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Abstract. — We generalize the notion of identities among relations, well known for
presentations of groups, to presentations of n-categories by polygraphs. To each poly-
graph, we associate a track n-category, generalizing the notion of crossed module for
groups, in order to define the natural system of identities among relations.We relate
the facts that this natural system is finitely generated and that the polygraphhas finite
derivation type.

Résumé(Identités entre les relations pour la réécriture en dimension supérieure)
Nous généralisons la notion d’identités entre les relations, bien connue pour les

présentations de groupes, aux présentations de n-catégories par polygraphes. À chaque
polygraphe, nous associons une track n-catégorie, généralisant la notion de module
croisé pour les groupes, afin de définir son système naturel des identités entre les re-
lations. Nous relions le fait que ce système naturel soit de type fini avec lefait que le
polygraphe soit de type de dérivation fini.

Introduction

The notion ofidentity among relationsoriginates in the work of Peiffer and Reide-
meister, in combinatorial group theory [14, 17]. It is based on the notion ofcrossed
module, introduced by Whitehead, in algebraic topology, for the classification of ho-
motopy2-types [20, 21]. Crossed modules have also been defined for other algebraic
structures than groups, such as commutative algebras [16], Lie algebras [11] or cat-
egories [15]. Then Baues has introducedtrack 2-categories, which are categories
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enriched in groupoids, as a model of homotopy2-type [2, 1], together withlinear
track extensions, as generalizations of crossed modules [4].

There exist several interpretations of identities among relations for presentations of
groups: as homological2-syzygies [5], as homotopical2-syzygies [12] or as Igusa’s
pictures [12, 10]. One can also interpret identities among relations as the critical pairs
of a group presentation by a convergent word rewriting system [7]. This point of view
yields an algorithm based on Knuth-Bendix’s completion procedure that computes a
family of generators of the module of identities among relations [9].

In this work, we define the notion of identities among relations forn-categories
presented by higher-dimensional rewriting systems calledpolygraphs[6], using no-
tions introduced in [8]. Given ann-polygraphΣ, we consider the freetrack n-
categoryΣ⊤ generated byΣ, that is, the free(n − 1)-category enriched in groupoid
onΣ. We defineidentities among relations forΣ as the elements of anabelian natu-
ral systemΠ(Σ) on then-categoryΣ it presents. For that, we extend a result proved
by Baues and Jibladze [3] for the casen = 2.

Theorem 2.2.2.A trackn-categoryT is abelian if and only if there exists a unique

(up to isomorphism) abelian natural systemΠ(T) onT such thatΠ̂(T) is isomorphic
to AutT.

We defineΠ(Σ) as the abelian natural system associated by that result to the abelian-
ized trackn-categoryΣ⊤

ab. In Section 2.2, we give an explicit description ofΠ(Σ).
Then, in Section 2.4, we interpret generators ofΠ(Σ) as elements of ahomotopy

basisof the trackn-categoryΣ⊤, see [8]. More precisely, we prove:

Theorem 2.4.1.If an n-polygraphΣ has finite derivation type then the abelian nat-
ural systemΠ(Σ) is finitely generated.

To prove this result, we give a way to compute generators ofΠ(Σ) from the critical
pairs of a convergent polygraphΣ. Indeed, there exists, for every critical branching
(f, g) of Σ, a confluence diagram:
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An (n + 1)-cell filling such a diagram is called agenerating confluenceof Σ. It is
proved in [8] that the generating confluences ofΣ form a homotopy basis ofΣ⊤.
We show here that they also form a generating set for the natural systemΠ(Σ) of
identities among relations.
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1 Preliminaries

In this section, we recall several notions from [8]: presentations ofn-categories
by polygraphs (1.1), rewriting properties of polygraphs (1.2), trackn-categories and
homotopy bases (1.3).

1.1 Higher-dimensional categories and polygraphsWe fix an n-category C

throughout this section.

1.1.1. Notations. — We denote byCk the set (and thek-category) ofk-cells ofC.
If f is in Ck, thensi(f) andti(f) respectively denote thei-source andi-target off;
we drop the suffixi wheni = k − 1. The source and target maps satisfy theglobular
relations:

sisi+1 = siti+1 and tisi+1 = titi+1. (1)

If f andg arei-composablek-cells, that is whenti(f) = si(g), we denote byf ⋆i g

their i-compositek-cell. We also writefg instead off ⋆0g. The compositions satisfy
theexchange relationsgiven, for everyi 6= j and every possible cellsf, g, h andk,
by:

(f ⋆i g) ⋆j (h ⋆i k) = (f ⋆j h) ⋆i (g ⋆j k). (2)

If f is ak-cell, we denote by1f its identity(k + 1)-cell and, by abuse, all the higher-
dimensional identity cells it generates. When1f is composed with cells of dimension
k + 1 or higher, we simply denote it byf. A k-cell f with s(f) = t(f) = u is called a
closedk-cell with base pointu.

1.1.2. Spheres. — Let C be ann-category and letk ∈ {0, . . . , n}. A k-sphere ofC
is a pairγ = (f, g) of parallelk-cells ofC, that is, withs(f) = s(g) andt(f) = t(g);
we callf thesourceof γ andg its target. We denote bySC the set ofn-spheres ofC.
An n-category isasphericalwhen all of itsn-spheres have shape(f, f).

