

z2αf
"6 z2xyz− z2x3 − z2y3

In particular, {f} does not form a Gröbner basis of the ideal I(Λ)We add to the polygraph Λ({f},≺deglex)
the following 2-cell

β : zy3 ⇒ zxyz− zx3 + y3z+ x3z− xyz2.

This new rule makes the two previous critical branchings confluent and create a new critical branching

z3xyz− z3x3 + z2y3z+ z2x3z− z2xyz2

z3y3

z2β *>

αy3
&:xyzy

3 − x3y3 − y6

which is also confluent. Finally, the convergent linear 2-polygraph 〈 ∗ | x, y, z | αf, β 〉 is Tietze equivalent
to the initial linear 2-polygraph Λ({f},≺deglex). In particular, the set of 1-cells {f, s1(β) − t1(β)} forms a
Gröbner basis of the ideal I(Λ) with respect to the order ≺deglex.

3.6.8. Example. The algebra presented by the following linear 2-polygraph

〈 ∗ | x, y, z | x2 = 0, xy = zx 〉

does not have a finite Gröbner bases on three generators x, y and z. Indeed, the first relation is oriented
as x2 ⇒ 0 and the orientation xy⇒ zx induce the addition of the 2-cells xznx⇒ 0, for all integern > 1.
Another way is to orient the relation as zx⇒ xy. But in this case, we need to add the 2-cells xynx⇒ 0,
for all integer n > 1.
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4. Anick’s resolution

3.6.9. Exercise. Show that we can compute a Gröbner bases for the algebra given in Example 3.6.8 with
four generators. [Hint. Add a generator t and the relations xy⇒ t and zx⇒ t.]

3.6.10. Exercise. Consider the ideal I generated by the linear 2-polygraph Λ of Example 3.1.4.

1) Show that { xykx− xyk+1 | k > 0 } is a Gröbner basis of the ideal I with respect to a monomial order
with x � y.

2) Compute a Gröbner basis for the ideal I reduced to only one element.

4. Anick’s resolution
In two seminal papers, Anick introduced a method to compute a free resolution for an algebra starting with
a Gröbner basis of its ideal of relations. First he gave the construction for monomial algebras in [Ani85]
then for associative augmented algebras in [Ani86]. Resolutions for path algebras using the same method
were obtained by Anick and Green in [AG87]. For a deeper discussion on the theory of Gröbner bases
for path algebras and how to apply this theory to the construction of free resolutions for path algebras, we
refer the reader to [Gre99]. Let us mention that Anick’s resolution has been achieved by other methods.
In particular, Anick’s resolution for a homogeneous algebra can be constructed by a deformation of the
resolution computed on the associated monomial algebra, see [DK09, Section 2.4.] for details, see also
the Backelin construction, [Bac78]. Anick’s resolution can be also obtained using algebraic Morse theory
with a Morse matching on the bar resolution, see [Skö06, Section 3.2.] for details. Morse theory allows
to construct, starting from a chain complex, a new chain complex such that the homology of the two
complexes coincides. This method was applied to the computation of minimal resolutions starting from
Anick’s resolution, [JW09].

Note also that others constructions of free resolutions using convergent rewriting systems were
obtained by several authors, [Bro92, Kob90, Gro90, Kob05, GM12b]. Finally, let us mention that
noncommutative Gröbner bases where developed by Dotsenko and Khoroshkin for shuffle operads in
[DK10], giving operadic versions ofNewman’s lemma andBuchberger’s algorithm. Anick’s resolution for
shuffle operads was constructed by Dotsenko and Khoroshkin in [DK09, DK13]. Using this construction,
they prove that a shuffle operad with a quadratic Gröbner basis is Koszul, [DK13].

The nth chains in Anick’s resolution are generated by the n-fold overlaps of the leading terms of the
Gröbner basis and the differentials are constructed by Noetherian induction with respect to the monomial
order. The chains defined by Anick are recall in Subsection 4.2. The construction of the resolution is
given in Subsection 4.3. In a first part of this section, we briefly recall the definition of the homology of
associative algebras.

4.1. Homology of an algebra

4.1.1. Functor Tor. Let us recall the definition of the bifunctor TorR, where R is a fixed ring. LetM be
a left R-module and N be a right R-module. Given a projective resolution P of the right R-module N:

P : · · · // Pn
dn−1

// Pn−1 // · · · // P1
d0
// P0

ε
// N // 0
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4.1. Homology of an algebra

we associate the deleted complex:

PN : · · · // Pn
dn−1

// Pn−1 // · · · // P1
d0
// P0 // 0

obtained by suppressing the module N. Note that, we have not lost any information in the complex PN,
as N = coker(d0) by exactness of complex P. Then, applying the functor −⊗RM, we form a complex
of Z-modules denoted by PN ⊗RM:

PN ⊗RM : · · · // Pn ⊗RM
dn−1

// Pn−1 ⊗RM // · · · // P1 ⊗RM
d0
// P0 ⊗RM // 0

where dn−1 denotes the map dn−1 ⊗ IdM.
We defined the Z-module TorR(M,N) as the homology of the complex PN ⊗RM:

TorRn(N,M) = Hn(PN ⊗RM) = Kerdn−1/Imdn.

In this way, we define a bifunctor TorR with values in the category of Z-modules.
Following the definitions, the functor TorR0 (N,−) is naturally equivalent to N⊗R − and the functor

TorRn(−,M) is naturally equivalent to−⊗RM. Indeed, we have TorR0 (N,M) = coker(d0). Furthermore,
the functor N⊗R − is right exact, hence

coker(d0) = P0 ⊗RM/Im (d0) = P0 ⊗RM/ ker(ε⊗ IdM) = N⊗RM.

This proves that
TorR0 (N,M) = N⊗RM.

4.1.2. Contracting homotopy. Recall that a method to prove that a complex

· · · //Mn+1
dn
//Mn

dn−1
//Mn−1

// · · · //M1
d0
//M0

ε
// N // 0

is acyclic is to construct a contracting homotopy, that is a sequence of morphisms of abelian groups

(· · · ) Mn+1
oo Mn

in+1
oo Mn−1

in
oo (· · · )oo M1

oo M0
i1
oo N

i0
oo

such that
ει0 = IdN, d0ι1 + ι0ε = IdM0

, dnιn+1 + ιndn−1 = IdMn ,

for every n > 1.

4.1.3. Homology of an algebra. Let A be an associative algebra over a field K. For n > 0, the n-th
homology space of the algebra A with coefficient in a left A-moduleM is defined by

Hn(A,M) = TorAn(K,M).

In practice, to compute the n-th homology spaces Hn(A,K), for all n > 0, we construct a free resolution
of K, seen as a trivial right-A-module:

F : · · · // Fn
dn−1

// Fn−1 // · · · // F1
d0
// F0

ε
// K // 0

and we compute the homology of the complex FK ⊗A K.
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4. Anick’s resolution

4.1.4. Minimal complex. A complex of free right A-modules

· · · −→ Fn+1
dn
// Fn

dn−1
// Fn−1 −→ · · ·

is minimal if all induced maps dn = dn ⊗ IdK : Fn+1 ⊗A K −→ Fn ⊗A K are zero. A resolution is
minimal if the associated complex is minimal. Note that a minimal free resolution is one in which each
free module has the minimal number of generators as illustrated in the following example.

4.2. Anick’s chains

4.2.1. Anick’s chains, [Ani86]. Let Λ be a reduced left-monomial linear 2-polygraph. The Anick
n-chains of the linear 2-polygraph Λ and their tails are defined by induction as follows.

- The unique (−1)-chain is the empty monomial, denoted by 1, it is its own tail.

- The 0-chains are the 1-cells in Λ1, and the tail of 0-chain x in Λ1 is x itself.

- For n > 1, suppose that the (n − 1)-chains and their tails constructed. An n-chain is a monomial u
in Λ∗1 of the form

u = vt

where the monomials v and t satisfy the following conditions:

i) v is (n− 1)-chain,
ii) t is a reduced monomial with respect to Λ, called the tail of u,
iii) if r is the tail of v, then Occs1(Λ)(rt) = 1,
iv) the unique reduction on rt is rightmost, that is, given by a 2-cell σ inΛ reducing the ending of the

monomial rt:
u

//

v
//

r
//

FF

t
//

σ��

We will denote byΩn(Λ) the set of n-chains of the linear 2-polygraph Λ.

