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1. Introduction

1. INTRODUCTION

1.1. An overview of Squier’s theory

In the eighties, Squier has established a link between some computational, homological and homotopical
properties of monoids, [41, 42]. This allowed him to answer an open question: does a finitely generated
monoid with a decidable word problem always admit a finite convergent presentation?

1.1.1. The word problem and rewriting theory. Given a monoid M, a generating set Σ1 for M pro-
vides a way to represent the elements of M in the free monoid Σ∗1, i.e., as finite words written with the
elements of Σ1. But, if M is not free, there is no reason for an element of M to have a single represen-
tative in Σ∗1. The word problem for M consists in finding a generating set Σ1 and an algorithm that can
determine whether or not any two elements of Σ∗1 represent the same element of M.

One way to solve the word problem is to exhibit a finite presentation (Σ1, Σ2) of M with a good
computational property, called convergence in rewriting theory. There, one studies presentations where
the relations in Σ2 are not seen as equalities between the words in Σ∗1, such as u = v, but, instead,
as rewriting rules that can only be applied in one direction, like u ⇒ v, simulating a non-reversible
computational process. Convergence is defined as the conjunction of the following two conditions:

• termination, i.e., all the computations end eventually,

• confluence, i.e., different computations on the same input lead to the same result.

A finite convergent presentation (Σ1, Σ2) of M gives a solution to the word problem: the normal form
algorithm. Given an element u in Σ∗1, convergence ensures that all the applications of directed relations
to u, in any possible manner, will eventually produce a unique result: an element û of Σ∗1 where no
directed relation applies anymore, called the normal form of u. And, by construction, two elements u
and v of Σ∗1 represent the same element of M if, and only if, their normal forms are equal in Σ∗1. Finally,
finiteness ensures that one can determine if an element of Σ∗1 is a normal form, by examining all the
relations. (As far as rewriting is concerned, this article is self-contained, but this wider mathematical field
is covered in more details by Book and Otto, [8], Baader and Nipkow, [3], and the group Terese, [45].)

Thus, if a monoid admits a finite convergent presentation, it has a decidable word problem. In
the middle of the eighties, it was still unknown if the converse implication held. In [20], Kapur and
Narendran had exhibited a monoid that admits a finite generating set for which the word problem was
solvable, but that do not admit a finite convergent presentation with the same generators. However, this
did not answer the original question, the generating set having been fixed.

1.1.2. From computational to homological properties. At that time, Squier linked the existence of
a finite convergent presentation to a homological invariant of the monoid, the homological type left-
FP3, that is independent of the choice of a presentation of M and, in particular, of a generating set. A
monoid M has homological type left-FP3 when there exists an exact sequence

P3 // P2 // P1 // P0 // Z // 0

of (left) modules over M, where Z denotes the trivial M-module and each Pi is projective and finitely
generated.
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1.1. An overview of Squier’s theory

From a presentation (Σ1, Σ2) of M, one can build an exact sequence of free M-modules

ZM[Σ2]
J
// ZM[Σ1] // ZM // Z // 0, (1)

where ZM[Σ1] and ZM[Σ2] are the free M-modules over Σ1 and Σ2, respectively. The differential J,
called the Fox Jacobian after [15], is defined on a directed relation α : u ⇒ v by J(α) = [u] − [v],
where [ · ] is the unique derivation of Σ∗1 with values in ZM[Σ1] that extends the canonical inclusion of Σ1
into ZM[Σ1].

In [41], Squier proved that, when (Σ1, Σ2) is a convergent presentation, its critical branchings form
a generating set of the kernel of the Fox Jacobian. A critical branching of (Σ1, Σ2) is an overlapping
application of two different directed relations on the same word u of Σ∗1, where u has minimal size. For
example, the relations α : xy⇒ v and β : yz⇒ w generate a critical branching (αz, xβ) on u = xyz:

vz

xyz

αz (<

xβ !5 xw

Convergence of the presentation (Σ1, Σ2) ensures that any critical branching (f, g) can be completed as
in the following diagram:

v f ′

�'
u

f
)=

g !5

u ′

w g ′

9M

The boundary of such a branching is defined as the element J ′(f, g) = [f] − [g] + [f ′] − [g ′], where [ · ]
extends the canonical inclusion of Σ2 into ZM[Σ2].

Squier proves that the set Σ3 of critical branchings of (Σ1, Σ2) and the boundary J ′ extend the exact
sequence (1) by one step:

ZM[Σ3]
J ′
// ZM[Σ2]

J
// ZM[Σ1] // ZM // Z // 0. (2)

Moreover, when (Σ1, Σ2) is finite, then Σ3 is finite, proving that, if a monoid has a finite convergent
presentation, then it is of homological type left-FP3.

Finally, Squier exhibited a finitely generated monoid, with a decidable word problem, but that is not
of homological type left-FP3. This gave a negative answer to the aforementioned open question: there
exist finitely generated monoids with a decidable word problem that do not admit a finite convergent
presentation (for any possible finite set of generators).

1.1.3. From computational to homotopical properties. In [42], Squier links the existence of a finite
convergent presentation to a homotopical invariant of monoids, called finite derivation type (FDT3) and
that is a natural extension of the properties of being finitely generated (FDT1) and finitely presented
(FDT2).
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1. Introduction

To define this invariant, for a monoid M with a presentation (Σ1, Σ2), Squier constructs a cellular
complex S(Σ1, Σ2) with one 0-cell, whose 1-cells are the elements of the free monoid Σ∗1 and whose
2-cells are generated by the relations of Σ2. More precisely, there is a 2-cell between every pair of words
with shape wuw ′ and wvw ′ such that u = v is a relation in Σ2. Then, to get S(Σ1, Σ2), one fills with
3-cells all the squares formed by independent applications of relations, such as the following one, where
(u1, v1) and (u2, v2) are relations in Σ2:

wv1w
′u2w

′′
u2 = v2

wu1w
′u2w

′′

u1 = v1

u2 = v2

wv1w
′v2w

′′

wu1w
′v2w

′′ u1 = v1

If Σ3 is a set of 3-cells over S(Σ1, Σ2), then the set Σ∗1Σ3Σ
∗
1 is the set of 3-cells uβv, with β in Σ3 and u

and v in Σ∗1, and whose boundary is the one of β multiplied by u on the left and v on the right. A homo-
topy basis of (Σ1, Σ2) is a set Σ3 of 3-cells such that Σ∗1Σ3Σ

∗
1 makes the complex S(Σ1, Σ2) contractible.

A monoid is of finite derivation type (FDT3) if it admits a finite presentation whose associated complex
admits a finite homotopy basis or, in other words, whose “relations among the relations” are finitely
generated.

Squier proves that, given a convergent presentation (Σ1, Σ2), it is sufficient to attach one 3-cell to
each 3-dimensional sphere corresponding to a critical branching to get a homotopy basis of (Σ1, Σ2).
Moreover, if Σ2 is finite, the presentation (Σ1, Σ2) has finitely many critical branchings proving that, if a
monoid admits a finite convergent presentation, then it is FDT3. Squier used this result to give another
proof that there exist finitely generated monoids with a decidable word problem that do not admit a finite
convergent presentation.

1.1.4. Refinements of Squier’s conditions. By his results, Squier has opened two different directions,
one homological and one homotopical, to explore in the quest for a complete characterisation of the
existence of finite convergent presentations in the case of monoids. The corresponding invariants are
related: FDT3 implies left-FP3, as proved by several authors, [13, 39, 24]. The converse implication is
false in general, as already noted by Squier in [42], yet it is true in the special case of groups, [14], the lat-
ter result being based on the Brown-Huebschmann isomorphism between homotopical and homological
syzygies, [10].

However, the invariants left-FP3 and FDT3 are not complete characterisations of the property to admit
a finite convergent presentation: they are necessary, but not sufficient conditions, as already proved by
Squier in [42]. Following this observation, various refinements of both invariants have been explored.

In the homological direction, thanks to the notion of Abelian resolution, one defines the more restric-
tive conditions left-FPn, for every natural number n > 3, and left-FP∞: a monoid M has homological
type left-FP∞ when there exists a resolution of the trivial M-module by finitely generated and projective
M-modules. In [21], a notion of n-fold critical branching is used to complete the exact sequence (2) into
a resolution, obtaining the following implication: if a monoid admits a finite convergent presentation,
then it is of homological type left-FP∞, the converse implication still being false in general. The same
results are also known for associative algebras, [1], and for groups, [12, 9, 16]. One can obtain similar
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1.2. Organisation and main results of the article

implications with the properties right-FP∞ and bi-FP∞, defined with resolutions by right modules and
bimodules, respectively.

In the homotopical direction, the condition FDT3 has been refined into FDT4, a property about the
existence of a finite presentation with a finite homotopy basis, itself satisfying a homotopical finiteness
property, [32]. The condition FDT4 is also necessary for a monoid to admit a finite convergent presenta-
tion and it is sufficient, but not necessary, for the conditions left/right/bi-FP4.

1.2. Organisation and main results of the article

1.2.1. Polygraphic resolutions. In Section 2, we introduce a notion of homotopical resolution that
generalises Squier’s complex, in order to define the homotopical finiteness conditions FDTn and FDT∞.
Squier’s complex appears as the first two dimensions of a free (∞, 1)-category, i.e., a free∞-category
whose cells of dimension 2 and higher are invertible. Then, homotopy bases and higher homotopy bases
generate the higher dimensions of this (∞, 1)-category, in such a way that the latter is homotopically
equivalent to the starting monoid. Moreover, these resolutions further generalise from monoids to p-
categories, yielding free (∞, p)-categories.

More explicitly, let (Σ1, Σ2) be a presentation of a monoid M. Such a presentation of a monoid, or
more generally of a (small) category, is called a (2, 1)-polygraph in this article. The terminology comes
from Burroni’s polygraphs, [11], also known as Street’s computads, [43, 44]. From the (2, 1)-polygraph
(Σ1, Σ2), we generate a free (2, 1)-category Σ>2 by taking all the formal composites of 2-cells, modulo
exchange relations that correspond exactly to the 2-cells of Squier’s complex associated to (Σ1, Σ2).
Informally, the (2, 1)-category Σ>2 is homotopically equivalent to Squier’s complex: this allows us to see
a homotopy basis as a set Σ3 of 3-cells, attached to Σ>2 , such that the quotient (2, 1)-category Σ>2 /Σ3 is
homotopically equivalent to the original monoid or, equivalently, such that any parallel 2-cells of Σ>2 are
identified in the quotient by Σ3.

Then, one considers the free (3, 1)-category Σ>3 generated by the (3, 1)-polygraph (Σ1, Σ2, Σ3). One
defines a homotopy basis of Σ>3 as a set of 4-cells over Σ>3 that relate every parallel 3-cells. The same
idea is used to define homotopy bases in every dimension, yielding our notion of polygraphic resolution
of the monoid M: this is an acyclic (∞, 1)-polygraph Σ = (Σn)n≥1 such that (Σ1, Σ2) is a presentation
of M, where acyclic means that each Σn+1 is a homotopy basis of the free (n, 1)-category Σ>n , for n ≥ 3.

The notion we get is close to Métayer’s polygraphic resolutions, introduced in [36]: these are ∞-
polygraphs that produce cofibrant approximations (free objects that are homotopically equivalent to the
original one) in the canonical model structure on∞-categories, described in [25]. Our resolutions, called
(∞, p)-polygraphs, have the same good homotopical properties, with respect to the canonical model
structure on (∞, p)-categories, obtained by Ara and Métayer, [2].

Theorem 2.3.4. Let Σ be a polygraphic resolution of a p-category C. The canonical
projection Σ> � C is a cofibrant approximation of C in the canonical model structure on
(∞, p)-categories.