1.1.3. Cellular extensions. — A cellular extension ofC is a pairΓ = (Γn+1, ∂) made
of a setΓn+1 and a map∂ : Γn+1 → SC. By considering all the formal compositions
of elements ofΓ , seen as(n+1)-cells with source and target inC, one builds thefree
(n + 1)-category generated byΓ , denoted byC[Γ ].

The quotient ofC by Γ , denoted byC/Γ , is then-category one gets fromC by
identification ofn-cellss(γ) andt(γ), for everyn-sphereγ of Γ . We usually denote
by f the equivalence class of ann-cell f of C in C/Γ . We writef ≡Γ g whenf = g

holds.

1.1.4. Polygraphs. — We definen-polygraphs and freen-categories by induction
onn. A 1-polygraphis a graph, with the usual notion of free category.
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An (n + 1)-polygraphis a pairΣ = (Σn, Σn+1) made of ann-polygraphΣn and
a cellular extensionΣn+1 of the freen-category generated byΣn. Thefree(n + 1)-
category generated byΣ and then-category presented byΣ are respectively denoted
by Σ∗ andΣ and defined by:

Σ∗ = Σ∗
n[Σn+1] and Σ = Σ∗

n/Σn+1.

An n-polygraphΣ is finitewhen each setΣk is finite,0 ≤ k ≤ n. Two n-polygraphs
whose presented(n−1)-categories are isomorphic areTietze-equivalent. A property
onn-polygraphs that is preserved up to Tietze-equivalence isTietze-invariant.

An n-categoryC is presentedby an(n + 1)-polygraphΣ when it is isomorphic
to Σ. It is finitely generatedwhen it is presented by an(n + 1)-polygraphΣ whose
underlyingn-polygraphΣn is finite. It isfinitely presentedwhen it is presented by a
finite (n + 1)-polygraph.

1.1.5. Example. — Let us consider the monoidAs = {a0, a1} with unit a0 and
producta1a1 = a1. We seeAs as a (1-)category with one0-cell a0 and one non-
degenerate1-cell a1 : a0 → a0. As such, it is presented by the2-polygraphΣ2 with
one0-cell a0, one1-cell a1 : a0 → a0 and one2-cell a2 : a1a1 ⇒ a1. ThusAs
is finitely generated and presented. In what follows, we use graphical notations for
those cells, where the1-cell a1 is pictured as a vertical “string” and the2-cell a2

as .

1.1.6. Contexts and whiskers. — A context ofC is a pair(x, C) made of an(n−1)-
spherex of C and ann-cell C in C[x] such thatC contains exactly one occurrence
of x. We denote byC[x], or simply byC, such a context. Iff is ann-cell which is
parallel tox, thenC[f] is then-cell of C one gets by replacingx by f in C.

Every contextC of C has a decomposition

C = fn ⋆n−1 (fn−1 ⋆n−2 (· · · ⋆1 f1xg1 ⋆1 · · · ) ⋆n−2 gn−1) ⋆n−1 gn,

where, for everyk in {1, . . . , n}, fk andgk arek-cells of C. A whisker ofC is a
context that admits such a decomposition withfn andgn being identities. Every
contextC of Cn−1 yields a whisker ofC such thatC[f ⋆n−1 g] = C[f] ⋆n−1 C[g]

holds.
If Γ is a cellular extension ofC, then every non-degenerate(n + 1)-cell f of C[Γ ]

has a decomposition

f = C1[ϕ1] ⋆n · · · ⋆n Ck[ϕk],

with k ≥ 1 and, for everyi in {1, . . . , k}, ϕi in Γ andCi a context ofC.
The category of contexts ofC is denoted byCC, its objects are then-cells of C

and its morphisms fromf to g are the contextsC of C such thatC[f] = g holds. We
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denote byWC the subcategory ofCC with the same objects and with whiskers as
morphisms.

1.1.7. Natural systems. — A natural system onC is a functorD from CC to the
category of groups. We denote byDu andDC the images of ann-cell u and of a
contextC of C by the functorD. When no confusion arise, we writeC[a] instead of
DC(a). A natural systemD on C is abelianwhenDu is an abelian group for every
n-cell u.

1.2 Rewriting properties of polygraphsWe fix an(n+1)-polygraphΣ throughout
this section.

1.2.1. Termination. — One says that ann-cell u of Σ∗
n reducesinto an n-cell v

whenΣ∗ contains a non-identity(n + 1)-cell with sourceu and targetv. One says
that u is a normal formwhen it does not reduce into ann-cell. A normal form of
u is ann-cell v which is a normal form and such thatu reduces intov. A reduc-
tion sequenceis a countable family(un)n∈I of n-cells such that eachun reduces
into un+1; it is finiteor infinitewhen the indexing setI is.

One says thatΣ terminateswhen it does not generate any infinite reduction se-
quence. In that case, everyn-cell has at least one normal form and one can use
Noetherian induction: one can prove properties onn-cells by induction on the length
of reduction sequences.