4.2.2. Anick’s chains and overlapping. The linear 2-polygraphΛ being reduced, we have the following
description of Anick’s chains. A 1-chain u is necessarily in s1(Λ). Indeed, a 1-chain is a non reduced
monomial u written u = xt, where x is a 1-cell in Λ1 and t is a monomial reduced with respect to Λ:

u
//

x
//

BB

t1
//

��
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4.2. Anick’s chains

and such that there is only one 2-cell of Λ that can be applied on the monomial u.
A 2-chains u is the source of a critical branching. Indeed, u = xt1t2, where xt1 is the source of a

2-cell σ in Λ2 and there is a rightmost reduction τ reducing t1t2 and thus overlapping σ:

x
//

BB

t1
//

BB

t2
//

σ�� τ
��

Moreover, u is not the source of a critical triple branching, as we have Occs1(Λ)(u) = 2. In this way,
there is a 1-1 correspondence betweenΩ2(Λ) and the set of critical branchings of the 2-polygraph Λ.

For n > 3, a n-chain u corresponds to a n-fold overlapping composed by (n − 1) chained critical
branchings. Note that it may possible that Occs1(Λ)(u) > n, see Example 4.2.5.

x

BB

t1

BB

t2

BB

t3

BB

t4

BB

t5
· · ·

��
��

��
��

��

4.2.3. Proposition ([Ani86]). Suppose n > 1. If u = xi1 . . . xit is an n-chain, then there is a unique
s 6 t such that xi1 . . . xis is an (n− 1)-chain. Moreover, xis+1

. . . xit is reduced.

Indeed, suppose that there is two (n − 1)-chains xi1 . . . xis and xi1 . . . xis ′ which factorise u. By
uniqueness of the reduction on the tail, condition iii) in 4.2.1, necessarily we have s = s ′.

4.2.4. Notation. If u is a n-chain with (n − 1)-chain v and tail t, we will denote u = v|t. An n-chain
will be denoted by x|t1|t2| . . . |tn.

4.2.5. Example, [Ani86]. Let Λ be a reduced left-monomial linear 2-polygraph with Λ1 = {x} and
s1(Λ) = {x3}. The 1-cell x is the unique 0-chain. The monomial x3 = x|x2 is the unique 1-chain,
xx is not a 1-chain because OccΛ2

(x2) = 0. The monomial x4 = x3|x is the unique 2-chain. Note
that x5 = x3x2 is not a 2-chain because OccΛ2

(x2x2) = 2 : on the monomial x5 there are 3 possible
reductions. Here x5 links three obstructions, with the first one intersect with the last, hence it form a
critical triple branching:

x
//

CC

x
//

��

x
//

CC

x
//
x
//

��

EY

��

Themonomial x6 = x4|x2 is the unique 3-chain, note that x5 = x4x is not a 3-chain because OccΛ2
(xx) =

0. Note that there are 4-obstructions on the 3-chain x6:
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4. Anick’s resolution

x
//

CC

x
//

��

x
//

CC

x
//

��

x
//
x
//

��

EY

��

EY

Thus we have

Ω0(Λ) = Λ1, Ω1(Λ) = s1(Λ), Ω2(Λ) = {x4}, Ω3(Λ) = {x6}.

More generally, we show that for any integer n > 0, we have

Ω2n−1(Λ) = {x3n}, Ω2n(Λ) = {x3n+1}.

4.2.6. Example, [Ani86]. Suppose that Λ1 = {x, y} and s1(Λ) = {x2yxy, xyxy2}. Then we have

Ω0(Λ) = {x, y}, Ω1(Λ) = {x|xyxy, x|yxy2}, Ω2(Λ) = {x|xyxy|y, x|xyxy|xy2},

andΩn(Λ) is empty for n > 3.

4.2.7. Exercise, [Ani85]. Let Λ be a linear 2-polygraph such that Λ1 = {x, y, z}. Determine Anick’s
chains in the following situations

1) s1(Λ) = {xyzx, zxy},

2) s1(Λ) = {xyzx, xxy}. In this case, show that the number of n-chains equals the (n+ 2)nd Fibonacci
number when n > 1.

4.3. Anick’s resolution

Let Λ be a convergent reduced left-monomial linear 2-polygraph, compatible with a monomial order ≺
on Λ`1. Let denote by A the algebra presented by Λ. We define a section ι : A −→ Λ`1 of the canonical
projection π : Λ`1 −→ A, sending every 1-cell f of A to the unique normal form f̂ of any representative
1-cell of f in Λ`1, as in 3.2.3. In the construction of the following resolution, the convergence hypothesis
is used to guarantee the unicity of this normal form.

4.3.1. Anick’s resolution. Let A[Ωn(Λ)] = K[Ωn(Λ)] ⊗K A be the free right A-module over the set
of n-chainsΩn(Λ). We identify A[Ω0(Λ)] to A[Λ1] and A[Ω−1(Λ)] to A. Anick constructs in [Ani86]
a free resolution of right A-modules, that we will denote by A(Λ), and defined by

· · · −→ A[Ωn(Λ)]
dn
// A[Ωn−1(Λ)] // · · · −→ A[Ω1(Λ)]

d1
// A[Λ1]

d0
// A ε

// K −→ 0

where the differentials dn are constructed by induction on n together with the contracting homotopy

ιn : Kerdn−1 −→ A[Ωn(Λ)].

The applications dn are morphisms of right A-module and the applications ιn are linear maps.
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4.3. Anick’s resolution

4.3.2. The applications dn and ιn are constructed by noetherian induction with respect to the monomial
order ≺. From the monomial order ≺ on Λ`1, we define a partial order ≺Ωn on the set of elements u⊗ t
such that u ∈ Ωn(Λ) and t ∈ Λ∗1 by setting

u⊗ t ≺Ωn u
′ ⊗ t ′ if and only if ut̂ ≺ u ′t̂ ′.

This order is total on the set of n-chains. Indeed, by Proposition 4.2.3, if ut = u ′t ′, then u = u ′ and
then t = t ′.

Given a linear combination h =
∑l
i=1 λiui ⊗ ti in A[Ωn(Λ)], the leading term of h with respect

to ≺Ωn is the term uk ⊗ tk such that ui ⊗ ti ≺Ωn uk ⊗ tk for any i ∈ {1, . . . , l} \ {k}.

4.3.3. For the first steps of the resolution

A[Λ1]
d0

// A
ι0
oo

ε
// K

ι−1
oo

// 0

we set ι−1 = η : K ↪→ A the embedding of K in A and we define the augmentation ε : A → K by
ε(x) = 0, for all x ∈ Λ1. Hence A = K⊕ Ker ε and we have ει−1 = IdK. Then we set

d0(x⊗ 1) = 1⊗ x,

for all x in Λ1. For a monomial u in A such that the normal form with respect to Λ is written
û = x1x2 . . . xk in Λ`1, we define

ι0(1⊗ u) = x1 ⊗ x2 . . . xk. (9)

Then we extend ι0 to any element of A by linearity. The map ι0 is well defined by uniqueness of the
normal form due to the convergence of the linear 2-polygraph Λ.

The exactness, Imd0 = Ker ε, in A is a consequence of the two equalities:

εd0(x⊗ 1) = 0 and d0ι0 = idKer (ε).

4.3.4. For n > 0, we define the pair (dn, ιn):

A[Ωn(Λ)]
dn
// A[Ωn−1(Λ)]

ιn
oo

dn−1
// A[Ωn−2(Λ)]

ιn−1
oo

by induction on n. We suppose that the maps dn−1 and ιn−1 : Kerdn−2 −→ A[Ωn−1(Λ)], constructed
such that the following equalities

dn−2dn−1 = 0 and dn−1ιn−1 = IdKerdn−2

hold. We define inductively dn on a n-chain u = v|t with tail t by

dn(v|t⊗ 1) = v⊗ t− ιn−1dn−1(v⊗ t). (10)

In the right-hand side of (10), the term v⊗ t will be the leading term with respect to ≺Ωn−1
.