We say that a monoid and, more generally, a p-category is of finite∞-derivation type (FDT∞) when it
admits a polygraphic resolution with finitely many cells in every dimension. This generalises to higher
categories and in every dimension the two previously known homotopical finiteness conditions, FDT3
introduced by Squier for monoids and its refinement FDT4.
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1. Introduction

1.2.2. Normalisation strategies for polygraphs. In Section 3, we give a constructive characterisation
of the acyclicity of an (∞, 1)-polygraph. Let Σ be a polygraphic resolution of a monoid M. In particular,
if π : Σ∗1 � M denotes the canonical projection, one can choose a (non-functorial) section ι of π.
Moreover, the 2-cells of Σ2 are generating relations for M: for every element u of Σ∗1, one can choose
a 2-cell σu : u ⇒ ιπ(u) in Σ>2 . Then, we use that Σ3 is a homotopy basis: for every 2-cell f : u ⇒ v

of Σ>2 , one can choose a 3-cell σf in Σ>3 with shape

u

f

 4

σu �3

v

σvk�
ιπ(u) = ιπ(v)

σf
��

From the acyclicity of Σ, we deduce that similar choices can be made in every dimension, in a coherent
way: if π : Σ> � M and ι : M � Σ> are now seen as (weak)∞-functors, then σ is a (weak) natural
isomorphism from the identity of Σ> to the composite (weak)∞-functor ιπ.

We call σ a normalisation strategy. It generalises to every dimension the notion of strategy appearing
in rewriting theory: a canonical way, among all the computations generated by the directed relations, to
reduce a word into a normal form. An (∞, 1)-polygraph with a normalisation strategy is normalising.

Theorem 3.3.6. An (n, 1)-polygraph is acyclic if, and only if, it is normalising.

Moreover, a normalisation strategy can always be assumed to commute with the monoid product in a
sensible way: it can always “reduce” a word by starting on the left or on the right. This leads to the
left-normalising and right-normalising properties for (∞, 1)-polygraphs, which are also equivalent to
acyclicity.

1.2.3. Polygraphic resolutions from convergent presentations. In Section 4, we use normalisation
strategies to build, by induction on the dimension, an explicit polygraphic resolution from a convergent
presentation. Given a convergent (2, 1)-polygraph Σ, the first dimensions of the polygraphic resolution
c∞(Σ) we get are similar to the ones of Squier’s complex: generators in dimension 1, generating relations
in dimension 2, critical branchings in dimension 3. Then, we build the 4-cells from the critical triple
branchings, i.e., the minimal overlappings of three 2-cells on the same 1-cell: for such a (f, g, h), we use
a normalisation strategy σ to build the corresponding 4-cell

v σv

�#
A
��

v σv

�#
C

��

u

f
-A

g %9

h �0

w

B
��

σw %9 û �? u

f
-A

h �0

û

x σx

<P

x σx

<P

where A, B and C are 3-cells built by using the critical branchings and the normalisation strategy σ.
In higher dimensions, we proceed similarly to build the (n + 1)-cells of the resolution from the critical
n-fold branchings.
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Theorem 4.5.3. If Σ is a convergent presentation of a category C, then the (∞, 1)-
polygraph c∞(Σ) is a polygraphic resolution of C.

Since a finite convergent (2, 1)-polygraph has finitely many n-fold critical branchings, a category with a
finite convergent presentation is FDT∞.

1.2.4. Abelianisation of polygraphic resolutions. In Section 5, we relate the homotopical finiteness
condition FDT∞ to a new homological finiteness condition, called FP∞. For that, from a polygraphic
resolution Σ of a category C, we deduce a free Abelian resolution

· · ·
δn+1

// FC[Σn]
δn
// FC[Σn−1]

δn−1
// · · ·

δ2
// FC[Σ1]

δ1
// FC[Σ0]

ε
// Z // 0

in the category of natural systems on C, a generalisation of bimodules due to Baues, see [5]. This
complex, denoted by FC[Σ], is called the Reidemeister-Fox-Squier complex of Σ and extends Squier’s
exact sequence (2). The acyclicity of FC[Σ] is proved by using a contracting homotopy induced by a
normalisation strategy.

Theorem 5.4.3. If Σ is a polygraphic resolution of a category C, then the Reidemeister-
Fox-Squier complex FC[Σ] is a free resolution of the constant natural system Z on C.

We define the homological properties FPn, for any n, and FP∞ as the refined versions of left/right/bi-FPn
and left/right/bi-FP∞ with natural systems instead of left/right/bi-modules. We get that, for categories,
the property FDTn implies FPn and, as a consequence, that a category with a finite convergent presenta-
tion is of homological type FP∞.

Finally, we relate the homological 2-syzygies of a presentation Σ to its identities among relations,
defined by the authors in [19].

Theorem 5.6.5. For every 2-polygraph Σ, the natural systems of homological 2-syzygies
and of identities among relations of Σ are isomorphic.

As a consequence, for finitely presented categories, the homological finiteness condition FP3 is equiv-
alent to the homotopical finiteness condition FDTab, characterising the existence of a finite homotopy
basis of an Abelianised version of a presentation of the category, see Theorem 5.7.3.

1.2.5. Examples. Throughout this article, we apply our constructions to the example of the reduced
standard presentation of a category, yielding, at the end, an Abelian resolution that is similar to the bar
construction. In Section 6, we give two more examples: the monoid with one non-unit and idempotent
element and the subcategory of the simplicial category whose morphisms are the monotone surjections
only. They give rise to resolutions where the higher-dimensional cells have the shapes of associahedra
and permutohedra, respectively.

1.3. Acknowledgements

The authors wish to thank François Métayer, Timothy Porter and the anonymous referee for their com-
ments and suggestions that helped to produce an improved version of this work.
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2. Polygraphic resolutions

2. POLYGRAPHIC RESOLUTIONS

Throughout this section, we denote by n either a natural number or∞.

2.1. Higher-dimensional categories

If C is an n-category (we always consider strict, globular n-categories), we denote by Ck the set (and
the k-category) of k-cells of C. If f is a k-cell of C, then si(f) and ti(f) respectively denote the i-source
and i-target of f; we drop the suffix i when i = k − 1. The source and target maps satisfy the globular
relations:

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1.

We respectively denote by f : u → v, f : u ⇒ v or f : u V v a 1-cell, a 2-cell or a 3-cell f with
source u and target v.

If f and g are i-composable k-cells, that is when ti(f) = si(g), we denote by f?ig their i-composite;
we simply use fg when i = 0. The compositions satisfy the exchange relations given, for every i 6= j

and every possible cells f, g, h and k, by:

(f ?i g) ?j (h ?i k) = (f ?j h) ?i (g ?j k).

If f is a k-cell, we denote by 1f its identity (k + 1)-cell. When 1f is composed with cells of dimension
k+ 1 or higher, we simply denote it by f.

2.1.1. (n, p)-categories. A k-cell f of an n-category C, with i-source u and i-target v, is i-invertible
when there exists a (necessarily unique) k-cell g in C, with i-source v and i-target u in C, called the
i-inverse of f, that satisfies

f ?i g = 1u and g ?i f = 1v.

When i = k−1, we just say that f is invertible and we denote by f− its inverse. As in higher-dimensional
groupoids, if a k-cell f is invertible and if its i-source u and i-target v are invertible, then f is (i − 1)-
invertible, with (i− 1)-inverse given by

v− ?i−1 f
− ?i−1 u

−.

For a natural number p ≤ n, or for p = n = ∞, an (n, p)-category is an n-category whose k-cells are
invertible for every k > p. When n <∞, this is a p-category enriched in (n− p)-groupoids and, when
n = ∞, a p-category enriched in ∞-groupoids. In particular, an (n,n)-category is an n-category, an
(n, 0)-category is an n-groupoid and, when n <∞, an (n,n− 1)-category is a track (n− 1)-category,
as defined in [18] after Baues, [5, 6]. If n < ∞, any (n, p)-category can be seen as an (∞, p)-category
with only identity k-cells for k > n.

2.1.2. Spheres and asphericity. Let C be an n-category. A 0-sphere of C is a pair γ = (f, g) of 0-cells
of C and, for 1 ≤ k ≤ n, a k-sphere of C is a pair γ = (f, g) of parallel k-cells of C, i.e., with s(f) = s(g)
and t(f) = t(g); we call f the source of γ and g its target. If f is a k-cell of C, for 1 ≤ k ≤ n, the
boundary of f is the (k − 1)-sphere (s(f), t(f)). If n < ∞, the n-category C is aspherical when the
source and the target of each n-sphere of C coincide, i.e., when every n-sphere of C has shape (f, f) for
some (n− 1)-cell f of C.

8



2.1. Higher-dimensional categories

2.1.3. The canonical model structure on (∞, p)-categories. In [2], Ara and Métayer have proved
that the canonical model structure on∞-categories from [25] transfers to (∞, p)-categories through the
adjunction

(∞, p)Cat

U
))

> ∞Cat

( · )>
ii

where U is the forgetful functor and its left adjoint adds to an ∞-category all the missing inverses for
cells of dimension p + 1 and above. The proof in [2] is detailed for the specific case p = 0, i.e., for∞-
groupoids, but it works equally well in the general case. Here we are interested in cofibrant replacements
in the model structure on (∞, p)-categories, so let us examine the classes of weak equivalences and
cofibrations.

From [25], we recall that an∞-functor F : C → D is a weak equivalence in the model structure on∞-categories if, and only if, it satisfies the following properties:

• for every 0-cell x of D, there exists a 0-cell x̂ of C such that F(x̂) isω-equivalent to x,

• for every 0-cells x and y of C and every 1-cell u : F(x)→ F(y) of D, there exists a 1-cell û : x→ y

in C such that F(û) isω-equivalent to u,

• for every parallel n-cells u and v of C, with n ≥ 1, and every (n + 1)-cell f : u → v of D, there
exists an (n+ 1)-cell f̂ : u→ v of C such that F(f̂) isω-equivalent to f.

Theω-equivalence relation is defined together with the notion of reversible cells, by mutual coinduction:

• two n-cells u and v of anω-category C areω-equivalent when there exists a reversible (n+1)-cell
f : u→ v in C,

• an (n + 1)-cell f : u → v of an ω-category C is reversible when there exists an (n + 1)-cell
g : v→ u in C such that g ?n f and f ?n g areω-equivalent to 1x and 1y, respectively.

From the result of [2], the weak equivalences for (∞, p)-categories are the images through the forgetful
functor U of the weak equivalences for ∞-categories, i.e., the ∞-functors between (∞, p)-categories
that are weak equivalences for∞-categories.

In the canonical model structure on∞-categories, the cofibrations are the retracts of transfinite com-
positions of pushouts of the∞-functors

in : ∂En → En,

for n ≥ 0, where En is the n-globe and ∂En its boundary:

• the n-globe En is the n-category with exactly one n-cell together with its distinct k-source and
k-target for every 0 ≤ k < n,

• the boundary ∂En of the n-globe is the same n-category as En but with the n-cell removed.
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2. Polygraphic resolutions

By the result of [2], we get that the cofibrations for (∞, p)-categories are the retracts of transfinite
compositions of pushouts of the∞-functors

i>n : ∂E>n → E>n ,

for n ≥ 0, where E>n and ∂E>n are obtained from En and ∂En by formal adjunction of inverses for every
k-cell, with 1 < k ≤ n.

2.2. Polygraphs

2.2.1. Cellular extensions. Let us assume that n <∞ and let C be an n-category. A cellular extension
of C is a set Γ equipped with a map ∂ from Γ to the set of n-spheres of C. By considering all the formal
compositions of elements of Γ , seen as (n + 1)-cells with source and target in C, one builds the free
(n + 1)-category generated by Γ over C, denoted by C[Γ ]. The size of an (n + 1)-cell f of C[Γ ] is the
number of (n+ 1)-cells of Γ it contains.

The quotient of C by Γ , denoted by C/Γ , is the n-category one gets from C by identification of the
n-cells s(γ) and t(γ), for every n-sphere γ of Γ . If C is an (n, p)-category and Γ is a cellular extension
of C, then the free (n+ 1, p)-category generated by Γ over C is denoted by C(Γ) and defined as follows:

C(Γ) = C
[
Γ, Γ−

] /
Inv(Γ)

where Γ− contains the same (n+ 1)-cells as Γ , with source and target reversed, and Inv(Γ) is the cellular
extension made of two (n+ 2)-cells

γ ?n+1 γ
− → 1f and γ− ?n+1 γ → 1g

for each (n+ 1)-cell γ from f to g in Γ .