1.2.2. Confluence. — A branching(resp.confluence) is a pair(f, g) of (n+1)-cells
of Σ∗ with same source (resp. target), considered up to permutation. A branching
(f, g) is local whenf andg contain exactly one generating(n + 1)-cell of Σ. It is
confluentwhen there exists a confluence(f ′, g ′) with t(f) = s(f ′) andt(g) = s(g ′).
A local branching(f, g) is critical when the common source off andg is a minimal
overlapping of the sources of the(n + 1)-cells contained inf andg. A confluence
diagramof a branching(f, g) is an (n + 1)-sphere with shape(f ⋆n f ′, g ⋆n g ′),
where(f ′, g ′) is a confluence. A confluence diagram of a critical branching is called
agenerating confluence ofΣ.

One says thatΣ is (locally) confluentwhen each of its (local) branchings is con-
fluent. A local branching(f, g) is critical when the common source off andg is a
minimal overlapping of the sources of the generating(n + 1)-cells of f andg. In
a confluent(n + 1)-polygraph, everyn-cell has at most one normal form. For ter-
minating(n + 1)-polygraphs, Newman’s lemma ensures that local confluence and
confluence are equivalent properties [13].
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1.2.3. Convergence. — One says thatΣ is convergentwhen it terminates and it is
confluent. In that case, everyn-cell u has a unique normal form, denoted byû.
Moreover, we haveu ≡Σn+1

v if and only if û = v̂. As a consequence, a finite
and convergent(n + 1)-polygraph yields a syntax for then-cells of the category it
presents, together with a decision procedure for the corresponding word problem.

1.2.4. Example. — The2-polygraphΣ2 = (a0, a1, a2) presentingAs is convergent
and has exactly one critical pair(a2a1, a1a2), with corresponding generating con-
fluencea3, pictured in either of the following ways:
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In turn, the3-polygraphΣ3 = (a0, a1, a2, a3), which is a part of a presentation of the
theory of monoids, is convergent and has exactly one critical pair, with corresponding
generating confluencea4:
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In fact, this4-cell a4 is Mac Lane’s pentagon [8]:
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1.3 Track n-categories and homotopy bases

1.3.1. Trackn-categories. — A trackn-categoryis ann-categoryT whosen-cells
are invertible, that is, forn ≥ 2, an (n − 1)-category enriched in groupoid. In a
trackn-category, we denote byf− the inverse of then-cell f. A trackn-category is
acyclicwhen, for every(n − 1)-sphere(u, v), there exists ann-cell f with sourceu
and targetv.

The n-category presentedby a track (n + 1)-categoryT is the n-category
T = Tn/Tn+1, whereTn+1 is seen as a cellular extension ofTn. Two track(n + 1)-
categories areTietze-equivalentif the n-categories they present are isomorphic.
Given ann-categoryC and a cellular extensionΓ of C, the track (n + 1)-category
generated byΓ is denoted byC(Γ) and defined as follows:

C(Γ) = C
[
Γ, Γ−

] /
Inv(Γ)

whereΓ− contains the same(n + 1)-cells asΓ , with source and target reversed, and
Inv(Γ) is made of the(n+2)-cells(γ⋆nγ−, 1sγ) and(γ−

⋆nγ, 1tγ), whereγ ranges
overΓ . Let us note that, whenf andg aren-cells ofC, we havef ≡Γ g if and only
if there exists an(n + 1)-cell with sourcef and targetg in C(Γ). WhenΣ is an
(n + 1)-polygraph, one writesΣ⊤ instead ofΣ∗

n(Σn+1).

1.3.2. Homotopy bases. — Let C be ann-category. Ahomotopy basis ofC is a
cellular extensionΓ of C such that the track(n + 1)-categoryC(Γ) is acyclic or,
equivalently, when the quotientn-categoryC/Γ is aspherical or, again equivalently,
when every sphere(f, g) of C satisfiesf ≡Γ g.

1.3.3. Lemma(Squier’s fundamental confluence lemma). — Let Σ be a conver-
gentn-polygraph. The generating confluences ofΣ form a homotopy basis ofΣ⊤.

Remark. — A complete proof of Lemma 1.3.3 is given in [8]. Squier has proved the
same result for presentations of monoids by word rewriting systems [18, 19]. When
formulated in terms of homotopy bases, Squier’s result is a subcase of the casen = 2

of Lemma 1.3.3.

1.3.4. Example. — The2-polygraphΣ2 = (a0, a1, a2) presentingAs has exactly
one generating confluencea3 and, thus, this3-cell forms a homotopy basis of the
track 2-categoryΣ⊤

2 . The3-polygraphΣ3 = (a0, a1, a2, a3) also has exactly one
generating confluencea4, with Mac Lane’s pentagon as shape, which forms a homo-
topy basis of the track3-categoryΣ⊤

3 .
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The resulting4-polygraphΣ4 = (a0, a1, a2, a3, a4) is a part of a presentation of
the theory of monoidal categories. In [8], Mac Lane’s coherence theorem is reformu-
lated in terms of homotopy bases and proved by an application of Lemma 1.3.3 to a
convergent3-polygraph containingΣ3.

1.3.5. Lemma. — LetT be a trackn-category and letB be a family of closedn-cells
of T. The following assertions are equivalent:

(1) The cellular extensioñB =
{

β̃ : β → 1sβ, β ∈ B
}

is a homotopy basis ofT.

