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Abstract — We construct finite coherent presentations of plactic monoids of type A. Such coherent
presentations express a system of generators and relations for the monoid extended in a coherent way
to give a family of generators of the relations amongst the relations. Such extended presentations
are used for representations of monoids, in particular, it is a way to describe actions of monoids
on categories. Moreover, a coherent presentation provides the first step in the computation of a
categorical cofibrant replacement of a monoid. Our construction is based on a rewriting method
introduced by Squier that computes a coherent presentation from a convergent one. We compute a
finite coherent presentation of a plactic monoid from its column presentation and we reduce it to a
Tietze equivalent one having Knuth’s generators.

1. INTRODUCTION

Plactic monoids. The structure of plactic monoids appeared in the combinatorial study of Young tableaux
by Schensted [21] and Knuth [12]. The plactic monoid of rank n > 0, denoted by Py, is generated by the
set{1,...,n} and subject to the Knuth relations:

zxy =xzy for T<x<y<z<n, yzx =yxz for T<x<y<z<n

For instance, the monoid P; is generated by {1, 2} and submitted to the relations 211 = 121 and 221 = 212.
The Knuth presentation of the monoid P3 has 3 generators and 8 relations. Lascoux and Schiitzenberger
used the plactic monoid in order to prove the Littlewood-Richardson rule for the decomposition of tensor
products of irreducible modules over the Lie algebra of n by n matrices, [22,[16]. The structure of plactic
monoids has several applications in algebraic combinatorics and representation theory [15} 16, 14} 5] and
several works have generalised the notion of tableaux to classical Lie algebras [[1} 25, 10} [19, 23]].

Syzygies of Knuth’s relations. The aim of this work is to give an algorithmic method for the syzygy
problem of finding all independent irreducible algebraic relations amongst the Knuth relations. A 2-syzygy
for a presentation of a monoid is a relation amongst relations. For instance, using the Knuth relations
there are two ways to prove the equality 2211 = 2121 in the monoid P, either by applying the first Knuth
relation 211 = 121 or the second relation 221 = 212. This two equalities are related by a syzygy. Starting
with a monoid presentation, we would like to compute all syzygies for this presentation and in particular
to compute a family of generators for the syzygies. For instance, we will prove that in rank 2 the two
Knuth relations form a unique generating syzygy for the Knuth relations. For rank greater than 3, the
syzygies problem is difficult due to the combinatorial complexity of the relations. In commutative algebra,
the theory of Grobner bases gives algorithms to compute bases for linear syzygies. By a similar method,
the syzygy problem for presentation of monoids can be algorithmically solved using convergent rewriting
systems.
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Rewriting and plactic monoids. Study presentations from a rewriting approach consists in the orien-
tation of the relations, then called reduction rules. For instance, the relations of the monoid P, can be
oriented with respect to the lexicographic order as follows

T]1)]’2:2H = 121 81’212:22] = 212.

In a monoid presented by a rewriting system, two words are equal if they are related by a zig-zag sequence
of applications of reductions rules. A rewriting system is convergent if the reduction relation induced
by the rules is well-founded and if it satisfies the confluence property. This means that any reductions
starting on a same word can be extended to end on a same reduced word. Recently plactic monoids were
investigated by rewriting methods [13} 24,9, 3]].

Coherent presentations of plactic monoids. We give a categorical description of 2-syzygies of pre-
sentations of the monoid P,, using coherent presentations. Such a presentation extends the notion of a
presentation of the monoid by globular homotopy generators taking into account the relations amongst
the relations. We compute a coherent presentation of the monoid Py, using the homotopical completion
procedure introduced in 8} 16]]. Such a procedure extends the Knuth-Bendix completion procedure [[11],
by keeping track of homotopy generators created when adding rules during the completion. Its correctness
is based on the Squier theorem, [24]], which states that a convergent presentation of a monoid extended
by the homotopy generators defined by the confluence diagrams induced by critical branchings forms a
coherent convergent presentation. The notion of critical branching describes the overlapping of two rules
on a same word. For instance, the Knuth presentation of the monoid P, is convergent. It can be extended
into a coherent presentation with a unique globular homotopy generator described by the following 3-cell
corresponding to the unique critical branching of the presentation between the rules 77 ; and €7 ;:

2112
Z
2211 2121

N A

€121

The Knuth presentation of the monoid P; is not convergent, but it can be completed by adding 3 relations
to get a presentation with 27 3-cells corresponding to the 27 critical branchings. For the monoid P4 we
have 4 1-cells and 20 2-cells, for P5 we have 5 1-cells and 40 2-cells and for P we have 6 1-cells and 70
2-cells. However, in the last three cases, the completion is infinite and another approach is necessary to
compute a finite generating family for syzygies of the Knuth presentation.

The column presentation. Kubat and Okninski showed in [13] that for rank n > 3, a finite convergent
presentation of the monoid P;, cannot be obtained by completion of the Knuth presentation with the
degree lexicographic order. Then Bokut, Chen, Chen and Li in [2] and Cain, Gray and Malheiro in [4]]
constructed with independent methods a finite convergent presentation by adding column generators to
the Knuth presentation. However, on the one hand, the proof given in [4]] does not give explicitly the
critical branchings of the presentation which does not permit to use the homotopical completion procedure.
On the other hand, the construction in [2] gave an explicit description of the critical branchings of the
presentation, but this does not allow to get explicitly the relations amongst the relations.
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The Knuth coherent presentation. We construct a coherent presentation of the monoid P;, that extends
the Knuth presentation in two steps. The first step consists in giving an explicit description of the
critical branchings of the column presentation. The column presentation of the plactic monoid has one
generator ¢, for each column u, that is, a word u = x,...x; such that x, > ... > x7. Given two
columns u and v, using the Schensted algorithm, we compute the Schensted tableau P(uv) associated to
the word uv. One proves that the planar representation of the tableau P(uv) contains at most two columns.
If the planar representation is not the tableau obtained as the concatenation of the two columns u and v, one
defines a rule o, : cuCy = CwCy,s Where w and w’ are respectively the left and right columns (with one
of them possibly empty). We show that the column presentation can be extended into a coherent column
presentation whose any 3-cell has at most an hexagonal form. For instance, the column presentation
for the monoid P, has generators ¢y, ¢2, ¢21, with the rules &1 : ¢2¢1 = €21, 121 : C1€21 = C21Cy
and o 27 @ €2€21 = €21€2. This presentation has only one critical branching:

X2,1€21— 1021
C21X ]

€2C1€21 m
Ca2x1 27 7 €2€21C1 %aiC €21€2€C1
)

and thus the 3-cell of the extended coherent presentation is reduced to this 3-cell defined by this confluence
diagram. Note that for column presentations of the monoids Pz, P4 and P5 we count respectively 7, 15
and 31 generators, 22, 115 and 531 relations, 42, 621 and 6893 3-cells.

The second step aimed at to reduce the coherent column presentation using Tietze transformations
that coherently eliminates redundant column generators and defining relations to the Knuth coherent
presentation giving syzygies of the Knuth presentation. For instance, if we apply this Tietze transformation
on the column coherent presentation of the monoid P,, we prove that the Knuth coherent presentation
of P, on the generators c1, ¢ and the relations 11772, €122 has a unique generating 3-cell 2712 = €121
described above.

Organisation of the article. The polygraphical description of string rewriting systems that we will use
in this work is briefly recalled in Section [2.1) we refer the reader to [7]] for a deeper presentation. In
Section we define the Knuth 2-polygraph that corresponds to the Knuth relations oriented with respect
to the lexicographic order. In Section [2.3] we recall the column presentation introduced in [4]. The proof
given in [4]] for the convergence of this presentation consists in showing that this presentation has the
unique normal form property. We give another proof of the confluence by showing the confluence of all the
critical branchings of the column presentation. In Section |3} we recall the notion of coherent presentation
of a monoid and we show the first main result of this article, that extends the column presentation into
a coherent presentation, Theorem [3.2.2] In Section[d] we reduce the coherent column presentation into
a coherent presentation that extends the Knuth presentation and that gives all syzygies of the Knuth’s
relations, Theorem {.4.7] Finally, we explicit a procedure that computes a family of generating syzygies
for any plactic monoids of type A.

2. PRESENTATION OF PLACTIC MONOIDS BY REWRITING

In this preliminary section, we recall rewriting notions and some presentations and constructions of plactic
monoids used in this article.
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2.1. Presentations of monoids by two-dimensional polygraphs

2.1.1. Two-dimensional polygraphs. In this article, we deal with presentations of monoids by rewriting
systems, described by 2-polygraphs with only 0-cell denoted by e. Such a 2-polygraph X is given by
a pair (X1,X,), where L, is a set and X, is a globular extension of the free monoid X7, that is a set of
2-cells 3 : u = v relating 1-cells in £}, where u and v denote the source and the rarget of 3, respectively
denoted by s1(f3) and t;(f3). If there is no possible confusion, X, will denote the 2-polygraph itself. Recall
that a 2-category (resp. (2, 1)-category) is a category enriched in categories (resp. in groupoids). When
two 1-cells, or 2-cells, f and g of a 2-category are O-composable (resp. 1-composable), we denote by fg
(resp. fx1 g) their O-composite (resp. 1-composite). We will denote by L3 (resp. ZZT) the 2-category (resp.
(2, 1)-category) freely generated by the 2-polygraph X, see [7, Section 2.4.] for expended definitions.

The monoid presented by a 2-polygraph ¥, denoted by X, is defined as the quotient of the free
monoid 2] by the congruence generated by the set of 2-cells X,. A presentation of a monoid M is a
2-polygraph whose presented monoid is isomorphic to M. Two 2-polygraphs are Tietze equivalent if they
present isomorphic monoids.

