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INTRODUCTION

Rewriting. This is a combinatorial theory that studies presentations by generators andrelations. For
that, the latter are replaced byrewriting rules, which are relations only usable in one direction [20].
There exist many flavours of rewriting, depending on the objects to be presented: word rewriting [7], for
monoids; term rewriting [2, 14, 26], for algebraic theories [16]; rewriting on topological objects, such as
Reidemeister moves, for braids and knots [1].

In this work, we study presentations by rewriting of higher-dimensional categories, which encompass
the ones above [8, 15, 10, 11], plus many others, like Petri nets [13] orformal proofs of propositional
calculus and linear logic [12].

For example, the presentation of the monoid〈a | aa = a〉 by the word rewriting systemaa → a

is interpreted as follows: the generatora is a 1-cell and the rewriting rule is a2-cell aa ⇒ a over
the 1-category freely generated bya. Similarly, the presentation of the associative theory by the term
rewriting system(x · y) · z → x · (y · z) becomes: the binary operation is treated as a2-cell , while
the rewriting rule is seen as a3-cell over the2-category freely generated by , with shape

⇛ .

Another example is the categorical presentation of the groups of permutations, used in particular for
the explicit management of pointers in polygraphic programs [6]: it has one2-cell , standing for a
generating transposition, and the following two3-cells, respectively expressing that is an involution
and that it satisfies the Yang-Baxter relation:

⇛ and ⇛ .
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Polygraphs. The categorical rewriting systems presented in the previous paragraph are particular in-
stances of objects calledpolygraphsor computads. Those objects are presentations by "generators" and
"relations" of higher-dimensional categories [23, 8, 24, 25] and they are defined by induction as follows.
A 0-polygraph is a set and a1-polygraph is a directed graph. An(n + 1)-polygraph is given by an
n-polygraphΣn, together with a family of(n + 1)-cells between paralleln-cells of then-categoryΣ∗

n

freely generated byΣn. Then-category presented by such ann-polygraph is the quotient of the free
n-categoryΣ∗

n by the congruence relation generated by the(n+ 1)-cells ofΣn+1.
We recall the notions of polygraph and of presentation ofn-categories in Section 1.4, as originally

described by Burroni [8, 19]. Here we particularly focus onn-polygraphs forn ≤ 3, because they
contain well-known examples of rewriting systems: indeed, abstract rewriting systems, word rewriting
systems and Petri nets are special instances of1-polygraphs,2-polygraphs and3-polygraphs, respec-
tively, while term rewriting systems and formal proofs can be interpreted into3-polygraphs with similar
computational properties.

Among those properties, we are mostly interested inconvergence: like other rewriting systems, a
polygraph isconvergentwhen it is bothterminatingandconfluent. The termination property ensures
that no infinite reduction sequence exists, while the confluence property implies that all reduction se-
quences starting at the same point yield the same result. The aforegiven examples of3-polygraphs, for
associativity and permutations, are convergent, as proved in Sections 5.2and 5.4, respectively.

Homotopy type. In order to studyn-polygraphs from a homotopical point of view, we introduce the
notion of higher-dimensional track categoryin Section 3: a trackn-category is an(n − 1)-category
enriched in groupoid (ann-category whosen-cells are invertible). This notion generalises track2-
categories, introduced by Baues [3] as an algebraic model of the homotopy type in dimension2.

To ann-polygraphΣ, we associate the free trackn-categoryΣ⊤ it generates, used as a combinatorial
complex to describe the convergence property ofΣ. Towards this goal, we define in 3.2 ahomotopy
relationonΣ⊤ as a track(n+ 1)-category withΣ⊤ as underlyingn-category. Every family of(n+ 1)-
cells overΣ⊤ generates a homotopy relation; ahomotopy basisof Σ⊤ is such a family that generates a
"full" homotopy relation,i.e., a homotopy relation that identifies any two paralleln-cells ofΣ⊤.

An (n + 1)-polygraphΣ hasfinite derivation typewhen it is finite and whenΣ⊤ admits a finite
homotopy basis. This property is an invariant of then-category being presented byΣ: when two(n+1)-
polygraphs areTietze-equivalent, i.e., when they present the samen-category, then both or neither have
finite derivation type (Proposition 3.3.4). Hence, having finite derivation type is a finiteness property
of n-categories in dimensionn + 2, in a way that is comparable to finite generation type (finiteness in
dimensionn) and finite presentation type (finiteness in dimensionn+ 1).

Critical branchings and homotopy bases. A critical branchingin a polygraph is a pair of reductions
acting on overlapping "subcells" of the same cell (Definition 4.1.5). The branching is confluent when
there exist two reduction sequences that close the diagram. For example, the2-polygraphaa ⇒ a has a
unique, confluent critical branching:

aaa

5I�����
�����

�)?????

?????

aa

�)?????

?????

aa

5I�����
�����

a.
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The3-polygraph of associativity also has a unique, confluent critical branching, which is also known as
the2-dimensionalassociahedronor Stasheff polytope:
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Finally, the3-polygraph of permutations contains several critical branchings, given in 5.4.4, all of which
are confluent. Among them, one finds the2-dimensionalpermutohedron, generated by an overlapping
of the Yang-Baxter3-cell with itself:
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We prove that, when a polygraph is convergent, its critical branchings generate a homotopy basis (Propo-
sition 4.3.4). As a consequence, every finite and convergent polygraph with a finite number of critical
branchings has finite derivation type (Proposition 4.3.5).

This property is relevant when one considers higher-dimensional rewriting as a computational model,
for example in the case of polygraphic programs [5, 6]. Indeed, let us consider a convergent polygraph
with finite derivation type: then, there exist finitely many elementary choices, corresponding to critical
branchings, between parallel computation paths. Hence, Proposition 3.3.4tells us that being of finite
derivation type is a first step to ensure that ann-category admits a presentation by a rewriting system,
together with a deterministic and finitely generated evaluation strategy.
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Convergence of2-polygraphs. The notion of trackn-category freely generated by ann-polygraph
generalises the2-dimensional combinatorial complex associated to word rewriting systems [22]. Squier
introduced it to define finite derivation type for monoids and, then, linked thisproperty with the possi-
bility, for a finitely generated monoid, to have its word problem decided by the normal form algorithm.
This procedure consists in finding a finite convergent presentation of themonoidM by a word rewriting
system(X, R): given such a presentation, every element in the monoidM has a canonical normal form
in the free monoidX∗; hence, one can decide ifu andv in X∗ represent the same element ofM by
computing their unique normal forms forR and, then, by checking if the results are equal or not inX∗.

Squier has proved that, when a monoid admits a presentation by a finite and convergent word rewrit-
ing system, then it has finite derivation type. As a consequence, rewriting isnot a universal way to decide
the word problem of finitely generated monoids: to prove that, Squier has exhibited a finitely presented
monoid whose word problem is decidable, yet lacking the property of finite derivation type.

Here, we recover Squier’s convergence theorem as a consequence of Proposition 4.3.5. Indeed, a2-
polygraph has two kinds of critical branchings, namelyinclusionones andoverlappingones, respectively
corresponding to the following situations:

//
��

//

II

//

EY

��

and //
��
//

DD
//

EY

��

.

Hence a finite2-polygraph can have only finitely many critical branchings, yielding a finite homotopy
basis for its track2-category when it is also convergent.

Convergence of3-polygraphs. This case is more complicated than the one of2-polygraphs, because
of the nature of critical branchings generated by3-dimensional rewriting rules on2-cells. In Section 5,
we analyse the possible critical branchings a3-polygraph may have. We give a classification that unveil
a new kind of these objects, that we callindexed critical branchingand that describes situations such as
the following one:

k

f

h

g

where two3-cells respectively reduce the2-cells

h

f
and

h

g
.

There, the2-cell k belongs to none of the considered3-cells. Anormal instanceof the critical branching
is such a situation wherek is a normal form (i.e., it cannot be reduced by any3-cell).

We prove that the existence of indexed critical branchings is an obstructionto get a generalisation of
Squier’s result on finiteness and convergence for higher dimensions.Indeed, for every natural number
n ≥ 2, there exists ann-category that lacks finite derivation type, even though it admits a presentation
by a finite convergent(n+ 1)-polygraph (Theorem 4.3.9).
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To get this result, we use the3-polygraph

⇛ , ⇛ , ⇛ , ⇛ ,

for which we prove, in Section 5.5, that it is finite and convergent, but does not have finite derivation
type. Let us note that this3-polygraph has a topological flavour: it presents a2-category whose2-cells
are "planar necklaces with pearls" considered up to homotopy.

Finitely indexed 3-polygraphs. From our classification of critical branchings, we give a family of extra
sufficient conditions that ensure that a finite convergent3-polygraph has finite derivation type.

First, a finite convergent3-polygraph without indexed critical branching always has finite derivation
type (Theorem 5.1.4): this is the case of the associativity one and of the monoid one. We illustrate
the construction of a homotopy basis for this kind of3-polygraphs on this last example in Section 5.2:
the basis corresponds to the coherence diagrams satisfied by a monoidal category. This yields a new
formulation and proof of Mac Lane’s coherence theorem asserting that,in a monoidal category, all the
diagrams built from the monoidal structure are commutative [18].

More generally, we say that a3-polygraph isfinitely indexedwhen every indexed critical branching
has finitely many normal instances (Definition 5.1.2). This is the case of the former class of non-indexed
3-polygraphs, but also of many known ones such as the3-polygraph of permutations. We prove that a
finite, convergent and finitely indexed3-polygraph has finite derivation type (Theorem 5.3.4).

In the case of finitely indexed3-polygraphs, building a homotopy basis requires a careful and com-
prehensive study of normal forms. We illustrate this construction in Section 5.4, where we prove that the
3-polygraph of permutations is finitely indexed. Such an observation was first made by Lafont [15] and
we formalise it thanks to the notion of homotopy basis.

Perspectives. Our work gives methods to study, from a homotopical point of view, the convergence
property of presentations of2-categories by3-polygraphs. We think that further research on these meth-
ods shall allow progress on questions such as the following ones.

Our study of the3-polygraph of permutations adapts to polygraphic presentations of Lawvere al-
gebraic theories [16]. Indeed, there is a canonical translation of their presentations by term rewriting
systems into3-polygraphs [8, 15] and, when the original presentation is finite, left-linear and convergent,
then the3-polygraph one gets is finite, convergent [11] and finitely indexed [15]. Thus, if one proves
that a given Lawvere algebraic theory does not have finite derivation type, one gets that it does not ad-
mit a presentation by a first-order functional program, which is a special kind of finite, left-linear and
convergent term rewriting system.

We still do not know, for many special2-categories, if they admit a convergent presentation by a
3-polygraph. Among these2-categories, we are particularly interested in the one of braids. It is known
that it admits a presentation by a finite3-polygraph whose generators are, in dimension2, the elementary
crossings and and, in dimension3, the Reidemeister moves:

⇛ , ⇛ , ⇛ , ⇛ .

As a consequence of this work, we know that the presence of indexed critical branchings in this3-
polygraph, similar to the ones encountered for permutations, is one of the major obstructions to finding
a convergent presentation of the2-category of braids.
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In this work, we use known notions from the theories of categories, ofn-categories and of rewriting
that we do not necessarily explain in details. For more information on these subjects, we respectively
recommend the books by Saunders Mac Lane [18], by Eugenia Cheng and Aaron Lauda [9], by Franz
Baader and Tobias Nipkow [2].

1. HIGHER-DIMENSIONAL CATEGORIES PRESENTED BY POLYGRAPHS

1.1. Generalities onn-categories andn-functors

In this document, we consider small, strictn-categories and strictn-functors between them. We denote
by Catn the (large) category they form.

1.1.1. Vocabulary and notations. If C is ann-category, we denote byCk the set ofk-cells ofC and
by sk andtk thek-source andk-target maps. Iff is ak-cell, sk−1(f) andtk−1(f) are respectively called
its sourceandtargetand respectively denoted bys(f) andt(f). The source and target maps satisfy the
globular relations:

sk ◦ sk+1 = sk ◦ tk+1 and tk ◦ sk+1 = tk ◦ tk+1.

Two cellsf andg areparallel when they have same source and same target. A pair(f, g) of parallel
k-cells is called ak-sphere. Theboundaryof ak-cell is the(k− 1)-sphere∂f = (s(f), t(f)). The source
and target maps are extended to ak-sphereγ = (f, g) by s(γ) = f andt(γ) = g.

A pair (f, g) of k-cells ofC is i-composablewhenti(f) = si(g) holds; wheni = k− 1, one simply
sayscomposable. Thei-composite of(f, g) is denoted byf ⋆i g, i.e., in the diagrammatic direction. The
compositions satisfy theexchange relationgiven, for everyj 6= k and every possible cellsf, f ′, g, g ′, by:

(f ⋆j f
′) ⋆k (g ⋆j g

′) = (f ⋆k g) ⋆j (f ′ ⋆k g
′).

If f is ak-cell, we denote by1f its identity(k+ 1)-cell and, by abuse, all the higher-dimensional identity
cells it generates. When1f is composed with cells of dimensionk + 1 or higher, we abusively denote it
by f to make expressions easier to read. A cell isdegeneratewhen it is an identity cell. Fork ≤ n, a
k-categoryC can be seen as ann-category, with only degenerate cells above dimensionk.
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1.2. Standard cells and spheres

1.1.2. Graphical representations.Low-dimensional cells are writtenu : p → q, f : u ⇒ v,A : f ⇛ g

and pictured as usual (and so aren-categories, omitting the degenerate cells):

p p
u

// q p

u

!!

v

==f

��

q p

u

!!

v

==f

�*

g

s�

A_ %9 q

For readability, we also depict3-cells as "rewriting rules" on2-cells:

p

u

  

v

>>f

��
q

A

≡⇛ p

u

  

v

>>g

��
q

For 2-cells, circuit-like diagrams are alternative representations, where0-cells are parts of the plane,
1-cells are lines and2-cells are points, inflated for emphasis:

v

u

fp q

v

u

f

v

u

gp
A _ %9 qp q

1.2. Standard cells and spheres

1.2.1. Suspension functors.For every natural numbern, thesuspension functor

Sn : Catn → Catn+1

lifts all the cells by one dimension, adding a formal0-source and a formal0-target for all of them; thus,
in the (n + 1)-category one gets, one has exactly the same compositions as in the original one. More
formally, given ann-categoryC, the(n+ 1)-categorySnC has the following cells:

(SnC)0 = {−,+} and (SnC)k+1 = Ck ∐ {−,+} .

Every cell has0-source− and0-target+. The(k+1)-source and(k+1)-target of a non-degenerate cell
are itsk-source andk-target inC. The(k + 1)-composable pairs are thek-composable ones ofC, plus
pairs where at least one of the cells is an identity of− or +.

1.2.2. Standardn-cells andn-spheres. By induction onn, we define then-categoriesEn andSn,
respectively called thestandardn-cell and thestandardn-sphere. We consider them as then-categorical
equivalents of the standard topologicaln-ball andn-sphere, used to build then-categorical equivalents
of (relative) CW-complexes.