(2) Every closedn-cell f in T can be written

f =
(
g1 ⋆n−1 C1

[
β

ε1

1

]
⋆n−1 g−

1

)
⋆n−1 · · · ⋆n−1

(
gk ⋆n−1 Ck

[
β

εk

k

]
⋆n−1 g−

k

)
(3)

where, for everyi ∈ {1, . . . , k}, we haveβi ∈ B, εi ∈ {−, +}, Ci ∈ WT andgi ∈ Tn.

Proof. — Let us assume that̃B is a homotopy basis ofT and let us consider a closed
n-cell f : w → w in T. Then, by definition of a homotopy basis, there exists an
(n + 1)-cell A : f → 1w in T(B̃). By construction ofT(B̃), the (n + 1)-cell A

decomposes into
A = A1 ⋆n · · · ⋆n Ak,

where eachAi is an(n+1)-cell ofT(B̃) that contains exactly one generating(n+1)-
cell of B. As a consequence, eachAi has shape

gi ⋆n−1 Ci

[
β̃

εi

i

]
⋆n−1 hi

with βi ∈ B, εi ∈ {−, +}, Ci ∈ WT andgi, hi ∈ Tn, . By hypothesis onA, we have
f = s(A), hence:

f = g1 ⋆n−1 C1[s(β
ε1

1 )] ⋆n−1 h1.

We proceed by case analysis onε1. If ε1 = +, then we have:

f = g1 ⋆n−1 C1[β1] ⋆n−1 h1

=
(
g1 ⋆n−1 C1[β1] ⋆n−1 g−

1

)
⋆n−1 (g1 ⋆n−1 h1)

=
(
g1 ⋆n−1 C1[β1] ⋆n−1 g−

1

)
⋆n−1 s(A2).

And, if ε1 = −, we get:

f = g1 ⋆n−1 h1

=
(
g1 ⋆n−1 C1[β

−
1 ] ⋆n−1 g−

1

)
⋆n−1 (g1 ⋆n−1 C1[β1] ⋆n−1 h1)

=
(
g1 ⋆n−1 C1[β

−
1 ] ⋆n−1 g−

1

)
⋆n−1 s(A2).

An induction on the natural numberk proves thatf has a decomposition as in (3).
Conversely, we assume that every closedn-cell f in T has a decomposition as

in (3). Then we havef ≡eB
1s(f) for every closedn-cell f in T. Let us consider
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two paralleln-cellsf andg in T. Thenf ⋆n−1 g− is a closedn-cell, hence we have
f⋆n−1g− ≡eB

1s(f). We compose both members byg on the right hand to getf ≡eB
g.

ThusB̃ is a homotopy basis ofT.

1.3.6. Finite derivation type. — One says that ann-polygraphΣ hasfinite deriva-
tion typewhen it is finite and when the trackn-categoryΣ⊤ admits a finite homotopy
basis. This property is Tietze-invariant for finiten-polygraphs, so that one says that
ann-category hasfinite derivation typewhen it admits a presentation by an(n + 1)-
polygraph with finite derivation type.

1.3.7. Lemma. — LetT be a trackn-category and letΓ be a cellular extension ofT.
If T has finite derivation type, then so doesT/Γ .

Proof. — Let B be a finite homotopy basis ofT. Let us denote byB the cellular
extension ofT/Γ made of one(n + 1)-cell A with sourcef and targetg for each
(n + 1)-cell A from f to g in B. ThenB is a homotopy basis ofT/Γ .

2 Identities among relations

2.1 Abelian track n-categories

2.1.1. Definition. — Let T be a trackn-category. For every(n − 1)-cell u in T, we
denote by AutTu the group of closedn-cells ofT with baseu. This mapping extends
to a natural system AutT on the(n − 1)-categoryTn−1, sending a contextC of Tn−1

to the morphism of groups that mapsf to C[f].
A track n-categoryT is abelianwhen, for every(n − 1)-cell u of T, the group

AutTu is abelian. Theabelianizedof a trackn-categoryT is the trackn-category
denoted byTab and defined as the quotient ofT by then-spheres(f⋆n−1g, g⋆n−1f),
wheref andg are closedn-cells with the same base.

2.1.2. Lemma. — EachAutTab
u is the abelianized group ofAutTu. As a consequence,

a track n-categoryT is abelian if and only if the natural systemAutT on Tn−1 is
abelian.

2.1.3. Lemma. — Let T be a trackn-category. For everyn-cell g : v → u, the
mapping(·)g from AutTu to AutTv and sendingf to

fg = g−
⋆n−1 f ⋆n−1 g

is an isomorphism of groups. Moreover, ifT is abelian andg, h : v → u aren-cells
of T, then the isomorphisms(·)g and(·)h are equal.
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Proof. — We have:

(1u)g = g−
⋆n−1 1u ⋆n−1 g = 1v.

Let f1 andf2 be closedn-cells ofT with baseu. Then:

(f1 ⋆n−1 f2)
g = g−

⋆n−1 f1 ⋆n−1 f2 ⋆n−1 g

= g−
⋆n−1 f1 ⋆n−1 g ⋆n−1 g−

⋆n−1 f2 ⋆n−1 g

= f
g
1 ⋆n−1 f

g
2.