39



4. Anick’s resolution

4.3.5. Let us define recursively the map

ιn : Kerdn−1 −→ A[Ωn(Λ)].

Let h ∈ Kerdn−1 ⊂ A[Ωn−1(Λ)]. Denote by un−1 ⊗ t the leading term of h with respect to ≺Ωn−1
,

that is
h = λun−1 ⊗ t+ lower terms,

where λ ∈ K \ {0}. By Proposition 4.2.3, the (n− 1)-chain un−1 can be uniquely decomposed in

un−1 = un−2|t
′,

where un−2 is an (n− 2)-chain and t ′ is the tail of un−1. By induction, we have

dn−1(un−1 ⊗ 1) = un−2 ⊗ t ′ + lower terms.

As dn−1 is a morphism of right A-modules, we have

dn−1(h) = λdn−1(un−1 ⊗ t) + dn−1(lower terms)
= λun−2 ⊗ t ′t+ lower terms.

Suppose that t ′t is reduced, then un−2 ⊗ t ′t remains the leading term of dn−1(h) and h cannot be
in Kerdn−1 thus contradicting the hypothesis. It follows that t ′t can be reduced, we set

t ′t = v ′wv,

where w is the 1-source of the leftmost reduction σ that can be applied on the monomial t ′t:

un−1
un−2 t ′

v ′ w

w2 w1

t

v

σ��

Then un−2v ′w = un−2|t
′|w1 forms an n-chain, it follows that un−2v ′w⊗ v ∈ A[Ωn(Λ)]. We set

ιn(h) = ιn(λun−1 ⊗ t+ lower terms)
= λun−2v

′w⊗ v+ ιn(h− λdn(un−2v
′w⊗ v)). (11)

This is well defined, because h− λdn(un−2v
′w⊗ v) ≺ h by construction. Indeed

dn(un−2v
′w⊗ v) = dn(un−2v ′w1w2 ⊗ v) = un−2v ′w2 ⊗w1v+ lower terms

= un−1 ⊗ t+ lower terms.

Moreover, dn−1(h− λdn(un−2v
′w⊗ v)) = 0.

From this construction, we deduce the following result.
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4.3. Anick’s resolution

4.3.6. Theorem ([Ani86, Thm 1.4]). Let A be an algebra presented by a convergent reduced left-
monomial linear 2-polygraph Λ, compatible with a given monomial order ≺. The complex of right
A-modules A(Λ) defined by

· · · −→ A[Ωn(Λ)]
dn
// A[Ωn−1(Λ)] // · · · −→ A[Ω1(Λ)]

d1
// A[Λ1]

d0
// A ε

// K −→ 0

where, for any n > 0, the morphism dn is defined on a n-chain v|t by

dn(v|t⊗ 1) = v⊗ t+ h,

where lt(h) ≺ v|t⊗ 1, if h 6= 0, is a resolution of the trivial right A-module K.

4.3.7. Example. Let consider the algebra A presented by the linear 2-polygraph Λ of Example 2.1.10
and denote by α0 the 2-cell β. It appears one critical branching

xyx

x3

xα0 (<

α0x "6

y2x

yx2 yα0

2F

We complete the linear 2-polygraph Λ with the 2-cells

αn : xynx %9 yn+1x,

for all n > 0. We note that, for any integers n,m > 0, we have a critical branching

xyn+m+1x αn+m+1

�2
xynxymx

xynαm (<

αny
mx

"6

yn+m+2x

yn+1xymx yn+1αm

-A
αn,m

EY

The linear 2-polygraph Λ ′, whose set of 1-cell is Λ1 and Λ ′2 = {αn | n > 0} is convergent, compatible
with the monomial order ≺ and Tietze equivalent to Λ. Equivalently, the set {xynx − yn+1x | n > 0}

forms a Gröbner basis for the ideal I(Λ). Anick’s 1-chains are of the form x|ynx with n > 0 and Anick’s
2-chains are of the form x|ynx|ymx with n,m > 0. More generally, for any k > 2, we have

Ωk(Λ
′) = {x|yn1x|yn2x| . . . |ynkx for n1, . . . , nk > 0},

Let us compute the boundary maps d0, d1, d2 and d3. We have d0(x⊗ 1) = x, d0(y⊗ 1) = y and

d1(x|y
nx⊗ 1) = x⊗ ynx− ι0d0(x⊗ ynx),

= x⊗ ynx− ι0(1⊗ xynx),
= x⊗ ynx− ι0(1⊗ yn+1x),
= x⊗ ynx− y⊗ ynx.
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4. Anick’s resolution

The last equality is consequence of the definition of the map ι0 in (9).

d2(x|y
nx|ymx⊗ 1) = x|ynx⊗ ymx− ι1d1(x|ynx⊗ ymx),

= x|ynx⊗ ymx− ι1(x⊗ ynxymx− y⊗ ynxymx),
= x|ynx⊗ ymx− ι1(x⊗ yn+m+1x− y⊗ yn+m+1x),

By (11), we have

ι1(x⊗yn+m+1x−y⊗yn+m+1x) = x|yn+m+1x⊗1−ι1
(
x⊗yn+m+1x−y⊗yn+m+1x−x⊗yn+m+1x+y⊗yn+m+1x

)
.

Hence
d2(x|y

nx|ymx⊗ 1) = x|ynx⊗ ymx− x|yn+m+1x⊗ 1.

d3(x|y
nx|ymx|ykx⊗ 1) = x|ynx|ymx⊗ ykx− ι2

(
x|ynx⊗ ym+k+1x− x|yn+m+1x⊗ ykx

)
,

= x|ynx|ymx⊗ ykx− x|ynx|ym+k+1x⊗ 1
− ι2

(
x|ynx⊗ ym+k+1x− x|yn+m+1x⊗ ykx− x|ynx⊗ ym+k+1x− x|yn+m+k+2x⊗ 1

)
,

= x|ynx|ymx⊗ ykx− x|ynx|ym+k+1x⊗ 1− ι2
(
− x|yn+m+1x⊗ ykx− x|yn+m+k+1x⊗ 1

)
,

= x|ynx|ymx⊗ ykx− x|ynx|ym+k+1x⊗ 1+ x|yn+m+1x|ykx⊗ 1
+ ι2(x|y

n+m+1x⊗ ykx− x|yn+m+k+1x⊗ 1− d2(x|yn+m+1x|ykx⊗ 1)
)
,

= x|ynx|ymx⊗ ykx− x|ynx|ym+k+1x⊗ 1+ x|yn+m+1x|ykx⊗ 1
+ ι2(x|y

n+m+1x⊗ ykx− x|yn+m+k+1x⊗ 1− x|yn+m+1x⊗ ykx− x|yn+m+k+1x⊗ 1)
)
,

= x|ynx|ymx⊗ ykx− x|ynx|ym+k+1x⊗ 1+ x|yn+m+1x|ykx⊗ 1.

4.3.8. Example. Let consider the algebra A given in 4.3.7, but with the presentation by the linear
2-polygraph Λ ′ of Example 2.1.10, compatible with the deglex order induced by the alphabetic order
x ≺ y. This polygraph does not have critical branching, thus the sets of Anick’s n-chains are empty for
n > 2. It follows that the associated Anick’s resolution is

· · · −→ 0 −→ A[y|x] d1
// A[x, y] d0

// A ε
// K −→ 0

with d0(x⊗ 1) = x, d0(y⊗ 1) = y and d1(y|x⊗ 1) = y⊗ x− x⊗ x.

4.3.9. Example. Consider the algebra A presented by the linear 2-polygraph Λ of Example 2.1.9. With
the Gröbner basis computed in 3.6.7:

z3
αf %9 xyz− x3 − y3 zy3

β %9 zxyz− zx3 + y3z+ x3z− xyz2

Anick’s chains are of the form zn and zny3, for n > 0, so that Anick’s resolution for the algebra A with
respect to this Gröbner basis is infinite.
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4.4. Anick’s resolution for a monomial algebra

4.3.10. Exercise, [Ani86, Section 3]. Compute Anick’s resolution for the algebra presented by the linear
2-polygraph 〈 ∗ | x, y | xyxyx⇒ xyx 〉.