2.2.2. Homotopy bases. Let C be an (n, p)-category, for p < n < ∞. A homotopy basis of C is a
cellular extension Γ of C such that the (n, p)-category C/Γ is aspherical, i.e., such that, for every n-
sphere γ of C, there exists an (n+1)-cell with boundary γ in the (n+1, p)-category C(Γ). For example,
the n-spheres of C form a cellular extension which is a homotopy basis of C.

2.2.3. (n, p)-polygraphs. An n-polygraph is a data Σ made of a set Σ0 and, for every 0 ≤ k < n, a
cellular extension Σk+1 of the free k-category

Σ∗k = Σ0[Σ1] · · · [Σk].

For p ≤ n, an (n, p)-polygraph is a data Σ made of:

• a p-polygraph (Σ0, . . . , Σp),

• for every p ≤ k < n, a cellular extension Σk+1 of the free (k, p)-category

Σ>k = Σ∗p(Σp+1) · · · (Σk).

10



2.2. Polygraphs

Note that (n,n)-polygraphs coincide withn-polygraphs, so that any notion defined on (n, p)-polygraphs
also covers the case of n-polygraphs.

For an (n, p)-polygraph Σ, an element of Σk is a called k-cell of Σ and Σ is finite when it has finitely
many cells in every dimension. An (n, p)-polygraph Σ is aspherical when the free (n, p)-category Σ>

is aspherical. An (n, p)-polygraph Σ is acyclic when, for every p < k < n, the cellular extension Σk+1
is a homotopy basis of the (k, p)-category Σ>k .

Remark. An (n, p)-polygraph yields a diagram which is similar to the one given in the original definition
of n-polygraphs by Burroni, [11], drawn for the case n <∞ as follows:

Σ∗0 (· · · )oo oo Σ∗poooo Σ>p+1oooo (· · · )oooo Σ>n−1oooo

Σ0 (· · · )

dd dd

Σp

dd dd

OO

OO

Σp+1

dd dd

OO

OO

(· · · )

dd dd

Σn−1

dd dd

OO

OO

Σn

dd dd

This diagram contains the source and target attachment maps of generating (k + 1)-cells on composite
k-cells, their extension to composite (k+ 1)-cells and the inclusion of generating k-cells into composite
k-cells.

2.2.4. Proposition. Every free (∞, p)-category on an (∞, p)-polygraph is a cofibrant object for the
canonical model structure on (∞, p)-categories.

Proof. Let Σ be an (∞, p)-polygraph. The unique∞-functor from the initial (∞, p)-category ∅ to Σ>

is obtained as the following countable composition of inclusions:

∅ � Σ0 � Σ∗1 � · · · � Σ∗p � Σ>p+1 � · · · � Σ>n � · · ·

The generating cofibration i>0 is the inclusion of ∂E>0 = ∅ into the singleton E>0 . Thus, for any set X,
seen as a 0-polygraph, the inclusion ∅� X is equal to

∅ '
⊔
x∈X

∂E>0

⊔
x∈X

i>0

//

⊔
x∈X

E>0 ' X.

Then, for 0 < k ≤ p, the inclusion of Σ∗k−1 into Σ∗k is a particular case of an inclusion ι : C� C[Γ ] for C
a (k−1)-category and Γ a cellular extension of C. By seeing each (k−1)-sphere γ of Γ as an∞-functor
from ∂E>k to C, the inclusion ι is given by the following pushout:

⊔
γ∈Γ

∂E>k

⊔
γ∈Γ

i>k

//

Γ
��

⊔
γ∈Γ

E>k

��

C //
ι

// C[Γ ].

11



2. Polygraphic resolutions

Finally, the inclusion of Σ∗p into Σ>p+1 and, for n > p, the inclusion of Σ>n into Σ>n+1 are particular cases
of an inclusion ι : C � C(Γ), for C an (n, p)-category and Γ a cellular extension of C. By seeing each
n-sphere γ of Γ as an∞-functor from ∂E>n+1 to C, the inclusion ι is given by the following pushout:

⊔
γ∈Γ

∂E>n+1

⊔
γ∈Γ

i>n+1

//

Γ
��

⊔
γ∈Γ

E>n+1

��

C //
ι

// C(Γ).

As a conclusion, we get that the inclusion ∅ � Σ> is a countable composition of pushouts of the
generating cofibrations (i>n )n≥0 and, as such, it is a cofibration.

2.3. Resolutions by (n, p)-polygraphs

2.3.1. Polygraphic presentations. If p < n, given an (n, p)-polygraph Σ, the p-category Σ presented
by Σ is defined by

Σ = Σ∗p/Σp+1.

We usually denote by f the image of a p-cell of Σ∗p through the canonical projection Σ∗p � Σ. If f is a
k-cell of Σ>, with p < k ≤ n, we also denote by f the common image in Σ of the p-cells sp(f) and tp(f)
by the canonical projection. An (m,p)-polygraph Σ and an (n, p)-polygraph Υ are Tietze-equivalent
when the p-categories Σ and Υ they present are isomorphic.

2.3.2. Example. Every category C admits a presentation, called the standard presentation of C, defined
as the 2-polygraph whose cells are the following ones:

• one 0-cell for each 0-cell of C,

• one 1-cell û : x→ y for every 1-cell u : x→ y of C,

• one 2-cell µu,v : ûv̂ ⇒ ûv for every 1-cells u : x → y and v : y → z of C and one 2-cell
ηx : 1x ⇒ 1̂x for every 0-cell x of C:

y
v̂

��

x

û
77

ûv

33 z

µu,v��
x

1x
��

1̂x

>>
x.ηx��

In the free category generated by the 1-cells of the standard presentation of C, we get, for every 0-cell x,
the identity 1x of x and the generating 1-cell 1̂x associated to the identity of x in C. By removing this
last superfluous generator, together with the corresponding 2-cell ηx, we get another presentation of C,
namely the 2-polygraph called the reduced standard presentation of C, with the following cells:

12



2.3. Resolutions by (n, p)-polygraphs

• one 0-cell for each 0-cell of C,

• one 1-cell û : x→ y for every non-identity 1-cell u : x→ y of C,

• one 2-cell
y

v̂

��

x

û
77

ûv

33 z

µu,v��

for every non-identity 1-cells u : x→ y and v : y→ z of C such that uv is not an identity,

• one 2-cell
y

v̂

��

x

û
77

1x

x

µu,v��

for every non-identity 1-cells u : x→ y and v : y→ x of C such that uv = 1x.

2.3.3. Polygraphic resolutions. Let C be a p-category. A polygraphic resolution of C is an acyclic
(∞, p)-polygraph Σ such that the p-category Σ is isomorphic to C. If p < n <∞, a partial polygraphic
resolution of length n of C is an acyclic (n, p)-polygraph Σ such that Σ is isomorphic to C. Explicitly,
the first dimensions of a polygraphic resolution Σ of C are given as follows:

• For k < p, the k-cells of Σ are the ones of C. In particular, polygraphic resolutions concern the
cofibrant p-categories only, i.e., the p-categories that are free up to dimension p − 1, which is
always the case for p = 1.

• The p-cells of Σ are generators for the ones of C, i.e., the p-category C is a quotient of the free
p-category Σ∗p.

• The (p+ 1)-cells of Σ are relations, i.e., the (p+ 1)-polygraph Σp+1 is a presentation of C.

• The (p + 2)-cells of Σ form a homotopy basis of Σ>p+1, i.e., they are generators of the relations
between relations of the presentation Σp+1 of C.

As previously mentioned, Métayer introduced a notion of polygraphic resolution of a p-category C,
with 0 ≤ p ≤ ∞, in [36]: this is an ∞-polygraph Σ such that the free ∞-category Σ∗ is a cofibrant
replacement of C in the canonical model structure on∞-categories. The notion we use here is similar,
using (∞, p)-polygraphs to produce cofibrant approximations of p-categories in the canonical model
structure on (∞, p)-categories:

2.3.4. Theorem. Let Σ be a polygraphic resolution of a p-category C. The canonical projection Σ>�C

is a cofibrant approximation of C in the canonical model structure on (∞, p)-categories.

13



2. Polygraphic resolutions

Proof. From Proposition 2.2.4, we already know that Σ> is cofibrant. There remains to check that the
canonical projection Σ> � C is a weak equivalence. Since, by hypothesis, the p-categories C and Σ
are isomorphic, it is sufficient to prove that the canonical projection Σ> � Σ is a weak equivalence.
First, we note that theω-equivalence relation is reflexive: hence, proving that two k-cells of Σ are equal
implies that they areω-equivalent.

By definition, the (∞, p)-categories Σ> and Σ have the same cells up to dimension p− 1. Thus, if x
is a 0-cell of Σ, we take x̂ = x. Moreover, if x and y are parallel k-cells of Σ>, for 0 < k < p − 1, and
if u : x→ y is a (k+ 1)-cell of Σ, then we take û = u.

Now, let x and y be parallel (p − 1)-cells of Σ> and let u : x → y be a p-cell of Σ. By definition,
the p-category Σ is a quotient of the p-category underlying Σ>. Hence, there exists a p-cell û in Σ> sent
to u by the canonical projection.

Then, let u and v be parallel p-cells of Σ> and let f : u → v be a (p + 1)-cell of Σ. Since Σ is a
p-category, we must have u = v and f = 1u. By definition of Σ, there exists a (p + 1)-cell f̂ in Σ>

from u to v, which is sent to 1u by the canonical projection.
Finally, let f and g be parallel n-cells of Σ>, for n > p. Both f and gmust be sent to the same n-cell

of Σ, so that the only possible (n + 1)-cell of Σ between their images is an identity. Since Σ is acyclic,
there exists an (n + 1)-cell from f to g in Σ>, and this (n + 1)-cell must be sent to this same identity
(n+ 1)-cell of Σ.

2.3.5. Polygraphic dimension. Let us note that every cofibrant p-category C admits a presentation, i.e.,
a partial polygraphic resolution of length p+ 1. Indeed, we can take:

• for k < p, any choice of generating k-cells of C,

• the same p-cells as C,

• one (p+ 1)-cell from u to v, when u and v are p-cells of the free p-category C∗ that are identified
by the projection C∗ � C, i.e., that yield the same p-cell of C by composition.

Furthermore, every partial polygraphic resolution Σ of length n of a p-category C can be extended into a
partial polygraphic resolution of length n+ 1 of C by adjunction of the homotopy basis of the n-spheres
of Σ>. By iterating this process, we can extend any partial polygraphic resolution into a polygraphic
resolution of the same p-category. Applied to the generic presentation of a cofibrant p-category, we get
that any cofibrant p-category admits a polygraphic resolution.

If C is a cofibrant p-category, the polygraphic dimension of C is the element dpol(C) of N q {∞}

defined as follows: if there exists a natural number n such that C admits an aspherical partial polygraphic
resolution of length n, then dpol(C) is the smallest of those natural numbers; otherwise dpol(C) =∞.

2.3.6. Higher-dimensional finite derivation type. For n ≥ p, a p-category is of finite n-derivation
type (FDTn) when it admits a finite partial polygraphic resolution of length n. A p-category is of finite∞-derivation type (FDT∞) when it admits a finite polygraphic resolution, i.e., when it is FDTn for every
n ≥ p. By extension, for n < p, a p-category is of finite n-derivation type when it admits finitely many
generating n-cells.

In particular, a p-category is FDTp when it is finitely generated, it is FDTp+1 when it is finitely
presented and it is FDTp+2 when it has finite derivation type, a condition introduced by the authors
in [18]. When p = 1 and for monoids, seen as categories with one 0-cell, the property FDT3 corresponds
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3. Normalisation strategies for polygraphs

to the finite derivation type condition originally defined by Squier, [41], while the property FDT4 was
introduced in [32].

Let us note that FDTn+1 is harder to fulfil than FDTn, because of the finiteness condition on (n+ 1)-
cells, leading to the following chain of implications:

FDT∞ ⇒ (· · · ) ⇒ FDTp+2 ⇒ FDTp+1 ⇒ FDTp ⇒ (· · · ) ⇒ FDT0 .

3. NORMALISATION STRATEGIES FOR POLYGRAPHS

3.1. Strategies in rewriting theory

A rewriting system specifies a set of rules that describe valid replacements of subformulas by other
ones, [46, 38]. On some formulas, the rewriting rules may produce conflicts, when two or more rules can
be applied. For this reason, to transform a rewriting system into a genuine computation algorithm, one
specifies a way to apply the rules in a deterministic way by a strategy.