Hence(·)g is a morphism of groups and it admits(·)g−
as inverse. Now, ifT is

abelian andg, h : v → u are paralleln-cells, we have:

fg = g−
⋆n−1 f ⋆n−1 g

= (g−
⋆n−1 h) ⋆n−1 (h−

⋆n−1 f ⋆n−1 h) ⋆n−1 (h−
⋆n−1 g)

= (h−
⋆n−1 f ⋆n−1 h) ⋆n−1 (g−

⋆n−1 h) ⋆n−1 (h−
⋆n−1 g)

= fh.

2.1.4. Proposition. — If a track n-categoryT has finite derivation type, then its
abelianized trackn-categoryTab has finite derivation type.

Proof. — We apply Lemma 1.3.7 to the quotientTab of T.

2.2 Defining identities among relations

2.2.1. Definition. — LetT be a trackn-category and letD be a natural system onT.
We denote byD̂ the natural system onTn−1 defined byD̂u = Du. A track n-
categoryT is linear when there exists an abelian natural systemΠ(T) onT such that

Π̂(T) is isomorphic to AutT.

Remark. — If such an abelian natural systemD exists, then it is unique up to iso-
morphism. Indeed, by definition of̂D, we haveD̂u = D̂v wheneveru andv are
(n − 1)-cells ofT such thatu = v holds. Thus, ifu is an(n − 1)-cell of T, then
Du = D̂w for every(n − 1)-cell w of T with w = u. As a consequence, ifD andE

are abelian natural systems onT such that botĥD and Ê are isomorphic to AutT,
thenD andE are isomorphic.

2.2.2. Theorem. — A trackn-category is abelian if and only if it is linear.

Proof. — If T is linear, then each group AutT
u is isomorphic to an abelian group.

ThusT is abelian.
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Conversely, let us assume thatT is abelian and let us define the abelian natural
systemΠ(T) onT. For an(n − 1)-cell u of T, the abelian groupΠ(T)u is defined as
follows, by generators and relations:

– It has one generator⌊f⌋ for everyn-cell f : a → a with a = u.
– Its defining relations are:

i : ⌊f ⋆n−1 g⌋ = ⌊f⌋ + ⌊g⌋, for f : a → a andg : a → a with a = u;
ii : ⌊f ⋆n−1 g⌋ = ⌊g ⋆n−1 f⌋, for f : a → b andg : b → a with a = b = u.

If u andu ′ are(n − 1)-cells ofT and if C is a context ofT from u to u ′, then the
action

Π(T)C : Π(T)u −→ Π(T)u′

is defined, on a generator⌊f⌋, with f a closedn-cell ofT with basea such thata = u,
by

C ⌊f⌋ = ⌊B[f]⌋ ,

whereB is a context ofTn−1, from a to somea ′ with a ′ = u ′, such thatB = C

holds. We note thatB[f] is a closedn-cell of T with base somea ′ such thata ′ = u ′,
so that⌊B[f]⌋ is a generating element ofΠ(T)u′ . Now, let us check that this action is
well-defined, that is, it does not depend on the choice of the representativesf andB.

For f, we check thatΠ(T)C is compatible with the relations definingΠ(T)u. If f

andg are closedn-cells ofT with basea such thata = u, then we have:

⌊B[f ⋆n−1 g]⌋ = ⌊B[f] ⋆n−1 B[g]⌋ = ⌊B[f]⌋ + ⌊B[g]⌋ .

And, for n-cellsf : a → b andg : b → a, with a = b = u, we have:

⌊B[f ⋆n−1 g]⌋ = ⌊B[f] ⋆n−1 B[g]⌋ = ⌊B[g] ⋆n−1 B[f]⌋ = ⌊B[g ⋆n−1 f]⌋ .

For B, we decomposeC in v ⋆n−2 C ′
⋆n−2 w, wherev andw are (n − 1)-cells

of T andC ′ is a whisker ofT. SinceT andTn−1 coincide up to dimensionn − 2,
any representativeB of C can be writtenB = b ⋆n−2 C ′

⋆n−2 c, whereb andc are
respective representatives ofv andw in Tn−1. As a consequence, it is sufficient (and,
in fact, equivalent) to prove that the definition ofΠ(T)C is invariant with respect to
the choice of the representativeB of C whenC has shapev ⋆n−2 x or x ⋆n−2 w.

We examine the caseC = v ⋆n−2 x, the other one being symmetric. We consider
two representativesb andb ′ of v in Tn−1. By definition ofT, there exists ann-cell
g : b → b ′ in T, as in the following diagram, drawn for the casen = 2:

b

!!

b ′

==
a

//g
��

f

8L
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Thanks to the exchange relation, we have:

(g ⋆n−2 a) ⋆n−1 (b ′
⋆n−2 f) = g ⋆n−2 f = (b ⋆n−2 f) ⋆n−1 (g ⋆n−2 a).

Hence:

b ′
⋆n−2 f = (g−

⋆n−2 a) ⋆n−1 (b ⋆n−2 f) ⋆n−1 (g ⋆n−2 a).