The standard0-cell E0 is defined as any chosen single-element set and the standard0-sphere as any
chosen set with two elements. Then, ifn ≥ 1, then-categoriesEn andSn are defined as the suspensions
of En−1 andSn−1:

En = Sn−1(En−1) and Sn = Sn−1(Sn−1).

7



1. Higher-dimensional categories presented by polygraphs

For coherence, we defineS−1 as the empty set. Thus, the standardn-cell En andn-sphereSn have
two non-degeneratek-cells e−

k ande+
k for everyk in {0, . . . , n− 1}, plus a non-degeneraten-cell en

in En. Using the cellular representations, the standard cellsE0, E1, E2 andE3 are respectively pictured
as follows (forS−1, S0, S1 andS2, one removes the top-dimensional cell):

e0 e−
0

e1
// e+

0
e−

0

e−
1

""

e+
1

<<
e2

��

e+
0

e−
0

e−
1

""

e+
1

<<
e−

2

�*

e+
2

s�

e3 _%9 e+
0

If C is ann-category then, for everyk in {0, . . . , n}, the k-cells andk-spheres ofC are in bijective
correspondence with then-functors fromEk to C and fromSk to C, respectively. When the context is
clear, we use the same notation for ak-cell ork-sphere and its correspondingn-functor.

As a consequence, ifI is a set, theI-indexed families ofk-cells (resp.k-spheres) ofC are in bijective
correspondence with then-functors fromI · Ek (resp.I · Sk) to C. We recall that, for a setX and ann-
categoryD, the copowerX · D is the coproductn-category

∐
x∈XD, whose set ofk-cells is the product

X× Dk.

1.2.3. Inclusion and collapsingn-functors. For everyn, theinclusionn-functorJn and thecollapsing
n-functorPn

Jn : Sn → En+1 and Pn : Sn → En

are respectively defined as the canonical inclusion ofSn into En+1 and as then-functor sending bothe−
n

ande+
n to en, leaving the other cells unchanged.

1.3. Adjoining and collapsing cells

1.3.1. Definition. Let C be ann-category, letk be in{0, . . . , n− 1}, let I be a set and letΓ : I · Sk → C

be ann-functor. Theadjoining ofΓ to C and thecollapsing ofΓ in C are then-categories respectively
denoted byC[Γ ] andC/Γ and defined by the following pushouts inCatn:

I · Sk
Γ

//

I·Jk

��

c©

C

��

I · Ek+1
// C[Γ ]

I · Sk
Γ

//

I·Pk

��

c©

C

��

I · Ek
// C/Γ

Whenk = n, one definesC[Γ ] by seeingC as an(n+ 1)-category with degenerate(n+ 1)-cells only.
Then-categoryC[Γ ] has the same cells asC up to dimensionk; its (k + 1)-cells are all the formal

composites made of the(k+ 1)-cells ofC, plus one extra(k+ 1)-cell fromΓ(i, e−
k) to Γ(i, e+

k) for every
i in I; above dimensionk+ 1, its cells are the ones ofC, plus the identities of each extra cell.

Then-categoryC/Γ has the same cells asC up to dimensionk − 1; its k-cells are the equivalence
classes ofk-cells of C, for the congruence relation generated byΓ(i, e−

k) ∼ Γ(i, e+
k), for everyi in I;

above dimensionk, its cells are the formal composites of the ones ofC, but with sources and targets
considered modulo the previous congruence.
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1.4. Polygraphs and presentations ofn-categories

1.3.2. Extensions ofn-functors. Let C andD ben-categories and letΓ : I · Sk → C be ann-functor.
Then, by universal property ofC[Γ ], one extends ann-functor F : C → D to a uniquen-functor F :

C[Γ ] → D by fixing, for everyγ in Γ , a (k + 1)-cell F(γ) in D such that the following two equalities
hold:

s(F(γ)) = F(s(γ)) and t(F(γ)) = F(t(γ)).

1.3.3. Occurrences. Here we see the groupZ of integers as ann-category: it has one cell in each
dimension up ton− 1 andZ as set ofn-cells; all the compositions ofn-cells are given by the addition.

Let C be ann-category and letΓ : I · Sk → C be ann-functor. We denote by||·||Γ then-functor
from C[Γ ] to Z defined by:

||f||Γ =

{
1 if f ∈ Γ,

0 otherwise.

For every cellf, one calls||f||Γ thenumber of occurrences of cells ofΓ in f.

1.3.4. Then-category presented by an(n + 1)-category. Let C be an(n + 1)-category. Iff is an
(n + 1)-cell of C, then∂f is ann-sphere ofC. Thus, the setCn+1 of (n + 1)-cells of C yields an
(n+ 1)-functor fromCn+1 · Sn to the underlyingn-category ofC: then-category presented byC is the
n-category denoted byC one gets by collapsing the(n+ 1)-cells ofC in its underlyingn-category.

1.4. Polygraphs and presentations ofn-categories

Polygraphs(or computads) are presentations by "generators" and "relations" of some higher-dimensional
categories [23, 8], see also [24, 25]. We definen-polygraphs by induction on the natural numbern.

The categoryPol0 of 0-polygraphs and morphisms between them is the one of sets and maps. A
0-polygraph isfinite when it is finite as a set. A0-cell of a 0-polygraph is one of its elements. Thefree
0-category functoris the identity functorPol0 → Cat0.

Now, let us fix a non-zero natural numbern and let us assume that we have defined the category
Poln−1 of (n − 1)-polygraphs and morphisms between them, finite(n − 1)-polygraphs,k-cells of an
(n − 1)-polygraph and the free(n − 1)-category functorPoln−1 → Catn−1, sending an(n − 1)-
polygraphΣ to the(n− 1)-categoryΣ∗.

1.4.1. n-polygraphs. An n-polygraphis a pairΣ = (Σn−1, Σn) made of an(n − 1)-polygraphΣn−1

and a familyΣn of (n− 1)-spheres of the(n− 1)-categoryΣ∗
n−1.

An n-cell of Σ is an element ofΣn and, if k < n, a k-cell of Σ is a k-cell of the (n − 1)-
polygraphΣn−1. The set ofk-cells ofΣ is abusively denoted byΣk, thus identifying it to thek-polygraph
underlyingΣ. An n-polygraph isfinite when it has a finite number of cells in every dimension. Thesize
of ak-cell f in Σ∗, denoted by||f||, is the natural number||f||Σk

, giving the number ofk-cells ofΣ thatf
is made of. For1-cells, we also use|·| instead of||·||.

The original paper [8] contains an equivalent description ofn-polygraphs, where they are defined as

9



1. Higher-dimensional categories presented by polygraphs

diagrams

Σ0 Σ1

s0,t0
qqqqq

xxqqqqq

��

��

(· · · )

s1,t1
ppppp

xxppppp

Σn−1

sn−2,tn−2
ooooo

wwooooo

��

��

Σn

sn−1,tn−1
ppppp

wwppppp

Σ0 Σ∗
1

s0,t0

oo (· · · )
s1,t1

oo Σ∗
n−1

sn−2,tn−2

oo

of sets and maps such that, for anyk in {0, . . . , n− 1}, the following two conditions hold:

• The diagramΣ∗
0 Σ∗

1
s0

oo

t0
oo

(· · · )
s1

oo

t1
oo Σ∗

k
sk−1

oo

tk−1
oo is ak-category.

• The diagramΣ∗
0 Σ∗

1
s0

oo

t0
oo

(· · · )
s1

oo

t1
oo Σ∗

k
sk−1

oo

tk−1
oo

Σk+1
sk

oo

tk
oo is a(k+ 1)-graph.

1.4.2. Morphisms ofn-polygraphs. Let Σ andΞ be twon-polygraphs. Amorphism ofn-polygraphs
fromΣ toΞ is a pairF = (Fn−1, Fn) whereFn−1 is a morphism of(n−1)-polygraphs fromΣn−1 toΞn−1

and whereFn is a map fromΣn to Ξn such that the following two diagrams commute:

Σn
Fn

//

sn−1

��

c©

Ξn

sn−1

��

Σ∗
n−1 F∗

n−1

// Ξ∗n−1

Σn
Fn

//

tn−1

��

c©

Ξn

tn−1

��

Σ∗
n−1 F∗

n−1

// Ξ∗n−1

Alternatively, ifΣn : I · Sn−1 → Σ∗
n−1 andΞn : J · Sn−1 → Σ∗

n−1 are seen as(n− 1)-functors, thenFn

is a map fromI to J such that the following diagram commutes inCatn−1:

I · Sn−1
Σn

//

Fn ·1Sn−1

��

c©

Σ∗
n−1

F∗
n−1

��

J · Sn−1
Ξn

// Ξ∗n−1

We denote byPoln the category of polygraphs and morphisms between them.

1.4.3. The freen-category functor. Let Σ be ann-polygraph. Then-category freely generated byΣ
is then-categoryΣ∗ defined as follows:

Σ∗ = Σ∗
n−1[Σn].

This construction extends to ann-functor(·)∗ : Poln → Catn called thefreen-category functor.
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2. Contexts, modules and derivations ofn-categories

1.4.4. Then-category presented by an(n + 1)-polygraph. Let Σ be a(n + 1)-polygraph. Then-
category presented byΣ is then-category denoted byΣ and defined as follows:

Σ = Σ∗
n/Σn+1.

Twon-polygraphs areTietze-equivalentwhen the(n−1)-categories they present are isomorphic. IfC is
ann-category, apresentation ofC is an(n+1)-polygraphΣ such thatC is isomorphic to then-categoryΣ
presented byΣ. One says that ann-categoryC is finitely generatedwhen it admits a presentation by an
(n + 1)-polygraphΣ whose underlyingn-polygraphΣn is finite. One says thatC is finitely presented
when it admits a finite presentation.

1.4.5. Example: a presentation of the2-category of permutations. The2-categoryPerm of permu-
tations has one0-cell, one1-cell for each natural number and, for each pair(m,n) of natural number, its
set of2-cells fromm to n is the groupSn of permutations ifm = n and the empty set otherwise. The
0-composition of1-cells is the addition of natural numbers. The0-composition of two2-cellsσ ∈ Sm

andτ ∈ Sn is the permutationσ ⋆0 τ defined by:

σ ⋆0 τ(i) =

{
σ(i) if 1 ≤ i ≤ n,

τ(i− n) otherwise.

Finally the1-composition of2-cells is the composition of permutations. The2-categoryPerm is pre-
sented by the3-polygraph with one0-cell, one1-cell, one2-cell, pictured by , and the following two
3-cells:

⇛ and ⇛ .

2. CONTEXTS, MODULES AND DERIVATIONS OFn-CATEGORIES

2.1. The category of contexts of ann-category

Throughout this section,n is a fixed natural number andC is a fixedn-category.

2.1.1. Contexts of ann-category. A context ofC is a pair(x,C) made of an(n− 1)-spherex of C and
ann-cellC in C[x] such that||C||x = 1. We often denote byC[x], or simply byC, such a context.

Let x andy be(n− 1)-spheres ofC and letf be ann-cell in C[x] such that∂f = y holds. We denote
byC[f] the image of a contextC[y] of C by the functorC[y] → C[x] that extends IdC with y 7→ f.

2.1.2. The category of contexts.Thecategory of contexts ofC is the category denoted byCC, whose
objects are then-cells of C and whose morphisms fromf to g are the contextsC[∂f] of C such that
C[f] = g holds. IfC : f → g andD : g → h are morphisms ofCC thenD ◦ C : f → h isD[C]. The
identity context on ann-cell f of C is the context∂f. WhenΣ is ann-polygraph, one writesCΣ instead
of CΣ∗.

11



2. Contexts, modules and derivations ofn-categories

2.1.3. Proposition. Every context ofC has a decomposition

fn ⋆n−1 (fn−1 ⋆n−2 · · · (f1 ⋆0 x ⋆0 g1) · · · ⋆n−2 gn−1) ⋆n−1 gn,

wherex is an(n − 1)-sphere and, for everyk in {1, . . . , n}, fk andgk aren-cells ofC. Moreover, one
can choose these cells so thatfk andgk are (the identities of)k-cells.

Proof. The set ofn-cellsf of C[x] such that||f||x = 1 is a quotient of the following inductively defined
setX: then-cellx is inX; if C is inX andf is ann-cell ofC such thatti(f) = si(C) (resp.ti(C) = si(f))
holds for somei, thenf ⋆iC (resp.C ⋆i f) is inX.

Using the associativity and exchange relations satisfied by the compositions of C, one can order these
successive compositions to reach the required shape, or to reach the same shape withfk andgk being
identities ofk-cells.

2.1.4. Whiskers. A whisker ofC is a context with a decomposition

fn−1 ⋆n−2 · · · (f1 ⋆0 x ⋆0 g1) · · · ⋆n−2 gn−1

such that, for everyk in {1, . . . , n− 1}, fk andgk arek-cells. We denote byWC the subcategory ofCC

with the same objects and with whiskers as morphisms. WhenΣ is ann-polygraph, we writeWΣ instead
of WΣ∗.

2.1.5. Proposition. LetΣ be ann-polygraph. Everyn-cell f in Σ∗ with sizek ≥ 1 has a decomposition

f = C1[γ1] ⋆n−1 · · · ⋆n−1Ck[γk].

whereγ1, . . . , γk aren-cells inΣ andC1, . . . , Ck are whiskers ofΣ∗.

Proof. We proceed by induction on the size of then-cell f. If it has size1, then it contains exactly one
n-cell γ of Σ, possibly composed with other ones of lower dimension. Using the relations satisfied by
compositions in ann-category, one can writef asC[γ], with C a context ofΣ∗. Moreover, this context
must be a whisker, sincef has size1.

Now, let us assume that we have proved that everyn-cell with size at mostk, for a fixed non-zero
natural numberk, admits a decomposition as in Proposition 2.1.5. Then let us consider ann-cell f with
sizek + 1. Since||f|| ≥ 2 and by construction ofΣ∗ = Σ∗

n−1[Σn], one gets thatf can be writteng ⋆i h,
where(g, h) is a pair ofi-composablen-cells ofΣ∗, for somei in {0, . . . , n− 1}, with ||g|| and ||h||

at least1. One can assume thati = n − 1 since, otherwise, one considers the following alternative
decomposition off, thanks to the exchange relation between⋆i and⋆n−1:

f = (g ⋆i s(h)) ⋆n−1 (t(g) ⋆i h) .

Since ||f|| = ||g|| + ||h||, one must have||g|| ≤ k and ||h|| ≤ k. We use the induction hypothesis to
decomposeg andh as in 2.1.5, wherej denotes||g||:

g = C1[γ1] ⋆n−1 · · · ⋆n−1Cj[γj] and h = Cj+1[γj+1] ⋆n−1 · · · ⋆n−1Ck[γk].

We compose the right members and use the associativity of⋆n−1 to conclude.