4.4. Anick’s resolution for a monomial algebra

4.4.1. Anick’s chains for a monomial algebra. We construct Anick’s resolution in the case of a
monomial algebra A. Recall from 2.1.20, that such an algebra can be presented by a monomial linear
2-polygraph Λ, that is, left-monomial and t1(α) = 0 for all α in Λ2. Note that such a presentation is
always convergent. Suppose that the polygraph Λ is reduced. The sets of chains for Λ areΩ0(Λ) = Λ1,
Ω1(Λ) = s1(Λ) and for any n > 2,Ωn(Λ) is the set of n-overlapping x|t1| . . . |tn−1|tn of branchings of
Λ with x, t1, . . . , tn in Λ1 and xt1, titi+1 in s1(Λ) for any 1 6 i 6 n− 1. We have

x̂t1 = 0 and t̂i−1ti = 0, for all 1 6 i 6 n. (12)

Consider the boundary map
dn : A[Ωn(Λ)] −→ A[Ωn−1(Λ)]

defined by

dn(x|t1| . . . |tn−1|tn ⊗ 1) = x|t1| . . . |tn−1 ⊗ tn − ιn−1dn−1(x|t1| . . . |tn−1 ⊗ tn).

By definition of dn−1, we have

dn−1(x|t1| . . . |tn−1 ⊗ tn) = x|t1| . . . |tn−2 ⊗ tn−1tn − ιn−2dn−2(x|t1| . . . |tn−2 ⊗ tn−1tn)

Using relation in (12), we have dn−1(x|t1| . . . |tn−1 ⊗ tn) = 0, hence

dn(x|t1| . . . |tn−1|tn ⊗ 1) = x|t1| . . . |tn−1 ⊗ tn.

As consequence, the map dn ⊗A 1K is zero, for all n > 0. This proves that Anick’s resolution of a
monomial algebras is minimal.

4.4.2. Proposition. LetΛ be a monomial linear 2-polygraph, and A be the monomial algebra presented
by Λ. The following statements hold.

i) Anick’s resolution A(Λ) is a minimal resolution.

ii) There is an isomorphism TorAn(K,K) ' KΩn−1(Λ), for all n > 0.

4.5. Computing homology with Anick’s resolution

Given an algebra A presented by a convergent reduced left-monomial linear 2-polygraph Λ, compatible
with a monomial order, Anick’s resolution A(Λ) gives a method to compute the homology groups of A
with coefficient in a A-module M. In particular, Anick’s resolution can be used to calculate Poincaré
series. In this section, we give several examples of computations of homology groups with coefficients
in K.
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4. Anick’s resolution

4.5.1. Computing homology. From the resolution A(Λ), we compute the complex A(Λ) ⊗A K given
by

· · · −→ K[Ωn(Λ)]
dn
// K[Ωn−1(Λ)] // · · · −→ K[Ω1(Λ)]

d1
// K[Λ1]

d0
// K −→ 0

where K[Ωn(Λ)] denotes the free vector space on Ωn(Λ) and dn denotes the map dn ⊗ IdK. These
maps satisfy dndn+1 = 0, for all n > 0, and we have

H0(A,K) = K, and Hn(A,K) = Kerdn−1/Imdn.

As a first application, we have the following finiteness properties.

4.5.2. Proposition. Let A be an algebra presented by a finite convergent left-monomial linear 2-
polygraph. The following statements hold.

i) A is of homological type right-FP∞, that is, there exists an infinite length free finitely generated
resolution of the trivial right A-module K.

ii) For any n > 0, the vector space Hn(A,K) is finitely generated.

iii) [Ani86, Lemma 3.1] The algebra A has a Poincaré series

PA(t) =
∞∑
n=0

dimK(Hn(A,K))tn, (13)

with exponential or slower growth, that is, there are constants c1, c2 > 0, such that

0 6 dimK(Hn(A,K)) 6 c2(c1)
n.

Note that the finiteness conditions i) and ii) were obtained by Kobayashi for monoids. A monoid M
is of homological type right-FP∞ over K if the monoid algebra KM is of homological type right-
FP∞. In [Kob90], by constructing a resolution similar to the Anick resolution, Kobayashi shows that a
monoid M having a presentation by a finite convergent rewriting system is of homological type FP∞.
Similar constructions of resolutions of monoids presented by convergent rewriting systems were also
obtained by Brown [Bro92] and by Groves [Gro90]. The diferent constructions are based on distinct ways
to describe the n-fold critical branchings of a convergent rewriting system.

4.5.3. Exercise. Prove the conditions i) and ii) in Proposition 4.5.2.

4.5.4. Low-dimensional homology. Let us explicit the first terms of the series (13). In the first dimen-
sions, we have the following complex

K[Ω2(Λ)]
d2
// K[Ω1(Λ)]

d1
// K[Λ1]

d0
// K −→ 0

The map d0 is zero, hence
H1(A,K) = K[Λ1]/Imd1.
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4.5. Computing homology with Anick’s resolution

A 1-cell x of Λ1 in Imd1 comes from a relation with source or target x. It follows that x is a redundant
generator in the presentation. Indeed, a term x ⊗ 1, with x in Λ1 appears in Imd1 if and only if x is
the source or the target of a 2-cell in Λ2. Let α : x ⇒ y1 . . . yk be a 2-cell in Λ2, where by hypothesis
y1 . . . yk is reduced. Thus we have

d1(x|1⊗ 1) = x⊗ 1− y1 ⊗ y2 . . . yk.

Hence d1(x) = x. Suppose now that x1 . . . xk
α %9 y is a 2-cell in Λ2. We have

d1(x1|x2 . . . xk ⊗ 1) = x1 ⊗ x2 . . . xk − y⊗ 1.

Hence d1(x1 . . . xk) = −y. Thus, we have d1 = 0 if and only if the number of generators is minimal. In
this way, dimKH1(A,K) is equal to the minimal number of generators for a presentation of the algebraA.
For analogous reasons, we show that dimKH2(A,K) is the minimal required number of the defining
relations, see [Ufn95, Sect. 3.9].

4.5.5. Example. Consider the algebra A from Example 4.3.8. Using Anick’s resolution computed
in 4.3.8, we deduce the complex

· · · −→ 0 −→ K[y|x]
d1
// K[x, y]

d0
// K −→ 0

whose boundary maps d0 and d1 are zero. We deduce

Hn(A,K) =


K if n = 0, 2,

K2 if n = 1,

0 if n > 3.

4.5.6. Exercise [Ani86, Thm 3.2]. Let A be an algebra admitting a presentation by a left-monomial
reduced linear 2-polygraph compatible with a monomial order and having no critical branching. Show
that Hn(A,K) = 0, for any n > 3. A presentation without critical branching is called combinatorially
free in [Ani86].

4.5.7. Exercise. Show that the Poincaré series of the algebra A presented by the linear 2-polygraph
〈 ∗ | x, y | x2 ⇒ 0 〉 is

PA(t) = 1+ 2t+
∞∑
k=2

tk.

4.5.8. Exercise. Let B+
3 be the monoid of positive braids on three strands given by the following Artin

presentation:
〈 s, t | sts⇒ tst 〉.

Compute Anick’s resolution and the Poincaré series of the monoid B+
3 .
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4. Anick’s resolution

4.6. Minimality of Anick’s resolution

4.6.1. Example. Let A be the algebra presented by the linear 2-polygraph 〈 ∗ | x, y | x⇒ y 〉, which is
compatible with the deglex order induced by y ≺ x. The Anick resolution is

0 −→ A[x|1] d1
// A[x, y] d0

// A ε
// K −→ 0

with
d0(x⊗ 1) = x, d0(y⊗ 1) = y, d1(x|1⊗ 1) = x⊗ 1− 1⊗ y.

This resolution is not minimal because d1 6= 0. A minimal resolution for the algebraA can be constructed
from the polygraph 〈 ∗ | x | ∅ 〉 with no 2-cell.