For example, in a word rewriting system, formulas are elements of a free monoid. There are two
canonical strategies to reduce words where several rewriting rules apply: the leftmost one and the right-
most one, using first the rewriting rule that can be applied on the leftmost or the rightmost subformula:

u

u ′

v

v ′

w
left
EY

right��

In term rewriting, formulas are morphisms with target the terminal object in a free Lawvere algebraic
theory, [26]. Formulas can be represented by trees and rewriting rules replace subtrees by other subtrees.
There exist many possible strategies for term rewriting systems. Among them, outermost and innermost
strategies are families of strategies that first use rules that apply closer to the root or closer to the leaves
of the term, respectively:

inner
ey

outer %9

In programming languages based on rewriting mechanisms, such as Caml, [27], and Haskell, [31], strate-
gies are implicitly used by compilers to transform rewriting systems into deterministic algorithms. In that
setting, innermost strategies include the call-by-value evaluation, while outermost strategies contain the
call-by-need evaluation. Some programming languages, like Tom, [4], include a dedicated grammar to
explicitly construct user-defined strategies.

Several models have been introduced to study the computational properties of strategies. In abstract
rewriting, a strategy is defined as a subgraph of the ambient abstract rewriting system. This definition al-
lows the introduction of some properties: for example, a normalisation strategy is a strategy that reaches
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3. Normalisation strategies for polygraphs

normal forms, [45]. Strategies in functional programming languages are usually classified by correspond-
ing notions of strategies in the λ-calculus, [29]. This has led to the axiomatic setting of standardisation
theory, where strategies are seen as standardisation systems of rewriting paths, [33].

In this work, we introduce a notion of normalisation strategy for higher-dimensional rewriting sys-
tems that, in turn, induces a notion of normal forms in every dimension, together with a homotopically
coherent reduction of every cell to its normal form.

3.2. Normalisation strategies

Before a formal definition of normalisation strategy, let us give the idea underlying this notion. If Σ is
an (∞, p)-polygraph, the p-category Σ it presents can be seen as an (∞, p)-category with identity cells
only in dimensions p + 1 and higher. This way, the canonical projection π : Σ∗p � Σ can be extended
into an (∞, p)-functor π : Σ> � Σ. Given a (non-functorial) section ι : Σ � Σ∗p of the canonical
projection, a normalisation strategy corresponds to an extension of this section into a (∞, p)-functor
ι : Σ� Σ>, in a suitably weak sense, that satisfies πι = IdΣ and ιπ ' IdΣ> , with an explicitly chosen
natural isomorphism witnessing this last fact: it follows that Σ is a polygraphic resolution of Σ. Let us
fix n and p with 0 ≤ p ≤ n ≤∞.

3.2.1. Sections. Let Σ be an (n, p)-polygraph. A section of Σ is a choice of a representative p-cell
û : x→ y in Σ>, for every p-cell u : x→ y of Σ, such that

1̂x = 1x

holds for every (p − 1)-cell x of Σ. Such an assignment u 7→ û is not assumed to be functorial with
respect to the compositions: in general, such a property can only be required for a (p, p)-polygraph, i.e.,
when Σ is a free p-category.

Since, by hypothesis, the assignment u 7→ û is compatible with the quotient map, it extends to a
mapping of each p-cell u in Σ∗ to a parallel p-cell in Σ∗, still denoted by û, in such a way that the
equality u = v holds in Σ if, and only if, we have û = v̂ in Σ∗. Thereafter, we assume that every
(n, p)-polygraph comes with an implicitly chosen section.

3.2.2. Normalisation strategies. Let Σ be an (n, p)-polygraph. A normalisation strategy for Σ is a
mapping σ of every k-cell f of Σ>, with p ≤ k < n, to a (k+ 1)-cell

f
σf
// f̂

where, for k > p, the notation f̂ stands for the k-cell f̂ = σs(f) ?k−1 σ
−
t(f), such that the following

properties are satisfied:

• for every k-cell f, with p ≤ k < n,
σ
f̂
= 1

f̂

• for every pair (f, g) of i-composable k-cells, with p ≤ i < k < n,

σf?ig = σf ?i σg .
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3.3. The case of (n, 1)-polygraphs

An (n, p)-polygraph is normalising when it admits a normalisation strategy. This property is independent
of the chosen section. Indeed, let us consider an (n, p)-polygraph Σ with two sections f 7→ f̂ and f 7→ f̃

of Σ and let us assume that σ is a normalisation strategy for Σ, equipped with the section f 7→ f̂. Then,
one checks that we get a normalisation strategy τ for the other section by defining τf as the following
composite:

f
σf
// f̂

(σ
f̃
)−
// f̃ .

3.2.3. Lemma. Let Σ be an (n, p)-polygraph and let σ be a normalisation strategy for Σ.

i) For every k-cell f, with p− 1 ≤ k < n− 1, we have

σ1f = 11f .

ii) For every k-cell f, with p ≤ k < n− 1, we have

σσf = 1σf .

iii) For every k-cell f, with p < k < n, we have

σf− = f− ?k−1 σ
−
f ?k−1 f̂

−.

Proof. For i), if x is a (p − 1)-cell, we have 1̂x = 1x by definition. If f is a k-cell, with p ≤ k < n− 1,
then we have, by definition of 1̂f:

1̂f = σs(1f) ?k σ
−
t(1f)

= σf ?k σ
−
f = 1f.

In either case, if f is a k-cell, with p − 1 ≤ k ≤ n, we get σ1f = 11f by definition of σ. For ii), if f is a
k-cell, with p ≤ k < n− 1, then the definition of σ̂f gives:

σ̂f = σs(σf) ?k σ
−
t(σf)

= σf ?k σ
−

f̂
= σf ?k 1

−
f = σf.

As a consequence, we get σσf = 1σf . Finally, for iii), if f is a k-cell, with p < k < n, we have:

σf ?k−1 σf− = σf?k−1f− = σ1s(f) = 11s(f) .

Thus, σf− is the (k− 1)-inverse of σf, yielding:

σf− = s(σf)
− ?k−1 σ

−
f ?k−1 t(σf)

− = f− ?k−1 σ
−
f ?k−1 f̂

−.

3.3. The case of (n, 1)-polygraphs

Let Σ be an (n, 1)-polygraph. In the lower dimensions, a normalisation strategy σ for Σ specifies the
following assignments:

• For every 1-cell u of Σ>, a 2-cell

u
σu %9 û

of Σ> that satisfies σû = 1û and thus, in particular, σ1x = 11x for every 0-cell x of Σ.
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3. Normalisation strategies for polygraphs

• For every 2-cell f : u⇒ v of Σ>, a 3-cell

u
f

!5

σu �1

v

û σ−v

>R
σf��

of Σ> that satisfies σ
f̂
= 1

f̂
and the following relations:

– If u is a 1-cell of Σ>, then σ1u = 11u :

u

1u
!5

σu �1

u

û σ−u

=Q
σ1u��

= u

1u

�)

1u

5I11u��
u

– If f : u⇒ v and g : v⇒ w are 2-cells in Σ>, then σf?1g = σf ?1 σg:

u

f ?1 g
!5

σu �1

w

û σ−w

=Q
σf?1g��

=
u

f
!5

σu �1

v

g
!5

σv
�)

w

û

σ−v

5I
σf �� c©

û σ−w

=Q
σg
��

– If f : u⇒ v is a 2-cell in Σ>, then f̂− = σv ?1 σ
−
u and σf− = f− ?1 σ

−
f ?1 f̂

−:

v
f−

!5

σv �1

u

û σ−u

=Q
σf−��

=

û
σ−v

� 
v
f− %9 u

σu
-A

f

)= v
σ−f�� σv %9 û

σ−u %9 u

• For every 3-cell A : fV g : u⇒ v of Σ>, a 4-cell

u

f

�)

g

5I vA
��

σA
�? u

f

�$

g

:Nσu %9 û σ−v
%9

σf��

σ−g��

v

of Σ> with σ
Â
= 1

Â
and such that the following relations hold:
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3.3. The case of (n, 1)-polygraphs

– If f is a 2-cell of Σ>, then σ1f = 11f :

u

f

�)

f

5I v1f��

11f
�? u

f

�$

f

:Nσu %9 û σ−v
%9

σf��

σ−f��

v

– If A : fV f ′ : u⇒ v and B : gV g ′ : v⇒ w are 3-cells of Σ>, then σA?1B = σA ?1 σB:

u

f

�)

f ′

5IA
��

v

g

�)

g ′

5IB
��

w
σA ?1 σB

�? u

f

�$

f ′

:Nσu %9 û σ−v
%9

σf��

σ−f ′��

v

g

�$

g ′

:Nσv %9 û σ−w
%9

σg��

σ−g ′��

w

– If A : fV g : u⇒ v and B : gV h : u⇒ v are 3-cells of Σ>, then σA?2B = σA ?2 σB:

u

f

�#
g %9

h

;O

A��

B��

v
σA ?2 σB

�? u

f

�$

h

:Nσu %9 û σ−v
%9

σf��

σ−h��

v

– If A : fV g : u⇒ v is a 3-cell of Σ>, then Â = σf ?2 σ
−
g and σA− = A− ?2 σ

−
A ?2 Â

−:

u

g

��f
�-

g
1E

f

?Sv

A−
��

Â��

Â−
��

A− ?2 σ
−
A ?2 Â

−

�? u

g

��f
�-

g
1E

f

?Sv

A−
��

A��

Â−
��

3.3.1. Lemma. Let Σ be an (n, 1)-polygraph. Normalisation strategies for Σ are in bijective correspon-
dence with data made of:

• a family with one 2-cell
σu : u ⇒ û

for every 1-cell u of Σ> such that û 6= u,
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3. Normalisation strategies for polygraphs

• a family with one (k+ 1)-cell
σuϕv : uϕv → ûϕv

for every 1 < k < n, every k-cell ϕ of Σ and every pair (u, v) of 1-cells of Σ> such that the
composite k-cell uϕv is defined.

Proof. We proceed by induction on the size of cells of Σ>. We already know that a normalisation
strategy σ has fixed values on normal forms, identities, inverses and i-composites for i ≥ 1. As a conse-
quence, using the exchange relations, we get that the values of σ are entirely and uniquely determined by
its values on 1-cells that are not normal forms and, for every k ≥ 2, on k-cells with shape uϕv, where ϕ
is a k-cell of Σ and u and v are 1-cells of Σ>.

3.3.2. From normalisation strategies to natural transformations. Let σ be a normalisation strategy
for an (n, 1)-polygraph Σ. We define, for every 1-cell u of Σ>, the 1-cell u∗ as u and, by induction on
the dimension, for every k-cell f in Σ>, with 1 < k ≤ n, the k-cell f∗ in Σ> is given by

f∗ = ((f ?1 σt1(f)∗) ?2 · · · ) ?k−1 σ
∗
tk−1(f)∗

.

For example, for a 2-cell f : u⇒ v, the 2-cell f∗ is

u
f %9 v

σv %9 û

and, for a 3-cell A : fV g : u⇒ v, the 3-cell A∗ is

v σv

�,
u

f �3

g

3G

σu

'; û .