2.1.2. Tietze transformations of 2-polygraphs. A 2-cell  of a 2-polygraph X is collapsible, if t;(3)
is a 1-cell of X; and the T-cell s1(f3) does not contain t;(f3), then t;(f) is called redundant. Recall
from [6, 2.1.1.], that an elementary Tietze transformation of a 2-polygraph X is a 2-functor with domain
ZZT that belongs to one of the following four transformations:

i) adjunction L}j : ZZT — ZZT [x](B) of a redundant 1-cell x with its collapsible 2-cell 3.

ii) elimination 7 : £, — (X7 \ {x}, £2 \ {B}) " of a redundant 1-cell x with its collapsible 2-cell f.
iii) adjunction g : ZZT — ZZT(B) of a redundant 2-cell 3.
iv) elimination 7t(, ) : Z; — ZZT / (v, B) of a redundant 2-cell f3.

If £ and Y are 2-polygraphs, a Tietze transformation from L to Y is a 2-functor F : ZT — YT that
decomposes into sequence of elementary Tietze transformations. Two 2-polygraphs are Tietze equivalent
if, and only if, there exists a Tietze transformation between them [6, Theorem 2.1.3.].

Given a 2-polygraph X and a 2-cell y1 %1 Y x1 y2 in ZzT, the Nielsen transformation Ky g is the
Tietze transformation that replaces in the (2, 1)-category Z; the 2-cell y by a 2-cell  : s1(v1) = t1(v2).
When v, is identity, we will denote by K;/ p the Nielsen transformation which, given a 2-celly1 x1 v

in L], replaces the 2-cell y by a 2-cell B : s1(v1) = t1(y).

2.1.3. Convergence. A rewriting step of a 2-polygraph X is a 2-cell of L3 with shape wBw’, where {3 is
a 2-cell of X, and w and w’ are 1-cells of X3. A rewriting sequence of L is a finite or infinite sequence
of rewriting steps. A 1-cell u of X} is a normal form if there is no rewriting step with source u. The
2-polygraph X terminates if it has no infinite rewriting sequence.

A branching of the 2-polygraph X is a non ordered pair (f, g) of 2-cells of X such that s;(f) = s1(g).
A branching (f, g) is local if f and g are rewriting steps. A branching is aspherical if it is of the form (f, f),
for a rewriting step f and Peiffer when it is of the form (fv,wg) for rewriting steps f and g with s1(f) =u
and s1(g) = v. The overlapping branchings are the remaining local branchings. An overlapping local
branching is critical if it is minimal for the order C generated by the relations (f,g) C (wfw’ ,wgw'),
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given for any local branching (f, g) and any possible 1-cells w and w’ of the category Lj. A branch-
ing (f, g) is confluent if there exist 2-cells f’ and g’ in X3 such that s1(f’) = t;(f), s1(g’) = t1(g)
and t1(f') = t;(g’). We say that a 2-polygraph X is confluent if all of its branchings are confluent. It is
convergent if it terminates and it is confluent. In that case, every 1-cell u of X7 has a unique normal form.

2.2. Plactic monoids

2.2.1. Rows, columns and tableaux. For n > 0, we denote by [n] the set {1,2,...,n} totally or-
dered by 1 < 2 < ... < n. A row is a non-decreasing 1-cell x; ...xy in the free monoid [n]*, i.e.,
withx; < x2 <... <X A column is a decreasing 1-cell x,, ... x7 in n]*, i.e., with x, > ... > %2 > x7.
We will denote by col(n) the set of non-empty columns in [n]*. We denote by £(w) (resp. £"%(w)) the
length of a T-cell w (resp. the length of the longest non-decreasing subsequence in w). A row Xq ... Xx
dominates arow Y ...y, and we denote X1 ...xx > yj ...y, if k < land x; > y;, for 1 <1 < k. Any
1-cell w in [n]* has a unique decomposition as a product of rows of maximal length u; ... u,. Such a
1-cell wis a tableau if g > uy > ... > w. We will write tableaux in a planar form, with the rows placed
in order of domination from bottom to top and left-justified as in [S]]. The degree lexicographic order is
the total order on col(n), denoted by <deglex, and defined by 1 <(geglex V if £(u) < €(v) or £(u) = £(v)
and u <ey Vv, for all wand v in col(n), where <jex denotes the lexicographic order on [n]*.

2.2.2. Schensted’s algorithm. The Schensted algorithm computes for each 1-cell w in [n]* a tableau
denoted by P(w), called the Schensted tableau of w and constructed as follows, [21]. Given u a
tableau written as a product of rows of maximal length w = u;...ux and y in [n], it computes the
tableau P(uy) as follows. If wy is a row, the result is u; ... uxy. If uxy is not a row, then sup-
pose Uy = X1 ...x with x; in [n] and let j minimal such that X;j >y, then the resultis P(uy ... we 1% ) vy,
where vic = X1 ...%j_1YXj41 ... x1. The tableau P(w) is computed from the empty tableau and iteratively
applying the Schensted algorithm. In this way, P(w) is the row reading of the planar representation of the
tableau computed by the Schensted algorithm. The number of columns in P(w) is equal to £"(w), [21]].
We will denote by C(w) the column reading of the tableau P(w), obtained by reading P(w) column-wise
from bottom to top and from left to right. We denote by C;(w) (resp. C{(w)) the reading of the last right
(resp. first left) column of the tableau P(w).

2.2.3. Knuth’s 2-polygraph and the plactic congruence. The plactic monoid of rank n, denoted by Py,
is the quotient of the free monoid [n]* by the congruence ~pjux(n)» defined by w ~pjaxn) v if P(u) = P(v).
The Knuth 2-polygraph of rank n is the 2-polygraph, denoted by Knuth;(n), whose set of 1-cells is [n]
and the set of 2-cells is

€
{zxyngizxzyH<x§y<z<n}u{yzx 2 yxz1<x<y<z<nl (1)

The congruence on the free monoid [n]* generated by the 2-polygraph Knuth;(n) is called the plactic
congruence of rank n and the 2-polygraph Knuth;(n) is a presentation of the monoid Py, [12| Theorem 6].
Each plactic congruence class contains exactly one tableau, [20), Proposition 5.2.3], and for any 1-cell w,
we have that w = C(w) holds in Py, [20, Problem 5.2.4].
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2.3. Column presentation

We recall some presentations of the plactic monoid Py, obtained by adding new generators. In particular,
we recall the column presentation of the monoid P;, introduced in [4] which is finite and convergent.

2.3.1. Columns as generators. Let us denote by Col;(n) = {cu ‘ u e col(n)} the set of column
generators of the monoid P;, and by

Ca(n) = {cx,---Cx AN cu |u=xp...x1 € col(n) with {(u) >2}

the set of the defining relations for the column generators. We denote by Knuth$(n) the 2-polygraph
whose set of T-cells is {c1, . .., cn} and whose set of 2-cells is given by

nC 8(:
{caexey =2 ¢ c.cy | 1<x<y<z<n} U {cycaex 20 ¢ enes |[1<x<y<z<n}.

By definition, this 2-polygraph is Tietze equivalent to the 2-polygraph Knuth,(n). In the sequel, we will
identify the 2-polygraphs Knuth$(n) and Knuth,(n).

Let us define the 2-polygraph Knuth$(n), whose set of 2-cells is C;(n) U Knuth§(n). The
2-polygraph Knuth§$®(n) is a presentation of the monoid P,,. Indeed, we add to the 2-polygraph Knuth§(n)
all the column generators cy,, for all u = x ... %7 in col(n) such that £(u) > 2, and the corresponding
collapsible 2-cell vy, : Cxp + -+ Cxy = Cue

2.3.2. Pre-column presentation. Let us define the 2-polygraph PreCol, (1) whose set of 1-cells is Coly (n)
and the set of 2-cells is
o
PreColy(n) = PCy(n) U {cxcu =¥ ¢y [ xu € col(n) and 1< x <n},

where

/ /
X, )
PCy(n) = { cxCoy == ey | T<x<y<z<n} U {cyczx%zz>xcyxcz\1<x<y<z<n}.

2.3.3. Proposition. Forn > 0, the 2-polygraph PreCol, (1) is a presentation of the monoid Py, called
the pre-column presentation of Pr,.

Proof. We proceed in two steps. The first step consists to prove that the 2-polygraph
CPCy(n) :=( Colj(n) | C2(n)UPCz(n) )

is Tietze equivalent to the 2-polygraph Knuth§°(n). For 1 < x <y < z < n, consider the following
critical branching
c CxYzy
Nx,y,z CxCzCy = CxCzy
C2CxCy

YzxCy 7 CzxCy
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of the 2-polygraph Knuth$°(n). Let consider the Tietze transformation

Kne ooy, - Knuth$*(n) T — Knuth$*(n) "/ (ng . o),

that substitutes the 2-cell oc,’(’zy : CxCzy = CzxCy to the 2-cell nf(’y,z, forevery 1<x<y<z<n
We denote by T, 4 the successive applications of the Tietze transformation Kng ooy for ev-
ery 1 < x <y < z < n, with respect to the lexicographic order on the triples (x,y, z) induced by the
total order on [n].