As, a consequence, one gets, using the second defining relation ofΠ(T)v⋆n−2u:
⌊
b ′

⋆n−2 f
⌋

=
⌊
(g−

⋆n−2 a) ⋆n−1 (b ⋆n−2 f) ⋆n−1 (g ⋆n−2 a)
⌋

=
⌊
(b ⋆n−2 f) ⋆n−1 (g ⋆n−2 a) ⋆n−1 (g−

⋆n−2 a)
⌋

= ⌊b ⋆n−2 f⌋ .

Now, let us prove that the abelian natural systemŝΠ(T) and AutT are isomorphic. For
an (n − 1)-cell u of T, we defineΦu : Π(T)u → AutTu as the morphism of groups
given on generators by

Φu(⌊f⌋) = fg,

wheref is a closedn-cell of T with basev such thatv = u andg is anyn-cell
of T with sourcev and targetu. Let us check thatΦu is well-defined. We already
know thatΦu is independent of the choice ofg. Let us prove that this definition is
compatible with the relations definingΠ(T)u.

For the first relation, letf1 andf2 be closedn-cells of T with basev such that
v = u and letg : v → u be ann-cell of T. Then:

Φu(⌊f1 ⋆n−1 f2⌋) = (f1 ⋆n−1 f2)
g

= f
g
1 ⋆n−1 f

g
2

= Φu(⌊f1⌋) ⋆n−1 Φu(⌊f2⌋)

= Φu(⌊f1⌋ + ⌊f2⌋).

For the second relation, we fixn-cellsf1 : v1 → v2, f2 : v2 → v1 andg : v1 → u,
with v1 = v2 = u. Then:

Φu(⌊f1 ⋆n−1 f2⌋) = (f1 ⋆n−1 f2)
g

= (g−
⋆n−1 f1) ⋆n−1 (f2 ⋆n−1 f1) ⋆n−1 (f−

1 ⋆n−1 g)

= (f2 ⋆n−1 f1)
g−

⋆n−1f1

= Φu(⌊f2 ⋆n−1 f1⌋).

ThusΦu is a morphism of groups fromΠ(T)u to AutTu. Moreover, it admitsf 7→ ⌊f⌋

as inverse and, as a consequence, is an isomorphism.
Finally, let us prove thatΦu is natural inu. Let C be a context ofTn−1 from u

to v. Let us check that the morphisms of groupsΦv◦Π(T)C and AutTC◦Φu coincide.
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Let f be a closedn-cell of T with base pointu ′ such thatu ′ = u. We fix ann-cell
g : u ′ → u in T and we note thatC[g] is ann-cell of T with sourceC[u ′] and target
C[u] = v. Then we have:

Φv ◦ Π(T)C(⌊f⌋) = (C[f])C[g]

= C[g−] ⋆n−1 C[f] ⋆n−1 C[g]

= C
[
g−

⋆n−1 f ⋆n−1 g
]

= C[fg]

= AutTC◦Φu(⌊f⌋).

Remark. — Theorem 2.2.2 is proved in [2, 3] for the casen = 2.

2.2.3. Definition. — Let Σ be ann-polygraph. Thenatural system of identities
among relations ofΣ is the abelian natural systemΠ(Σ⊤

ab), which we simply de-
note byΠ(Σ). If w is an(n − 1)-cell of Σ, an element of the abelian groupΠ(Σ)w is
called anidentity among relations associated tow.

2.3 Identities among relations of Tietze-equivalent polygraphs

2.3.1. Lemma. — Let Σ andΥ be two Tietze-equivalentn-polygraphs. Then there
existn-functors

F : Σ⊤
ab → Υ⊤

ab and G : Υ⊤
ab → Σ⊤

ab

such that the following two diagrams commute:

Σ⊤
ab

F
//

πΣ
����

c©

Υ⊤
ab

πΥ
����

Σ Υ

Υ⊤
ab

G
//

πΥ
����

c©

Σ⊤
ab

πΣ
����

Υ Σ

Proof. — To simplify notations, we consider that the(n − 1)-categoriesΣ andΥ

are equal, instead of simply isomorphic. Let us buildF, the construction ofG being
symmetric.

First, we define ann-functorF from Σ⊤ to Υ⊤. Oni-cells, withi ≤ n−2, F is the
identity, which makes the diagram commute up to dimensionn − 2 sinceπΣ andπΥ

are also identities on the same dimensions.
If a is an(n − 1)-cell in Σ, we arbitrarily choose an(n − 1)-cell in π−1

Υ πΣ(a)

for F(a). SinceF is the identity up to dimensionn − 2, we have that the source and
target ofF(a) are equal to the source and target ofa, respectively.
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Then,F is extended to any(n − 1)-cell of Σ⊤ by functoriality. Letϕ : u → v be
ann-cell of Σ. We have, by definition ofF(u) andF(v):

πΥ ◦ F(u) = πΣ(u) = πΣ(v) = πΥ ◦ F(v).

Thus, there exists ann-cell from F(u) to F(v) in Σ⊤. We arbitrarily chooseF(ϕ) to
be one of thosen-cells and, then, we extendF to anyn-cell of Σ⊤ by functoriality.