A
�"

σg∗
��

One checks that, for any k-cell f, with k > 1, the k-cell f∗ has source s(f)∗ and target t̂(f)
∗
. Moreover,

we have (f̂)∗ = f̂∗, which implies σf∗ = σ∗f .
Since every k-cell of Σ> is invertible for k ≥ 2, one can recover σ from σ∗, in a unique way, so that

the normalisation strategy σ is uniquely and entirely determined by the values

σ∗u = σu : u ⇒ û

for every 1-cell u with u 6= û and

σ∗uϕv : (uϕv)∗ → ûϕv
∗

for every 1 < k < n, every k-cell ϕ of Σ and every 1-cells u and v of Σ> such that the k-cell uϕv is
defined. In the lowest dimensions, the natural transformation form σ∗ of the strategy σ consists of the
following data:

• For every 1-cell u of Σ>, a 2-cell σ∗u = σu from u to û.
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3.3. The case of (n, 1)-polygraphs

• For every 2-cell f : u⇒ v of Σ>, a 3-cell σ∗f of Σ> corresponding to a (weak) naturality condition:

v σv
�'

u

f (<

σu !5

û

û

σ∗f��

To simplify subsequent diagrams, we draw the 3-cell σ∗f in a more compact shape, as follows:

v
σv

!
u

f
-A

σu

)= û
σ∗f��

This 3-cell must satisfy the following relations:

– if u is a 1-cell of Σ>, then σ∗1u = 1σu holds:

u
σu

�"
u

1u
-A

σu

)= û
σ∗1u��

= u

σu

�+

σu

3G1σu��
û

– if f : u⇒ v and g : v⇒ w are 2-cells of Σ>, then σ∗f?1g = (f ?1 σ
∗
g) ?2 σ

∗
f holds:

w
σw

�"
u

f ?1 g
-A

σu

)= û
σ∗f?1g��

=

w

σw

	�

v

g
,@

σv
�1

u

f
-A

σu

(< û

σ∗g
��

σ∗f��

– if f : u⇒ v is a 2-cell of Σ>, then σ∗f− = f− ?1 (σ
∗
f )

− holds:

u
σu

�"
v

f−
-A

σv

)= û
σ∗f−��

=

u

σu
!5

f
�)

û

v

f−
-A

c©
v

σv

AU
(σ∗f )

−

��

• For every 3-cell A : fV g : u⇒ v of Σ>, a 4-cell

v σv

�*
u

f �3

g

3G

σu

(< û

A
�"

σ∗g��

σ∗A
�?

v
σv

!
u

f
-A

σu

)= û
σ∗f��
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3. Normalisation strategies for polygraphs

of Σ> such that the following relations are satisfied:

– if f is a 2-cell of Σ>, then σ∗1f = 1σ∗f holds:

v
σv

!
u

f
-A

σu

)= û
σ∗f��

1σ∗f
�?

v
σv

!
u

f
-A

σu

)= û
σ∗f��

– ifA : fV f ′ : u⇒ v andB : gV g ′ : v⇒ w are 3-cells of Σ>, then σ∗A?1B = (f?1σ
∗
B)?2σ

∗
A

holds:

w

σw

��

v

σv

�0

g
�3

g ′

2F

u

f �3

f ′

3G

σu

(< û

A
�"

B
!

σ∗f ′��

σ∗g ′
��

(f ?1 σ
∗
B)

?2σ
∗
A

�?

w

σw

��

v

σv

�0

g
)=

u

f
)=

σu

(< û
σ∗f��

σ∗g
��

– if A : fV g : u⇒ v and B : gV h : u⇒ v are 3-cells of Σ>,
then σ∗A?2B = ((A ?1 σv) ?2 σ

∗
B) ?3 σ

∗
A holds:

v σv

�*
u

f
�0

g

$8

h

3G

σu

(< û

A�#

B�"
σ∗h��

(A ?1 σ
∗
v)

?2σ
∗
B

�?

v σv

�*
u

f �3

g

3G

σu

(< û

A
�"

σ∗g��

σ∗A
�?

v
σv

!
u

f
-A

σu

)= û
σ∗f��

– if A : fV g : u⇒ v is a 3-cell of Σ>, then σ∗A− = (A− ?1 σ
∗
v) ?2 (σ

∗
A)

− holds:

v σv

�*
u

g
�3

f

3G

σu

(< û

A−

�"
σ∗f��

(A− ?1 σ
∗
v)

?2(σ
∗
A)

−

�?

v
σv

!
u

g
-A

σu

)= û
σ∗g��
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3.3. The case of (n, 1)-polygraphs

3.3.3. Left and right normalisation strategies. Let Σ be an (n, 1)-polygraph. A normalisation strat-
egy σ for Σ is a left one when it satisfies the following properties:

• For every pair (u, v) of 0-composable 1-cells of Σ>, we have σuv = σuv ?1 σûv, i.e.,

uv

σuv
"6

σuv �1

ûv

ûv
σûv

<P
c©

• For every pair (f, g) of 0-composable k-cells of Σ>, with 2 ≤ k ≤ p, t1(f) = u ′ and s1(g) = v,
we have

σfg = σfv ?1 σu ′g.

In particular, when f : u⇒ u ′ and g : v⇒ v ′ are 0-composable 2-cells of Σ>:

uv

fg
"6

σuv �1

u ′v ′

ûv
σ−u ′v ′

;O
σfg
�� =

u ′v u ′g

�,
σu ′v

�+
uv

fv $8

σuv %9

σuv

3Gûv

σ−u ′v

3G

σûv %9 ûv
σ−u ′v ′

%9 u ′v ′
σfv��

σu ′g ��
c©

c©

In a symmetric way, a normalisation strategy σ is a right one when it satisfies:

σuv = uσv ?1 σuv̂ and σfg = uσg ?1 σfv ′ .

An (n, 1)-polygraph is left (resp. right) normalising when it admits a left (resp. right) normalisation
strategy.

3.3.4. Lemma. Let Σ be an (n, 1)-polygraph, let f be a k-cell of Σ>, for 1 < k < n, with 1-source u
and 1-target v, and let w and w ′ be 1-cells of Σ> such that wfw ′ is defined. Then, if σ is a left
normalisation strategy for Σ, we have:

σwfw ′ = σwuw
′ ?1 σŵfw

′ ?1 σ
−
wvw

′ and σ∗wfw ′ = σwuw
′ ?1 σ

∗
ŵfw

′ ?1 σŵuw ′ .

Symmetrically, if σ is a right normalisation strategy, then we have:

σwfw ′ = wuσw ′ ?1 wσfŵ ′ ?1 wvσ
−
w ′ and σ∗wfw ′ = wuσw ′ ?1 wσ

∗
fŵ ′ ?1 σwûw ′ .

Proof. In the case of a left normalisation strategy, the proof for right normalisation strategies being
symmetric, we have:

σfw ′ = σfw
′ ?1 σ1wvw ′ = σfw

′ ?1 11wvw ′ = σfw
′.
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3. Normalisation strategies for polygraphs

Then, we use the exchange relation to get:

σσwf = σwf?1σwv = σwf ?1 σσwv = σwf ?1 1σwv = σwf ?1 σwv.

Moreover, the definition of left normalisation strategy implies:

σσwf = σσwu ?1 σŵf = σwu ?1 σŵf.

From the last two computations, we deduce:

σwf = σwu ?1 σŵf ?1 σ
−
wv.

Combining all the results, we get the required equality:

σwfw ′ = σwfw
′ = σwuw

′ ?1 σŵfw
′ ?1 σ

−
wvw

′.

For σ∗wfw ′ , we proceed as follows:

σ∗wfw ′ = σ(wfw ′)∗

= σwf∗w ′ ?1 σwvw ′

= σwuw
′ ?1 σŵf∗w

′ ?1 σ
−
wvw

′ ?1 σwvw ′

= σwuw
′ ?1 σŵf∗w

′ ?1 σŵvw
′ ?1 σŵuw ′

= σ∗wuw
′ ?1 σ

∗
ŵfw ′ ?1 σ

∗
ŵuw ′ .

3.3.5. Corollary. Let Σ be an (n, 1)-polygraph. Left (resp. right) normalisation strategies on Σ are in
bijective correspondence with the families

σûϕ : ûϕ → ûϕ ( resp. σϕû : ϕû → ϕ̂u )

and with the families

σ∗ûϕ : (ûϕ)∗ → ϕ̂u
∗ ( resp. σ∗ϕû : (ϕû)∗ → ϕ̂u

∗ )

of (k+ 1)-cells, indexed by k-cells ϕ of Σ, for 1 ≤ k < n, and by 1-cells u of Σ such that the composite
k-cell ûϕ (resp. ϕû) exists.

Proof. Let us assume, for example, that σ is a left normalisation strategy. The property satisfied by σ
on 1-cells of Σ> gives, by induction on the size of 1-cells, that the values of σ on 1-cells of Σ> are
determined by the 2-cells σûx, for x a 1-cell of Σ and u a 1-cell of Σ such that ûx is defined. Then,
Lemma 3.3.1 tells us that the values of σ on higher-dimensional cells of Σ> are determined by the values
of σ or of σ∗ on k-cells uϕv of Σ>, where ϕ is a k-cell of Σ and u and v are 1-cells of Σ>. We use
Lemma 3.3.4 to conclude.

3.3.6. Theorem. Let Σ be an (n, 1)-polygraph. The following assertions are equivalent:

i) Σ is acyclic,

ii) Σ is normalising,
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4. Polygraphic resolutions from convergent presentations

iii) Σ is left normalising,

iv) Σ is right normalising.

Proof. Let us assume that there exists a normalisation strategy σ for Σ. We consider a k-cell f in Σ>, for
some 1 < k < n. By definition of a normalisation strategy, the (k+ 1)-cell σf has source f and target f̂.
Thus, if g is a k-cell which is parallel to f, the (k + 1)-cell σf ?k σ−g of Σ> has source f and target g,
proving that Σk+1 forms a homotopy basis of Σ>k . Hence Σ is acyclic.

Conversely, let us assume that Σ is acyclic and let us define a right normalisation strategy σ, the case
of a left one being symmetric. By definition of the category Σ, we can choose a 2-cell

σxû : xû⇒ x̂u

for every 1-cell x in Σ and every 1-cell u in Σ such that xû is defined. Then, for 1 < k < n, we use the
fact that Σk+1 is a homotopy basis of Σ>k to choose an arbitrary (k+ 1)-cell

σϕû : ϕû −→ ϕ̂u

for every k-cell ϕ in Σ and every 1-cell u in Σ with ϕû is defined. We use Corollary 3.3.5 to conclude.

3.3.7. Corollary. Let C be a category and let n be a non-zero natural number. Then C is FDTn if, and
only if, there exists a finite, (left, right) normalising (n, 1)-polygraph presenting C.

4. POLYGRAPHIC RESOLUTIONS FROM CONVERGENT PRESENTATIONS

4.1. Convergent 2-polygraphs

Let us recall notions and results from rewriting theory for 2-polygraphs, [17, 18, 34]. Let Σ be a fixed
2-polygraph.

4.1.1. Rewriting and normal forms. A rewriting step of Σ is a 2-cell of the free 2-category Σ∗ with
shape

y
w

// x

u
##

v

<<
ϕ�� x ′

w ′
// y ′

where ϕ : u⇒ v is a 2-cell of Σ andw andw ′ are 1-cells of Σ∗. A rewriting sequence of Σ is a finite or
infinite sequence

u1
f1 %9 u2

f2 %9 (· · · )
fn−1 %9 un

fn %9 (· · · )
of rewriting steps. If Σ has a non-empty rewriting sequence from u to v, we say that u rewrites into v.
Let us note that every 2-cell f of Σ∗ decomposes into a finite rewriting sequence of Σ, this decomposition
being unique up to exchange relations.

A 1-cell u of Σ∗ is a normal form when Σ has no rewriting step with source u. A normal form of u is
a 1-cell v that is a normal form and such that u rewrites into v. A 1-cell is reducible if it is not a normal
form.
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4. Polygraphic resolutions from convergent presentations

4.1.2. Branchings. A branching of Σ is a pair (f, g) of 2-cells of Σ∗ with a common source, as in the
diagram

v

u

f &:

g #7 w

The 1-cell u is the source of this branching and the pair (v,w) is its target, written (f, g) : u ⇒ (v,w).
We do not distinguish the branchings (f, g) and (g, f).

A branching (f, g) is local when f and g are rewriting steps. Local branchings belong to one of the
three following families:

• aspherical branchings have shape
v

u

f &:

f
$8 v

with f : u⇒ v a rewriting step of Σ,

• Peiffer branchings have shape
u ′v

uv

fv (<

ug "6 uv ′

with f : u⇒ v and g : u ′ ⇒ v ′ rewriting steps of Σ,

• overlapping branchings are the remaining local branchings.

The terms “aspherical” and “Peiffer” come from the corresponding notions for spherical diagrams in
Cayley complexes associated to presentations of groups, [30], while the term “critical” comes from
rewriting theory, [8, 3].

Local branchings are compared by the order 4 generated by the relations

(f, g) 4
(
ufv, ugv)

given for any local branching (f, g) and any 1-cells u and v of Σ∗ such that ufv exists (and, thus, so does
ugv). An overlapping local branching that is minimal for the order 4 is called a critical branching.