Similarly, we study in the same way the critical branching (ef(‘y‘z, CyYzx) of the 2-polygraph
Knuth3®(n), for every 1 < x <y < z < n, by introducing the Tietze transformation Keg o/
from Knuth®(n) " to Knuth$¢(n) "/ (eXyz & oc{J’ZX). We denote by T, the successive applications of
this Tietze transformation with respect to the lexicographic order on the triples (x,y, z) induced by the
total order on [n]. In this way, we obtain a Tietze transformation T, o from Knuth$®(n) T to CPCy(n) "
given by the composite Ty’ 0 Tee o

In a second step, we prove that the 2-polygraph PreCol, (1) is Tietze equivalent to the 2-polygraph
CPCy(n). Let xp...x7 be a column with £(xp...x7) > 2 and define “{;,x = Yyx : CyCx = Cyx, for

every x < y. Consider the following critical branching

CXP’YXV%"X Cxp Cxp1.1

CxpCxp g + -+ Cxy

of the 2-polygraph CPC;(n) and the following Tietze transformation

’

KYXp...X] —x

/ 1 CPCo(n) T — CPC2 (M) T/ (Yxpr = X x oy )y

XpyXp_1---X]

that substitutes the 2-cell “;P,xp to the 2-cell yx,, .. x, , for each column x;, . .. xq such thatp > 2. Start-

’
/ D)
yXp---X] H‘)‘><F,,><1371 S Xq

for every column x,, ... x7 such that {(x;, ...x7) > 2, from the bigger to the smaller one with respect to
the total order <{geglex- The composite

—1...X1

ing from the 2-polygraph CPC, (1), we apply successively the Tietze transformation k
g polygrap pply y

/ /

Tyewr =K / 0...0K /
yex Vx3xx7 0% ,x5% Yxmeexg %00 xqxg”

gives us a Tietze transformation from CPC,(n) " to PreColy(n)". O

2.3.4. Column presentation. Let n > 0. Given columns u = X;, ...xj and v = yq ...y in col(n), the
length {"% (1) of the longest non-decreasing subsequence of v is lower or equal to 2 [4, Lemma 3.1.].
We will use graphical notations depending on whether the tableau P(uv) consists in two columns:

i) we will denote 1 v if the planar representation of P(1v) is a tableau, that is, p > q and x; < yj, for
any i < q,

ii) we will denote 1™ v in all the other cases, that is, when p < q or x; > Y, for some i < q.
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In the case ii), we will denote u* 1y if the tableau P(uv) has one column and we will denote u* % if the
tableau P(uv) has two columns. For every columns u and v in col(n) such that u™ v, we define a 2-cell

Xy : CuCy = CwCyy
where
i) w=uvand c,,s = 1, if ",
ii) w and w' are respectively the left and right columns of the tableau P(uv), if u* .

Let us denote by Col,(n) the 2-polygraph whose set of 1-cells is Col; (n) and the set of 2-cells is

Coly(n) = { cucy Xy ¢

u,v € col(n) and u™v }. (2)

The 2-polygraph Col,(n) is a finite convergent presentation of the monoid Py, [4, Theorem 3.4], called
the column presentation of the monoid P;,. Note that Schensted’s algorithm that computes a tableau P(w)
from a 1-cell w, corresponds to the leftmost reduction path in Col3(n) from w to its normal form P(w),
that is, the reduction paths obtained by applying the rules of Col,(n) starting from the left. In particular,
we have

2.3.5. Lemma. For any uj,...,u, in col(n), the length of the leftmost rewriting path in Coly(n)*
fromuguy ... up fo its normal form P(uuy ... w,) is at most n.

3. COHERENT COLUMN PRESENTATION

In this section, we begin by recalling the notion of coherent presentations of monoids from [6]. In a
second part, using the homotopical completion procedure, we construct a coherent presentation of the
monoid P, starting from its column presentation.

3.1. Coherent presentations of monoids

3.1.1. (3,1)-polygraph. A (3, 1)-polygraph is a pair (£,, £3) made of a 2-polygraph X, and a globular
extension X3 of the (2, 1)-category ZZT, that is a set of 3-cells A : f = g relating 2-cells f and g in ZZT,
respectively denoted by s;(A) and t;(A) and satisfying the globular relations s1s3(A) = sjt2(A) and
t1s2(A) = t1t2(A). Such a 3-cell can be represented with the following globular shape:

u f
@ o

5 g

We will denote by Z3T the free (3, 1)-category generated by the (3, 1)-polygraph (X,, X3). A pair (f, g) of
2-cells of ZZT such that s1(f) = s1(g) and t;(f) = t;(g) is called a 2-sphere of ZZT.
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3.1.2. Coherent presentations of monoids. An extended presentation of a monoid M is a
(3, 1)-polygraph whose underlying 2-polygraph is a presentation of the monoid M. A coherent pre-
sentation of M is an extended presentation X of M such that the cellular extension X3 is a homotopy basis
of the (2, T)-category X, , that is, for every 2-sphere v of £, , there exists a 3-cell in Z3T with boundary y.

3.1.3. Tietze transformations of (3, 1)-polygraphs. We recall the notion of Tietze transformation
from [6) Section 2.1]. Let £ be a (3, 1)-polygraph. A 3-cell A of X is called collapsible if t;(A)
is in X, and s;(A) is a 2-cell of the free (2, 1)-category over (I, \ {t2(A)})T, then t2(A) is called
redundant. An elementary Tietze transformation of a (3, 1)-polygraph X is a 3-functor with domain Z3T
that belongs to one of the following operations:

i) adjunction !, and elimination 7t, of a 2-cell o as described in

ii) coherent adjunction L%\ : Z3T — Z; (a)(A) of a redundant 2-cell & with its collapsible 3-cell A.
iii) coherent elimination 7t : £] — ZJ] /A of a redundant 2-cell « with its collapsible 3-cell A.
iv) coherent adjunction (A : Z3T — Z;—(A) of a redundant 3-cell A.

v) coherent elimination 7t a) : Z3T — Z3T /(B, A) of a redundant 3-cell A, that maps A to B.

For (3, 1)-polygraphs X and Y, a Tietze transformation from £ to Y is a 3-functor F : Z3T — Y; that
decomposes into a sequence of elementary Tietze transformations. Two (3, 1)-polygraphs £ and Y are
Tietze-equivalent if there exists an equivalence of 2-categories F : ZZT /L3 — YZT /Y3 and the presented
monoids £, and Y, are isomorphic. Two (3, 1)-polygraphs are Tietze equivalent if, and only if, there
exists a Tietze transformation between them, [[6, Theorem 2.1.3.].

3.1.4. Homotopical completion procedure. Following [[6, Section 2.2], we recall the homotopical
completion procedure that produces a coherent convergent presentation from a terminating presentation.
Given a terminating 2-polygraph X, equipped with a total termination order =<, the homotopical completion
of L is the (3, 1)-polygraph obtained from X by successive applications of the Knuth-Bendix completion
procedure, [[11]], and the Squier construction, [24]. Explicitly, for any critical branching (f, g) of X,
if (f, g) is confluent one adds a dotted 3-cell A:

where U is a normal form, and if the critical branching (f, g) is not confluent one add a 2-cell § and a
3-cell A:
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where the 2-cell { is directed from a normal form v of v to a normal form w of w if w < V and from w
to v otherwise. The adjunction of 2-cells can create new critical branchings, possibly generating the
adjunction of additional 2-cells and 3-cells in the same way. This defines an increasing sequence of
(3, 1)-polygraphs, whose union is called a homotopical completion of L. Following [24, Theorem 5.2],
such a homotopical completion of X is a coherent convergent presentation of the monoid Z.

3.2. Column coherent presentation

Using the homotopical completion procedure, we extend the 2-polygraph Col; (1) into a coherent presen-
tation of the monoid Py,.

3.2.1. Column coherent presentation. The presentation Coly(n) has exactly one critical branching of
the form
Xu,vC CeCe/Ct 3)

CuCyCt
Culy 7 Culwlw/

for any u, v, t in col(n) such that wvt , where e and e’ (resp. w and w’) denote the two columns of
the tableau P(uv) (resp. P(vt)). We prove in this section that all of these critical branchings are confluent
and that all the confluence diagrams of these branchings are of the following form:

Ce ae/
Oy vCys, CeCerCt el CeCbCb/ _ e pChr 4)
CuCyCt MXu,v,t CaCdCp/

s

wOET e e Copr —= Caca’cw’%’w,
Ky wCw/’

where a and a’ (resp. b and b’) denote the two columns of the tableau P(uw) (resp. P(e’t)) and a, d, b’
are the three columns of the tableau P(uvt), which is a normal form for the 2-polygraph Col;(n). Note
that in some cases described below, one or further columns e’, w’, a’ and b’ can be empty. In those cases
some indicated 2-cells « in the confluence diagram correspond to identities.

Let us denote by Col3(n) the extended presentation of the monoid P, obtained from Col,(n) by
adjunction of one 3-cell X, 1 of the form (4)), for every columns u, v and t such that wvt.

3.2.2. Theorem. Forn > 0, the (3, 1)-polygraph Col3(n) is a coherent presentation of the monoid P,.

The extended presentation Cols(n) is called the column coherent presentation of the monoid P,,. The
rest of this section consists in a constructive proof of Theorem[3.2.2] that makes explicit all possible forms
of 3-cells. Another arguments are given in Remark [3.2.7] Our proof is based on the following arguments.
The presentation Coly(n) is convergent, thus using the homotopical completion procedure described
in it suffices to prove that the 3-cells &y, with u” vt form a family of generating confluences
for the presentation Coly (1 ). There are four possibilities for the critical branching (3)) depending on the
following four cases:

1 x1 2 x1 1 %2 2
we t, WY t, wve t, WY,

Each of these cases is examined in the following four lemmas, where U = xp...%7, Vv = yq...Ys
and t = z; ...z denote columns of length p, q and 1 respectively.