12



2.2. Contexts in low dimensions

2.2. Contexts in low dimensions

2.2.1. Contexts of a1-category as factorizations. From Proposition 2.1.3, we know that the contexts
of a1-categoryC have the following shape:

u ⋆0 x ⋆0 v,

wherex is a0-sphere andu, v are1-cells ofC. The morphisms inCC fromw : p → q tow ′ : p ′ → q ′

are the pairs(u : p ′ → p, v : q → q ′) of 1-cells ofC such thatu ⋆0w ⋆0 v = w ′ holds inC:

p

w

��

c©

p ′u
oo

w′

��

q
v

// q ′

WhenC is freely generated by a1-polygraph, the1-cellsu andv are uniquely defined by the context.
Moreover, the contexts fromw tow ′ are in bijective correspondence with the occurrences of the wordw

in the wordw ′. The categoryCC has been introduced by Quillen under the namecategory of factor-
izations ofC [21]. It has been used by Leech to introduce cohomological propertiesof congruences on
monoids [17] and by Baues and Wirsching for the cohomology of small categories [4].

2.2.2. Contexts of2-categories. Let C be a2-category. From Proposition 2.1.3, a context ofC has the
following shape:

h ⋆1 (g1 ⋆0 x ⋆0 g2) ⋆1 k

wherex is a1-sphere andg1, g2, h, k are2-cells. Morphisms inCC from a2-cell f to a2-cell f ′ are the
contextsh ⋆1 (g1 ⋆0 x ⋆0 g2) ⋆1 k of C such that

h ⋆1 (g1 ⋆0 f ⋆0 g2) ⋆1 k = f ′

holds inC. This last relation is graphically represented as follows:

•
��

EE

��

CC
g1

��
•

��

CCf
��

h

��

k

��

•
��

CC
g2

��
• = •

��

CCf′

��
•

However, the exchange relation between the two compositions⋆0 and⋆1 implies that this decomposition
is not unique. Two decompositions

h ⋆1 (g1 ⋆0 x ⋆0 g2) ⋆1 k and h ′
⋆1 (g ′

1 ⋆0 x
′
⋆0 g

′
2) ⋆1 k

′
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2. Contexts, modules and derivations ofn-categories

represent the same context if and only ifx = x ′ and there exist2-cells l1, l2, m1, m2 such that the
following four relations are defined and statisfied inC:

•
$$

// • // • // •
h��

•
$$))

CC
• // • ))

CC
•

h′

��
l1�� l2��

=

•
��##

;; JJ

l1��

g1��

m1��

• = •
��

CC
g′

1

��
• •

��

CC
g′

2

��
• = •

��##

;; JJ

l2��

g2��

m2��

•

• ::

��

55 • // •
��

55 •
k′

��

m1��
m2��

• ::
// • // • // •

k��

=

2.3. Modules overn-categories

2.3.1. Definition. Let C be ann-category. AC-moduleis a functor from the category of contextsCC

to the categoryAb of abelian groups. Hence, aC-moduleM is specified by an abelian groupM(f), for
everyn-cell f in C, and a morphismM(C) : M(f) → M(g) of groups, for every contextC : f → g

of C. When no confusion may occur, one writesC[m] instead ofM(C)(m) and, whenC has shapeh⋆ix

(resp.x ⋆i h), one writesh ⋆im (resp.m ⋆i h) instead ofM(C)(m).

2.3.2. Proposition. Let C be ann-category. AC-moduleM is entirely and uniquely defined by its
values on the following contexts ofC:

f ⋆i x and x ⋆i f

for everyi in {0, . . . , n− 1} and every non-degenerate(i+ 1)-cell f in C.
Moreover, whenΣ is ann-polygraph, then aΣ∗-moduleM is entirely and uniquely defined by its

values on the following contexts ofΣ∗:

C[ϕ] ⋆i x and x ⋆iC[ϕ]

for everyi in {0, . . . , n− 1}, every generating(i+ 1)-cellϕ in Σi+1 and every whiskerC[∂ϕ] ofΣ∗
i+1.

14



2.3. Modules overn-categories

Proof. Let h, h ′ be twon-cells of C and letC[x] : h → h ′ be a morphism ofCC. We use Proposi-
tion 2.1.3 to decomposeC[x] as follows:

C[x] = fn ⋆n−1 · · · ⋆1 (f1 ⋆0 x ⋆0 g1) ⋆1 · · · ⋆n−1 gn,

in such a way that, for everyk in {1, . . . , n}, fk andgk arek-cells. Thus, in the categoryCC, the
contextC[x] decomposes into

C[x] = Cn[xn] ◦ · · · ◦ C1[x1],

wherex1 = x and, for everyi in {1, . . . , n}, one hasCi[xi] = fi ⋆i−1 xi ⋆i−1 gi andxi+1 = ∂Ci[xi].
Moreover, eachCi[xi] splits into:

Ci[xi] = (yi ⋆i−1 gi) ◦ (fi ⋆i−1 xi) ,

whereyi = ∂(fi ⋆i−1 xi). Thus, sinceM is a functor, it is entirely defined by its values on the contexts
with shapef ⋆i x or x ⋆i f, with i in {0, . . . , n− 1} andf a non-degenerate(i + 1)-cell (indeed, whenf
is degenerate as ai-cell, one hasx ⋆i f = x andM(x) is always an identity). This proves the first part of
the result.

Now, let us continue, assuming thatC is freely generated by ann-polygraphΣ. Let us consider the
n-contextf ⋆i x, wheref is an(i+ 1)-cell of sizek ≥ 1. We decompose it as in Proposition 2.1.5:

f = C1[ϕ1] ⋆i · · · ⋆iCk[ϕk],

whereϕ1, . . . , ϕk are generating(i + 1)-cells andC1, . . . , Ck arei-contexts. Thus, a contextf ⋆i x

decomposes intoCΣ as follows:

f ⋆i x = (C1[ϕ1] ⋆i x1) ◦ · · · ◦ (Ck[ϕk] ⋆i xk) ,

wherexk = x andxj = ∂(Cj+1[ϕj+1] ⋆i xj+1). Proceeding similarly with contexts of the shapex ⋆i f,
one gets the result.

2.3.3. Example: the trivial module. Let C be ann-category. Thetrivial C-modulesends eachn-cell
of C to Z and each context ofC to the identity ofZ.

2.3.4. Example of modules over2-categories. LetV be a concrete category. We view it as a2-category
with one0-cell, objects as1-cells and morphisms as2-cells. The0-composition in given by the cartesian
product and the1-composition by the composition of morphisms.

Let us fix an internal abelian groupG in V, a 2-categoryC and2-functorsX : C → V andY :

Cco → V, whereCco is C where one has exchanged the source and target of every2-cell. Then, using
Proposition 2.3.2, the following assignments yield aC-moduleMX,Y,G:

• Every2-cell f : u ⇒ v is sent to the abelian group of morphisms:

MX,Y,G(f) = V
(
X(u) × Y(v), G

)
.
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2. Contexts, modules and derivations ofn-categories

• If w andw ′ are1-cells ofC andC = w ⋆0 x ⋆0w
′ is a context fromf : u ⇒ v tow ⋆0 f ⋆0w

′,
thenMX,Y,G(C) sends a morphisma : X(u) × Y(v) → G in V to:

X(w) × X(u) × X(w ′) × Y(w) × Y(v) × Y(w ′) −→ G

(x ′, x, x ′′, y ′, y, y ′′) 7−→ a(x, y).

• If g : u ′ ⇒ u andh : v ⇒ v ′ are2-cells ofC andC = g ⋆1 x ⋆1 h is a context fromf : u ⇒ v to
g ⋆1 f ⋆1 h, thenMX,Y,G(C) sends a morphisma : X(u) × Y(v) → G in V to a ◦ (X× Y), that is:

X(u ′) × Y(v ′) −→ G

(x, y) 7−→ a ( X(g)(x), Y(h)(y) ) .

WhenX or Y is trivial, i.e., sends all the cells ofC to the terminal object ofV, one denotes the corre-
spondingC-module byM∗,Y,G orMX,∗,G. In particular,M∗,∗,Z is the trivialC-module.

By construction, aC-moduleMX,Y,G is uniquely and entirely defined by the valuesX(u) andY(u),
for every1-cell u, and by the morphismsX(f) andY(f) for every2-cell f. As a consequence, whenC is
freely generated by a2-polygraphΣ, theC-moduleMX,Y,G is uniquely and entirely determined by:

• The objectsX(a) andY(a) of V, for every generating1-cell a in Σ1.

• The morphismsX(γ) : X(u) → X(v) andY(γ) : Y(v) → Y(u) of V, for every generating2-cell
ϕ : u ⇒ v in Σ2.

In the sequel, we consider this kind ofC-module withV being the categorySet of sets and maps or
the categoryOrd of partially ordered sets and monotone maps. For this last situation, we recallthat an
internal abelian group inOrd is a partially ordered set equipped with a structure of abelian group whose
addition is monotone in both arguments.

2.4. Derivations ofn-categories

2.4.1. Definition. Let C be ann-category and letM be aC-module. Aderivation ofC intoM is a map
sending everyn-cell f of C to an elementd(f) of M(f) such that the following relation holds, for every
i-composable pair(f, g) of n-cells ofC:

d(f ⋆i g) = f ⋆i d(g) + d(f) ⋆i g.

Given a derivationd onC, we define its values on contexts by

d(C) =

n∑

i=−n

fn ⋆n−1 (fn−1 ⋆n−2 · · · (d(fi) ⋆i−1 · · · (f1 ⋆0 x ⋆0 f−1) · · · ⋆n−1 f−n,

for any contextC[x] = fn ⋆n−1 · · · (f1 ⋆0 x ⋆0 f−1) · · · ⋆n−1 f−n of C. This gives a mappingd(C) taking
ann-cell f of C with boundaryx to an elementd(C)[f] of the abelian groupM(C[f]). In this way a
derivation fromC intoM satisfies:

d(C[f]) = d(C)[f] + C[d(f)].
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3. Higher-dimensional categories with finite derivation type

2.4.2. Proposition. LetC be ann-category, letM be aC-module and letd be a derivation ofC intoM.
Then, for every degeneraten-cell f of C, we haved(f) = 0. Moreover, whenC is then-category
freely generated by ann-polygraphΣ, thend is entirely and uniquely determined by its values on the
generating cells ofΣ.

Proof. Let f be a degeneraten-cell of C. We have:

d(f) = d(f ⋆n−1 f) = f ⋆n−1 d(f) + d(f) ⋆n−1 f = 2 · d(f).

Sinced(f) is an element of the abelian groupM(f), then we haved(f) = 0.
As a consequence of its definition, a derivation is compatible with the associativity, unit and exchange

relations. This implies that the values ofd on ann-cell f of Σ∗ can be uniquely computed from its values
on the generatingn-cellsf is made of.

2.4.3. Example: occurrences.If C is ann-category andΓ : I · Sn−1 → C is ann-functor, we have
defined then-functor ||·||Γ counting the number of occurrences ofn-cells ofΓ in ann-cell of C[Γ ]. This
construction is a derivation ofC into the trivialC-module, sending eachn-cell of C to 0 and eachn-cell
of Γ to 1.

2.4.4. Example: derivations of free2-categories. Let us consider a2-polygraphΣ, a concrete cate-
goryV and a module of the shapeMX,Y,G, as defined in 2.3.4. Then, by construction ofΣ∗, a derivationd
of Σ∗ intoMX,Y,G is entirely and uniquely determined by a family(dϕ)ϕ∈Σ2

made of a morphism

dϕ : X(u) × Y(v) → G

of V for each2-cellϕ : u ⇒ v of Σ.

3. HIGHER-DIMENSIONAL CATEGORIES WITH FINITE DERIVATION TYPE

3.1. Trackn-categories

3.1.1. Definitions. In ann-categoryC, a k-cell f is invertible when there exists ak-cell g from t(f)

to s(f) in C such that bothf⋆k−1g = s(f) andg⋆k−1f = t(f) hold. In that case,g is unique and denoted
by f−1. The following relations are satisfied:

(1x)
−1 = 1x and (f ⋆i g)

−1 =

{
f−1

⋆i g
−1 if i < k− 1

g−1
⋆k−1 f

−1 otherwise.

Moreover, ifF : C → D is ann-functor, one has:

F(f−1) = F(f)−1.

A trackn-categoryis ann-category whosen-cells are invertible,i.e., an(n − 1)-category enriched in
groupoid. We denote byTckn the category of trackn-categories andn-functors between them.
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3. Higher-dimensional categories with finite derivation type

3.1.2. Example. Let C be ann-category. Given twon-cellsf from u to v andg from v to u in C, we
denote byIf,g the followingn-sphere ofC:

If,g = (f ⋆n−1 g, 1u) .

If γ = (f, g) is ann-sphere ofC, we denote byγ−1 then-sphere(g, f) of C. Then we define the track
(n+ 1)-categoryC(γ) by:

C(γ) = C
[
γ, γ−1

] / {
Iγ,γ−1 , Iγ−1,γ

}
.

This construction is extended to a setΓ of n-spheres, yielding a track(n+ 1)-categoryC(Γ).

3.1.3. The free trackn-category functor. Given ann-polygraphΣ, thetrackn-category freely gener-
ated byΣ is then-category denoted byΣ⊤ and defined by:

Σ⊤ = Σ∗
n−1(Σn),

This construction extends to a functor(·)⊤ : Poln → Tckn called thefree trackn-category functor.

3.2. Homotopy bases

3.2.1. Homotopy relation. Let C be ann-category. Ahomotopy relationon C is a track(n + 1)-
categoryT with C as underlyingn-category. Given ann-sphere(f, g) in C, one denotes byf ≈T g the
fact that there exists an(n+1)-cell fromf tog in T. If Γ is a set ofn-spheres ofC, one simply writes≈Γ

instead of≈C(Γ) and calls it thehomotopy relation onC generated byΓ .
One hasf ≈T g if and only if π(f) = π(g) holds, whereπ is the canonical projection fromT to the

n-categoryT presented byT, i.e., C/Tn+1. As a consequence, the relation≈T is a congruence relation
on the paralleln-cells ofC, i.e., it is an equivalence relation compatible with every composition ofC.

3.2.2. Homotopy basis. A set Γ of n-spheres ofC is a homotopy basis ofC when, for everyn-
sphere(f, g) of C, one hasf ≈Γ g. In other words,Γ is a homotopy basis if and only if, for every
n-sphereγ of C, there exists an(n + 1)-cell γ such that∂γ = γ holds, i.e., such that the following
diagram commutes inCatn+1:

Sn

γ
//

Jn

��

c©

C

��

En+1
γ

// C(Γ)

3.2.3. Proposition. Let C be ann-category and letΓ be a homotopy basis ofC. If C admits a finite
homotopy basis, then there exists a finite subset ofΓ that is a homotopy basis ofC.