4.6.2. Example. Let consider the algebra A presented by the linear 2-polygraph

Λ = 〈 ∗ | x, y, z, r, s | xy α %9 s, yz
β %9 r 〉

compatible with the deglex order induced by the alphabetic order s ≺ r ≺ z ≺ y ≺ x . There is a critical
branching:

xr

γ
}�

xyz

xβ %9

αz
%9 sz

which is confluent by adding the rule xr
γ %9 sz. The linear 2-polygraph Λ ′ = 〈Λ1 | α,β, γ 〉 is

compatible with the deglex order considered above, convergent and Tietze equivalent to Λ. The induced
the Anick resolution A(Λ ′) is

· · · −→ 0 −→ A[xy|z] d2
// A[x|y, x|r, y|z] d1

// A[x, y, z, r, s] d0
// A ε

// K −→ 0

with

d1(x|y⊗ 1) = x⊗ y− s⊗ 1, d1(x|r⊗ 1) = x⊗ r− s⊗ z, d1(y|z⊗ 1) = y⊗ z− r⊗ 1,

and d2(x|y|z ⊗ 1) = xy ⊗ z − xr ⊗ 1. This resolution is not minimal, because the maps d1 and d2 are
non zero. Note that

Hn(A,K) =


K if n = 0,

K3 if n = 1,

0 if n > 2.

and a minimal resolution for the algebraA can be constructed from the linear 2-polygraph 〈 ∗ | x, y, z | ∅ 〉
which produces the following resolution

· · · −→ 0 −→ A[x, y, z] d0
// A ε

// K −→ 0

46



5. Higher-dimensional linear rewriting

4.6.3. Exercise. Consider the linear 2-polygraph

Λ = 〈 ∗ | x, y, z, r, s | xy α %9 ss, yz
β %9 sr 〉.

1) Complete the polygraph Λ into a convergent polygraph Λ ′.

2) Show that the Anick resolution of Λ ′ is not minimal.

3) Compute the homology of the algebra A presented by Λ.

4) Compute a minimal Anick’s resolution of the algebra A.

4.6.4. Exercise. Let consider the algebra presented by

〈 ∗ | x, y, z, r, s | xy = ss, yz = rr 〉.

Show that there is no orientation of rules of this presentation giving a convergent linear 2-polygraph, and
thus there is no minimal Anick’s resolution for this algebra.

4.6.5. Proposition. Let A be an algebra and let Λ be a left-monomial reduced convergent linear 2-
polygraph compatible with a monomial order that presents A. If the Anick resolution A(Λ) is minimal,
then, for any n > 0, there is an isomorphism of spaces

Hn(A,K) ' K[Ωn−1(Λ)].

4.6.6. Exercise. Prove Proposition 4.6.5.

4.6.7. WhenAnick’s resolution isminimal. Wehave seen in Proposition 4.4.2 that the Anick resolution
A(Λ) is minimal when the presentation is monomial. Following exercise gives an other situation for
which the Anick resolution is minimal.

4.6.8. Exercise. Let Λ be a left-monomial reduced linear 2-polygraph compatible with a monomial
order. Suppose thatΛ is convergent and quadratic, that is, any 2-cell inΛ2 is of the form xi1xi2 ⇒ yi1yi2
with xi1 , xi2 , yi1 , yi2 in Λ1. Show that the Anick resolution A(Λ) is minimal.

4.6.9. Exercise. A linear 2-polygraph is cubical if its 2-cells are of the form xi1xi2xi3 ⇒ yi1yi2yi3 . Is
the result of Exercise 4.6.8 can be extended to cubical convergent linear 2-polygraphs ?

4.6.10. Exercises. Compute homology spaces of the algebras presented by the following linear 2-
polygraphs

1) 〈 ∗ | x, y | xy⇒ yx 〉. 2) 〈 ∗ | x, y | x2 ⇒ 0 〉. 3) 〈 ∗ | x, y | x2 ⇒ y2 〉.
4) 〈 ∗ | x, y | x2 ⇒ xy 〉. 5) 〈 ∗ | x, y | x2 ⇒ xy− y2 〉. 6) 〈 ∗ | x, y | xyx⇒ yxy 〉.

5. Higher-dimensional linear rewriting
In this section, we recall the notion of coherent presentation for an algebra as a presentation of the algebra
extended by a family of generating syzygies. We explain how to generate syzygies when the presentation
is convergent. Finally, we recall from [GHM17] the notion of polygraphic resolution for an algebra as an
acyclic polygraphic extension of a presentation of the algebra.
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5. Higher-dimensional linear rewriting

5.1. Coherent presentations of algebras

5.1.1. Linear 3-polygraph. Let Λ be a linear 2-polygraph. A cellular extension of the free 2-
algebroid Λ`2 is a set Λ3 equipped with maps

Λ`2 Λ3
t2

oo

s2
oo

such that, for every F in Λ3, the pair (s2(F), t2(F)) is a 2-sphere in Λ`2, that is, s1s2(F) = s1t2(F) and
t1s2(F) = t1t2(F) hold inΛ`2. The elements ofΛ3 are the 3-cells of the cellular extension and graphically
represented by

f

s2(F)

�&

t2(F)

6JF�� g

A linear 3-polygraph is a data (Λ0, Λ1, Λ2, Λ3), where (Λ0, Λ1, Λ2) is a linear 2-polygraph and Λ3
is a cellular extension of the free 2-algebroid Λ`2:

Λ0 Λ`1
t0

oo

s0
oo Λ`2

t1

oo

s1
oo

Λ1
t0

cc

s0

cc

OO

ι1

OO

Λ2
t1

cc

s1

cc

OO

ι2

OO

Λ3
t2

cc

s2

cc

5.1.2. Three-dimensional algebras. Wedefine a 3-algebra as an internal 2-category in the categoryAlg:

A1 A2
t1

oo

s1
oo A3

t2
oo

s2
oo

In particular, the algebrasA1 andA2 with compositionA2×A1
A2

?1
// A2 form a 2-algebra. The 3-cells

can be composed in two different ways:

A3 ×A1
A3

?1
// A3 A3 ×A2

A3
?2
// A3

by ?1, along their 1-dimensional boundary:

∗

f

��
g //

h

CC
∗

a
��

a ′
��

b
��

b ′

��

F
%9

G

%9

?17−→ ∗

f

��

h

@@
∗a ?1 b

��

a ′ ?1 b
′

��

F ?1 G
%9
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5.1. Coherent presentations of algebras

by ?2, along their 2-dimensional boundary:

∗

f

��

g

>>
∗a

��
b

��

c
��

F
%9

G
%9 ?27−→ ∗

f

��

g

>>
∗a

��
c
��

F ?2 G
%9

The source and target maps s1, s2 and t1, t2 being morphisms of algebras, the product of 3-cells F and G
satisfies:

∗

f

��

f ′

BB
∗a

��
a ′

��

F
%9

g

��

g ′

BB
∗b

��
b ′

��

G
%9 7−→ ∗

fg

��

f ′g ′

>>
∗ab

��
a ′b ′

��

FG
%9

These compositions and the product satisfy remarkable properties similar to those given in 2.1.14 for
2-algebras.

5.1.3. Free 3-algebras. The free 3-algebra over a linear 3-polygraph Λ is constructed similarly to the
free 2-algebra given in 2.1.16. It is the 3-algebra, denoted by Λ`3, whose underlying 2-algebra is the
free 2-algebra Λ`2, and its 3-cells are all the formal 1-composition, 2-composition and product of 3-cells
of Λ3, of identities of 2-cells, up to associativity, identity, exchange and inverse relations, see [GHM17,
2.1.3] for more details.

5.1.4. Coherent presentations of algebras. A coherent presentation of an algebra A is a linear 3-
polygraph Λ such that

i) the linear 2-polygraph (Λ0, Λ1, Λ2) is a presentation of A,

ii) Λ3 is a homotopy basis of the free 2-algebra Λ`2, that is, a cellular extension

Λ`2 Λ3
t2

oo

s2
oo

such that for every 2-sphere (a, b) of the free 2-algebra Λ`2, there exists a 3-cell A in the free
3-algebra Λ`3 such that s2(A) = a and t2(A) = b.