10



3.2. Column coherent presentation

3.2.3. Lemma. If u* 1\)Mt, we have the following confluent critical branching:

% CuvCt %
MAu,v,t

CuCyCt Cuvt

CuCut Ku,vt

Proof. By hypothesis uv and vt are columns, then uvt is a column. Thus wv 't and WVt and there exist
2-cells ot and oy, in Coly(n) making the critical branching confluent, where e = uv, w = vt
and e’, w' are the empty column. O

3.2.4. Lemma. If uxzvX1t, we have the following confluent critical branching:

Cele t
Cece’ct i Cece/t o‘e,e’t (5)

Sy
CuCyvCt Buw/\; CsCg
% K vt

Culut
where e and e’ (resp. s and s’) denote the two columns of the tableau P(uv) (resp. P(uvt)).

Proof. By hypothesis, vt is a column and y; > z;. The tableau P(uv) consists of two columns, that we
will denote e and e’, then €™ (uv) = 2 and x7 < Yq. We have WA, so that we distinguish the following
possible three cases.

Case 1: p > ¢ and x;, > y;, for some 1 < ip < q. Suppose that ip = 1, that is, x; > yj. We consider
yj the biggest element of the column v such that x1 > yj, then the smallest element of the column e’ is
Yj+1. By hypothesis, the word vt is a column, in particular yj;1 > zi. It follows that e’t is a column.
Suppose that iy > 1, then x; < y; and the smallest element of e’ is y;. Since y; > z; by hypothesis, the
word e’t is a column. Hence, in all cases, e’t is a column and there is a 2-cell Ko/t CerCt = Celte

Case2: p < qandx; <yjforany 1 <i<p. Wehavee =yq...Ypy1Xp...xjand e’ =y, ...ys. By
hypothesis, y; > z;, hence e’t is a column and there is a 2-cell Ke’t i CerCt = Celt.

Case 3: p < g and x;, > yj, for some 1 < ip < p. With the same arguments of Case 1, the smallest
element of e’ is Yy or y;;1, where yj is the biggest element of the column v such that y; < x;. Hence, e’t
is a column and there is a 2-cell &/t @ CerCt = Cert.

In each case, we have £"%(uv) = 2, hence "% (uvt) = 2. Thus the tableau P(uvt) consists of two
columns, that we denote s and s’ and there is a 2-cell Gyt : CuCvt = CsCs/. Moreover, to compute the
tableau P(uvt), one begins by computing P(uv) and after by introducing the elements of the column t
on the tableau P(uv). As C(uv) = ee’, we have P(uvt) = P(P(uv)t) = P(ee’t). Hence C(ee’t) = ss’
and there is a 2-cell & ¢+ Which yields the confluence diagram (3). L]

3.2.5. Lemma. If 1* 1vxzt, we have the following confluent critical branching:

_ Swl——te =t ”
e

CuCyCt w,v,t CaCa’w’

Culv CuCwCy/ CaCa’Cwn’ ala’;w’!
K wCw’

11



3. Coherent column presentation

where w and w’ (resp. a and a’) denote the two columns of the tableau P(vt) (resp. P(uw)).

Proof. By hypothesis, uv is a column hence x; > y4. Moreover, the tableau P(vt) consists of two
columns w and w’, then ¢"ds (vt) = 2, hence y; < z;. We have V<2t , so that we distinguish the three
possible following cases.

Case 1: q > land y;, > z;, for some 1 < ip < L. Let us denote w = wr...wy and w' = w/, ... wj.
Since ¢ > 1, we have w; = yq. By hypothesis, x; > yq. Then the word uw is a column. As a
consequence, there is a 2-cell &y : CuCyw = Cuw. In addition, the column w appears to the left of w'
in the planar representation of the tableau P(vt), that is, {(w) > £(w’) and w; < w{ for any i < ¢(w’).
Then ¢(uw) > £(w'). We set uw = &g(y) - - - &1 and we have &; < w/ for any i < {(w’). Then wwvw’
and CywCyy 1S a normal form.

On the other hand, the tableau P(vt) consists of two columns, hence £"%(vt) = 2. As a con-
sequence, £"%(uvt) = 2 and the tableau P(uvt) consists of two columns. Since q > 1, we have
C(uvt) = uww’, hence the two columns of P(uvt) are uw and w’. Then there is a 2-cell
Guv,t : CuvCt = CuwCw Which yields the confluence of the critical branching on ¢, ¢y ¢y, as follows

Sy S vt
MCu,v% CuwCw/
m u,wCw’

CuCwCwpw/

(N

CuCyCt

Case 2: ¢ < land y; < z{ forany i < q. Wehavew = z1...zq11Yq ... Y1 and w’ =zq...21. There
are two cases along uw is a column or not.

Case 2. A. If x; > z;, then uw is a column. Hence, there is a 2-cell &,y : CuCyw = Cuw. Moreover,
using Schensted’s algorithm we prove that Ci(uvt) = uw and C;(uvt) = w’. Thus there is a 2-cell
0wt CuvCt = CuwCy Which yields the confluence diagram (7).

Case 2. B. If x1 < zy, then £"%(uw) = 2 and P(uw) consists of two columns, that we denote by a
and a’. Then there is a 2-cell Ouw : CuCw = CaCq . In addition, by Schensted’s algorithm, we deduce
that a’ =z ...z, withg+1<i <...<ig <L Wehave a'w’ =z, ...z,zq...2;. Since all the
elements of a’ are elements of t and bigger than z4, we have z;, > z4. It follows that a’w’ is a column
and there is a 2-cell g7/ 1 Cq/Cpr = Cqr-

In the other hand, we have two cases whether uv‘t or uv t. Suppose uv‘t. By Schensted’s
algorithm, we have Ci(uvt) = a and C,(uvt) = a’w’. Hence there is a 2-cell o,y t : CuvCt = CaCarw’s
which yields the confluence of Diagram (6). Suppose uv t. Then we obtain C(uw) = uvz; ... Zq+1, and
C(z... zq+1w’ ) = t. Hence there is a 2-cell Xzpozg i W’ yielding the confluence diagram

XuwC CuvCt
, Cuv&zy.zqp1,w/
CuCyCt Cu,v,t
Cuyt 7 CuCwCy/ m CuvCzi..zq 1 Cw/

Case 3: q < land yi, > zj, for some 1 < iy < . We compute the columns w and w’ of the
tableau P(vt). If the biggest element of the column W is Y4, then we obtain the same confluent branching

12



3.2. Column coherent presentation

as in Case 1. If the first element of w is z;, then one obtains the same confluent critical branchings as

in Case 2. O
X2 X2 . .. .
3.2.6. Lemma. If uw V" t, we have the following confluent critical branching:
Ce (XQ/
Oy wCes, CeCe’Ct el CeCbChb’ _ote pCp 8)
CuCyCt mDu,v,t / CaCdCp’
Culyt Cucwcw’(xﬁvlcaca’cw’ aXa’ w!
i

where e, e’ (resp. w, w’) denote the two columns of the tableau P(uv) (resp. P(vt)) and a, a’ (resp. b,
b’) denote the two columns of the tableau P(uw) (resp. P(e't)).

Proof. By hypothesis, ("(uv) = 2 and ¢"(vt) = 2, hence x; < Yq and y1 < zi. In addition,
since 1WA , the tableau P(uw) consists of two columns, that we denote by a and a’. Thus there is a

2 2
2-cell i : CuCw = CaCqr. Moreover, as WV and v*“t, we have

((p < q)or(xi, >y, forsomeip < q)) and ((q <D or(y;, > zj, for some jo < 1)),

thus we consider the following cases.

Casel: p < q<landy; < zi, foralli < g, and x; < yi, forall i < p. We have

/
W= Z|...Z¢41Yq---Y1, W = Zq...Z1, €= Yq...YpriXp...X] and e = Yp...yr.

Since z; > yj, the tableau P(e’t) consists of two columns, that we denote by b and b’. Thus there is a
2-cell xer ¢ @ CerCy = CpCpr. In addition, we have

/ /
b=z1...2p11Yp...Yy1, b =2zp...21, a=z1...Z2q41Yq---Yp+1Xp...X1 and a’' = yp...ys.

Since zq > Yy, the tableau P(a’w’) consists of two columns, that we denote by d and d’. Thus there
is a 2-cell &g/ 1 CarCyr = Cqcqr. Since z; > X1, the tableau P(eb) consists of two columns, that we
denote by s and s’. Then there is a 2-cell Xeb : CeCh = CsCy. In the other hand, we have

/ !/
d=zq...2p11Yp-.-Y1, ' =2p...21, S=2Z1...Zq41Yq-- - Yp+1Xp... X1 and 8" =24 ...Zp11Yp ... Y1.

Hence a = s, d = s’ and d’ = b’ which yields the confluence diagram (8).

Case 2: {q<1 and y; < zi foralli < g o {q<l andy; < z; foralli < q

P = ¢ and x;, > Yy, for some ip < g P < q and xi;, > yj, for some iy < p

We have w = z1...2q41Yq...Y1 and W' = z4...z;. Using Schensted’s algorithm the smallest
element of the column a’ is an element of v. Since zq is greater or equal than each element of v, the
tableau P(a’w’) consists of two columns, that we denote by d and d’.