A branching (f, g) is confluent when there exists a pair (f ′, g ′) of 2-cells of Σ∗ with the following
shape:

v f ′

�(
u

f (<

g "6

u ′

w g ′

8L
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4.1. Convergent 2-polygraphs

4.1.3. Termination, confluence and convergence. We say that Σ terminates when it has no infinite
rewriting sequence. In that case, every 1-cell has at least one normal form. Moreover, Noetherian
induction allows definitions and proofs of properties of 1-cells by induction on the maximum size of the
2-cells leading to normal forms.

We say that Σ is confluent (resp. locally confluent) when all of its branchings (resp. local branching)
are confluent. In a confluent 2-polygraph, every 1-cell has at most one normal form. A fundamental
result of rewriting theory is that local confluence is equivalent to confluence of critical branchings. For
terminating 2-polygraphs, Newman’s Lemma ensures that local confluence and confluence are equivalent
properties, [38].

We say that Σ is convergent when it terminates and it is confluent. In that case, every 1-cell u has
a unique normal form. Such a Σ is called a convergent presentation of Σ and has a canonical section
sending u to its normal form û, so that û = v̂ holds in Σ∗ if, and only if, we have u = v in Σ. As a
consequence, a finite and convergent 2-polygraph Σ yields generators for the 1-cells of the category Σ,
together with a decision procedure for the corresponding word problem (finiteness is used to effectively
check that a given 1-cell is a normal form).

4.1.4. Reduced 2-polygraphs. A 2-polygraph Σ is reduced when, for every 2-cell ϕ : u ⇒ v in Σ,
the 1-cell u is a normal form for Σ2 \ {ϕ} and v is a normal form for Σ2. Let us note that, in that case,
for every 1-cell u of Σ∗, there exist finitely many rewriting steps with source u in Σ∗: indeed, we have
exactly one such 2-cell for every decomposition u = vwv ′ such that w is the source of a 2-cell of Σ and
the number of decompositions u = vwv ′ is finite in a free category.

4.1.5. Lemma. For every (finite) convergent 2-polygraph, there exists a (finite) Tietze-equivalent, re-
duced and convergent 2-polygraph.

Proof. Let Σ be a (finite) convergent 2-polygraph Σ. We successively transform Σ as follows. First, we
replace every 2-cell ϕ : u ⇒ v in Σ with ϕ ′ : u ⇒ û. Then, if there exist several 2-cells in Σ with
the same source, we drop all of them but one. Finally, we drop all the remaining 2-cells whose source is
reducible by another 2-cell. After each step, we check that the (finite) 2-polygraph we get is convergent
and that it is Tietze-equivalent to the former one. Moreover, by construction, the result is a reduced
2-polygraph.

Remark. This result was proved by Métivier for term rewriting systems, [37], and by Squier for word
rewriting systems, [41]. The proof works for any type of rewriting systems, including n-polygraphs for
any n.

4.1.6. Example. Let C be a category and let N C be the reduced standard polygraphic presentation of C,
i.e., the 2-polygraph with the following cells:

• one 0-cell for each 0-cell of C,

• one 1-cell û : x→ y for every non-identity 1-cell u : x→ y of C,

• one 2-cell µu,v : ûv̂ ⇒ ûv for every non-identity 1-cells u : x → y and v : y → z of C such that
uv is not an identity,

• one 2-cell µu,v : ûv̂ ⇒ 1x for every non-identity 1-cells u : x → y and v : y → x of C such that
uv = 1x.
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4. Polygraphic resolutions from convergent presentations

The 2-polygraph N C is reduced. Let us prove that it is convergent. For termination, one checks that each
2-cell µu,v of N C has source of size 2 and target of size 1 or 0. As a consequence, for every non-identity
2-cell f : u⇒ v of the free 2-category N C∗, the size of u is strictly greater than the size of v.

For confluence, we check that N C has one critical branching for every triple (u, v,w) of non-identity
composable 1-cells in C: (

µu,vŵ , ûµv,w
)
.

Each of these critical branchings is confluent, with four possible cases, depending on whether uv or vw
is an identity or not:

• if neither uv nor vw is an identity:

ûvŵ γuv,w
�.

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2F

• if uv is an identity, but not vw:

ŵ

ûv̂ŵ

γu,vŵ &:

ûγv,w
#7 ûv̂w

γu,vw

Th

• if uv is not an identity, but vw is:

ûvŵ

γuv,w

w�

ûv̂ŵ

γu,vŵ ';

ûγv,w
$8 û

• if uv and vw are identities, and thus u = uvw = w:

ûv̂ŵ

γu,vŵ

�/

ûγv,w

1Eû = ŵ

As a conclusion, the reduced standard presentation N C of the category C is a reduced convergent pre-
sentation of C.
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4.2. Normalisation strategies for convergent 2-polygraphs

4.2. Normalisation strategies for convergent 2-polygraphs

4.2.1. The order relation on branchings. Let Σ be a reduced 2-polygraph and let u be a 1-cell in Σ∗.
We define the relation � on rewriting steps with source u as follows. If ϕ and ψ are 2-cells of Σ and if
f = vϕv ′ and g = wψw ′ have source u, then we write f � g when v is smaller than w, i.e., informally,
when the part of u on which f acts is more at the left than the part on which g acts. By convention, we
denote branchings of Σ in increasing order, i.e., (f, g) when f � g, which is always possible thanks to
the following result.

4.2.2. Lemma. Let Σ be a reduced 2-polygraph and u be a 1-cell of Σ∗. Then the relation � induces a
total ordering on the rewriting steps of Σ with source u.

Proof. From its definition, we already know that the relation � is reflexive, transitive and total. For
antisymmetry, we assume that f = vϕv ′ and g = wψw ′ are rewriting steps with source u, such that
f � g and g � f, i.e., such that v and w have the same size. Then, using the fact that Σ∗1 is free, we have
v = w and either s(ϕ) = s(ψ) or s(ϕ) = s(ψ)a or s(ϕ)a = s(ψ): the latter two cases cannot occur,
because Σ is reduced and, from that same hypothesis we get, in the first case, that ϕ = ψ, hence that
f = g.

4.2.3. The leftmost and rightmost normalisation strategies. Let Σ be a reduced 2-polygraph and
let u be a reducible 1-cell of Σ∗ that is not a normal form. The leftmost and the rightmost rewriting steps
on u are denoted by λu and ρu and defined as the minimum and the maximum elements for � of the
(finite, non-empty) set of rewriting steps of Σ with source u. We note that, if u and v are reducible and
composable 1-cells of Σ∗, then we have:

λuv = λuv and ρuv = uρv.

When Σ terminates, the leftmost normalisation strategy of Σ is the normalisation strategy σ defined by
Noetherian induction as follows. On normal forms, it is given by

σû = 1û

and, on reducible 1-cells, by
σu = λu ?1 σt(λu).

One defines the rightmost normal form of Σ in a similar way by replacing the leftmost rewriting step by
the rightmost one in the case of reducible 1-cells.

4.2.4. Lemma. The leftmost (resp. rightmost) normalisation strategy σ is a left (resp. right) normali-
sation strategy for Σ, seen as a (2, 1)-polygraph, with the property that, for every 1-cell u, the 2-cell σu
lives in Σ∗ ⊆ Σ>.

Proof. Let us assume that σ is the leftmost normalisation strategy, the proof in the rightmost case being
symmetric. We must prove that, for every composable 1-cells u and v of Σ∗, the following relation holds:

σuv = σuv ?1 σûv.
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4. Polygraphic resolutions from convergent presentations

We proceed by Noetherian induction on the 1-cell u. If u is a normal form, then σu = 1u and σûv = σuv,
so that the relation is satisfied. Otherwise, we have, using the definition of σ and the properties of λ:

σuv = λuv ?1 σt(λuv) = λuv ?1 σt(λu)v.

We apply the induction hypothesis to t(λu)v to get:

σuv = λuv ?1 σt(λu)v ?1 σûv = σuv ?1 σûv.

The fact that σu is in Σ∗ is also proved by Noetherian induction on u, using the definition of σ and the
facts that both 1û and λu are 2-cells of Σ∗.

Remark. A reduced and terminating 2-polygraph can have several left or right strategies, beside the
leftmost and the rightmost ones. Indeed, let us consider the reduced and terminating 2-polygraph Σ with
one 0-cell, three 1-cells a, b and c and the following three 2-cells:

aac
α %9 a bb

β %9 cc acc
γ %9 c.

Let us prove that Σ admits at least two different left normalisation strategies. For that, we examine the
1-cell aabb and all the 2-cells of Σ∗ from aabb to its normal form ac:

aabb
aaβ %9 aacc

αc
�0

aγ

.Bac.

Thus, if σ is a normalisation strategy, the 2-cell σaabb can be either aaβ ?1 αc or aaβ ?1 aγ. Since the
1-cells a, aa and aab are normal forms, assuming that σ is a left strategy still leaves us with the same
choice. Hence, we can define a left normalisation strategy σ for Σ as the leftmost normalisation strategy
on every 1-cell of Σ∗, except for aabb where it is given by

σaabb = aaβ ?1 aγ.

Thus, we have a left normalisation strategy for Σ, distinct from the leftmost normalisation strategy:
indeed, the latter would send aabb to aaβ ?1 αc.

Let us note that this phenomenon does not come from the fact that Σ is not confluent, since we can
add the 2-cell δ : bcc ⇒ ccb to Σ to get a reduced, convergent 2-polygraph which still has at least
two different left normalisation strategies. From Σ, we can build a symmetric (for ?0) 2-polygraph that
admits at least two different right normalisation strategies.

However, we can ensure that, if σ is a left (resp. right) normalisation strategy for a reduced and
terminating 2-polygraph Σ with the property that, for every 1-cell u of Σ∗, the 2-cell σu is in Σ∗, then
this same 2-cell admits a decomposition

σu = λu ?1 gu (resp. σu = ρu ?1 gu )

with gu a 2-cell of Σ∗. Indeed, if σ is a left strategy, we consider the decomposition λu = vϕw. By
definition of λu, the 1-cell vs(ϕ) is the source of only one rewriting step of Σ, namely vϕ. Hence, since
σvs(ϕ) is a 2-cell of Σ∗ with source vs(ϕ), it admits a decomposition

σvs(ϕ) = λvs(ϕ) ?1 hu

30
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with hu a 2-cell of Σ∗. The 2-cell gu of Σ∗ is given by

gu = huw ?1 σv̂s(ϕ)w

and use the hypothesis on σ to get:

σu = σvs(ϕ)w ?1 σv̂s(ϕ)w = λvs(ϕ)w ?1 gu = λu ?1 gu.

The case of a right normalisation strategy is symmetric.

4.2.5. Example. Let C be a category and let N C be its reduced standard presentation. A generic 1-cell
of N C is a composite û1 · · · ûn of non-identity 1-cells of C. In the case where no partial composition
uiui+1 · · ·uj is an identity in C, the leftmost reduction strategy σ of C is given on û1 · · · ûn by:

σû1···ûn = µu1,u2û3 · · · ûn ?1 µu1u2,u3û4 · · · ûn ?1 · · · ?1 µu1···un−1,un .

If some partial composition is an identity in C, we get σû1···ûn by removing the corresponding 2-cell µ.
For example, in the case n = 4, u1u2 = 1 and u3u4 6= 1, we have:

σû1û2û3û4 = µu1,u2û3û4 ?1 µu3,u4 = µu1,u2µu3,u4 .

The rightmost normalisation strategy of N C is given in a symmetric way.

4.3. The acyclic (3, 1)-polygraph of generating confluences

We fix a reduced convergent 2-polygraph Σ equipped with its rightmost normalisation strategy σ.

4.3.1. Critical branchings of 2-polygraphs. By case analysis on the source of critical branchings of Σ,
we can conclude that they must have one of the following two shapes

u1
//   u2 //

FF v
//

ϕ
EY

ψ ��

u1
//

��
u2 //

BB
v
//

ϕ
EY

ψ��

where ϕ, ψ are 2-cells of Σ.
We note that, if Σ is finite, then it has finitely many critical branchings: indeed, in that case there are

finitely many pairs of 2-cells of Σ and, for ϕ and ψ fixed, there are finitely many ways to make their
sources (which are 1-cells of a free category) overlap as in one of the two diagrams.