Proof. Let Γ ′ be a finite homotopy basis ofC. Let γ be ann-sphere ofC in Γ ′. SinceΓ is a homotopy
basis ofC, there exists an(n+1)-cellϕγ in C(Γ) with boundaryγ. This defines an(n+1)-functorF from
C(Γ ′) to C(Γ) which is the identity on cells ofC and which sends eachγ in Γ ′ toϕγ. For eachϕγ, we
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3.3. Polygraphs with finite derivation type

fix a representative inC[Γ, Γ−1] and denote by{ϕγ}
Γ

the set of cells ofΓ occurring in this representative.
Let us denote byΓ0 the following subset ofΓ

Γ0 =
⋃

γ∈Γ ′

{ϕγ}
Γ
,

consisting of all the cells ofΓ contained in the cellsϕγ. The subsetΓ0 is finite sinceΓ ′ and each{ϕγ}
Γ

are. Now let us see that it is an homotopy basis ofC. Let us fix ann-sphere(f, g) of C. By hypothesis,
there exists an(n + 1)-cellA in C(Γ ′) with boundary(f, g). By application ofF, one gets an(n + 1)-
cell F(A) in C(Γ) with boundary(f, g). Moreover, the(n + 1)-cell F(A) is a composite of cells of the
shapeϕγ: hence, it lives inC(Γ0). As a consequence, one getsf ≈Γ0

g, which concludes the proof.

3.3. Polygraphs with finite derivation type

3.3.1. Definitions. One says that ann-polygraphΣ hasfinite derivation typewhen it is finite and when
the trackn-categoryΣ⊤ it generates admits a finite homotopy basis. Ann-category hasfinite derivation
typewhen it admits a presentation by an(n+ 1)-polygraph with finite derivation type.

3.3.2. Lemma. LetΣ andΣ ′ ben-polygraphs. We denote byπ : Σ∗
n−1 → Σ and byπ ′ : Σ ′∗

n−1 → Σ
′

the canonical(n− 1)-functors. Then every(n− 1)-functorF fromΣ toΣ
′
can be lifted to ann-functor

F̃ : Σ⊤ → Σ ′⊤ such that the following diagram commutes inCatn−1:

Σ∗
n−1

π
//

eF
��

c©

Σ

F

��

Σ ′∗
n−1 π′

//
Σ

′

Proof. For everyk-cell u in Σ∗, with k in {0, . . . , n− 2}, we takeF̃(u) = F(u). Sinceπ andπ ′ are
identities on cells up to dimensionn− 2, we have the relationF ◦ π(u) = π ′ ◦ F̃(u).

Now, let us consider an(n − 1)-cell u in Σ. One arbitrarily chooses an(n − 1)-cell of Σ ′∗, hence
of Σ ′⊤, that is sent onF ◦ π(u) by π ′, and one fixes̃F(u) to that(n − 1)-cell. One extends̃F to every
(n− 1)-cell ofΣ∗ thanks to the universal property ofΣ∗.

Then, letf be ann-cell fromu to v in Σ. Thenπ(u) = π(v) holds by definition ofπ. Applying F on
both members and using the property satisfied byF̃, one getsπ ′ ◦ F̃(u) = π ′ ◦ F̃(v). By definition ofπ ′

and ofΣ ′⊤, this means that there exists ann-cell from F̃(u) to F̃(v) in Σ ′⊤. One takes one suchn-cell
for F̃(f). Finally, one extends̃F to everyn-cell ofΣ⊤.

3.3.3. Lemma. LetΣ andΣ ′ ben-polygraphs and letF : Σ⊤ → Σ ′⊤ be ann-functor. Given a setΓ of

n-spheres ofΣ⊤, we defineF(Γ) as the following set ofn-spheres ofΣ ′⊤:

F(Γ) =
{

(F(g), F(g ′))
∣∣ (g, g ′) ∈ Γ

}
.

Then, for everyn-sphere(f, f ′) of Σ⊤ such thatf ≈Γ f
′ holds, we haveF(f) ≈F(Γ) F(f

′).

Proof. We use the functoriality ofF.
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3. Higher-dimensional categories with finite derivation type

3.3.4. Proposition. LetΣ andΣ ′ be Tietze-equivalent finiten-polygraphs. ThenΣ has finite derivation
type if and only ifΣ ′ has.

Proof. Let us assume thatΣ andΣ ′ aren-polygraphs which present the same(n − 1)-category, sayC.
Let us assume thatΣ has finite derivation type, so that we can fix a finite homotopy basisΓ of Σ⊤. Using
Lemma 3.3.2 twice on the(n−1)-functor IdC, we get twon-functorsF : Σ⊤ → Σ ′⊤ andG : Σ ′⊤ → Σ⊤

such that the following diagrams commute inCatn−1:

Σ∗
n−1

π
//

F

��

c©

C

IdC

��

Σ ′∗
n−1 π′

// C

Σ∗
n−1

π
//

c©

C

Σ ′∗
n−1 π′

//

G

OO

C

IdC

OO

In particular, bothπ andπ ′ are the identity onk-cells, for everyk < n− 1, hence so areF andG.
Let us consider an(n− 1)-cella in Σ ′. Thenπ ′ ◦ FG(a) = π ◦G(a) = π ′(a). Thus, there exists an

n-cell denoted byfa from a to FG(a) in Σ ′⊤. From these cells, we definefu for every(n − 1)-cell u
in Σ ′∗, hence ofΣ ′⊤, using the following relations:

• for every degenerate(n− 1)-cellu, fu is defined asu,

• for everyi-composable pair(u, v) of (n− 1)-cells,fu⋆iv is defined asfu ⋆i fv.

We have that, for every(n − 1)-cell u, then-cell fu goes fromu to FG(u): to check this, we argue
thatFG is ann-functor which is the identity on degenerate(n− 1)-cells.

Now, let us consider ann-cell g from u to v in Σ ′⊤. We denote byfg the followingn-cell fromu
to u in Σ ′⊤, with a cellular representation giving the intuition for the casen = 2:

fg = g ⋆n−1 fv ⋆n−1 FG(g)−1
⋆n−1 f

−1
u •

FG(u)

��

u

$$

FG(v)
::

v

GG

fu

+?

g

�/
fv

EY

FG(g)−1

]q

•

Let us prove that, for any composable pair(g, h) of n-cells inΣ ′⊤, we have:

fg⋆n−1h = g ⋆n−1 fh ⋆n−1 g
−1

⋆n−1 fg.

For that, we assume thatg has sourceu and targetv, while h has sourcev and targetw. Then we
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3.3. Polygraphs with finite derivation type

compute:

g ⋆n−1 fh ⋆n−1 g
−1

⋆n−1 fg

= g ⋆n−1

(
h ⋆n−1 fw ⋆n−1 FG(h)−1

⋆n−1 f
−1
v

)

⋆n−1 g
−1

⋆n−1

(
g ⋆n−1 fv ⋆n−1 FG(g)−1

⋆n−1 f
−1
u

)

= g ⋆n−1 h ⋆n−1 fw ⋆n−1 FG(h)−1
⋆n−1 FG(g)−1

⋆n−1 f
−1
u

= (g ⋆n−1 h) ⋆n−1 fw ⋆n−1 FG(g ⋆n−1 h)−1
⋆n−1 f

−1
u

= fg⋆n−1h.

Now, let us consider ann-cell g and a whiskerC[x] in Σ⊤ such thatx = ∂(g−
n−1). We note that, by

definition offg, it has the same(n − 1)-source and(n − 1)-target asg, so thatC[fg] is defined. Let us
prove that the following relation holds:

fC[g] = C[fg].

From the decomposition of contexts, it is sufficient to prove that the followingrelation holds

fu⋆ig⋆iv = u ⋆i fg ⋆i v

for everyn-cell g, every possiblek-cellsu andv, with k < n− 1, and everyi < k such thatu ⋆i g ⋆i v

is defined. Let us assume thatg has sourcew and targetw ′ and compute, from the left-hand side of this
relation:

fu⋆ig⋆iv = (u ⋆i g ⋆i v) ⋆n−1 fu⋆iw
′
⋆iv ⋆n−1 FG(u ⋆i g ⋆i v)

−1
⋆n−1 f

−1
u⋆iw⋆iv

= (u ⋆i g ⋆i v) ⋆n−1 (u ⋆i fw′ ⋆i v) ⋆n−1 (u ⋆i FG(g)−1
⋆i v) ⋆n−1 (u ⋆i f

−1
w ⋆i v)

= u ⋆i fg ⋆i v.

Now, we denote byΓ ′ the set ofn-spheres(fg, 1s(g)), for everyn-cell g in Σ ′. Then, it follows from the

previous relations that, for everyn-cell g in Σ ′⊤, one has:

fg ≈Γ 1s(g).

Let us consider ann-sphere(g, g ′) in Σ ′⊤. Then(G(g), G(g ′)) is ann-sphere inΣ⊤. SinceΓ is a ho-
motopy basis forΣ⊤, we haveG(g) ≈Γ G(g ′), so that, by Lemma 3.3.3, one getsFG(g) ≈F(Γ) FG(g ′).

Finally, let us denoteΓ ′′ the set ofn-spheres ofΣ ′⊤ defined byΓ ′′ = Γ ′ ∪ F(Γ) and let us prove
that Γ ′′ is a finite homotopy basis ofΣ ′⊤. Since bothΣ ′

n andΓ are finite, so isΓ ′′. Let us consider an
n-sphere(g, g ′) in Σ ′⊤, with sourcew and targetw ′, and let us prove thatg ≈Γ ′′ g ′ holds. We start by
using the definition offg to get:

g = fg ⋆n−1 f
−1
w′ ⋆n−1 FG(g) ⋆n−1 f

−1
w .

Using the definition offg′ , one gets a similar formula forg ′. We have seen thatfg ≈Γ ′ w, fg′ ≈Γ ′ w

andFG(g) ≈Γ ′′ FG(g ′) hold. Thus one getsg ≈Γ ′′ g ′.
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4. Critical branchings and finite derivation type

3.3.5. Remark. Proposition 3.3.4 shows that the property of having finite derivation type is invariant
by Tietze-equivalence for finite polygraphs. We will illustrate in Example 4.3.10 that this is not the case
for infinite ones.

4. CRITICAL BRANCHINGS AND FINITE DERIVATION TYPE

4.1. Rewriting properties of polygraphs

We fix an(n+ 1)-polygraphΣ and ann-cell f in Σ∗.

4.1.1. Reductions and normal forms. One says thatf reducesinto somen-cell g when there exists a
non-degenerate(n+ 1)-cellA from f to g in Σ∗. A reduction sequenceis a family(fk)k of n-cells such
that eachfk reduces intofk+1. One says thatf is a normal form (forΣn+1) when every(n + 1)-cell
with sourcef is degenerate,i.e., it does not reduce into anyn-cell. A normal form forf is a normal
form g such thatf reduces intog. The polygraphΣ is normalizing atf whenf admits a normal form. It
is normalizingwhen it is at everyn-cell ofΣ∗.

4.1.2. Termination. One says thatΣ terminates atf when there exists no infinite reduction sequence
starting atf. One says thatΣ terminateswhen it does at everyn-cell of Σ∗. If Σ terminates atf, then
it is normalizing atf, i.e., everyn-cell has at least one normal form. Moreover, in case of termination,
one can prove properties usingNoetherian induction. For that, one proves the property on normal forms;
then one fixes ann-cell f, one assumes that the result holds for everyg such thatf reduces intog and
one proves that, under those hypotheses, then-cell f satisfies the property.

4.1.3. Confluence.A branching ofΣ is a pair(A,B) of (n + 1)-cells ofΣ∗ with same source; this
n-cell is called thesourceof the branching(A,B). A branching(A,B) is local when||A|| = ||B|| = 1. A
confluence ofΣ is a pair(A,B) of (n+ 1)-cells ofΣ∗ with same target. A branching(A,B) is confluent
when there exists a confluence(A ′, B ′) such that bothtn(A) = sn(A ′) andtn(B) = sn(B ′) hold, as in
the following diagram:

A

���������
B

��
???????

A′

��
???????

B′

���������

Such a pair(A ′, B ′) is called aconfluence for(A,B). Branchings and confluences are only considered
up to symmetry, so that(A,B) and(B,A) are considered equal. The polygraphΣ is (locally) confluent
at f when every (local) branching with sourcef is confluent. It is(locally) confluentwhen it is at every
n-cell.

If Σ is confluent then everyn-cell of Σ∗ has at most one normal form. Thus, normalization and
confluence imply that then-cell f has exactly one normal form, written̂f. In a terminating polygraph,
local confluence and confluence are equivalent: this was proved in thecase of word rewriting systems (a
subcase of2-polygraphs) by Newman [20] and, since then, the result is called Newman’s lemma.
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4.2. Using derivations for proving termination of a3-polygraph

4.1.4. Convergence.The polygraphΣ is convergent atf when it terminates and it is confluent atf. It is
convergentwhen it is at everyn-cell. If Σ is convergent atf, thenf has exactly one normal form. Thanks
to Newman’s lemma, one gets convergence from termination and local confluence. IfΣ is convergent, we
havef ≈Σn+1

g if and only if the equalitŷf = ĝ holds. As a consequence, a finite and convergent(n+1)-
polygraph provides a decision procedure to the equivalence ofn-cells in then-category it presents.

4.1.5. Critical branchings in polygraphs. Given a branchingb = (A,B) of Σ with sourcef and a
whiskerC[∂f] of Σ∗, the pairC[b] = (C[A], C[B]) is a branching ofΣ, with sourceC[f]. Furthermore,
if b is local, thenC[b] is also local. We define by4 the order relation on branchings ofΣ given by
b 4 b ′ when there exists a whiskerC such thatC[b] = b ′ holds.

A branching isminimalwhen it is minimal for the order relation4. A branching istrivial when it
can be written either as(A,A), for a(n+ 1)-cellA, or as(A ⋆i sn(B), sn(A) ⋆iB), for (n+ 1)-cellsA
andB and ai in {0, . . . , n− 1}. A branching iscritical when it is minimal and not trivial.

In order to prove thatΣ is locally confluent, it is sufficient to prove that all its critical branchings
are confluent. Indeed, trivial branchings are always confluent and a non-minimal branching is confluent
if and only if the corresponding minimal branching is (to prove that the latter exists, we proceed by
induction on the size of the source of the local branching, which is ann-cell in the freen-categoryΣ∗

n).

4.2. Using derivations for proving termination of a3-polygraph

A method to prove termination of a3-polygraph has been introduced in [10], see also [11, 12]; in special
cases, it can also provide complexity bounds [6]. It turns out that the method uses interpretations that are
a special case of derivations, as described here. Here we only givean outline of the proof.

4.2.1. Theorem. LetΣ be a3-polygraph such that there exist:

• Two 2-functorsX : Σ∗
2 → Ord andY : (Σ∗

2)
co → Ord such that, for every1-cell a in Σ1, the

setsX(a) andY(a) are non-empty and, for every3-cell α in Σ3, the inequalitiesX(sα) ≥ X(tα)

andY(sα) ≥ Y(tα) hold.

• An abelian groupG in Ord whose addition is strictly monotone in both arguments and such that
every decreasing sequence of non-negative elements ofG is stationary.

• A derivationd ofΣ∗
2 into the moduleMX,Y,G such that, for every2-cell f in Σ∗

2, we haved(f) ≥ 0
and, for every3-cellα in Σ3, the strict inequalityd(sα) > d(tα) holds.

Then the3-polygraphΣ terminates.