On the other hand, all the elements of e’ are elements of v. Since z; is bigger than each ele-
ment of v, the tableau P(e’t) consists of two columns, that we denote by b and b’. Thus there is a
2-cell &g/t @ Cercy = CpCp/. Hence, we consider two cases depending on whether or not cecyCy- is
a tableau. Suppose c.cyCyp- is a tableau. The column e does not contain elements from the column t,

13



3. Coherent column presentation

then during inserting the column w into the column u, we can only insert some elements of yq ...y
into u and we obtain a = e. Since C.CpCy/ is the unique tableau obtained from c,c,cy and a = e,
we obtain C(a’w’) = bb’. As a consequence, there is a 2-cell &g,/ @ Cq/Cy = CpCy yielding the
following confluence diagram:

CelXer
My Cecert LeXe' ¢ ey ©)

CuCyCt MDSL t ﬂ\ca(xa/,w’
tAS)
u

Suppose c.cpCp is not a tableau. The first element of the column b is z;. The smallest element of the
column e is either x; or y;, where y; is the biggest element of the column v such that y; < x;. By
hypothesis the tableau P(uw) consists of two columns, then x; < z;. In addition, z; is greater than each
element of v then y; < z;. Hence, in all cases, the tableau P(eb) consists of two columns. On the other
hand, using Schensted’s algorithm, we have a’ = z;,_ .-+ Zi1Yj, -+ - Y5, Withq + T<iy<...<ik <1,
1 <j1 <...<jr < qand we have e’ =y; , ...yj,. In addition, we have b’ = d' = z; ,, ...z;, with
1<1i<...<ik < qand C(eb) = ad. Hence there is a 2-cell &, : ceCh = cqCq Which yields the
confluence diagram (§).

Case 3: {q 2 1 and yi, > zi, for some ip <1 or {q <1 and yi, >z, for some ip < q

p<qandx; <yjforall i<p p<qandx; <yiforall i<p

We have e = yq ... Yp+1Xp ... X1 and e’ =y, ...yr. Since Yy < zy, the tableau P(e’t) consists of
two columns, that we denote by b and b’. The first element of the column b is either z; or y, which
are bigger or equal to x1, then the tableau P(eb) consists of two columns, that we denote by s and s’.
Suppose 1 < p. By Schensted’s insertion algorithm, we have C(e’t) = bw’ and w = yq...yp41b. On
the other hand, since x, < yp41, we have P(uw) = P(u(yq...yp4+1b)) = P(eb). Hence, there is a
2-cell &ep, : CeCh = CqCqr Which yields the confluence diagram:

Cele/ ¢
Gy, CeCerCt 2 oy (10)

CuCyCt MDS,)V; ﬂae,bcw/

Cultvt CuCwCw’ == CaCq/Cwn’
Ky,wCw!

For 1 > p, we consider two cases depending on whether or not the first element of the column b is y.
If this element is yp, then when computing the tableau P(vt) no element of the column t is inserted
in yq...Yps+1. Hence we have w = yq...ypy1b and b’ = w’. On the other hand, by Schensted’s
insertion procedure we have P(uw) = P(eb). Hence, there is a 2-cell atep : CeCp = CaCq Which yields
the confluence diagram (I0). Suppose that the first element of the column b is z;. Then when computing
the tableau P(vt) some elements of the column t are inserted in yg ... Yp1. In this case, we have that
the column W’ contains more elements than b’ and that cscg/cy- is a tableau. Moreover, by Schensted’s
insertion procedure, we have a = s. Since cscy/Cy is the unique tableau obtained from cycyct and a = s,
we obtain that C(a’w’) = s’b’. As a consequence, there is a 2-cell &g/ @ Cq/Cy/ = Cs/Cps Which
yields the confluence diagram (§).
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4. Reduction of the coherent presentation

Case 4: {q > land yi, > z;, forsome 1ip <1 or {q > 1 and yy, > z;, for some ip < g

P = g and x;, > y;, for some jo < ¢ p < g and xj, > yj, for some jo < p

g < land y;, > z;, for some iy < q, or 44 <l and y;, > zi, for some ip < ¢

P = ¢ and x;, > yj, for some jo < q. p <(q and xj, > yj, for some jo < p

By Lemma the last term of e’ is y; or yj;1, where yj is the biggest element of v such

that y; < x7. Suppose that the last term of e’ is y;. Since z; > Y, the tableau P(e’t) consists of two
columns. Furthermore, if the last term of e’ is Yj+1. then we consider two cases: z; > Yjq1 or i < Yj1.
Suppose z; < Yj41, then the tableau P(e’t) consists of one column e’t. We consider two cases depending
on whether or not ceCe/¢ is a tableau. With the same arguments of Case 2, we obtain a confluence diagram
of the following forms:

CeXe/ t CelXe/ t
Ky ,vC CeCe/Ct == CeCe’t Ky vC CeCe/Ct === CeCe't %
3 4
CuCyvCt MDEL,L,’C ﬂceaa/‘w’ CuCyCt MDL,l,t / CaCa’w’
Culyt Culyt aXa’ w!

CuCwCyw/ == CeCq/Cyy CuCwClnw’ == CaCa’/C’
X, wCw/ Ky wCw/

Suppose the tableau P(e’t) consists of two columns. Using the same arguments as in Case 2 and Case 3,

we obtain a confluence diagram of the form Dy ¢, pV or p? ]

w,v,t u,v,t*

3.2.7. Remark, [17]. Thanks to a private communication by Lecouvey, Lemma and an involution
on tableaux can be used to prove the confluence of the critical branching (3)) as follows. Let u be a column
in col(n) of length p. Schiitzenberger introduced the involution of u, denoted by u*, as the column of
length n — p obtained by taking the complement of the elements of u. More generally, let u; ... u, be
the column reading of a tableau, then (u;...u;)* =uf...uj and u;y...uj is also the column reading
of a tableau. Moreover, if w is the column reading of a Young tableau, then we have P(w*) = P(w)*. In
particular, for three columns c,,, ¢, and ¢ in Col; (n), we have P(cicjcy) = P(cucver)®, see [18].

By Lemma CaCdCp’ is a normal form of ¢y cyct, that is, P(cycyct) = cqCaCp/. Then to prove
the confluence of the 3-cell , it is sufficient to show that P(cycyct) = cqC(cq/Cyr). We have

CaXalw’

=" ¢cqC(cqrCwr).

Culy t O Co?
CuCyCt u:\>), CuC(Cth) = CulwCwp/ u%w C(Cucw)cw’ = CaCq’Cwy

By applying the involution on tableaux, we obtain
cicyey = Clcfcy)ey, = cycncy = ¢ Clepcl) = cpicacqg = Clcl,cqr)cy-

By Lemma [2.3.5] we have P(c{cjcl) = C(c}, ¢’/ )ch. Since P(cicicl) = P(cucyer)*, we deduce
that P(cycyct)* = C(c}, ¢k, )cy. Finally, by applying the involution on tableaux, we obtain P(cycyct) =
caC(cqrcn). Note that this construction does not give the explicit forms of the 2-sources and the 2-targets
of the confluence diagrams of the critical branchings as doing in lemmas above.

4. REDUCTION OF THE COHERENT PRESENTATION

In this section, we begin by recalling the homotopical reduction procedure from [6, Section 2.3.]. We
explicit all the reduction steps that we need to reduce the coherent presentation Colz (1) into a smaller
finite coherent presentation of the monoid P, that extends the Knuth presentation.
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4. Reduction of the coherent presentation

4.1. Homotopical reduction procedure

4.1.1. Homotopical reduction procedure. Let X be a (3,1)-polygraph. A 3-sphere of the
(3, 1)-category Z3T is a pair (f, g) of 3-cells of Z3T such that s;(f) = s2(g) and t2(f) = t2(g). A
collapsible part of L is a triple (I3, T3, [3) made of a family I of 2-cells of £, a family I3 of 3-cells of £
and a family Iy of 3-spheres of X, , such that the following conditions are satisfied:

i) every vy of every [y is collapsible, that is, t,_1(y) is in £ and s_1(y) does not contain tx_1(y),
ii) no cell of I'; (resp. I3) is the target of a collapsible 3-cell of I3 (resp. 3-sphere of Iy),

iii) there exists a well-founded order on the cells of X such that, for every y in every T, tx_1(y) is
strictly greater than every generating (k — 1)-cell that occurs in the source of y.

The homotopical reduction of the (3, 1)-polygraph X with respect to a collapsible part I is the Tietze
transformation, denoted by Rr, from the (3, 1)-category Z3T to the (3, 1)-category freely generated by the
(3, 1)-polygraph obtained from X by removing the cells of I' and all the corresponding redundant cells.
We refer the reader to [6l 2.3.1] for details on the definition of the Tietze transformation R defined by
well-founded induction as follows. For any y in I, we have Rr(t(y)) = Rr(s(y)) and Rr(v) = Tg,(s(y))-
In any other cases, the transformation Rr acts as an identity.

4.1.2. Generating triple confluences. A local triple branching of a 2-polygraph X is a triple (f, g, h)
of rewriting steps of X with a common source. An aspherical triple branchings have two of their 2-cells
equal. A Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with the
other two. The overlap triple branchings are the remaining local triple branchings. Local triple branchings
are ordered by inclusion of their sources and a minimal overlap triple branching is called critical. If X is a
coherent and convergent (3, 1)-polygraph, a triple generating confluence of X is a 3-sphere

f] f]
f Y h” f v/ =y h
i X
% %g{ \/\ wf)g‘h / f£§ / /U\A
— :>w% u — u SV 9 —u
/ /
\ / N / \} M % /
h X _ = v f” h X _ v f”
hy hy

where (f, g, h) is a triple critical branching of the 2-polygraph X, and the other cells are obtained by
confluence, see [0} 2.3.2] for details.