In fact, the 2-polygraph Σ being reduced, the first case cannot occur since, otherwise, the source ofϕ
would be reducible by ψ. Thus, every critical branching of Σ must have shape (ϕv, u1ψ). We write the
branching in that order since, by definition of �, we have ϕv � u1ψ.

We also note that the 1-cells u1, u2 and v are normal forms and cannot be identities. Indeed, they
are normal forms since, otherwise, at least one of the sources of ϕ and of ψ would be reducible by
another 2-cell, preventing Σ from being reduced. If u2 was an identity, then the branching would be
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4. Polygraphic resolutions from convergent presentations

Peiffer. Moreover, if u1 (resp. v) was an identity, then the source ofψ (resp. ϕ) would be reducible byϕ
(resp. ψ).

Finally, if we write u = u1u2, the definitions of λuv and of ρuv imply that we have:

λuv = ϕv and ρuv = u1ψ.

From all those observations, we conclude that every critical branching b of Σ must have shape

b =
(
ϕv̂, ρuv̂

)
where u and v are composable 1-cells of Σ∗ and where ϕ is a 2-cell of Σ with source u.

4.3.2. The basis of generating confluences. The basis of generating confluences of Σ is the cellular
extension c2(Σ) of Σ> made of one 3-cell

ûv̂ σûv̂
�(

uv̂

ϕv̂ )=

σuv̂

.B ûv
ωb��

for every critical branching b = (ϕv̂, ρuv̂) of Σ. Alternatively, since, for a 2-cell f, we have defined f∗

as the 2-cell f ?1 σt(f), the 3-cellωb can be pictured in the following, more compact way:

uv̂

(ϕv̂)∗

�.

ϕ̂v
∗

2Fûvωb
��

4.3.3. Lemma. The rightmost normalisation strategy of Σ extends to a right normalisation strategy
of c2(Σ).

Proof. From Corollary 3.3.5, we know that it is sufficient to define a 3-cell

σ∗ϕŵ : (ϕŵ)∗ V ϕ̂w
∗

of c2(Σ)> for every 2-cell ϕ : v ⇒ v̂ of Σ and every 1-cell w in Σ such that u = vŵ exists. We note
that, by definition, we have:

(ϕŵ)∗ = ϕŵ ?1 σv̂ŵ and ϕ̂w
∗ = σu = ρu ?1 σt(ρu).

Let us proceed by case analysis on the type of the local branching b = (ϕŵ, ρu).

• If b is aspherical, then ρu = ϕŵ. In that case, we define σ∗ϕŵ = 1(ϕŵ)∗ .

• By hypothesis, the branching b cannot be a Peiffer branching. Indeed, the source of ρu cannot be
entirely contained in the normal form ŵ.
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4.3. The acyclic (3, 1)-polygraph of generating confluences

• Otherwise, we have ŵ = ŵ1ŵ2 and b1 = (ϕŵ1, ρvŵ1) is a critical branching of Σ. In that case,
we define σ∗ϕŵ as the composite 3-cell

v̂ŵ

σv̂ŵ1ŵ2
�.

ωb1ŵ2

��

σv̂ŵ

�0
u

ϕŵ
-A

ρu �/

v̂w1ŵ2 σv̂w1ŵ2 %9 û

u ′ŵ2

σu ′ŵ2

0D

σu ′ŵ2

/C

(σ∗σv̂ŵ1 ŵ2
)−��

σ∗σu ′ ŵ2��

of c2(Σ)>.

4.3.4. Proposition. The (3, 1)-polygraph c2(Σ) is acyclic.

Remark. This result is already contained in [18], with a different proof and in a more general form:
the generating confluences of a convergent n-polygraph Σ form a homotopy basis of the (n,n − 1)-
category Σ>.

4.3.5. Corollary. A category with a finite convergent presentation is FDT3.

In particular, we recover Squier’s result: a monoid with a finite convergent presentation has finite deriva-
tion type, [42].

4.3.6. Example. Let C be a category. We consider the reduced standard presentation N C of C, equipped
with the rightmost normalisation strategy. The basis of generating confluences of N C has one 3-cell
µu,v,w for every composable non-identity 1-cells u, v and w of C. The shape of this 3-cell depends on
whether uv or vw is an identity or not:

• if neither uv nor vw is an identity:

ûvŵ γuv,w
�.

γu,v,w
��

ûv̂ŵ

γu,vŵ (<

ûγv,w
"6

ûvw

ûv̂w γu,vw

2F

• if uv is an identity, but not vw:

ŵ

γu,v,w
��

ûv̂ŵ

γu,vŵ &:

ûγv,w
#7 ûv̂w

γu,vw

Th
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4. Polygraphic resolutions from convergent presentations

• if uv is not an identity, but vw is:

ûvŵ

γuv,w

w�

γu,v,w
��

ûv̂ŵ

γu,vŵ ';

ûγv,w
$8 û

• if uv and vw are identities, and thus u = uvw = w:

ûv̂ŵ

γu,vŵ

�/

ûγv,w

1Eû = ŵγu,v,w
��

The basis of generating confluences in the case of the leftmost normalisation strategy has the same 3-
cells, with source and target reversed.

4.4. The acyclic (4, 1)-polygraph of generating triple confluences

Let Σ be a reduced and convergent 2-polygraph.

4.4.1. Triple branchings of 2-polygraphs. A triple branching of Σ is a triple (f, g, h) of 2-cells of Σ∗

with the same source and such that f � g � h. The triple branching (f, g, h) is local when f, g and h
are rewriting steps. A local triple branching (f, g, h) is:

• aspherical when either (f, g) or (g, h) is aspherical,

• Peiffer when either (f, g) or (g, h) is Peiffer,

• overlapping, otherwise.

Triple branchings are ordered by inclusion, similarly to branchings. A critical triple branching is a
minimal overlapping triple branching. Such a triple branching can have two different shapes, whereϕ,ψ
and χ are generating 2-cells :

u1
//

��
u2 // BBu3 //

��
u4 // v

//

ϕ
EY

ψ
��

χ
EY

or
u1
//

��
u2 // BB

u3
// u4 //

��

v
//

ϕ
EY

ψ
��

χ
EY

Those two shapes of critical triple branchings are sufficient for a reduced 2-polygraph but, in a general
situation, the other possible type of critical branchings (with an inclusion of one source into the other
one) generates several other possibilities. Either way, if Σ is finite, then it has a finite number of critical
triple branchings.
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4.4. The acyclic (4, 1)-polygraph of generating triple confluences

For both possible shapes, the corresponding critical triple branching b can be written

b =
(
cv̂, ρuv̂

)
=
(
fv̂, ρuv̂, ρuv̂

)
where c = (f, ρu) is a critical branching of Σ with source u = u1u2u3u4 and where ρu = u1ψ. Indeed,
we note that v must be a normal form for Σ to be reduced. Moreover, in the first case, we have f = ϕu4
and ρuv̂ = u1u2χ and, in the second case, we have f = ϕu3u4 and ρuv̂ = u1u2u3χ.

4.4.2. The basis of generating triple confluences. The basis of generating triple confluences of Σ is
the cellular extension c3(Σ) of c2(Σ)> made of one 4-cell

ûv̂ σûv̂

�,
uv̂

f∗v̂  4

σ∗uv̂

2F

σuv̂

'; ûv

ωcv̂
�#

σ∗σ∗uv̂��

ωb
�?

ûv̂
σûv̂

�#
uv̂

f∗v̂
-A

σuv̂

(< ûv

σ∗f∗v̂��

for every critical triple branching b = (fv̂, ρuv̂, ρuv̂) of Σ, where c = (f, ρu) is a critical branching of Σ.
Using the notations ( · )∗ and ·̂ for 2-cells and 3-cells, the 4-cellωb can also be written

uv̂

(f∗v̂)∗

�+

(f̂v)∗

4Hûv
ωb

�? uv̂

(f∗v̂)∗

�+

(f̂v)∗

4Ĥuv.(ωcv̂)
∗

��
ω̂cv

∗

��

4.4.3. Lemma. The rightmost normalisation strategy of Σ extends to a right normalisation strategy
of c3(Σ).

Proof. Let us define a 4-cell

σ∗ωcŵ : (ωcŵ)
∗ �? ω̂cw

∗

of c3(Σ)> for every 3-cell ωc of c2(Σ) and every 1-cell w in Σ such that ωcŵ exists. Let us denote
by v the source of the critical branching c of Σ and by f the rewriting step of Σ with source v such that
the critical branching c is (f, ρv). We proceed by case analysis on the type of the local triple branching
b = (fŵ, ρvŵ, ρvŵ).

• If b is aspherical, then ρvŵ = ρvŵ. In that case, we define σ∗ωbŵ = 1(ωbŵ)∗ .

• By hypothesis, the triple branching b cannot be a Peiffer one.

• Otherwise, we have ŵ = ŵ1ŵ2 and b1 = (fŵ1, ρvŵ1, ρvŵ1) is a critical triple branching of Σ.
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4. Polygraphic resolutions from convergent presentations

We define the 4-cell σ∗ωcŵ as the following composite in c3(Σ)>:

v ′ŵ

σv ′ŵ1ŵ2

�3

σv ′ŵ

�0
vŵ

fŵ
)=

ρvŵ1ŵ2 !5

v̂w1ŵ2 σv̂w1ŵ2 %9 v̂w

w ′ŵ2

σw ′ŵ2

+?

σw ′ŵ2

/C

(σ∗σv ′ŵ1 ŵ2
)−��

σ∗σw ′ ŵ2
��

(ωcŵ1)
∗ŵ2��

ω̂cw
∗
1ŵ2 ��

ωb1ŵ2
�?

We apply Corollary 3.3.5 to extend the family of 4-cells we have defined to a right normalisation strategy
of c3(Σ).

4.4.4. Proposition. The (4, 1)-polygraph c3(Σ) is acyclic.

4.4.5. Corollary. A category with a finite convergent presentation is FDT4.

4.4.6. Example. In the case of the reduced standard presentation N C of a category C, the basis of
generating triple confluences (for the rightmost normalisation strategy) has one 4-cell µu,v,w,x for every
composable non-identity 1-cells u, v,w and x of C. The shape of the 4-cell µu,v,w,x depends on whether
uv, vw, wx, uvw and vwx are identities or not. In the case where neither of these 1-cells is an identity,
the corresponding 4-cell is the following one:

ûvŵx̂
µuv,wx̂ %9

µu,v,wx̂

ûvwx̂
µuvw,x

�*

ûvŵx̂
µuv,wx̂ %9

ûvµw,x
�*

ûvwx̂
µuvw,x

�+
ûv̂ŵx̂

µu,vŵx̂
4H

ûµv,wx̂ %9

ûv̂µw,x �*

ûv̂wx̂

µu,vwx̂

4H

ûµvw,x
�*

µu,vw,x ûvwx
µu,v,w,x

�? ûv̂ŵx̂

µu,vŵx̂
4H

ûv̂µw,x �*

c© ûvŵx µuv,wx %9

µuv,w,x

µu,v,wx

ûvwx.

ûv̂ŵx
ûµv,wx

%9

ûµv,w,x

ûv̂wx

µu,vwx

4H

ûv̂ŵx

µu,vŵx

4H

ûµv,wx
%9 ûv̂wx

µu,vwx

3G

4.5. The polygraphic resolution generated by a convergent 2-polygraph

Let Σ be a reduced and convergent 2-polygraph and let us extend it into an acyclic (∞, 1)-polygraph,
i.e., a polygraphic resolution of the category Σ. This (∞, 1)-polygraph is denoted by c∞(Σ) and its
generating (n+ 1)-cells, for n ≥ 2, are (indexed by) the n-fold critical branchings of Σ. We proceed by
induction on n, having already seen the base cases, for n = 2 and n = 3. The induction case follows the
construction of the acyclic (4, 1)-polygraph c3(Σ), so we go faster here.