Proof. Let us assume thatA : f ⇛ g is a3-cell of Σ∗ with size1. Then there exists a3-cell α : ϕ ⇛ ψ

of Σ and a contextC of Σ∗
2 such thatA = C[α] holds,i.e., such thatf = C[ϕ] andg = C[ψ] hold. Thus,

one gets:
d(f) = d(C)[ϕ] + C[d(ϕ)] and d(g) = d(C)[ψ] + C[d(ψ)].

We use the factd(ϕ) > d(ψ) holds by hypothesis to getC[d(ϕ)] > C[d(ψ)]. Moreover, sinceX andY
are2-functors intoOrd and sinced sends every2-cell to a monotone map, one getsd(C)[ϕ] ≥ d(C)[ψ].
Finally, one uses the hypothesis on the strict monotony of addition inG to getd(f) > d(g). Then
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4. Critical branchings and finite derivation type

one deduces that, for every non-degenerate3-cell A : f ⇛ g, one hasd(f) > d(g). Thus, every
infinite reduction sequence(fk)k would produce an infinite, strictly decreasing sequence(d(fk)k) of
non-negative elements inG, the existence of which is prohibited by hypothesis.

4.2.2. Special cases.The sequel contains several examples where derivations are used to prove termi-
nation. Other examples can be found in [11] or [6]. Often, we take the trivial 2-functor for at least one
of the 2-functorsX andY andZ for G. One can check that those situations match the hypotheses of
Theorem 4.2.1.

4.3. Branchings and homotopy bases

In the case of convergent word rewriting systems,i.e. convergent2-polygraphs with exactly one0-
cell, the critical branchings generate a homotopy basis [22]. In this section, we generalise this result
to any polygraph. In particular, we recover Squier’s theorem as Corollary 4.3.7, stating that a finite
and convergent2-polygraph has finite derivation type. However, this result fails to generalise to higher-
dimensional polygraphs, as stated in Theorem 4.3.9. Indeed, for everyn ≥ 3, there exists at least a finite
and convergentn-polygraph with an infinite number of critical branchings. The detailed proof can be
found in 5.5.

4.3.1. Notation. WhenΣ is a locally confluent(n + 1)-polygraph, we assume that, for every critical
branchingb = (A,B), a confluence(A ′, B ′) has been chosen. We denote byΓΣ the set of all the
(n+ 1)-spheres(A ⋆nA

′, B ⋆n B
′) of Σ, for each critical branchingb = (A,B).

4.3.2. Lemma. LetΣ be a locally confluent(n+1)-polygraph. Then every local branchingb = (A,B)

admits a confluence(A ′, B ′) such thatA ⋆nA
′ ≈ΓΣ

B ⋆n B
′ holds.

Proof. First, let us examine the case whereb is a trivial branching. IfA = B, then(tn(A), tn(B)) is a
confluence that satisfies the required property. Otherwise, let us assume that there exist(n+ 1)-cellsA1

andB1 in Σ∗ and ani in {0, . . . , n− 2} such thatA = A1 ⋆i sn(B1) andB = sn(A1) ⋆i B1 hold: then
(tn(A1) ⋆i B1, A1 ⋆i tn(B1)) is a confluence that satisfies the required property.

Now, let us assume thatb is not trivial. Letb1 = (A1, B1) be a minimal branching such thatb1 4 b,
with a whiskerC such thatb = C[b1] holds. Since(A,B) is not trivial, thenb1 cannot be trivial, so
that it is critical. Then we consider its fixed confluence(A ′, B ′). Then(C[A ′], C[B ′]) is a confluence for
(A,B). Furthermore, one has:

A ⋆nC[A ′] = C[A1] ⋆nC[A ′] = C[A1 ⋆nA
′].

Similarly, one getsB ⋆n C[B ′] = C[B1 ⋆n B
′]. SinceC is a whisker and since, by definition ofC, one

hasA1 ⋆nA
′ ≈ΓΣ

B1 ⋆n B
′, one gets that(C[A ′], C[B ′]) satisfies the required property.

4.3.3. Lemma. LetΣ be a convergent(n + 1)-polygraph and let(A,B) be a branching ofΣ such that
bothtn(A) andtn(B) are normal forms. Then one hastn(A) = tn(B) andA ≈ΓΣ

B.
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4.3. Branchings and homotopy bases

Proof. SinceΣ is terminating, we can prove the result by induction on the source of the branching.
First, if this sourcef is a normal form, then by definition of normal form, bothA andB must be

identities. Hencetn(A) andtn(B) are equal, and so areA andB. ThusA ≈ΓΣ
B holds.

Now, we fix ann-cell f, which is not a normal form. We assume that the result holds for every
branching(A,B) such that the targets ofA andB are normal forms and such that there exists a non-
trivial (n + 1)-cell from f to their source. Let(A,B) be a branching with sourcef and such that the
targets ofA andB are normal forms. Sincef is not a normal form,A andB cannot be identities, hence
one can decompose them intoA = A1 ⋆nA2 andB = B1 ⋆n B2 with A1 andB1 being(n + 1)-cells of
size1.

The pair(A1, B1) is a local branching. Thus, using Lemma 4.3.2, one gets a confluence(A ′
1, B

′
1) for

(A1, B1) such thatA1 ⋆nA
′
1 ≈ΓΣ

B1 ⋆n B
′
1 holds. Let us denote byg the common target ofA ′

1 andB ′
1,

by e its normal form and byA3 ann-cell fromg to e.
Then we consider the branching(A2, A

′
1 ⋆nA3), whose source is denoted byh. The targets ofA2

andA ′
1 ⋆n A3 are normal forms andA1 is a non-trivial(n + 1)-cell from f to h: thus, the induction

hypothesis can be applied to this branching, yielding thatA2 has targete and thatA2 ≈ΓΣ
A ′

1 ⋆n A3

holds.
We proceed similarly to prove thatB2 satisfies the same properties, so that one gets thatA andB

have the same target and thatA ≈ΓΣ
B holds. The constructions we have done are summarized in the

following diagram:

h

A′

1

>>>

��
>>>

A2

##

f

A

��

B

EE

A1

88qqqqqqqqqqqqq

B1
&&MMMMMMMMMMMMM ≈ΓΣ g A3

// e

k

B′

1���

??���

B2

;;

=

=

≈ΓΣ

≈ΓΣ

4.3.4. Proposition. LetΣ be a convergent(n+ 1)-polygraph. ThenΓΣ is a homotopy basis forΣ⊤.

Proof. Let (A1, A2) be an(n + 1)-sphere inΣ⊤, with targetn-cell f. SinceΣ is convergent, we can
choose an(n+ 1)-cellB from f to its normal form. Then(A1 ⋆nB,A2 ⋆nB) satisfies the hypotheses of
Lemma 4.3.3, yieldingA1 ⋆n B ≈ΓΣ

A2 ⋆n B, henceA1 ≈ΓΣ
A2.

4.3.5. Proposition. A finite convergent polygraph with a finite set of critical branchings has finite
derivation type.

Proof. If Σ has a finite set of critical branchings, then the setΓΣ is finite.
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4. Critical branchings and finite derivation type

4.3.6. Corollary. A terminating polygraph with no critical branching has finite derivation type.

4.3.7. Corollary ([22]). A finite convergent2-polygraph has finite derivation type.

Proof. If Σ is a finite convergent2-polygraph with one0-cell, i.e., a word rewriting system, then its set
of critical branchings is finite. Indeed, it is equal to the number of possibleoverlaps between the words
corresponding to the sources of2-cells: there are finitely many2-cells and finitely many letters in each
word. If Σ has more than one0-cell, then the number of possible overlaps is bounded by the number of
overlaps inΣ ′, built fromΣ by identification of all its0-cells.

From this result Squier has proved that, if a monoid admits a presentation by a finite convergent word
rewriting system, then it has finite derivation type [22]. Now we prove that this result is false forn-
categories whenn ≥ 2.

4.3.8. Proposition. For every natural numbern ≥ 3, there exists a finite convergentn-polygraph
without finite derivation type.

Proof. We consider the3-polygraphΣ with one0-cell, one1-cell, three2-cells , , and the fol-
lowing four3-cells:

⇛ , ⇛ , ⇛ , ⇛ .

The 3-polygraphΣ is finite and convergent. However, the first and second3-cells create an infinite
number of critical branchings whose confluence diagrams cannot be presented by a finite homotopy
basis. These facts are proved in 5.5.

Then we apply suspension functors onΣ to get ann-polygraph, for anyn ≥ 3. It has exactly the
same cells and compositions in dimensionsn−3,n−2,n−1 andn asΣ has in dimensions0, 1, 2 and3;
on top of that, it has two cells in each dimension up ton− 4 and no other possible compositions, except
with degenerate cells. Thus, we conclude that then-polygraph we have built is finite and convergent, yet
it still fails to have finite derivation type.

4.3.9. Theorem. For every natural numbern ≥ 2, there exists ann-category which does not have finite
derivation type and admits a presentation by a finite convergent(n+ 1)-polygraph.

Proof. For anyn ≥ 2, Proposition 4.3.8 implies that there exists a finite convergent(n+1)-polygraphΣ
without finite derivation type. By Proposition 3.3.4, no finite(n + 1)-polygraph presenting then-
categoryΣ can have finite derivation type. Thus,Σ does not have finite derivation type.

4.3.10. Example. We end this section with an example proving that the property of finite derivation type
is not Tietze-invariant forinfinite polygraphs. LetC be the2-category presented by the3-polygraphΣ
with one0-cell, one1-cell, three2-cells ,��

��
��
��, and the following two3-cells:

��
��
��
��

�
�
�
���

α

⇛
�
�
�
�

�
�
�
�

��

and ����
β

⇛��.
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4.3. Branchings and homotopy bases

The polygraphΣ terminates and does not have critical branching. By Corollary 4.3.6 it follows thatΣ
has finite derivation type and, thus, so doesC.

Now let us consider another presentation of the2-categoryC, namely the3-polygraphΞ defined the
same way asΣ except for the3-cells:

��
��
��
��

�
�
�
�
�
�
�
�

α

⇛�����
�
�

�
�
�
�
�
�
�

and ��
��
��
��β

⇛�
�
�
�

.

The3-polygraphΞ still terminates, but it has the following non-confluent critical branching:

�
�
�
�

�
�
�
�

β _%9

α
6�$
66666666

66666666

66666666 ����
�
�
�

�
�
�

�
�
�
�

α

6�$
66666666

66666666

66666666

����
�
�
�
�

�
�
�
���

We define, by induction on the natural numberk ≥ 1, the2-cell
k

as follows:

1
= and

k+1
=

k
.

Then, we complete the3-polygraphΞ into an infinite convergent polygraphΞ∞ = Ξ ∐ {βk, k ≥ 1},
whereβ0 isβ andβk is the following3-cell:

��
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

k
βk

⇛ �
�
�

�
�
�

�
�
�

�
�
�

��

��
k .

The3-polygraphΞ∞ has one confluent critical branching for every natural numberk:
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��

�
�
�
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�
�
�
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�
�
�
�
�
�
�
�

k

�
�
�
�

�
�
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�
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����

k

α

_%9

�
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�
�
�
�
�

βk

9�&
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�
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�
�

�
�
�
�

��
��
��
��

k+1

βk+1

?�)
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�

�
�
��
�
�
�
�
�
�
�
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�
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k

��
k

α

_ %9
�
�
�

�
�
�

�
�
�

�
�
�

��

����
k+1

αβk

������������

p� ������������

By Proposition 4.3.4, the setΓ = {αβk | k ∈ N} is a homotopy basis of the3-categoryΞ⊤∞ .
Let us prove that the3-polygraphΞ∞ does not have finite derivation type. On the contrary, let

us assume thatΞ∞ has finite derivation type. Then, following Proposition 3.2.3, there exists a finite
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5. The case of3-polygraphs

subsetΓ0 of Γ which is a homotopy base ofΞ⊤∞ . Thus, there exists a natural numberl such that, for every
k ≥ l, the4-cellαβk is not inΓ0. However, sinceΓ0 is a homotopy base we still have:

s (αβl) ≈Γ0
t (αβl) .

Hence, there exists a4-cellΦ in Ξ⊤∞(Γ0) such thatsΦ = s (αβl) andtΦ = t (αβl) hold. Let us prove
that this is not possible, thanks to the derivationd of Ξ⊤∞ into the trivial module given by:

d(α) = 0 and d(βk) =

{
0 if k ≤ l,

1 if k ≥ l+ 1.

Then, for everyk ≤ l, we haved(s(αβk)) = d(t(αβk)) = 0. As a consequence, for every4-cell Ψ
in Ξ⊤∞(Γ0), we haved(sΨ) = d(tΨ). In particular, whenΨ = Φ, we getd(s(αβl)) = d(t(αβl)).
This is not possible since, by definition ofd, we haved(s(αβl)) = 1 andd(t(αβl)) = 0. This proves
thatΞ∞ does not have finite derivation type.

5. THE CASE OF3-POLYGRAPHS

5.1. Classification of critical branchings

5.1.1. Types of critical branchings. LetΣ be a3-polygraph and let(A,B) be a critical branching ofΣ.
Let us denote byα andβ the3-cells ofΣ that generateA andB. Then(A,B) falls in one of three cases.

The first possibility is that there exists a contextC of Σ∗
2 such thatsα = C[sβ] holds. Then, the

source of the branching(A,B) is:

sα = sβ

C

.

In that case,(A,B) is aninclusioncritical branching.
If the branching(A,B) is not an inclusion one, the second possibility is that there exist1-cellsu, v

and2-cellsf, g, h such thatsα andsβ decompose in one of the following ways.

• One hassα = f ⋆1 (u ⋆0 h) andsβ = (h ⋆0 v) ⋆1 g, so that the source of(A,B) is:

g

vv

u

sα
=

g

v

u

f

h =
sβ

u

vf

.

• One hassα = f ⋆1 (h ⋆0 u) andsβ = (v ⋆0 h) ⋆1 g:

g u

vv
sα

= h

g
u

v f

=

fv

sβ
u .
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5.1. Classification of critical branchings

• One hassα = f ⋆1 (u ⋆0 h ⋆0 v) andsβ = h ⋆1 g:

sα

gu v
=

f

u h

g
vv =

sβ
u vv

f

.

• One hassα = f ⋆1 h andsβ = (u ⋆0 h ⋆0 v) ⋆1 g:

g

u vsα
=

u v
f

g

h =

v

sβ

fu

.

If (A,B) matches one of these cases, then it is called aregular critical branching.
Finally, when the branching(A,B) is not an inclusion or regular one, there exist1-cellsu, v and

2-cellsf, g, h suchsα andsβ decompose in one of the following ways.

• One hassα = f ⋆1 (h ⋆0 u) andsβ = (h ⋆0 v) ⋆1 g, so that there exists a2-cell k such that the
source of(A,B) is:

k

g

sα

= k

f

h

g
= k

sβ

f

.

In that case, one can write(A,B) = (C[k], D[k]) for appropriate contextsC andD of Σ∗. The
family (C[k], D[k])k, wherek ranges over the2-cells with appropriate boundary and such that
(C[k], D[k]) is a minimal branching, is called aright-indexedcritical branching.