4.1.3. Homotopical reduction of the polygraph Colz(n). In the rest of this section, we apply three
steps of homotopical reduction on the (3, 1)-polygraph Col3(n). As a first step, we apply in a
homotopical reduction on the (3, 1)-polygraph Col3(n) with a collapsible part defined by some of
the generating triple confluences of the 2-polygraph Col;(n). In this way, we reduce the coherent
presentation Cols (1) of the monoid Py, into the coherent presentation Colz(n) of P,,, whose underlying
2-polygraph is Coly(n) and the 3-cells Ay, ¢ are those of Col3(n), but with {(u) = 1. We reduce in
the coherent presentation Colz(n) into a coherent presentation PreColz(n) of P, whose underlying
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2-polygraph is PreCol,(n). This reduction is given by a collapsible part defined by a set of 3-cells
of Col3(n). In a final step, we reduce in the coherent presentation PreColz(n) into a coherent
presentation Knuthz(n) of P, whose underlying 2-polygraph is Knuth; (n). By [6, Theorem 2.3.4], all
these homotopical reductions preserve coherence. That is, the (3, 1)-polygraph Colz(n) being a coherent
presentation of P, the (3, 1)-polygraphs Col3 (1) and Knuth3(n) are coherent presentations of P;,.

4.2. A reduced column presentation

We apply the homotopical reduction procedure in order to reduce the (3, 1)-polygraph Colz(n) using the
generating triple confluences.

4.2.1. Generating triple confluences of Col,(n). Consider the homotopical reduction procedure on the
(3, 1)-polygraph Col3(n) defined using the collapsible part made of generating triple confluences. By
Theorem the family of 3-cells X, given in (4) and indexed by columns u, v and t in col(n)
such that u” v™t forms a homotopy basis of the (2, 1)-category Col,(n)'. Let us consider such a
triple (u,v,t) with {(u) > 2. Let x;, be in [n] such that u = x,uy with uy in col(n). There is a critical
triple branching with source ¢y, ¢y, cvct. Let us show that the confluence diagram induced by this triple
branching is represented by the 3-sphere pr vt Whose source is the following 3-cell

[T
CuCyCt > CeCe’Ct

y’Sl K}
O
v X'P)ulyvct CeCyCs/Ct mce Y,s’yt CeCpCph/
(Xxp,s “52/ Keb
(Xul v

_ Xy,d
Cx, Cuy cvct cxpcscsfct = cecycd1 Cas === CeCpCs, Cq) CaCdCp’

ey e o

cX cu1 CwCp/ Cxp Xy, Wit Cxp, CsCdy Ca XXp,S,d] Ca; CaCaCs,Cq;
X ,dq

m Xajw’ \ Xp, Q1 /2»83

CXpCa1 Ca’ Cw/ B Cxpca1 053Cd’ :> CaCzCsst’

CxXp,ﬂ]

and whose target is the following 3-cell

Ke it
CeCe’Ct o CeChCh

M u,v,t

CuCyCy

X,
v,t (o7

Cxp Cuy CuCt CulwCn’ —=2 CqCq/ Co’ x CaCdCs, Cay

\ e CQZEYQ{’W//Z
Xy t X,
KXo ug,wlw Xza! s
pyur,wbw 2,0

Cxp Cuty CwCoy/ CaCzCs;Cay

'y

CxpCay € ’Cw’ = CaCzCq ’Cw’

17



4. Reduction of the coherent presentation

In the generating triple confluence, some columns may be empty and thus the indicated 2-cells « may be
identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells «.

. x1 X .
The 3-sphere pr w1t 1s constructed as follows. We have Xp W and W' w, thus Xxp,u] w 18 either
of the form Ay v, w or CXp up,w- Let us denote by a; and a]’ the two columns of the tableau P(u;w).
The 3-cell X, v, w being confluent, we have C(x,a1) = az with z in [n] and C(za;) = a’. In addition,

X! Xy .. x1
from 2*81 and & w , we deduce that X, ./ ., is either of the form A, ;. or C, 4/ ,,s. From Xp Wi
Ll B thag B theg B)

X . .
and W v, we deduce that Xxp,u] v 1s either of the form Axp aLy,v OF Cxp,u] v- Let us denote by s and s’
the two columns of the tableau P(u;v). The 3-cell X, ., being confluent, we obtain that C(xps) = ey

with y in [n] and C(ys’) = e’. From Y Y and s’ t, we deduce that Ay st is either of the form Ay ¢/ ¢
or Cy s +. Denote by d; and d{ the two columns of the tableau P(s’t). The 3-cell Xy s+ being confluent
and C(e’t) = bb’, we have C(yd;) = bs; and C(spd]) = b’. On the other hand, the 3-cell Xy, v+
is confluent, then we have C(sd;) = ass3 and C(a;w’) = s3d;. Finally, since the 3-cell Xy, s 4, is
confluent, we obtain C(zs3) = ds,.

4.2.2. Reduced coherent column presentation. Let us define by Colz(n) the extended presentation of
the monoid P;, obtained from Col,(n) by adjunction of one family of 3-cells X, of the form , for
every 1-cell x in [n] and columns v and t in col(n) such that x vt . The following result shows that
this reduced presentation is also coherent.

4.2.3. Proposition. Forn > 0, the (3,1)-polygraph Col3(n) is a coherent presentation of the monoid Px,.

Proof. Let Iy be the collapsible part made of the family of 3-sphere Q. v, v, indexed by x; in [n]

and uy,v,t in col(n) such that u“v™ t and u = xpwi. On the 3-cells of Col3(n), we define a
well-founded order <1 by

D) Auvt < Cuvt < Buyit < Dyt
U ,
ii) if Xu,v,t € {Au,v,’n Bu,v,t) Cu,v,t> Du,v,t} and u <deglex W, then Xu’,v’,t’ < Xu,v,t,

for any u,v,t in col(n) such that u”v™t . By construction of the 3-sphere Oy, v, its source
contains the 3-cell Xy, , ¢ and its target contains the 3-cell &y, with {(u;) < £(u). Up to a Nielsen
transformation, the homotopical reduction Rr, applied on the (3, 1)-polygraph Colz(n) with respect to I’

and the order < give us the (3, 1)-polygraph Colz(n). In this way, the presentation Col3(n) is a coherent
presentation of the monoid Py,. O

4.3. Pre-column coherent presentation

We reduce the coherent presentation Colz(n) into a coherent presentation whose underlying 2-polygraph
is PreCol,(n). This reduction is obtained using the homotopical reduction R, on the (3, T)-polygraph
Cols3(n) whose collapsible part I3 is defined by

3 ={Axvt|x € nl v,t € col(n) such that Wy
U{ Byt | x € I, v, t € col(n) such that X"t }

U{ Cx,v,t | X € [TL], wte COI(TL) such that XX]VXZ‘[ })
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4.3. Pre-column coherent presentation

and the well-founded order defined as follows. Given u and v in col(n) such that u™v . We define a
well-founded order <1 on the 2-cells of Col,(n) as follows
f(uwv) > L(u'v') or
L(u) > £(Cr(uv')) or
t(u) < UCr(u'v')) and u' ey 1t

7y < O if
Sty wy (uw) =€(u'v') and {

for any columns u, v, u’ and v/ in col(n) such that u” v and u”v’, where <y, is the total order
on col(n) defined by U <rey vif €(u) > £(v) or £(u) = £(v) and u <jx V, for all uw and v in col(n).

4.3.1. The homotopical reduction Rr,. Consider the well-founded order < on the 2-cells of Col,(n)
and the well-founded order <I on 3-cells defined in the proof of Proposition The reduction R,
induced by these orders can be decomposed as follows. For any x in [n] and columns v, t such that W,
we have ot < 0t Oyt < Oyt and oty vt <I 0yt The reduction Rr, removes the 2-cell o, ¢ together
with the 3-cell Ay, ¢ defined in Lemma[3.2.3] By iterating this reduction on the length of the column v,
we reduce all the 2-cells of Coly(n) to the following set of 2-cells

{ oty | L(w) =1, €(v) > 2 and wH U oy | L(w) =1, £(v) > 1 and i (11)

For any x in [n] and columns v, t such that x* W%t | consider the 3-cell Cx,v,t defined in Lemma

The 2-cells oy, 0ty t, 0txw and g/, are smaller than o, ¢ for the order <. The reduction Ry, removes
the 2-cell &y, together with the 3-cell Cy,, t. By iterating this reduction on the length of v, we reduce the
set of 2-cells given in (11)) to the following set:

{ oty | 0W) =1, £(v) = 2and WS} U { oty | L) = 1, £(v) = T and v ). (12)
For any x in [n] and columns v, t such that XXZ\)X]’[ , consider the following 3-cell:

Cele/ t

‘X% CeCe/Ct =————) CeColt &e,e’t

CxCyvCt MBXW/\; CsCg
% Ox,vt

CxCvt

where e, e’, s and s’ are defined in Lemma|[3.2.4] Note that &e,e/t is the 2-cell in obtained from the
2-cell ¢ by the previous step of the homotopical reduction by the 3-cell Cy,, ;. Having x in [n], by
definition of & we have e’ in [n]. The 2-cells &y, Xe’ ¢, &yt and X e being smaller than &, ¢ for the
order <1, we can remove the 2-cells o vt together with the 3-cell By, ;. By iterating this reduction on the
length of the column t, we reduce the set (I2) to the following set

{ oy [ L(u) =T, £(v) =2 and uxzv} U{oyyll(u)=1, €(v) >1and L (13)
4.3.2. Lemma. The set of 2-cells defined in is equal to PreColy(n).
Proof. By definition of PreCol,(n), it is sufficient to prove that
PCy(n) ={ oy @ Culy = ey [ L(u) =1, {(v) =2 and WA ).