5.1.5. Squier’s completion. Let Λ be a left-monomial linear 2-polygraph. Suppose that all critical
branching of Λ are confluent. For every critical branching (a, b) in Λ, we choose two positive 2-cells a ′
and b ′ making the branching confluent:

g a ′

�+
F(a,b)��f

a &:

b
$8

f ′

h b ′

5I

(14)
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5. Higher-dimensional linear rewriting

For any such a confluent branching, we consider a 3-cell F(a,b) : a ?1 a
′ V b ?1 b

′. The set of such
3-cells

Λ3 = { F(a,b) | (a, b) is a critical branching }

forms a cellular extension of the free 2-algebraΛ`2. The linear 3-polygraph (Λ0, Λ1, Λ2, Λ3) is a Squier’s
completion ofΛ. When the polygraph is confluent, there exists such a Squier’s completion. However, the
cellular extension Λ3 is not unique in general. Indeed, the 3-cells can be directed in the reverse way and
a branching (a, b) can have several possible positive 2-cells a ′ and b ′ making the branching confluent.

The following result is a formulation of Squier’s Theorem, [SOK94], in the setting of linear 2-
polygraphs:

5.1.6. Theorem (Squier’s Theorem, [GHM17, Thm. 4.3.2]). Let A be an algebra and let Λ be a
convergent left-monomial presentation of A. Any Squier’s completion of Λ is a coherent presentation
of A.

5.1.7. Linear oriented syzygies. LetΛ be a presentation of an algebraA. Any nontrivial 2-sphere (a, b)
in the free 2-algebra Λ`2 is called a linear oriented 3-syzygy of the presentation Λ. If Λ is extended into
a coherent presentation (Λ,Λ3) of the algebra A, the quotient 2-algebra Λ`2/Λ3 is aspherical, that is,
for any 2-sphere (a, b) in Λ`2/Λ3, we have a = b. In other words, the cellular extension Λ3 forms a
generating set of linear 3-syzygies of the presentation Λ. Theorem 5.1.6 say that, when the presentation
Λ is convergent the 3-cells defined by confluence diagrams of the critical branchings, as in (14), form a
family of generator for 3-syzygies.

5.1.8. Exercice. Let {F1, . . . , Fk} be a generating set for linear 3-syzygies of a linear 2-polygraph Λ.
Prove that {F−1 , . . . , F

−
k } is also a generating set for linear 3-syzygies of Λ.

5.1.9. Example. The linear 2-polygraph 〈 ∗ | x | x2 α %9 0 〉 has one critical branching

x3

αx

�'

xα

7KF�� 0

which is confluent. The polygraph being convergent the 3-cell F : αxV xα generates all linear 3-syzygies
of this presentation.

5.1.10. Example. Consider the algebraA presented by the linear 2-polygraphΛ given in Example 2.1.9.
It does not have critical branching, hence any Squier’s completion of Λ is empty. As a consequence, Λ
can be extended into a coherent presentation with an empty homotopy basis. That is, there is no 3-syzygy
for this presentation.

The linear 2-polygraph 〈 ∗ | x, y, z | αf, β 〉 considered in Example 3.6.7 is Tietze equivalent to Λ,
convergent and compatible with a monomial order. It has three critical branchings, as shown in Exam-
ple 3.6.7. It can be extended into a coherent presentation of A with three generating 3-syzygies.

5.1.11. Exercise. Give an explicit description of the 3-cells of a coherent presentation on the linear
2-polygraph Λ ′ of Example 5.1.10.
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5.2. Polygraphic resolutions of algebras

5.1.12. Exercise. Compute a coherent presentation for the algebras presented by the following linear
2-polygraphs

1) 〈 ∗ | x, y | xyx⇒ y2 〉.

2) 〈 ∗ | x, y, z | yz α %9 − x2, zy
β %9 − λ−1x2 〉, where λ ∈ K \ {0, 1}, see [PP05, 4.3].

5.1.13. Exercise. Compute a minimal coherent presentation for the algebra presented by the linear
2-polygraph 〈 ∗ | x | x3 = 0 〉.

5.2. Polygraphic resolutions of algebras

In this subsection, we summarize the notion of polygraphic resolution for algebras as introduced
in [GHM17]. Such a resolution can be computed for an algebra given by a convergent linear 2-polygraph.
The first three steps of the resolution are generated by the cells of the 2-polygraph. For n > 3, the n-cells
are generated by confluences diagrams induced by n-fold branchings.

5.2.1. Higher-dimensional algebras. Letn be a nonzero natural number. Ann-algebraA is an internal
(n− 1)-category in the category Alg:

A1 A2
t1
oo

s1
oo A3

t2
oo

s2
oo . . .oo

oo An−1oo
oo An

tn−1
oo

sn−1
oo

The elements of the algebra Ak, for 1 6 k 6 n, are the k-cells of the n-algebra A. A cellular extension
of A is a set Γ equipped with maps

An Γ
sn

oo

tn
oo

such that, for any γ in Γ , the pair (sn(γ), tn(γ)) is an n-sphere of A, that is, sn−1sn(γ) = sn−1tn(γ)
and tn−1sn(γ) = tn−1tn(γ).

In these notes, we will do not develop the construction of the free k-algebra A[Γ ] on a pair of a
(k − 1)-algebra A and a cellular extension Γ of it, for k > 3. The construction is the same as in the
case of 2-algebras given in 2.1.5. For more details we refer the reader to [GHM17, 2.1.3]. It has the
(k − 1)-algebra A as underlying (k − 1)-algebra and its k-cells are all formal compositions by ?i for
1 6 i 6 k and product of k cells in Γ and identities of (k−1)-cells, up to associativity, identity, exchange
and inverse relation.

5.2.2. Linear polygraphs. A linear n-polygraph is a sequence Λ = (Λ0, Λ1, . . . , Λn) made of

i) a 1-polygraph (Λ0, Λ1),

ii) for any k > 2, a cellular extension Λk of the free (k− 1)-algebra

Λ`k−1 = Λ
`
1[Λ2] · · · [Λk−1],

The elements of Λk are called the k-cells of Λ.
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5. Higher-dimensional linear rewriting

5.2.3. A linear n-polygraph can be defined explicitly as a diagram

Λ0 Λ`1
t0

oo

s0
oo Λ`2

t1

oo

s1
oo (· · · )

t2

oo

s2
oo Λ`n−1

tn−2

oo

sn−2
oo

Λ1
t0

cc

s0

cc

OO

ι1

OO

Λ2
t1

cc

s1

cc

OO

ι2

OO

(· · · )
t2

dd

s2

dd

Λn−1
tn−2

ee

sn−2

ee

OO

ιn−1

OO

Λn
tn−1

dd

sn−1

dd

where the maps sk, tk : Λ`k+1 −→ Λ`k are the extensions of the source and target maps sk and tk, defined
by the universal property of the free k-algebra Λ`k, and such that, for any 1 6 k 6 n − 1, the following
two conditions hold:

i) there is a structure of k-algebra on the following k-graph

Λ0 Λ`1
t0

oo

s0
oo Λ`2

t1

oo

s1
oo (· · · )

t2

oo

s2
oo Λ`k

tk−1

oo

sk−1
oo

ii) Λk+1 is a cellular extension of the free k-algebra Λ`k.

The free n-algebra over a linear n-polygraph Λ is the n-algebra Λ`n = Λ`1[Λ2] · · · [Λn]

5.2.4. Polygraphic resolutions of algebras. A polygraphic resolution of an algebra A is a linear ∞-
polygraph Λ such that

i) the linear 2-polygraph (Λ0, Λ1, Λ2) is a presentation of A,

ii) for every n > 2, Λn+1 is a homotopy basis of the free n-algebra Λ`n, that is a cellular extension

Λ`n Λn+1
tn

oo

sn
oo

such that for every n-sphere (a, b) of Λ`n, there exists an (n + 1)-cell A in the free (n + 1)-
algebra Λ`n+1 such that sn(A) = a and tn(A) = b.