• One hassα = f ⋆1 (u ⋆0 h) andsβ = (v ⋆0 h) ⋆1 g, so that there exists a2-cell k such that the
source of(A,B) is:

k

g

sα

= k

g

f

h = k

sβ

f

.

In that case, one can write(A,B) = (C[k], D[k]) for appropriate contextsC andD of Σ∗. The
family (C[k], D[k])k, wherek ranges over the2-cells with appropriate boundary and such that
(C[k], D[k]) is a minimal branching, is called aleft-indexedcritical branching.

• One is not in the right-indexed or left-indexed cases and one has

sα = f ⋆1 (u0 ⋆0 h1 ⋆0 u1 ⋆0 h2 ⋆0 · · · ⋆0 un−1 ⋆0 hn ⋆0 un)

and
sβ = (v0 ⋆0 h1 ⋆0 v1 ⋆0 h2 ⋆0 · · · ⋆0 vn−1 ⋆0 hn ⋆0 vn) ⋆1 g ,
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5. The case of3-polygraphs

so that there exist2-cellsk0, . . . , kn such that the source of(A,B) is as follows, where we writep
instead ofn− 1 for size reasons:

k0 kn

sα

g

kpk1

= knk0 h1 k1 h2

g

f

hnhp kp

=

f

knk0

sβ

kpk1 .

In that case, one can write(A,B) = (C[k0, . . . , kn], D[k0, . . . , kn]) for appropriate3-cellsC
andD in someΣ∗[x0, . . . , xn]. The family(C[k0, . . . , kn], D[k0, . . . , kn])k0,...,kn

, where theki’s
range over the2-cells with appropriate boundary and such that(C[k0, . . . , kn], D[k0, . . . , kn]) is
a minimal branching, is called amulti-indexedcritical branching.

In all those indexed cases, the branching(A,B) is said to be aninstanceof the corresponding right-
indexed or left-indexed or multi-indexed one. It is anormal instance when the indexing2-cell k (resp.
2-cellsk0, . . . , kn) is a normal form (resp. are normal forms).

5.1.2. Definitions. A 3-polygraph isnon-indexedwhen each of its critical branchings is an inclusion
one or a regular one. It isright-indexed(resp.left-indexed) when each of its critical branchings is either
an inclusion one, a regular one or an instance of a right-indexed (resp.left-indexed) one. A3-polygraph
is finitely indexedwhen each of its indexed critical branchings has a finite number of normal instances.

5.1.3. Proposition. A3-polygraph with a finite set of3-cells has a finite number of inclusion and regular
critical branchings.

Proof. LetΣ be a3-polygraph withΣ3 = {α1, . . . , αp} finite. As a consequence, for anyi, j ∈ {1, . . . , p},
the set of morphisms fromsαi to sαj in WΣ is finite. ThusΣ has a finite number of inclusion branchings.

Now, let us fix i, j ∈ {1, . . . , p} and let us assume that there exist two whiskersC andD of Σ∗

such that the pair(C[αi], D[αj]) is a regular branching, with sourcef. Then there exist a2-cell h and
whiskersC ′ andD ′ of Σ∗ that satisfyC[sαi] = C ′[h] = D ′[h] = D[sαj]. Since the setsWΣ(sαi, f),
WΣ(sαj, f), WΣ(h,C[sαi]) andWΣ(h,C[sαj]) are finite, there exist finitely many regular branchings of
this form, withi, j fixed. SinceΣ3 is finite, the3-polygraphΣ has finitely many regular branchings.

5.1.4. Theorem. A finite, convergent, non-indexed3-polygraph has finite derivation type.

Proof. We use Proposition 5.1.3 and, then, we apply Proposition 4.3.5.

30



5.2. Mac Lane’s coherence theorem revisited

5.2. Mac Lane’s coherence theorem revisited

5.2.1. Monoidal categories.A monoidal categoryis a data(C,⊗, e, a, l, r) made of a categoryC, a
bifunctor⊗ : C × C → C, an objecte of C and three natural isomorphisms

ax,y,z : (x⊗ y) ⊗ z → x⊗ (y⊗ z) , lx : e⊗ x → x, rx : x⊗ e → x,

such that the following two diagrams commute inC:

(x⊗(y⊗z))⊗t
a

// x⊗((y⊗z)⊗t)

a

""
DDDDDDDD

((x⊗y)⊗z)⊗t

a
<<zzzzzzzz

a
((RRRRRRRRRRRRR

c© x⊗(y⊗(z⊗t))

(x⊗y)⊗(z⊗t)

a

66lllllllllllll

x⊗(e⊗y)

l

!!
BBBBBBBB

(x⊗e)⊗y

a
;;wwwwwwww

r
// x⊗y

c©

Mac Lane’s coherence theorem [18] states that, in a such monoidal category, all the diagrams whose
arrows are built from⊗, e, l and r commute. Thereafter, we give a proof of this fact by building a
homotopy basis of a3-polygraph.

5.2.2. The3-polygraph of monoids. We denote byΣ the3-polygraph with one0-cell, one1-cell, two
2-cells and and the following three3-cells:

⇛α , ⇛λ , ⇛ρ .

We denote byΓ the set made of the following4-cellsαα andαρ, where we commit the abuse of denoting
a3-cell ofΣ∗ with size1 like its generating3-cell:

α _%9

αC�+
CCC

CCC CCCα {3G{{{ {{{
{{{

α R�3RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR

α

l+?llllllllllllll

llllllllllllll

llllllllllllll

αα

��

λ

9�&
99999999

99999999

99999999
α

�6J�������

�������

�������

ρ
_ %9

αρ

��

5.2.3. Theorem. The setΓ of 4-cells forms a homotopy basis of the track3-categoryΣ⊤.

Proof. Let us prove thatΣ terminates. We consider theΣ∗
2-moduleMX,∗,Z and the derivationd of Σ∗

2

intoMX,∗,Z generated by the following values:

X( ) = N \ {0} , X( )(i, j) = i+ j, X( ) = 1,

d
( )

(i, j) = i, d
( )

= 0.
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5. The case of3-polygraphs

We check that the2-functorX satisfies the (in)equalities

X

( )
(i, j, k) = i+ j+ k = X

( )
(i, j, k) ,

X

( )
(i) = i = X

( )
(i) , X

( )
(i) = i = X

( )
(i)

and that the derivationd satisfies the strict inequalities

d

( )
(i, j, k) = 2i+ j > i+ j = d

( )
(i, j, k) ,

d

( )
(i) = 1 > 0 = d

( )
(i) , d

( )
(i) = i > 0 = d

( )
(i) .

We apply Theorem 4.2.1 to get termination.
The3-polygraphΣ has five critical branchings. All of them are regular ones and confluent. Their

confluence diagrams are given by the boundaries of the two4-cells ofΓ and of the following three ones:

λ

<�'
<<<<<<<<<

<<<<<<<<<

<<<<<<<<<
α

~5I~~~~~~~

~~~~~~~

~~~~~~~

λ
_%9

λα

��

ρ

<�'
<<<<<<<<

<<<<<<<<

<<<<<<<<
α

~5I~~~~~~~

~~~~~~~

~~~~~~~

ρ
_ %9

ρα

��

λ

7�%

ρ

�9M
λρ

��

SinceΣ terminates and has all its critical branchings confluent, it is convergent asa consequence of
Newman’s lemma. Thus we know that the set{αα,αρ, λρ, λα, ρα} of 4-cells is a (finite) homotopy
basis ofΣ⊤. To get the result, we check thatλα, ρα andλρ are superfluous in this homotopy basis,i.e.,
that their boundaries are also the ones of4-cells ofΣ⊤(Γ).

Forλα, we consider the4-cell
( )

⋆1αα which is inΣ⊤(Γ). We partially fill its boundary with
other4-cells ofΣ⊤(Γ) and equalities, yielding a3-sphere ofΣ⊤ denoted byγ:

α _%9

λ
���

=
α

I�.
IIIIIIIIIIIII

IIIIIIIIIIIII

IIIIIIIIIIIII

λ
���

α

u0Duuuuuuuuuuuuu

uuuuuuuuuuuuu

uuuuuuuuuuuuu

ρ _ %9

α
[#7

α _ %9

=

λ_ey

ρ}}}}
}}}}

}}}}

}4H}}}} }}}}
}}}}

α

t0D

αρ γ

αρ
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5.2. Mac Lane’s coherence theorem revisited

As a consequence of this construction, we havesγ ≈Γ tγ. Then we build the following diagram, proving
thats(λα) ≈Γ t(λα) also holds:

λ

�}�

λ���

α

4�#

λ
{{{{{{

{{{

{s� {{{{{{
{{{

α

FFF
FFF FFF

F�-
FFF

FFF FFF

λ_ey

λrrrrrr
rrrrrr

rrrrrr

r/Crrrrr
rrrrr

rrrrr
λ NNNNNN

NNNNNN
NNNNNN

N]qNNNNN
NNNNN

NNNNN

λ
_ey

= =

=

For the4-cell ρα, one proceeds in a similar way, starting with the4-cell
( )

⋆1 αα.
Finally, let us consider the case of the4-cell λρ. First, we consider the3-cell ⋆1 ρ ⋆1 ρ. Thanks to

the exchange relation between⋆1 and⋆2, we decompose this3-cell in two ways. This yields a (trivial)
3-sphere that we partially fill, using4-cells ofΣ⊤(Γ), as follows, producing another3-sphereδ of Σ⊤(Γ):

ρ

C�+

α _%9

ρ

{3G

λ
O�1

ρ

o-A
ρ _%9

αρ

ρα

δ

As a consequence, we havesδ ≈Γ tδ, hencesδ ⋆2 ( ⋆1 λ) ≈Γ tδ ⋆2 ( ⋆1 λ). The following diagram
yieldss(λρ) ≈Γ t(λρ), thus concluding the proof:

λ

/!

λ
c';

λ _%9

ρ [#7

λ

J�.

ρ

t0D

λ

�=Q

=

=
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5. The case of3-polygraphs

5.2.4. Corollary (Mac Lane’s coherence theorem [18]).In a monoidal category(C,⊗, e, a, l, r), all
the diagrams whose arrows are built from⊗, e, a, l andr are commutative.

Proof. We seeCat1 as a (large)3-category with one0-cell, categories as1-cells, functors as2-cells
and natural transformations as3-cells. The0-composition is the cartesian product of categories, the1-
composition is the composition of functors and the2-composition is the "vertical" composition of natural
transformations.

Then monoidal categories are exactly the3-functors fromΣ⊤/Γ to Cat1. The correspondence be-
tween a monoidal category(C,⊗, e, a, l, r) and such a3-functorM is given by:

M( ) = C, M( ) = ⊗, M( ) = e, M(α) = a, M(λ) = l, M(ρ) = r.

As a consequence, a diagramD in C whose arrows are built from⊗, e, a, l andr is the image byM of
a3-sphereγ of Σ⊤. SinceΓ is a homotopy basis ofΣ⊤, we havesγ ≈Γ tγ. SinceM is a3-functor from
Σ⊤/Γ to Cat1, we haveM(sγ) = M(tγ), which means that the diagramD = M(γ) commutes.

5.2.5. Remark. The definition of monoidal category we have given is minimal, in the sense that both
coherence diagrams are required in order to get Mac Lane’s coherence theorem. Otherwise, this would
mean that eitherαα orαρ is superfluous in the homotopy basisΓ of Σ⊤. Let us prove that this is not the
case. Letd1 be the derivation ofΣ⊤ into the trivial module given by:

d1(α) = 0, d1(λ) = 1, d1(ρ) = 0.

Then we haved1(sαα) = d1(tαα) = 0. As a consequence, for every4-cell A in Σ⊤(αα), we have
d1(sA) = d1(tA). Thus, if{αα} was a homotopy basis ofΣ⊤, we would haved1(F) = d1(G) for every
3-sphere(F,G) of Σ⊤. In particular,d1(sαρ) = d1(tαρ) would be true. This is impossible since we
haved1(sαρ) = 1 andd1(tαρ) = 0.

In order to prove that{αρ} is not a homotopy basis either, we proceed similarly with the derivationd2

of Σ⊤ into the trivial module given by:

d2(α) = 1, d2(λ) = −1, d2(ρ) = 0.

We check thatd2(sαρ) = d2(tαρ) = 0 holds. Thus, if{αρ} was a homotopy basis ofΣ⊤, the equality
d2(sαα) = d2(tαα) would be satisfied. However, we haved2(sαα) = 3 andd2(tαα) = 2.

5.3. Right-indexed and left-indexed3-polygraphs

5.3.1. Proposition. Let Σ be a terminating right-indexed (resp. left-indexed)3-polygraph. ThenΣ is
confluent if and only if every inclusion critical branching, every regular critical branching and every
instance of every right-indexed (resp. left-indexed) critical branchingis confluent.

Proof. If Σ is confluent then, by definition, all of its branchings are confluent: in particular, its inclusion
and regular critical branchings and the normal instances of its right-indexed or left-indexed ones.

Conversely, let us assume thatΣ is a terminating right-indexed3-polygraph (the left-indexed case is
similar) such that all of its inclusion and regular critical branchings and all of the normal instances of its
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5.3. Right-indexed and left-indexed3-polygraphs

right-indexed critical branchings are confluent. It is sufficient to prove that every non-normal instance of
its right-indexed critical branchings is confluent.

Let us consider a right-indexed critical branching(A[k], B[k])k, which has the following shape, by
definition:

D k

C k

A[k] n,@nnnnn nnnnn
nnnnn

B[k]
P�2PPPPP

PPPPP
PPPPP

E k

Let f be a2-cell such that(A[f], B[f]) is a non-normal instance of(A[k], B[k])k. SinceΣ terminates,f
admits a normal form, sayg. We denote byF a3-cell fromf tog. Sinceg is a normal form, the branching
(A[g], B[g]) is a normal instance of(A[k], B[k])k so that, by hypothesis, it is confluent: let us denote by
(G,H) a confluence for this branching, with targeth. With all those ingredients, one builds the following
confluence diagram for the critical branching(A[f], B[f]), thus concluding the proof:

fD
D[F] _%9 gD

G

;�'
;;;;;;;;;

;;;;;;;;;

;;;;;;;;;

fC

A[f] ~4H~~~~~~~

~~~~~~~

~~~~~~~

B[f] @�*
@@@@@@@

@@@@@@@

@@@@@@@

C[F] _ %9 gC

A[g] ~4H~~~~~~~

~~~~~~~

~~~~~~~

B[g] @�*
@@@@@@@

@@@@@@@

@@@@@@@

h

E f
E[F]

_%9 gE

H

�7K���������

���������

���������

5.3.2. Homotopy bases of indexed3-polygraphs. LetΣ be a locally confluent and right-indexed (resp.
left-indexed)3-polygraph. We assume that a confluence has been chosen for each inclusion and regular
critical branching and each normal instance of each right-indexed (resp. left-indexed) critical branching.
We denote byΓΣ the collection of the2-spheres ofΣ∗ corresponding to these confluence diagrams.