Let f andg be closedn-cells in Σ⊤. We haveF(f ⋆n−1 g) = F(f) ⋆n−1 F(g)

by definition ofF. As a consequence,F induces an-functor fromΣ⊤
ab to Υ⊤

ab that
satisfies, by construction, the relationπΥ ◦ F = πΣ.

2.3.2. Notation. — We fix two Tietze-equivalentn-polygraphsΣ andΥ, together
with n-functorsF and G as in Lemma 2.3.1. We denote bỹG the morphism of
natural systems onΣ = Υ, from Π(Υ) to Π(Σ), defined byG̃(⌊f⌋) = ⌊G(f)⌋.

For every(n − 1)-cell w in Σ⊤
ab, we define ann-cell Λw from w to GF(w) in Σ⊤

ab,
by structural induction onw. If w is an identity, thenΛw = 1w. Now, letw be an
(n − 1)-cell in Σ. By hypothesis onF andG, we have:

πΣ ◦ GF(w) = πΥ ◦ F(w) = πΣ(w).

As a consequence, there exists ann-cell from w to GF(w) in Σ⊤
ab and we arbi-

trarily chooseΛw to be such ann-cell. Finally, if w = w1 ⋆i w2, for somei in
{0, . . . , n − 2}, thenΛw = Λw1

⋆i Λw2
. If f : u → v is ann-cell of Σ⊤

ab, we denote
by Λf the closedn-cell with basisu defined by:

Λf = f ⋆n−1 Λv ⋆n−1 GF(f)−
⋆n−1 Λ−

u.

Finally, we define:

ΛΣ =
{
⌊Λϕ⌋

∣∣ ϕ ∈ Σn

}
.

2.3.3. Lemma. — Let f be ann-cell in Σ⊤
ab with a decomposition

f = C1[ϕ
ε1

1 ] ⋆n−1 · · · ⋆n−1 Ck[ϕ
εk

k ],

with ϕi ∈ Σn, εi ∈ {−, +} andCi ∈ WΣ∗. Then we have:

⌊Λf⌋ =

k∑

i=1

εiCi ⌊Λϕi
⌋ . (4)

Proof. — Let f : u → v andg : v → w ben-cells inΣ⊤
ab. We have:

Λf⋆n−1g = f ⋆n−1 g ⋆n−1 Λw ⋆n−1 GF(g)−
⋆n−1 GF(f)−

⋆n−1 Λ−
u

= f ⋆n−1 Λg ⋆n−1 Λv ⋆n−1 GF(f)−
⋆n−1 Λ−

u

= f ⋆n−1 Λg ⋆n−1 f−
⋆n−1 Λf.
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Hence:
⌊
Λf⋆n−1g

⌋
=

⌊
f ⋆n−1 Λg ⋆n−1 f−

⋆n−1 Λf

⌋
= ⌊Λf⌋ + ⌊Λg⌋ . (5)

Now, let f : w → w ′ be ann-cell andu be ani-cell, i ≤ n − 1, of Σ⊤
ab such that

u ⋆i w is defined. Then we have:

Λu⋆if = (u ⋆i f) ⋆n−1 Λu⋆iw
′ ⋆n−1 GF(u ⋆i f)−

⋆n−1 Λ−
u⋆iw

= (u ⋆i f) ⋆n−1 (Λu ⋆i Λw′) ⋆n−1 (GF(u) ⋆i GF(f)−) ⋆n−1 (Λ−
u ⋆i Λ−

w)

= (u ⋆n−1 Λu ⋆n−1 GF(u) ⋆n−1 Λ−
u) ⋆i (f ⋆n−1 Λw′ ⋆n−1 GF(f)−

⋆n−1 Λ−
w)

= u ⋆i Λf.

Similarly, we prove thatΛf⋆iv = Λf⋆iv if v is ani-cell, i ≤ n−1, such thatw⋆iv is
defined. As a consequence, we getΛC[f] = C[Λf], for every whiskerC of Σ∗, hence:

⌊
ΛC[f]

⌋
= C ⌊Λf⌋ . (6)

We prove (4) by induction onk, using (5) and (6).

2.3.4. Lemma. — Let B be a generating set for the natural systemΠ(Υ). Then the
setΛΣ ∐ G̃(B) is a generating set for the natural systemΠ(Σ).

Proof. — Let f be a closedn-cell with basisw in Σ⊤. By definition ofΛf, we have:

⌊f⌋ =
⌊
Λf ⋆n−1 Λw ⋆n−1 GF(f) ⋆n−1 Λ−

w

⌋
= ⌊Λf⌋ + ⌊GF(f)⌋ .

On the one hand, we consider a decomposition off in generatingn-cells ofΣn:

f = C1[ϕ
ε1

1 ] ⋆n−1 · · · ⋆n−1 Ck[ϕ
εk

k ].

Hence:

⌊Λf⌋ =

k∑

i=1

εiCi ⌊Λϕi
⌋ .

On the other hand, the natural systemΠ(Υ) is generated byB, so that⌊F(f)⌋ admits
a decomposition⌊F(f)⌋ =

∑
j∈J ηjBj ⌊gj⌋, with ⌊gj⌋ ∈ B. Hence:

⌊GF(f)⌋ =
∑

j∈J

Bj ⌊G(gj)⌋ =
∑

j∈J

Bj[G̃(⌊gj⌋)].