As a consequence of this definition, for every n > 2, the quotient n-algebra Λ`n/Λn+1 of the free
n-algebra Λ`n by the congruence generated by the (n+ 1)-cells of Λn+1 is aspherical, that is, any of its
n-sphere γ is trivial: sn(γ) = tn(γ). A linear∞-polygraph satisfying this property for all n is said to
be acyclic.

5.2.5. Higher-dimensional branchings. Let Λ be a reduced linear 2-polygraph. An n-fold branching
of Λ is a family (a1, . . . , an) of positive 2-cells of Λ`2 with a common source:

g1

g2

f

a1
)=

a2 )=

an !5

...

gn
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5.2. Polygraphic resolutions of algebras

An n-fold branching (a1, . . . , an) is localwhen a1, . . . , an are rewriting steps. A local n-fold branching
(a1, . . . , an) is asphericalwhen there is 1 6 i 6 n−1 such that (ai, ai+1) is aspherical, (resp. additive)
Peiffer when there is 1 6 i 6 n− 1 such that (ai, ai+1) is (resp. additive) Peiffer. In all the other cases,
it is said overlapping.

A critical n-fold branching of Λ is an overlapping local n-fold branching of Λ with a monomial
source and that is minimal for the relation on n-fold branchings defined by

(a1, . . . , an) v (wa1w
′, . . . , wanw

′)

for any monomials w,w ′ in Λ∗1. For instance, a 3-fold critical branching can have two different shapes:

//
��

//
BB

//
��

// //

a1
EY

a2
��

a3
EY

or //
��
//

BB
// //

��
//

a1
EY

a2
��

a3
EY

5.2.6. Theorem ([GHM17, Thm. 6.2.4]). Any convergent linear 2-polygraph Λ extends to a Tietze-
equivalent acyclic linear∞-polygraph whose n-cells, for n > 3, are indexed by the critical (n− 1)-fold
branchings of Λ.

5.2.7. Example. Consider the algebra A presented by the linear 2-polygraph given in Example 2.1.9.
We have seen in Example 5.1.10 that any Squier’s completion of Λ is empty. In particular, the polygraph
Λ can be extended into a coherent presentation with an empty homotopy bases, and as a consequence,
into a polygraphic resolution with an empty set of k-cell, for k > 3:

Λ0 Λ`1
t0

oo

s0
oo Λ`2

t1

oo

s1
oo {0}oo

oo {0}oo
oo · · ·oo

oo

Λ1
t0

cc

s0

cc

OO

ι1

OO

Λ2
t1

cc

s1

cc

OO

ι2

OO

∅
t2

cc

s2

cc

OO

ι3

OO

5.2.8. A free bimodules resolution. Let Λ be a linear∞-polygraph whose underlying 2-polygraph is a
presentation of an algebra A. For k > 1, we denote by Ae[Λk] the free A-bimodule on Λk, given by the
linear combinations of f[α]g, where f and g are 1-cells in A and α is a k-cell in Λk.

Themapping of every 1-cell x inΛ1 to the element [x] inAe[Λ1] is uniquely extended into a derivation,
denoted by [·], fromΛ`1 with values in the A-bimodule Ae[Λ1], sending a 1-cell f inΛ`1 on the element [f]
in Ae[Λ1], defined by linearity and by induction on the length of monomials as follows

[1] = 0, [u+ v] = [u] + [v], [uv] = [u]v+ u[v], [λu] = λ[u],

for any monomials u and v in Λ`1 and scalar λ in K. We extend the bracket notation to A-bimodules
Ae[Λk], for k > 1 as follows. The mapping of every k-cell α of Λk to the element [α] in Ae[Λk] is
extended to any k-cell a of Λ`k by induction on the size of a. For any (k− 1)-cell u, any k-cells a and b
in Λ`k and scalar λ, we set

[1u] = 0, [a+ b] = [a] + [b], [ab] = [a]b+ a[b], [λa] = λ[a].
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5. Higher-dimensional linear rewriting

To the linear∞-polygraph Λ, we associate a complex of A-bimodules

0←− A
µ
oo Ae[Λ0]

δ0
oo Ae[Λ1]←− · · · ←− Ae[Λk]

δk
oo Ae[Λk+1]←− · · ·

where the boundary maps are defined as follows. The maps µ is defined by µ(f⊗g) = fg, for any 1-cells
f and g in A. For any triple f[x]g in Ae[Λ1], we define

δ0(f[x]g) = f⊗ xg− fx⊗ g.

For k > 1, for any triple f[α]g in Ae[Λk+1], we define

δk(f[α]g) = f[sk(α)]g− f[tk(α)]g.

By induction on the length of f, we prove that δ0([f]) = 1 ⊗ f − f ⊗ 1, for all 1-cell f in Λ`1. We have
µδ0 = 0, and for any k-cell α in Λk with k > 2, we have

δk−1δk[α] = [sk−1sk(α)] + [tk−1sk(α)] − [sk−1tk(α)] − [tk−1tk(α)].

It follows from the globular relations that δk−1δk = 0. Moreover, we prove that the acyclicity of the
polygraph induces the acyclicity of the complex Ae[Λ].

5.2.9. Theorem ([GHM17, Thm. 7.1.3]). If Λ is a (finite) polygraphic resolution of an algebra A, then
the complex Ae[Λ] is a (finite) free resolution of the A-bimodule A.

5.2.10. Example. Consider the algebra A presented by the linear 2-polygraph given in Example 2.1.9.
The resolution of A-bimodules induced by the polygraphic resolution of Λ given in Example 5.2.7 is

0←− A
µ
oo Ae δ0

oo Ae[x, y, z] δ1
oo Ae[γ]←− 0←− · · ·

It follows that this algebra is of cohomological dimension 2. Note that the Anick resolution for the
algebra A computed with the same presentation is of infinite length.

5.2.11. Exercise. Consider the algebraA presented by the linear 2-polygraphΛ = 〈 ∗ | x, y | x2
α0 %9 yx 〉.

1) Compute the first four steps of a polygraphic resolution of the algebra A starting with Λ.

2) Compare the resolution of A-bimodules induced by this resolution with the Anick resolution A(Λ)
computed in Example 4.3.7.

3) Compute a polygraphic resolution of the algebra A using the linear 2-polygraph 〈 ∗ | x, y | yx⇒ x2 〉.
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[Hint. Here a 4-cell

yn+1xymxykx

yn+1xymαk $8

≡

yn+1xym+k+1x
yn+1αm+k+1

!
xynxymxykx

αny
mxykx

)=

xynxymαk %9

xynαmy
kx !5

xynxym+k+1x

αny
m+k+1x

.B

xynαm+k+1

�0
−xynαm,k
n�

yn+m+k+3x

xyn+m+1xykx

xyn+m+1αk

&: xyn+m+k+2x
αn+m+k+2

>R
αn,m+k+1

��

Fn,m,k
��

yn+1xymxykx

yn+1xymαk $8

yn+1αmy
kx

�,

yn+1xym+k+1x
yn+1αm+k+1

!
−yn+1αm,k
n�

xynxymxykx

αny
mxykx

)=

xynαmy
kx !5

yn+m+2xykx yn+m+2αk
%9

αn+m+1,k

�0

yn+m+k+3x

xyn+m+1xykx

xyn+m+1αk

&:

αn+m+1y
kx

3G

xyn+m+k+2x
αn+m+k+2

>Rαn,my
kx

��

6. Confluence and Koszulness
In this section we recall the notion of Koszulness for graded associative algebras. We show how Anick’s
resolution leads to relate this property for an algebra to the existence of a quadratic Gröbner basis for
its ideal of relations. Finally, we show how polygraphic resolutions can be used to prove this property,
allowing to relate Koszulness with polygraphic convergence.

6.1. Koszulness of associative algebras

6.1.1. Koszulness of quadratic algebras. Recall that a connected graded algebra A is Koszul if the Tor
spaces TorAn,(i)(K,K) vanish for i 6= n, where the grading n is the homological degree and the grading i
corresponds to the internal grading of the algebraA. Koszul algebras were introduced by Priddy, [Pri70].
In particular, Priddy proved that quadratic algebras having a Poincaré-Birkhoff-Witt basis are Koszul,
[Pri70]. The property can be also be stated in terms of existence of a linear minimal graded free resolution
of K seen as a A-module, see [PP05]. Backelin gave a characterization of the Koszul property in term
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6. Confluence and Koszulness

of lattice, [Bac83, BF85], and the Backelin condition were interpreted in term of confluence by Berger,
[Ber98], using reduction operator theory.