5.3.3. Proposition. LetΣ be a convergent right-indexed (resp. left-indexed)3-polygraph. ThenΓΣ is a
homotopy basis ofΣ⊤.

Proof. The proof follows the same scheme as the results of 4.3, where it was proved that the family of
3-spheres associated to the confluence diagrams of all the critical branchings was a homotopy basis.
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5. The case of3-polygraphs

First, we prove that every local branching of(A,B) of Σ admits a confluence(A ′, B ′) such that
A ⋆2 A

′ ≈ΓΣ
B ⋆2 B

′ holds. The proof is the same as in 4.3 when(A,B) is a trivial or when it is
generated by an inclusion or a regular critical branching.

There remains to check the cases of local branchings of the shapeC(A[f], B[f]), where(A[k], B[k])k

is a right-indexed (resp. left-indexed) critical branching and whereC is a context. For that, we proceed
by Noetherian induction on the indexing2-cell f, thanks to the termination ofΣ.

Whenf is a normal form, then(A[f], B[f]) is a normal instance of the branching(A[k], B[k])k. To
build ΓΣ we have fixed a confluence for this branching, say(A ′, B ′). Then we have:

C[A[f]] ⋆2A
′ ≈ΓΣ

C[B[f]] ⋆2 B
′.

Let us assume thatf is a2-cell which is not a normal form and such that(A[f], B[f]) is an instance of
the branching(A[k], B[k])k. Moreover, we assume that, for every2-cell g such thatf reduces intog and
(A[g], B[g]) is an instance of(A[k], B[k])k, there exists a confluence(A ′, B ′) for (A[g], B[g]) such that
A[g] ⋆2A

′ ≈ΓΣ
B[g] ⋆2 B

′ holds.
Sincef in not a normal form, we can choose a2-cell g such thatf reduces intog, through a3-cell F.

Sincef andg have the same boundary, we have an instance(A[g], B[g]) of the branching(A[k], B[k])k.
We apply the induction hypothesis tog to get a confluence(A ′, B ′), with target denoted byh, such that
A[g] ⋆2A

′ ≈ΓΣ
B[g] ⋆2 B

′ holds. Moreover, the branchings(C[A[f]], C[sA[F]]) and(C[B[f]], C[sB[F]])

are trivial branchings, yielding:

C[A[f]] ⋆2C[tA[F]] ≈ΓΣ
C[sA[F]] ⋆2C[A[g]]

and
C[B[f]] ⋆2C[tB[F]] ≈ΓΣ

C[sB[F]] ⋆2C[B[g]].

With these constructions, we build the following diagram, where we have assumed that the considered
branching was right-indexed – the case of a left-indexed critical branching is similar:

C

tA f
C[tA[F]] _%9

≈ΓΣ

C

tA g

C[A′]

<�'
<<<<<<<<<

<<<<<<<<<

<<<<<<<<<

C

sA

sB
f=

C[A[f]] ~4H~~~~~~~

~~~~~~~

~~~~~~~

C[B[f]] @�*
@@@@@@@

@@@@@@@

@@@@@@@

C[sA[F]]

C[sB[F]]
_ %9

C

sB
g

sA
=

C[A[g]] ~4H~~~~~~~

~~~~~~~

~~~~~~~

C[B[g]] @�*
@@@@@@@

@@@@@@@

@@@@@@@

≈ΓΣ

C

h

C

tB f
C[tB[F]]

_%9

≈ΓΣ

C

tB g

C[B′]
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One composes the4-cells ofΣ⊤(ΓΣ) of that diagram, to get that(C[tA[F]] ⋆2 C[A ′], C[tB[F]] ⋆2 C[B ′])

is a confluence that satisfies the required equivalence that concludes the first part of the proof:

C[A[f]] ⋆2C[tA[F]] ⋆2C[A ′] ≈ΓΣ
C[B[f]] ⋆2C[tB[F]] ⋆2C[B ′].

The remainder of the proof is exactly the same as in 4.3.

5.3.4. Theorem. A finite, convergent and finitely indexed3-polygraph has finite derivation type.

5.4. The3-polygraph of permutations

Here we see an example of a3-polygraph that is finite, convergent, right-indexed and, thus, with an
infinite number of critical branchings, yet with finite derivation type thanks tofinite indexation. Another
proof for termination and the ideas we use here for proving confluence can be found in [15].

5.4.1. Definition. The3-polygraphΣ has one0-cell, one1-cell, one2-cell , and the following two
3-cells:

α

⇛ and
β

⇛ .

5.4.2. Termination. We consider the followingΣ∗
2-moduleMX,∗,Z and derivationd of Σ∗

2 intoMX,∗,Z:

X
( )

= N, X
( )

(i, j) = (j+ 1, i),

d
( )

(i, j) = i.

The 2-functorX and the derivationd satisfy the conditions of Theorem 4.2.1. Indeed, the following
required (in)equalities hold:

X

( )
(i, j) = (i+ 1, j+ 1) ≥ (i, j) = X

( )
(i, j),

X

( )
(i, j, k) = (k+ 2, j+ 1, i) = X

( )
(i, j, k),

d

( )
(i, j) = i+ j+ 1 > 0 = d

( )
(i, j),

d

( )
(i, j, k) = 2i+ j+ 1 > 2i+ j = d

( )
(i, j, k).
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5. The case of3-polygraphs

5.4.3. Normal forms. First, we note that, iff is a2-cell ofΣ∗ such thatd(f)(0, . . . , 0) = 0 holds, thenf
is a normal form. Otherwise, there exists a contextC and a2-cell g such thatf = C[g] holds andg is
the source of one of the two3-cells ofΣ. As a consequence, there exists a family(i1, . . . , in) of natural
numbers, withn = 2 orn = 3, such that the following inequalities hold:

d(f)(0, . . . , 0) ≥ d(g)(i1, . . . , in) ≥ 1.

Now, let us defineN0 as the set of2-cells given by the following inductive construction:

= or .

We check that the relation

X
( )

(i1, . . . , in, j) = (j+ n, i1, . . . , in).

is satisfied. We proceed by structural induction, using the definition and thefunctoriality ofX, to get

X
( )

(i, j) = (j+ 1, i)

and

X

( )
(i1, . . . , in, in+1, j) =

(
X
( )

× IdN

)
(i1, . . . , in, j+ 1, in+1)

= (j+ n+ 1, i1, . . . , in+1).

Then, we prove that the2-cells ofN0 are normal forms, still by structural induction. For the base case,
we have, by definition ofd:

d
( )

(0, 0) = 0.

For the inductive case, we have, using the fact thatd is a derivation:

d

( )
(0, . . . , 0) = d

( )
(0, . . . , 0) + d

( )
(0, 0) = 0.

Finally, let us denote byN the set of2-cells ofΣ∗ given by the following inductive graphical scheme:

= ∗ or or .

We prove that the2-cells ofN are normal forms, by structural induction. We haved(∗) = 0,

d
( )

(i1, . . . , in + 1) = d
( )

(i1) + d
( )

(i2, . . . , in) = 0

and, using the values ofX onN0,

d

( )
(i1, . . . , im, j, k1, . . . , kn)

= d
( )

(i1, . . . , im, j) + d
( )

(i1, . . . , im, k1, . . . , kn) = 0.
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5.4. The3-polygraph of permutations

Conversely, let us prove that every normal form ofΣ is inN. We proceed by induction on the pair(m,n)

of natural numbers, wherem is the size of the2-cells andn is the size of their source.
The 2-cells ofΣ∗ with size0 are the1n, wheren denotes the1-cell with sizen. All of them are

normal forms. Moreover, they belong toN: 10 is ∗ and, for every natural numbern, 1n+1 = 11 ⋆0 1n.
Moreover, the only2-cell of Σ∗ whose source has size0 is 10 = ∗, which is a normal form and belongs
toN.

Then, let us fix two non-zero natural numbersm andn. We assume that, every normal formg of Σ
and such that(||g|| , |sg|) < (m,n) holds is inN, where we compare pairs of natural numbers with the
product order.

Let us consider a normal formf of Σ, with sizem and whose source has sizen. Since||f|| = m ≥ 1
and since is the only2-cell ofΣPerm, there exists a2-cell g such thatf decomposes into:

f =
g

.

Sincef is a normal form, then so doesg. Moreover,g has sizem−1 and its source has sizen. We apply
the induction hypothesis tog: this 2-cell is inN. Its source isn ≥ 1, so thatg 6= ∗; there remains two
possibilities, by definition ofN:

g = h or g =
h

.

In the first case, the2-cellh is a normal form, has sizem− 1 and its source has sizen− 1. By induction
hypothesis, we know thath is inN. There are two subcases for the decomposition off:

f =
h

or f =
h

.

The first decomposition is a proof thatf is inN, sinceh is inN and is inN0. The second decom-
position tells us thatf = ⋆0 f

′, wheref ′ is a normal form (otherwisef would not), has sizem and its
source has sizen− 1; we apply the induction hypothesis to get thatf ′ is inN; then we get thatf is inN.

Let us examine the second case: the2-cell h is a normal form, has size at mostm− 2 and its source
has sizen− 1; hence, by induction hypothesis,h is inN. There are three subpossibilities:

f =

h

or f =
h

or f =
h

.

The first subcase is, in fact, impossible sincef would contain the source of a3-cell, which contradicts
the assumption thatf is a normal form. The second case gives thatf is inN. In the third case, we have a
decomposition off into (f ′ ⋆0 1p) ⋆1 (11 ⋆0 f

′′) wheref ′ is inN0 andf ′′ is a normal form (otherwisef
would not), has size at mostm− 1 and has sourcen− 1: thus, we apply the induction hypothesis to get
thatf ′′ and, hence,f are inN.

39



5. The case of3-polygraphs

5.4.4. Confluence.The3-polygraphΣ has three regular and one right-indexed critical branchings, with
the following sources:

, , , k .

From Theorem 5.3.1, we know that, to get confluence ofΣ, it is sufficient to prove that the three regular
critical branchings are confluent and that each normal instance of the right-indexed one is. First, we
check that the three regular critical branchings are confluent:
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From the inductive characterization of the setN of normal forms we have given, we deduce that there
are two normal instances of the right-indexed critical branching: fork = andk = . We check that
both are confluent. Fork = , we have:
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5.5. The main counterexample

And, fork = , we have:

β _ %9 β _ %9

β

9�&
99999999

99999999

99999999
β

�8L��������

��������

��������

β 9�&
99999999

99999999

99999999

β
_ %9

β
_ %9

β

�8L��������

��������

��������

ββ( )

��

5.4.5. Theorem. The3-polygraphΣ has finite derivation type.

Proof. The3-polygraphΣ is finite, convergent and finitely indexed. Thus Theorem 5.3.3 tells us thatΣ

has finite derivation type. More precisely, the five4-cellsαα, αβ, βα, ββ
( )

andββ
( )

form a
homotopy basis of the track3-categoryΣ⊤.

5.5. The main counterexample

We prove here that, without finite indexation, finiteness and convergencealone are not sufficient enough
to ensure that a3-polygraph has finite derivation type.

Let us consider the3-polygraphΣ with one0-cell, one1-cell, three2-cells , and and the
following four 3-cells:

α

⇛ ,
β

⇛ ,
γ

⇛ ,
δ

⇛ .

We define by induction on the natural numberk the2-cell
k

as follows:

0
= and

k+1
=

k
⋆1 .

5.5.1. Termination. To prove that the3-polygraphΣ terminates, we proceed in two steps. First, we
consider the derivation||·|| , into the trivial moduleM∗,∗,Z. It satisfies the equalities

||sα|| = 1 = ||tα|| and ||sβ|| = 0 = ||tβ||
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5. The case of3-polygraphs

and the strict inequalities

||sγ|| = 1 > 0 = ||tγ|| and ||sδ|| = 1 > 0 = ||tδ|| .

As a consequence, one gets that, if the3-polygraphΣ ′ = (Σ2, {α,β}) terminates, then so does the3-
polygraphΣ. Indeed, otherwise, there would exist an infinite reduction sequence(fn)n∈N in Σ and, thus,
an infinite decreasing sequence(||fn|| )n∈N of natural numbers; moreover, this last sequence would be
strictly decreasing at each stepn that is generated by eitherγ or δ. Thus, after some natural numberp,
this sequence could be generated byα andβ only. This would yield an infinite reduction sequence
(fn)n≥p in Σ ′, which is impossible by hypothesis. Let us note that one could have used thederiva-
tion ||·|| with the same results.

To prove thatΣ ′ terminates, we consider the derivationd into theΣ∗
2-moduleMX,Y,Z given by:

X
( )

= N, X
( )

= (0, 0), X
( )

(i) = i+ 1,

Y
( )

= N, Y
( )

= (0, 0), Y
( )

(i) = i+ 1,

d
( )

(i, j) = i, d
( )

(i, j) = i, d
( )

(i, j) = 0.

Sinced is a derivation, one gets:

d(α) = d
( )

− d
( )

= d
( )

⋆1

( )
+ ⋆1

(
d
( )

⋆0

)
− d

( )
⋆1

( )
− ⋆1

(
⋆0 d

( ))
.

Thus, for every natural numbersi andj, one gets:

d(α)(i, j) = d
( )

(i+ 1, j) + d
( )

(0, i) − d
( )

(i, j+ 1) − d
( )

(0, j)

= (i+ 1) + 0 − i − 0

= 1.

Similarly, one getsd(β)(i, j) = 1 for every natural numbersi andj, yielding, thanks to Theorem 4.2.1,
the termination ofΣ ′ and, thus, ofΣ.

5.5.2. Normal forms. Let f be a2-cell of Σ∗, that cannot be reduced by the3-cellsγ andδ and which
satisfies:

d(f)(0, . . . , 0) = 0.

Thenf is a normal form. Indeed, otherwise, there exists a contextC such thatf = C[g], with either
g = sα or g = sβ. As a consequence, there exist two natural numbersi andj such that the following
inequalities hold:

d(f)(0, . . . , 0) ≥ d(g)(i, j) ≥ 1.

Now, we defineN as the set of2-cells given by the following inductive construction scheme:

= (a) ∗ or (b)
k

or (c) k

or (d)
k

or (e)
k

.
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5.5. The main counterexample

We use the special graphical representations, and for 2-cells ofN which have, respectively,
degenerate source and target, degenerate source, degenerate target.

We start by checking that the2-cells ofN are normal forms. For that, one proceeds by structural
induction, using the construction scheme, in order to prove two properties.

The first one is that each2-cell ofN is irreducible by the3-cellsγ andδ: this is an observation that

the given construction scheme does not allow any2-cell ofN to contain either or .
The second property is that, for a2-cell f of N, one hasd(f)(0, . . . , 0) = 0. For the base case,

i.e., whenf is built using construction rule (a), one hasd(∗) = 0 sinced is a derivation. Then, for the
induction, there are four cases, depending on the construction rule used to buildf:

(b) d

(
k

)
(0, . . . , 0)

= d
( )

(0, k) + d
( )

(0, k) + k · d
( )

(0, 0) + d
( )

+ d
( )

(0, . . . , 0)

= 0.

(c) d
(

k
)

(0, . . . , 0)

= d
( )

(0, k) + k · d
( )

(0, 0) + d
( )

(0, . . . , 0) + d
( )

(0, . . . , 0)

= 0.