Consider the 2-cells xy, in Col(n) such that {(u) = T, £(v) = 2 and v Suppose that v = xx’
with x > x’ in [n]. Since A , we obtain that u < x. Hence, we have two cases to consider. If u < x/,
then C(uv) = (xu)x’. Hence, the 2-cell xyy is equal to the 2-cell &, ., : CuCxx’ = CxuCyx/. In the other

case, if x’ < u, then C(uv) = (ux’)x. Hence the 2-cell oty is equal to &/ ., : CuCxx’ = Cyx/Cx. [
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4. Reduction of the coherent presentation

4.3.3. Pre-column coherent presentation. The homotopical reduction Rr,, defined in reduces
the coherent presentation Colz(n) into a coherent presentation of the monoid P;,. The set of 2-cells of this
coherent presentation is given by (13, which is PreCol, (n) by Lemma[4.3.2] Let us denote by PreCols(n)
the extended presentation of the monoid P;, obtained from PreCol,(n) by adjunction of the 3-cells of

type Rr, (C;c,v,t) where
FxyC CxvCt
CxCyCt m{c;’v’t V(XZL...Z(H],W/
Cx &yt 7 CxCwCwp/ m CxvCzy.zqy Cw!
x1. %2

with x” vt , and the 3-cells of type Rr, (Dx,y 1) Where

CeOCe/
OxvCp s, CeCe’Ct == CeCbCb’ e bCh

CaCdCp

T —__ oo <5
XONETC, €y Coyr == CaCarCypr CaFa W
Kx,wCw/

with x*A*%t . The homotopical reduction Ry, eliminates the 3-cells of Colz(n) of the form Axvits Bxwit

and Cy,y,t, which are not of the form Cy , ;. We have then proved the following result.

4.3.4. Theorem. Forn > 0, the (3, 1)-polygraph PreCols(n) is a coherent presentation of the monoid Pr,.

4.3.5. Example: coherent presentation of monoid P,. The 2-polygraph Knuth;(2) has for
2-cells 71,12 : 211 = 121 and €1, : 221 = 212. It is convergent with only one critical branching
with source the 1-cell 2211. This critical branching is confluent:

2112

2211 2121
v

€121

Following the homotopical completion procedure given in the 2-polygraph extended by the previous
3-cell is a coherent presentation of the monoid P,. Consider the column presentation Col,(2) of the
monoid P, with 1-cells c1, ¢, and c7 and 2-cells 3 1, ot1 21 and o 1. The coherent presentation Col3(2)
has only one 3-cell

*x2,1€ C21C21
/ €121
C2€1C1 MCZJ’z]
C207 3T 7 €2€21C1 T=——22 €21€2C]

x2,21€1

It follows that the (3, 1)-polygraphs Colz(2) and Colz(2) coincide. Moreover, in this case the set I is
empty and the homotopical reduction Ry, is the identity and thus PreCol3(2) is also equal to Col3(2).
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4.4. Knuth’s coherent presentation

4.3.6. Example: coherent presentation of monoid P3. For the monoid P3, the Knuth presentation
has 3 generators and 8 relations. It is not convergent, but it can be completed by adding 3 relations. The
obtained presentation has 27 3-cells corresponding to the 27 critical branchings. The column coherent
presentation Col3(3) of P3 has 7 generators, 22 relations and 42 3-cells. The coherent presentation Col3(3)
has 7 generators, 22 relations and 34 3-cells. After applying the homotopical reduction Rr,, the coherent
presentation PreColz(3) admits 7 generators, 22 relations and 24 3-cells. We give in the values of
number of cells of the (3, 1)-polygraphs Col3(n) and PreCols(n) for plactic monoids of rank n < 10.

4.4. Knuth’s coherent presentation

We reduce the coherent presentation PreColz(n) into a coherent presentation of the monoid P;, whose
underlying 2-polygraph is Knuth; (). We proceed in three steps developed in the next sections.

Step 1. We apply the inverse of the Tietze transformation T,._, that coherently replaces the 2-cells Yxp..xy

by the 2-cells oc{(p’qu .x,» for each column x;, ... x; such that £(xp...x7) > 2.

Step 2. We apply the inverse of the Tietze transformation T,. -, that coherently replaces the
2-cells oy ,,, by N5, ., forevery 1 < x <y < z < n, and the 2-cells o ,, by &5, ., for
every | <x<y<z<n

Step 3. Finally for each column x;, ... X7, we coherently eliminate the generator cy,,..x, together with the
2-cell Yxp.xy with respect to the order <geglex-

4.4.1. Step 1. The Tietze transformation T,/ : CPC;(n)" — PreColy(n)" defined in Proposi-
tion substitutes a 2-cell O‘fcp,xp_ oxy ¢ CxpCxp_jxs == Cxp.xy 10 the 2-cell vy, ., in Ca(m),
from the bigger column to the smaller one with respect to the total order <gegjex-

We consider the inverse of this Tietze transformation T;J— o PreCol;(n)"T — CPCy(n)T that
substitutes the 2-cell yx,,..x; : Cx, ++ - Cx; = Cx,..x; 0 the 2-cell oc)’cp)qumx] L Cxp Cxp 11 = Cxpuixys
for each column x;, ... x7 such that €(xp ...X1) > 2 with respect to the order <deglex-

Let us denote by CPC3(n) the (3, 1)-polygraph whose underlying 2-polygraph is CPC,(n), and the

set of 3-cells is defined by

(T (R (CL) for XN ) U {0 (R (Dyy)) for X%t 1.

In this way, we extend the Tietze transformation Ty*{]_ o into a Tietze transformation between the
(3, 1)-polygraphs PreColz(n) and CPC3(n). The (3, 1)-polygraph PreCols(n) being a coherent pre-
sentation of the monoid Py, and the Tietze transformation T; (1_ « Preserves the coherence property, hence
we have the following result.

4.4.2. Lemma. Forn > 0, the monoid Py, admits CPC3(n) as a coherent presentation.

4.4.3. Step 2. The Tietze transformation T, ¢ from Knuth$°(n) " into CPCy(n) " defined in the
proof of Proposition replaces the 2-cells ng . and €, , in Knuth$®(n) by composite of 2-cells
in CPC;(n).

Let us consider the inverse of this Tietze transformation Tn_ l ot CPC;(n)T — Knuthgc(n)—r.

making the following transformations. For every 1 < x < y < z < n, T

e/ substitutes the
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4. Reduction of the coherent presentation

2-cell Mg, 1 C2CxCy = CxCsCy to the 2-cell oy ;. Forevery 1 <x <y <z<m, T l o Substitutes
the 2-cell &, , : CyC2Cx = CyCxC; to the 2-cell o) .

Let us denote by Knuth$®(n) the (3, T)-polygraph whose underlying 2-polygraph is Knuth$®(n) and
whose set of 3-cells is

(T (TR (CLL D)) for X% ) U (T ] (T (Rey (D)) for x5 % 0,

Yo/

We extend the Tietze transformation Tn* !

¢ into a Tietze transformation between (3, 1)-polygraphs

T-1

ol CPC3(n)" — Knuth§®(n) ",
where the (3, 1)-polygraph CPC3(n) is a coherent presentation of the monoid P, and the Tietze transfor-
mation Tn_ l o Preserves the coherence property, hence we have the following result.

4.4.4. Lemma. Forn > 0, the monoid Py, admits Knuth$®(n) as a coherent presentation.

4.4.5. Step 3. Finally, in order to obtain the Knuth coherent presentation, we perform an homotopical
reduction, obtained using the homotopical reduction Rr, on the (3, 1)-polygraph Knuth§®(n) whose
collapsible part I, is defined by the 2-cells y,, of C;(n) and the well-founded order <gegiex- Thus, for
every 2-cell Yxp.xy * Cxp ++ - Cxy = Cxpixq in C3(n), we eliminate the generator Cx,..x; together with
the 2-cell Yxp..x1» from the bigger column to the smaller one with respect to the order <geglex-

4.4.6. Knuth coherent presentation. Using the Tietze transformations constructed in the previous
sections, we consider the following composite of Tietze transformations

R = er © Tni,L—oc’ ° Tyi]—oc’ © Rrs
defined from Col3(n) T to Knuthgc(n)T as follows. Firstly, the transformation R eliminates the 3-cells
of Colz(n) of the form Axw,t> Byt and Cy ¢ which are not of the form C{(Mt and reduces its set
of 2-cells to PreColy(n). Secondly, this transformation coherently replaces the 2-cells yy,..x; by the
2-cells “»lcp,xp,l...xp for each column x;,...x; such that £(xp...x1) > 2, the 2-cells o ,, by ng .
for T < x <y < z < n and the 2-cells O‘{;,zx by ef()y)z for T < x <y < z < n. Finally, for each
column X, ... x1, the transformation R eliminates the generator Cxp...x1 together with the 2-cell Vip.x1
with respect to the order <geglex-

Let us denote by Knuthz(n) the extended presentation of the monoid P;, obtained from Knuth;(n) by
adjunction of the following set of 3-cells

{R(Cyy) for XYW U R(Dyy,z) for XA,
The transformation ‘R being a composite of Tietze transformations, it follows the following result.