6.1.2. Koszulness of N-homogeneous algebras. Koszulness was generalized by Berger to the case of
N-homogeneous algebras, [Ber01, Def. 2.10.]. A graded N-homogeneous algebra A, with N > 2,
is left-Koszul if the ground field K considered as a graded left A-module admits a graded projective
resolution of the form

0←− K←− P0 ←− P1 ←− P2 ←− · · ·
such that every Pi is generated (as a graded left A-module) by P(`N(i))

i , where `N : N −→ N is a map
defined by

`N(i) =

{
pN if i = 2p,
pN+ 1 if i = 2p+ 1.

Similarly, one can define the properties right-Koszul and bi-Koszul by considering projective resolutions
of right and bi-modules respectively. The graduation on the algebra A induces a graduation on the vector
spaces TorAn,(i)(K,K). The spaces TorAn,(i)(K,K) for a left-Koszul (or right-Koszul) algebra A vanish
for i 6= `N(n) This property of the Tor groups is an equivalent definition of Koszul algebras, as Berger
proved in [Ber01, Thm. 2.11]. Finally, the following result shows that the Koszul property corresponds
to a limit case.

6.1.3. Proposition ([BM06, Prop. 2.1]). Let A be an N-homogeneous algebra. The graded vector
space TorAn,(i)(K,K) always vanish for i < `N(n), for n > 0.

6.2. Confluence and Koszulness

6.2.1. Koszulness of monomial algebras. Given a monomial linear 2-polygraph Λ which is quadratic,
that is its 2-cells are of the form xixj ⇒ 0, with xi, xj in Λ1. Then the Anick resolution A(Λ) is
concentrated in the diagonal in the following sense. The set of 0-chains is Λ1 and they are of degree 1.
The set of 1-chains is s1(Λ) and they are of degree 2. More generally, an n-chains x|t1 . . . |tn−1|tn is of
degree n+ 1. As a consequence, we have the following result.

6.2.2. Theorem. A quadratic monomial algebra is Koszul.

More generally, the Anick resolution can be used to prove Koszulness of an algebra whose set of
relations forms a quadratic Gröbner basis. In that case, the Anick resolution is concentrated in the right
bidegree. Hence we have the following sufficient condition for Koszulness of quadratic algebras.

6.2.3. Theorem ([Ani86, Sect. 3]). An algebra presented by a quadratic Gröbner basis is Koszul.

Another way to prove this result is that the existence of a quadratic Gröbner basis implies the existence
of a Poincaré-Birkhoff-Witt basis of A, [Gre99].
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6.2.4. Example. The algebraK[x1, . . . , xk] of commutative polynomials on k variables can be presented
by the following linear 2-polygraph:

Λ = 〈 ∗ | x1, . . . , xk | xi1xi2
τi1i2%9 xi2xi1 , 1 6 i1 < i2 6 k 〉.

For any triple (i1, i2, i3) such that 1 6 i1 < i2 < i3 6 k, there is a critical branching on the monomial
xi1xi2xi3 which is confluent

xi2xi1xi3
xi2τi1i3 %9 xi2xi3xi1

τi2i3xi1

�,
xi1xi2xi3

τi1i2xi3 &:

xi1τi2i3
$8

xi3xi2xi1

xi1xi3xi2 τi1i3xi2
%9 xi3xi1xi2 xi3τi1i2

1E

It follows that the linear 2-polygraphΛ is convergent and quadratique, hence the algebraK[x1, . . . , xk] is
Koszul.

6.2.5. Example, [DC17]. Dotsenko and Roy Chowdhury show that the algebra A presented by

〈 ∗ | x, y, z | yx+ x2, zy, xz 〉

is Koszul. Their proof in [DC17] is based on the computation of Anick’s resolution with respect to the
degree-lexicographic ordering induced by the alphabetic order x > y > z. The three quadratic relations
can be completed into the following infinite Gröbner basis:

xz⇒ 0, zy⇒ 0, xykx⇒ yk+1x, for k > 0

Using Anick’s resolution they show that the homology of the algebra A is concentrated on the diagonal,
proving that the algebra A is Koszul.

6.2.6. A sufficient polygraphic condition. In [GHM17], a graded version of Theorem 5.2.9 is given.
For that, a notion of graded linear polygraph is introduced, that generalizes in higher dimensions the notion
of graded presentation for a graded algebra. As an application, one deduces the following polygraphic
condition of Koszulness of graded algebras.

6.2.7. Theorem ([GHM17, Prop. 7.2.2]). Let A be an N-homogeneous algebra. If A has a
`N-concentrated polygraphic resolution, then A is bi-Koszul (resp. left-Koszul, resp. right-Koszul).

From this sufficient condition, one deduces the following consequence. Suppose that an algebra A
has a polygraphic resolution Λ such that (Λ0, Λ1, . . . , Λk−1) is `N-concentrated, for some k > 3, and
such that for some i > `N(k) the number of (k + 1)-cells in Λ(i)

k+1 is strictly less than the number of
k-cells in Λ(i)

k . Then the algebra A is not Koszul, [GHM17, Prop. 7.2.7].
Theorem 6.2.7 can be also used to extend the sufficient condition of Theorem 6.2.3 to linear

2-polygraph with an orientation that is not compatible with a monomial order.

6.2.8. Corollary ([GHM17]). Let A be an algebra presented by a quadratic left-monomial convergent
linear 2-polygraph Λ. Then Λ can be extended into a `2-concentrated polygraphic resolution and the
algebra A is Koszul.
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6.2.9. Exercise. Let A be the algebra presented by 〈 ∗ | x, y | x2 = y2 = xy 〉. Prove that A is not
Koszul. [Hint. Consider the rules xy ⇒ x2 and y2 ⇒ x2, compute a convergent presentation of A and
its set of critical triple branchings.]

6.2.10. Remark. Note that, for an N-homogeneous algebra, that is whose relations are concentrated in
degreeN, the existence of a Gröbner basis concentrated in degreeN is not enough to imply Koszulness.
Indeed, an extra condition has to be checked as shown by Berger in [Ber01].

6.2.11. Homogeneous coherent presentations. A coherent `N-concentrated presentation of an alge-
bra A having an empty homotopy basis can be extended into a polygraphic resolution with an empty set
of k-cells for k > 3, thus a `N-concentrated polygraphic resolution. Hence, by Theorem 6.2.7, we have

6.2.12. Corollary ([GHM17]). If a N-homogeneous algebra has a coherent `N-concentrated presen-
tation with an empty homotopy basis, then it is Koszul. In particular, an algebra having a terminating
presentation by a N-homogeneous polygraph without any critical branching is Koszul.

The second statement is a consequence of Squier’s Theorem 5.1.6. Indeed, if Λ is a convergent
left-monomial linear 2-polygraph, then it can be extended into a coherent presentation whose homotopy
basis is made of generating confluences. In particular, when the polygraph Λ has no critical branching,
this homotopy basis is empty, and thus trivially `N-concentrated.

6.2.13. Example, [GHM17, Ex. 7.2.5]. Consider the algebra A presented by the linear 2-polygraph
given in Example 2.1.9. From the resolution computed in Example 5.2.10, we have TorA0,(0)(K,K) ' K,
TorA1,(1)(K,K) ' K3, TorA2,(3)(K,K) ' K and TorAk,(i)(K,K) vanishes for other values of k and i. It
follows that the algebra A is Koszul.

6.2.14. Exercice [PP05, 4.3]. Show that the algebra presented by the following linear 2-polygraph,
see 5.1.12,

〈 ∗ | x, y, z | yz
α %9 − x2, zy

β %9 − λ−1x2 〉,

where λ ∈ K \ {0, 1}, is Koszul. In particular, show that TorA0,(0)(K,K) ' K, TorA1,(1)(K,K) ' K3,
TorA2,(2)(K,K) ' K2 and TorAk,(i)(K,K) vanishes otherwise.
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