(d) d

(
k

)
(0, . . . , 0)

= d
( )

(0, k) + k · d
( )

(0, 0) + d
( )

(0, . . . , 0) + d
( )

(0, . . . , 0)

= 0.

(e) d
(

k
)

(0, . . . , 0)

= k · d
( )

(0, 0) + d
( )

(0, . . . , 0)

= 0.

Now, let us prove that every2-cell of Σ∗ that is a normal form is contained in the setN. We proceed
by induction on the triple(m,n, p) of natural numbers, wherem is the size of the2-cells,n the size of
their source,p the size of their target.

The only2-cells ofΣ∗ with size0 are the1n, wheren denotes the1-cell with sizen. All of them are
normal forms and belong toN. Indeed, each1n can be formed, from∗, byn subsequent applications of
the construction rule (e) withk = 0.

The2-cells ofΣ∗ with size1 are the1p ⋆0ϕ ⋆0 1q, whereϕ is one of , and . Such a2-cell is
always a normal form and belongs toN. Indeed, we have seen that1q is inN. Then we get thatϕ ⋆0 1q

is inN, by case analysis based onϕ.
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5. The case of3-polygraphs

• If ϕ is , construction rule (c) with = 1q, = ∗ andk = 0.

• If ϕ = , construction rule (d) with = 1q, = ∗ andk = 0.

• If ϕ = , construction rule (e) with = 1q andk = 1.

Finally, 1p ⋆0ϕ ⋆0 1q is inN, built using construction rule (e), appliedp times in sequence withk = 0

and starting from = ϕ ⋆0 1q.
Now, let us fix a non-zero natural numberm and two natural numbersn andp. We assume that we

have proved the result for each normal formg with size at mostm − 1 or with sizem and such that the
inequality(|sg| , |tg|) < (n, p) holds.

Let us consider a normal formf such that||f|| = m, |sf| = n and|tf| = p hold. Sincef has size at
least1, there exists a2-cell g such thatf decomposes in one of the three following ways:

f = g or g or g .

One denotes byϕ the generating2-cell corresponding to each of those decompositions:, and ,
respectively. Sincef is a normal form, so doesg andg has sizem − 1: we apply the induction hy-
pothesis to it, so that we know thatg is inN. Thus,g decomposes into one of the five following ways,
corresponding to the five construction rules ofN:

g = (i) ∗ or (ii)
k

h or (iii) k h

or (iv)
k

h or (v)
k

h .

We study all the possible decompositions off, depending on the one ofg and onϕ. In case (i),i.e., when
g = ∗, we haveϕ = , since this is the only possibility to havetϕ degenerate. We have already seen
that is inN. In case (ii), one has the following possibilities, depending onϕ:

f =
k

h or
k

h or
k

h .

The following2-cells must be normal forms, sincef is, and they have size at mostm− 2:

h , h , h .

We apply the induction hypothesis to each one, concluding that they all belong toN. Thusf is inN, built

by construction rule (b). Case (iii) is similar to case (ii), with the2-cell
k

replaced by k .

In case (iv), the reasoning depends onϕ:

• Whenϕ = , one has the following possibilities, depending whereϕ connects tog:

f =
k

h or
k

h or
k

h

or
k

h or
k

h .
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5.5. The main counterexample

The first and third case cannot occur. Indeed, one proves, by structural induction, that a normal
form with source of size at least1 and with degenerate target has the following shape:

k
· · ·

k k
.

As a consequence, such a decomposition off would contain either or , preventing it
from being a normal form.

For the second case, one applies the induction hypothesis to the2-cell : indeed, it is a
2-cell with size at mostm− 1 that must be a normal form, otherwisef would not. Thus,f is built
from 2-cells ofN following construction rule (d) and, as such, is inN.

The fourth decomposition contains either or , respectively whenk ≥ 1 andk = 0. Thus
it is not possible thatf decomposes this way, since it is a normal form.

For the fifth decomposition, one applies the induction hypothesis toh , which is a2-cell

that must be a normal form, with size at mostm− 1.

• Whenϕ = , one has the following possible decompositions off:

f =
k

h or
k

h or
k

h .

The first case shows thatf is in N: indeed, it is built with construction rule (d), applied with

= ∗, k = 0 and =
k

h , which isg and, as such, belongs toN.

In the second case, we apply the induction hypothesis to : it is a normal form of size at
mostm− 1. Thusf is built with construction rule (d).

In the third case, one applies the induction hypothesis toh : it is a normal form of size at

mostm− 1. We conclude thatf is built with construction rule (d).

• Whenϕ = , the possible decompositions off are:

f =
k

h or
k

h

or
k+1

h or
k

h .

The first case cannot occur: otherwise,f would contain and, thus, it would not be a normal
form.

In the second case, we apply the induction hypothesis to : this is a normal form with size at
mostm− 1. This proves thatf is inN, built following construction rule (d).

45



5. The case of3-polygraphs

In the third case,f is inN, built following construction rule (d).

In the fourth case, we apply the induction hypothesis toh : this is a normal form with size at

mostm− 1. Thusf is inN, built with construction rule (d).

The final case (v) also depends on the values ofϕ:

• Whenϕ = , we have the following possible decompositions off:

f =
k

h or
k

h .

In the first case, one must havek = 0: otherwise,f would contain which is not a normal form.
Thus the2-cell h is a normal form of sizem − 1: we apply the induction hypothesis to get thath

is inN. Then, by structural induction onh, one shows that it has one of the following two shapes:

h =
k

or
k

.

The first decomposition is impossible since, otherwise,f would contain and, thus, it would
not be a normal form. The second decomposition gives thatf is inN, built from case (c).

In the second case, the2-cell h is a normal form. Moreover, ifk ≥ 1, it has size at most

m − 1, and, if k = 0, it has sizem, while its source and target have sizesn − 1 andp − 1,
respectively. Thus, in either situation, we can apply the induction hypothesis to conclude that this
2-cell is inN. As a consequence,f is inN, built with construction rule (e).

• Whenϕ = , we have the following possible decompositions off:

f =
k

h or
k

h .

In the first case,f is inN, built fromh in two subsequent steps, with construction rules (e), then (d).

In the second case, one can apply the induction hypothesis toh . Indeed, it is a normal

form, with either size at mostm − 1, whenk ≥ 1, or with sizem and source and target of sizes
n − 1 andp − 1, respectively. Thus this2-cell is inN, and so doesf, which is built following
construction rule (e).

• Whenϕ = , we have the following possible decompositions off:

f =
k+1

h or
k

h .

In the first case,f is built fromh by application of construction rule (e) and, as such, is inN.
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5.5. The main counterexample

In the second case, one applies the induction hypothesis toh , which is a normal form, with

either size at mostm−1, whenk ≥ 1, or with sizem and source and target of sizesn−1 andp−1,
respectively. As a consequence, this2-cell is inN, proving thatf is built following construction
rule (e) and, thus, it is inN.

To conclude, we have proved that the normal forms ofΣ∗ are exactly the2-cells ofN. In particular, we
denote byN0 the set of normal forms with degenerate source and target. From the inductive scheme
definingN, we deduce that the following two construction rules characterizeN0:

= ∗ or
k

.

5.5.3. Confluence.Let us examine the critical branchings ofΣ. The3-polygraphΣ has four regular
critical branchings, whose sources are:

, , , .

It also has one right-indexed critical branching, generated by the3-cellsα andβ, with source:

k .

ThusΣ is a terminating and right-indexed3-polygraph. By application of Theorem 5.3.1, we get conflu-
ence ofΣ by proving that its four regular critical branchings and all normal instances of its right-indexed
critical branchings are confluent.

For the regular ones, we have the following confluence diagrams:
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From the characterization of normal forms ofΣ, the normal instances of the right-indexed critical branch-
ing αβ

( )
are the instances corresponding to the following2-cells where, in the latter, andn

respectively range overN0 andN:

= , = , = , =
n
.
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5. The case of3-polygraphs

Now we check that, for each one of these2-cells, the corresponding critical branchingαβ
( )

is con-
fluent. Let us note that, for the first three cases, there are several possible confluence diagrams, because
they also contain regular critical branchings ofΣ.

For = , we choose the following one:
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Finally, for =
n

:

n
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n+1
αβ
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��

5.5.4. Homotopy basis.The3-polygraphΣ is convergent and right-indexed. Thus, Theorem 5.3.3 tells
us that the following4-cells form a homotopy basis ofΣ⊤:

γδ, δγ, αγ, βδ, αβ

( )
, αβ

( )
, αβ

( )
,

plus, for every in N0 andn in N, the4-cell

αβ
( n)

.

In fact, the4-cellsαβ

( )
, αβ

( )
andαβ

( )
are superfluous. Indeed, the3-spheres forming

their boundaries are also the boundaries of4-cells ofΣ⊤(αγ,βδ), as diagrammatically proved thereafter.
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Forαβ
( )
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And, forαβ
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We denote byΓ0 the family made of the4-cellsγδ, δγ, αγ andβδ. Then, for every natural numbern,
one defines:

Γn+1 = Γn ∐
{
αβ
( n)

, ∈ N0

}
.

Thus, the following set of4-cells is a homotopy basis ofΣ:

Γ =
⋃

n∈N

Γn.

For every natural numbern, we denote byξn the4-cellαβ
( n)

of Γn+1, hence ofΓ .

5.5.5. Lemma. Letn be a natural number. There is no4-cell ofΣ⊤(Γ0) with the same boundary asξn,
i.e.:

sξn 6≈Γ0
tξn.

Proof. Let us assume, on the contrary, that there exists a4-cellΦ in Σ⊤(Γ0) such that bothsΦ = sξn

andtΦ = tξn hold. We consider the derivationd of Σ⊤ into the trivial module that takes the following
values on the generating3-cells:

d(α) = 1, d(β) = −1, d(γ) = 0, d(δ) = 0.
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5.5. The main counterexample

Then, we check that, for any4-cell Ψ of Σ⊤(Γ0), we haved(sΨ) = d(tΨ). Sinced is a derivation, it is
sufficient to check this equality on the generating4-cells ofΓ0:

• d(sγδ) = d(γ) = 0 and d(tγδ) = d(δ) = 0.

• d(sδγ) = d(δ) = 0 and d(tδγ) = d(γ) = 0.

• d(sαγ) = d(α) + d(β) + d(γ) = 0 and d(tαγ) = d(γ) = 0.

• d(sβδ) = d(β) + d(α) + d(δ) = 0 and d(tβδ) = d(δ) = 0.

Thus, sinceΦ is in Σ⊤(Γ0), one must haved(sΦ) = d(tΦ). However, one has:

d(sΦ) = d(α) = 1 and d(tΦ) = d(β) = −1.

This proves that such a4-cellΦ cannot exist inΣ⊤(Γ0).

5.5.6. Lemma. Letn be a natural number. There is no4-cell ofΣ⊤(Γn) with the same boundary asξn,
i.e.:

sξn 6≈Γn
tξn.

Proof. On the contrary, let us assume thatΦ is a4-cell of Σ⊤(Γn) such that bothsΦ = sξn andtΦ =

tξn hold. As a direct consequence, we have:

s2Φ = s2ξn = n .

Hence, the normal form ofs2Φ is n+1. Now, let us prove thatΦ cannot contain any occurrence of a

generating4-cell αβ
(

k
)

or its inverse, withk < n. If that was the case, there would exist4-cells

Ψ1, Ψ2 in Σ⊤(Γn), a contextC of Σ⊤, anε in {−1, 1}, a2-cell and ak in {0, . . . , n− 1} such that the
4-cellΦ decomposes this way:

Φ = Ψ1 ⋆3C
[
αβ
(

k
)ε]

⋆3Ψ2.

As a consequence, we would have:

s2Φ = s2

(
C
[
αβ
(

k
)ε])

≈Σ3
(s2C)

[
s2αβ

(
k
)]

= k

s2C

.

SinceΣ is convergent, this implies thats2Φ and the rightmost2-cell have the same normal form. One
denotes byD the context ofΣ∗

2 such thatD[∗] is the normal form of(s2C)[∗]. Then, the following
equality holds:

n+1 = k+1

D

.
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Let us prove that this is not possible. For that, we define the derivationd of Σ∗
2 into the moduleMX,∗,G

given thereafter:

• The abelian groupG is freely generated by the setN of natural numbers. The natural numbern,
seen as a generator ofG, is denoted byan.

• The2-functorX : Σ∗
2 → Set is generated by the values:

X
( )

= N, X
( )

= (0, 0), X
( )

(i) = i+ 1.

• The derivationd is given by:

d
( )

= 0, d
( )

(i, j) = aj, d
( )

(i) = 0.

Then, on the one hand, we have:

d

(
n+1

)
= an+1.

And, on the other hand, we use the fact thatd is a derivation to compute:

d




k+1

D


 = d

(
∗

D

)
+ d

(
k+1

)
+ d

( )
= d(f) + ak+1 ,

wheref denotesD
[ ]

. Thus, we havean+1 = ak+1 + d(f), with k < n and somef in Σ∗
2. This is

impossible becauseG is freely generated andd sends any2-cell of Σ∗
2 to an element ofG written using

theai’s with positive coefficients.
We conclude that the4-cellΦ is built from the4-cells ofΓ0 and their inverses only,i.e.Φ is a4-cell

of Σ⊤(Γ0). However, this would contradict Lemma 5.5.5.

5.5.7. Theorem. The3-polygraphΣ does not have finite derivation type.

Proof. On the contrary, let us assume thatΣ does have finite derivation type. Then, by application of
Proposition 3.2.3, there exists a finite subfamilyΓ ′ of Γ which is a homotopy basis ofΣ⊤.

SinceΓ ′ is finite, there exists some natural numbern such thatΓ ′ is contained inΓn. In particular,
the4-cellξn is not inΓ ′. However, sinceΓ ′ is a homotopy basis and sinceΓ ′ is contained inΓn, we have:

sξn ≈Γn
tξn.

We have seen in 5.5.6 that this is not possible, thus contradicting the fact thatone can extract a finite
homotopy basis fromΓ . As a consequence, the3-polygraphΣ does not have finite derivation type.
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5.5.8. A variant of the counterexample. In the previous3-polygraph, one can think that the problem
comes from the complicated normal forms, especially from the fact that one can find normal forms
of N0 everywhere in a given2-cell. Here we give another example, similar to the first one but with
more simple normal forms. It is a bit more contrived, which led us to prefer theother one for the main
exposition.

Let Ξ be the3-polygraph with the following generating cells:

• Two 0-cells, denoted byξ andη and, in the diagrammatic representations, respectively pictured
by a white background and by a gray one.

• Two 1-cells ξ
p

//η and η
q

//ξ . By abuse, both are pictured by a wire, leaving the back-
grounds discriminate them.

• Four2-cells , , , and .

• Two 3-cells
α′

⇛ and
β′

⇛ .

Following the same reasoning steps as in the previous example, one proves that the finite3-polygraphΞ
is convergent. But it lacks finite indexation and finite derivation type. Indeed, the following family of
4-cells, indexed by the natural numbern, form a minimal homotopy basis ofΞ⊤:

n

α′

B�+

β′

|3G

n+1
α′β′

“ n”

��
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