4.4.7. Theorem. Form > 0, the (3, 1)-polygraph Knuthz (1) is a coherent presentation of the monoid Py,.
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4.4. Knuth’s coherent presentation

4.4.8. Example: Knuth’s coherent presentation of the monoid P,. We have seen in Example m

that the (3, 1)-polygraphs Col3(2), Cols(2) and PreCols(2) are equal. The coherent presentation PreCol3(2)
has three 2-cell ot 1, &7 21, &221 and the following 3-cell:

%2102 ¢cy1¢21

' 21021
2616 Mcz,hm
C2xx1 27 7 €2€21€y 05 21C €21C2Cq

By definition of the 2-cells of C,(2), we have y;1 := &y 1. Thus we obtain that TY_L‘X, (Ca121) = Ca1 1
up to replace all the 2-cells o 1 in Cé,hZ] by v21. Hence, the coherent presentation CPC3(2) is equal
to PreCol3(2). In order to compute the 3-cell TY;!H“,(TY_;M(CQ’LZ])), the 2-cells oy 21 and & 7y
in C3 ; 5 are respectively replaced by the 2-cells n{ ; , and €5 , , as in the following diagram

YZ] 021 Cz] CZ] (14)
c
C2C1Y2 C2C1C21 MC£ 1.21 27
€2€1€2C] Cro=r 2 €2€21C1 S 1626
WQYZ] 1 /H\YN C2€Cq
C
C2M11,2 C2C2C1C1 === C2C1C2C]
€1,2,2€1

where the cancel symbol means that the corresponding 2-cell is removed. Hence the coherent presenta-

tion Knuth§®(2) of P, has for 1-cells c1, ¢ and c»1, for 2-cells ot 1, 7 21 and 062,2]1 and the] only 3-cell (14).
. ~ _ ) -

Let us compute the Knuth coherent presentation Knuthz(2). The 3-cell Rr, (Tn, e o (Tw_ o (C2,1,21 ))) is

obtained from by removing the 2-cell 'y, together with the 1-cell ¢;1. Thus we obtain the following
3-cell, where the cancel symbol means that the corresponding element is removed,

C2eL. Y cocqear = C21)52<E
C2Cq CzC] CoB2(Cq f>.2(02€1
/\Cqu A}z{sz
SUIRE: C2C2€1€1 === €2€1C2C]

€12,2€1

Hence, the Knuth coherent presentation Knuthz(2) of the monoid P, has generators ¢y and ¢, subject to
the Knuth relations ) ; , : c2¢1¢1 = ¢1cz¢7 and €7, , 1 €2¢2¢1 = ¢2¢1¢; and the following 3-cell

C
C2M112
C2€2C1Cq M C2C1C2C1

C
€12.201

In this way, we obtain the Knuth coherent presentation of the monoid P; that we obtain in Example [4.3.5]
as a consequence of the fact that the 2-polygraph Knuth;(2) is convergent.
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4. Reduction of the coherent presentation

4.4.9. Procedure to compute the 3-cells of Knuth;(n). We present a procedure that computes the
2-sources and the 2-targets of the 3-cells of the Knuth coherent presentation Knuthz(n), using the con-
structions given in Sections [3and[d] The first step consists to define a procedure, called ReduceG3(ou,v),
that replaces a 2-cell «,,, of Col;(n) by a 2-cell of the 2-category PreCol,(n)* using a reduction defined
in with respect to the 3-cells Ay, ¢, Bxy and Cy ¢, Where x is in [n] and v and t are in col(n).
Given uwin col(n) such that {(u) > 2 and u = xpXp_1 ... X2X1, we will denote x,, (resp. x7) by first(u)
(resp. last(u)) and the column x;,_1 ... X7 (resp. Xp ...x2) by rem’ (u) (resp. rem'(u) ). If {(u) = 1, we
set first(u) = last(u) = u and rem’ (1) and rem'(1t) are the empty columns.

ReduceG3(oty v):

Input: «,, , in Coly(n).

X = Ku,v >

case U v do

if £(u) > 2 then

x = first(u); uy =remf(u) ;
B = ReduceG3(x, v) ;
0= Oy 4y, Cv %1 Cx P *1 O u,v; else return o

2
case W v do

if £(u) > 2and {(v) > 2 then

x = first(u); up =remf(u) ;

w = Ci(uzv); w' = Cr(uzv); a = Ci(xw); a’ = Cr(xw) ;
p = ReduceG3(x., ) ;

0= & 1, Cv *1 CxP *1 0ty wCw/ *¥1 Calla’ ws

if £(u) = 1 and {(v) > 2 then

vy =rem!'(v); y = last(v);

e = Ci(uvi); e’ = Cr(uvy);

N1 = ReduceG3(w,,, ); N2 = ReduceG3(x.. v, ); N3 = ReduceG3 (o ery) ;
& = CyTly *1M2Cy *1 Cele/ y *1 M3}

if £(u) = 1 and {(v) = 2 then

return « ;

We define the procedure ElimAlpha(«y ) that replaces a 2-cell y ,, of PreCol,(n) by a 2-cell of the
2-category Knuth§°(n)*, using the Tietze transformations given in and In the sequel,
we will represent every T-composite fi %7 ... %7 fi of 2-cells by a list [fy,..., fy] of 2-cells. If
L = [L[0],...,L[k — 1]] is a list of length k and u and v are in [n]*, we will denote by uLv the
list [uL[O]v, ..., ulL[k — 1]v].

ElimAlpha(ay,v):

Input: o, , in PreCol,(n).

case x*'v do

if £(v) > 1 then

return [cyY, ,Vxv] ; else return [yy,];
case x*%v do

z = first(v); y = last(v) ;

if x <y < z then

return [(ni,y‘z)_) ny;y)YZny] N
ify < x < z then

return [Cu Yy, €5 2 s YxyCzl 3
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4.4. Knuth’s coherent presentation

We define the procedure EIImAG(f) that replaces in a 2-cell f of the 2-category PreColy(1n)*, ev-
ery o,y in PreColy(n) by ElimAlpha(w,). In a second step, it replaces every vy, in C(n) by 1, with
respect to the reduction Rr, defined in[4.4.5|

ElimAG(f):

Input: f = fy %7 ... % f, where fori =1,...,k, fi{ = uyoivy,
with ui,vi € n]* and «; € PreCol;(n).

L=1[];

fori=0r0k—1do
‘ L] = Wit EIimAIpha(ociH )Vi+1 )
end
fori=0r0k—1do
forj =010 ¢(L[]) —1do
if L[] = u;Bjv;, with u;,v; € [n]* and 35 or [3].’ are in C2(n) then
LI = Tuyy:
end
end
return L.

We define the procedure ComputeC’(n) that computes the 2-sources and the 2-targets of the
3-cells R(Cy ;) of the Knuth coherent prensentation, where R is the Tietze transformation defined
ind4.a

ComputeC’(n):

Input: n > 0.

K=0;

for x in [n] and v and t in col(n) such that x* V2 do
w=C(vt);w' = Cr(vt); s = Cr(xw) ;
o = ElimAG(ay v)ct
o = ElimAG(ReduceG3(w, 1)) ; a2 = EiMAG(otx ) 3
a3 = EIimAG(ReduceG3(os,w)) ;
o/ = [Cx @1, 02Cw 1y Cxy &3] 5
K=KuU{(a,a')};

end

return K.

We define a procedure, called ComputeD(n), that computes the 2-sources and the 2-targets of the
3-cells R(Dy,,t) of the Knuth coherent prensentation, where R is the Tietze transformation defined
ini4.4.6)
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4. Reduction of the coherent presentation

ComputeD(n):

Input: n > 0.

K=0;

for x in [n] and v and t in col(n) such that X224 do

e=Ci(xv); e’ =Ci(xv); b= Ci(P(e't)); b’ = Cr(et) 5
w=C(vt);w' =Cr(vt); a = Ci(xw); a’ = Cr(xw) ;

a1 = ElimAG(ReduceG3(ox ) ; 2 = EIImAG(ReduceG3(xe- +)) ;
a3 = EIimAG(ReduceG3(ce b)) ;

o = [x1cqyCex2, X3CH/]

aq = ElimAG(ReduceG3(a, 1)) ; &5 = EimAG(ReduceG3(ox w)) ;
o} = EimAG(ReduceG3(xq/,w/)) ;

o = [CX‘X{ y ‘Xécw’) Ca(xé 1;

K=KuU{(a,a')};

end
return K.

Finally, a way to compute the 2-sources and the 2-targets of the 3-cells of the Knuth coherent
presentation Knuthz(n) is to apply at the same time the procedures ComputeC’(n) and ComputeD(n).

4.4.10. Coherent presentations in small ranks. Let us denote by Knuth§®(n) the convergent
2-polygraph obtained from Knuth,(n) by the Knuth-Bendix completion using the lexicographic or-
der. For n = 3, the polygraph KnuthX®(3) is finite, but KnuthX®(n) is infinite for n > 4, [13]. Let us
denote by KnuthXB(n) the Squier completion of Knuth¥8(n). For n > 4, the polygraph Knuth5®(n)
having an infinite set of critical branching, the set of 3-cells of KnuthffB(n) is infinite. However, the
(3, 1)-polygraph Knuth3(n) is a finite coherent convergent presentation of Py,. Table |1| presents the
number of cells of the coherent presentations Knuths(n), Col3(n) and Colz(n) of the monoid P,,.

n | Coly(n) | Knuthy(n) | Knuth¥8(n) | Coly(n) | Knuth¥¥(n) | Knuthz(n) | Col3(n) Colz(n)
1 1 0 0 0 0 0 0 0
2 3 2 2 3 1 1 1 1
3 7 8 11 22 27 24 34 42
4 15 20 o] 115 00 242 330 621
5 31 40 0 531 (o] 1726 2225 6893
6 63 70 o) 2317 00 10273 12635 67635
7 127 112 0o 9822 00 55016 65282 623010
8 255 168 0 40971 (o) 275868 318708 5534197
9 511 240 0o 169255 00 1324970 | 1500465 48052953
10 1023 330 oo 694837 00 6178939 | 6892325 | 410881483

Table 1: Number of cells of (3, 1)-polygraphs Knuthz(n), Colz(n) and Colz(n), for 1 < n < 10.

4.4.11. Actions of plactic monoids on categories. In [6], the authors give a description of the cat-
egory of actions of a monoid on categories in terms of coherent presentations. Using this descrip-
tion, Theorem allows to present actions of plactic monoids on categories as follows. The cate-
gory Act(Py,) of actions of the monoid P, on categories is equivalent to the category of 2-functors from the
(2, 1)-category Knuth,(n) " to the category Cat of categories, that sends the 3-cells of Knuthz(n) to
commutative diagrams in Cat.
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