Thus,⌊f⌋ can be written as a linear combination of elements ofΛΣ and ofB, proving
the result.

2.3.5. Proposition. — Let Σ and Υ be two Tietze-equivalentn-polygraphs such
that Σn andΥn are finite. Then the natural systemΠ(Σ) is finitely generated if and
only if the natural systemΠ(Υ) is finitely generated.
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2.4 Generating identities among relations

2.4.1. Theorem. — If an n-polygraphΣ has finite derivation type then the natural
systemΠ(Σ) is finitely generated.

Proof. — Let us assume that then-polygraphΣ has finite derivation type. By Propo-
sition 2.1.4, the abelian track categoryΣ⊤

ab has finite derivation type. LetB be a finite
homotopy basis ofΣ⊤

ab and letB̃ be the set of closedn-cells ofΣ⊤
ab defined by:

B̃ =
{

s(β) ⋆n−1 t(β)−
∣∣ β ∈ B

}
.

By Lemma 1.3.5, any closedn-cell f in Σ⊤
ab can be written

f =
(
g1 ⋆n−1 C1[β

ε1

1 ] ⋆n−1 g−
1

)
⋆n−1 · · · ⋆n−1

(
gk ⋆n−1 Ck[β

εk

k ] ⋆n−1 g−
k

)
,

where, for everyi in {1, . . . , k}, βi ∈ B̃, εi ∈ {−, +}, Ci ∈ WΣ∗ andgi ∈ Σ∗
n. As a

consequence, for any identity among relations⌊f⌋ in Π(Σ), we have:

⌊f⌋ =

k∑

i=1

εi

⌊
gi ⋆n−1 Ci[βi] ⋆n−1 g−

i

⌋
=

k∑

i=1

εiCi ⌊βi⌋ .

Thus, the elements of
⌊
B̃
⌋

form a generating set forΠ(Σ).

2.4.2. Proposition. — For a convergentn-polygraphΣ, the natural systemΠ(Σ) is
generated by the generating confluences ofΣ.

Proof. — By Squier’s confluence lemma (Lemma 1.3.3), the set of generating con-
fluences ofΣ forms a homotopy basis ofΣ⊤. Following the proof of Theorem 2.4.1,
we transform it into a generating set for the natural systemΠ(Σ).

2.4.3. Example. — We consider the2-polygraphΣ = (a0, a1, a2) presenting the
monoidAs. Here is a part of the free2-categoryΣ∗:

a1 a1a1
a2ey a1a1a1

a2a1
l�

a1a2

^r a1a1a1a1
a1a2a1ey

a2a1a1

r�

a1a1a2

Xl a1a1a1a1a1

a1a2a1a1
i}

a1a1a2a1

au

a2a1a1a1

w�

a1a1a1a2

Sg

The2-polygraphΣ is convergent and has exactly one generating confluence, which
we can denote with either notation:

a2a1 ⋆1 a2

a3
_ %9a1a2 ⋆1 a2

_ %9
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Thus the natural systemΠ(Σ) on the categoryΣ = As is generated by following the
element, where the last equality uses the exchange relation:
⌊
s(a3) ⋆1 t(a3)

−
⌋

=
⌊
a2a1 ⋆1 a2 ⋆1 a−

2 ⋆1 a1a
−
2

⌋
=

⌊
a2a1 ⋆1 a1a

−
2

⌋
=

⌊
a2a

−
2

⌋
.

The graphical notations, where− is pictured as , make this last equality more
clear:

⌊
s( ) ⋆1 t( )−

⌋
=

⌊ ⌋
=

⌊ ⌋
= ⌊ ⌋

One can prove the same result by a combinatorial analysis. Indeed, one can note that
the minimal2-cells froman+1

1 to an
1 are theai

1a2a
n−1−i
1 , for i in {0, . . . , n − 1}.

Thus, the natural systemΠ(Σ) is generated by the following elements, forn ≥ 2 and
0 ≤ i < j ≤ n − 1:

⌊gi,j⌋ =
⌊
ai

1a2a
n−i−1
1 ⋆1 a

j
1a

−
2 a

n−j−1
1

⌋
.

Then, one uses the exchange relations to get:

gi,j =

{
ai

1(a2a1 ⋆1 a1a
−
2 )an−i−1

1 if j = i + 1

ai
1a2a

j−i−2
1 a−

2 a
n−j−1
1 if j > i + 2.

Hence, ifj = i + 1, we have, using the relations definingΠ(Σ) and⌊a1⌋ = 0:

⌊gi,i+1⌋ = i ⌊a1⌋ +
⌊
a2a1 ⋆1 a1a

−
2

⌋
+ (n − i − 1) ⌊a1⌋ =

⌊
a2a

−
2

⌋
.

And, if j > i + 2, we get:

⌊gi,j⌋ = i ⌊a1⌋ + ⌊a2⌋ + (j − i − 2) ⌊a1⌋ − ⌊a2⌋ + (n − j − 1) ⌊a1⌋ = 0.

Thus, the natural systemΠ(Σ) is generated by one element:
⌊
a2a

−
2

⌋
.
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