4.5.1. Higher branchings of 2-polygraphs. Ann-fold branching of Σ is a family (f1, . . . , fn) of rewrit-
ing steps of Σ with the same source and such that f1 � · · · � fn. We define local, aspherical, Peiffer,
overlapping, minimal and critical n-fold branchings in a similar way to the cases n = 2 and n = 3. As
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4.5. The polygraphic resolution generated by a convergent 2-polygraph

before, we study the possible shapes of an n-fold critical branching b of Σ and we conclude that it must
have shape

b =
(
cv̂, ρuv̂

)
where c is a critical (n−1)-fold branching of Σwith source u. Moreover, if Σ is finite, then it has finitely
many n-fold critical branchings.

4.5.2. The basis of generating n-fold confluences. The basis of generating n-fold confluences of Σ is
the cellular extension cn(Σ) of cn−1(Σ)> made of one (n+ 1)-cell

ωb :
(
ωcv̂

)∗ −→ ω̂cv
∗

for every critical n-fold branching b = (cv̂, ρuv̂) of Σ.
The extension of the right normalisation strategy to cn(Σ) is made in the same way as in the case

n = 3. It relies on a Corollary 3.3.5 and a case analysis, whose main point is to define an (n+ 1)-cell

σ∗ωcŵ : (ωcŵ)
∗ −→ ω̂cw

∗

in cn(Σ)> for every local n-fold branching

b =
(
cŵ, ρvŵ

)
of Σ such that ŵ = ŵ1ŵ2 and such that b1 = (cŵ1, ρvŵ1) is a critical n-fold branching of Σ. As in the
case n = 3, we define the (n+ 1)-cell σ∗ωcŵ as the following composite, where f is the first 2-cell of the
critical n-fold branching c:

v ′ŵ

σv ′ŵ1ŵ2
�.

ωb1ŵ2

σv ′ŵ

�0
vŵ

fŵ
-A

ρvŵ1ŵ2 �0

v̂w1ŵ2 σv̂w1ŵ2 %9 v̂w

w ′ŵ2

σw ′ŵ2

0D

σw ′ŵ2

.B

(σ∗σv ′ŵ1 ŵ2
)−��

σ∗σw ′ ŵ2��

As a conclusion of this construction, we get that the (n+ 1, 1)-polygraph cn(Σ) is acyclic.

4.5.3. Theorem. Every convergent 2-polygraph Σ extends to a Tietze-equivalent, acyclic (∞, 1)-poly-
graph c∞(Σ), whose generating n-cells, for every n ≥ 3, are (indexed by) the critical (n − 1)-fold
branchings of Σ.

As a consequence, we get:

4.5.4. Corollary. A category with a finite convergent presentation is FDT∞. Moreover, if C is a category
with a convergent presentation with no critical n-fold branching, for some n ≥ 2, then dpol(C) ≤ n.

4.5.5. Example. If N C is the reduced standard presentation of a category C, we have already built
the dimensions 3 and 4 of the (∞, 1)-polygraph c∞(N C), called the reduced standard polygraphic
resolution of C.
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5. Abelianisation of polygraphic resolutions

More generally, the (∞, 1)-polygraph c∞(N C) has, for every natural number n ≥ 2, one n-cell
µu1,...,un for every family (u1, . . . , un) of non-identity composable 1-cells of C. The shape of this cell
depends on the partial compositions of the 1-cells u1, . . . , un.

In the case where no such partial composition is an identity, we get an n-cell with the same shape as
an n-simplex, representing all the possible ways to transform û1 · · · ûn into ̂u1 · · ·un, all the homotopies
between these different ways, all homotopies between these homotopies, and so on. Indeed, we have
seen that each 2-cell µu,v : ûv̂ ⇒ ûv is represented by a triangle, each 3-cell µu,v,w is pictured as a
tetrahedron and each 4-cell µu,v,w,x as a 4-simplex. More generally, the source and the target of this
n-cell are (n− 1)-composites of the following (n− 1)-cells:

di(u1, . . . , un) =


û1µu2,...,un if i = 0
µu1,...,uiui+1,...,un if 1 ≤ i ≤ n− 1

µu1,...,un−1ûn if i = n.

More precisely, the n-cell µu1,...,un has the same shape as an n-oriental, the higher-categorical equivalent
of an n-simplex, see [44].

5. ABELIANISATION OF POLYGRAPHIC RESOLUTIONS

Let us fix a category C.

5.1. Resolutions of finite type

5.1.1. Modules over a category, [35]. A C-module is a functor from C to the category of Abelian
groups Ab. The C-modules and natural transformations between them form an Abelian category with
enough projectives, denoted by Mod(C). Equivalently, Mod(C) can be described as the category of
additive functors from ZC to Ab, where ZC is the free Z-category over C: its 0-cells are the ones of C
and each hom-set ZC(x, y) is the free Abelian group generated by C(x, y).

A C-module M is free when it is a coproduct of representable functors ZC(x,−) and it is finitely
generated if there exists an epimorphism of C-modules F�M, with F free.

LetM be a Co-module andN be a C-module. The tensor product ofM andN over C is the Abelian
groupM⊗C N defined as the coend

M⊗C N =

x∈C0∫
M(x) ⊗Z N(x).

In a more explicit way, we have:

M⊗C N =

⊕
x∈C0

M(x)⊗Z N(x)

 /
Q

where Q is the subgroup of
⊕
x∈C0

M(x)⊗Z N(x) generated by the elements

M(u)(a)⊗ b− a⊗N(u)(b),

for any possible 1-cell u : x→ y of C and any elements a ofM(y) and b of N(x).
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5.1. Resolutions of finite type

5.1.2. Modules of finite homological type. A C-module M is of homological type FPn, for a natural
number n, when there exists a partial resolution of M of length n by projective, finitely generated C-
modules:

Pn // Pn−1 // · · · // P0 //M // 0.

A C-module M is of homological type FP∞ when there exists a resolution of M by projective, finitely
generated C-modules:

· · · // Pn // Pn−1 // · · · // P0 //M // 0.

As a generalisation of Schanuel’s lemma, we have, given two exact sequences

0 // Pn+1 // Pn // · · · // P0 //M // 0

and
0 // P ′n+1

// P ′n // · · · // P ′0
//M // 0

of projective C-modules, with Pi and P ′i finitely generated for every 0 ≤ i ≤ n, then Pn is finitely gener-
ated if and only if P ′n is finitely generated. This yields the following characterisation of the property FPn:

5.1.3. Lemma. Let M be a C-module and let n be a natural number. The following assertions are
equivalent:

i) The C-moduleM is of homological type FPn.

ii) There exists a free, finitely generated partial resolution ofM of length n:

Fn // Fn−1 // · · · // F0 //M // 0.

iii) The C-module M is finitely generated and, for every 0 ≤ k < n and every projective, finitely
generated partial resolution ofM of length k

Pk
dk
// Pk−1 // · · · // P0 //M // 0,

the C-module Ker dk is finitely generated.

5.1.4. Lemma. Let D be a category, let F : C→ D be a functor and let LanF : Mod(C)→ Mod(D) be
the additive left Kan extension along F. IfM is a C-module of homological type FPn then LanF(M) is a
D-module of homological type FPn.

Proof. Let us assume thatM is a C-module of type FPn. Then there exists a projective, finitely generated
partial resolution P∗ →M of length n. If x is a 0-cell in D, then we have:

LanF(M)(x) = ZD(F, x)⊗C M.

Since each C-module Pi is finitely generated and projective, then so is the D-module LanF(Pi). Moreover,
the functor LanF is right-exact: it follows that LanF(P∗) → LanF(M) is a projective, finitely generated
partial resolution of length n. This proves that LanF(M) is of type FPn.
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5. Abelianisation of polygraphic resolutions

5.2. Categories of finite homological type

5.2.1. Natural systems of Abelian groups. The category of factorisations of C is the category, denoted
by FC, whose 0-cells are the 1-cells of C and whose 1-cells fromw tow ′ are pairs (u, v) of 1-cells of C
such that the following diagram commutes in C:

· w // ·
v

��

·

u
@@

w ′
// ·

c©

In such a situation, the triple (u,w, v) is called a factorisation of w ′. Composition in FC is defined
by pasting, i.e., if (u, v) : w → w ′ and (u ′, v ′) : w ′ → w ′′ are 1-cells of FC, then the composite
(u, v)(u ′, v ′) is (u ′u, vv ′):

· w // ·
v

��

·

u
@@

w ′ // ·
v ′

��

·

u ′
@@

w ′′
// ·

c©

c©

The identity of w is (1s(w), 1t(w)):

· w // ·
1t(w)

��

·

1s(w)
@@

w ′
// ·

c©

A natural system (of Abelian groups) on C is an FC-module D, i.e., a functor D : FC → Ab. As in [7],
we denote by Dw the Abelian group which is the image of w by D. If there is no confusion, we denote
by uav the image of a ∈ Dw through the morphism of groups D(u, v) : Dw → Dw ′ . The category of
natural systems on C is denoted by Nat(C).

5.2.2. Free natural systems. Given a family X of 1-cells of C, we denote by FC[X] the free natural
system on C generated by X, which is defined by

FC[X] =
⊕
x∈X

FC(x,−).

In particular, if Σ is an (n, 1)-polygraph such that Σ ' C, we consider:

• The free natural system FC[Σ0] generated by the 1-cells 1x, for x ∈ Σ0: if w is a 1-cell in C, then
FC[Σ0]w is the free Abelian group generated by the pairs (u, v) of 1-cells of C such that uv = w.

• For every 1 ≤ k ≤ p, the free natural system FC[Σk] generated by a copy of the 1-cell ϕ for each
k-cellϕ of Σk: ifw is a 1-cell in C, then FC[Σk]w is the free Abelian group generated by the triples
(u,ϕ, v), thereafter denoted by u[ϕ]v, made of a k-cell ϕ of Σk and 1-cells u, v of C such that
uϕv = w.
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5.2. Categories of finite homological type

5.2.3. Categories of finite homological type. The property for a category C to be of homological type
FPn is defined according to a category of modules over one of the categories in the following diagram

Co ++ q1
��

FC π
// // Co × C

p1 22 22

p2 -- --

C>

C 22 q2

BB

where C> is the groupoid generated by C, π is the projection u 7→ (s(u), t(u)), p1 and p2 are the
projections of the cartesian product, q1 and q2 are the injections uo 7→ u− and u 7→ u.

Let us denote by Z the constant natural system on C given, for any 1-cell u of C, by

Zu = Z and Z(u, 1) = Z(1, u) = IdZ .

Let ZC denote the Co × C-module ZC whose component at (x, y) is the free Z-module ZC(x, y) gen-
erated by C(x, y).

A category C is of homological type

i) FPn when the constant natural system Z is of type FPn,

ii) bi-FPn when the Co × C-module ZC is of type FPn,

iii) left-FPn when the constant C-module Z is of type FPn,

iv) right-FPn when the constant Co-module Z is of type FPn,

v) top-FPn when the constant C>-module Z is of type FPn.

5.2.4. Proposition. For categories, we have the following implications:

right-FPn
�/

FPn %9 bi-FPn

*>

!5

top-FPn.

left-FPn

/C

Proof. We have the following left Kan extensions:

Lanπ(Z) = ZC Lanpi(Z) = Z Lanqi(Z) = Z.

Hence the implications are consequences of Lemma 5.1.4.

5.2.5. Converse implications. The converse of the implications bi-FPn⇒ left/right-FPn and left/right-
FPn ⇒ top-FPn of Proposition 5.2.4 does not hold in general. Indeed, Cohen constructed a right-FP∞
monoid which is not left-FP1: thus, the properties top-FPn, left-FPn and right-FPn are not equivalent in
general, [12]. Moreover, monoids with a finite convergent presentation are of types left-FP∞ and right-
FP∞, [41, 1, 21], but there exists a finitely presented monoid, of types left-FP∞ and right-FP∞, which
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5. Abelianisation of polygraphic resolutions

does not satisfy the homological finiteness condition FHT, introduced by Pride and Wang, [22]; since
the properties FHT and bi-FP3 are equivalent, [23], it follows that the properties left-FPn and right-FPn
do not imply the property bi-FPn in general. We conjecture that the converse of the first implication
is not true either, but this is still an open problem. However, in the special case of groupoids, all the
implications are equivalences.

5.2.6. Proposition. For groupoids, the properties FPn, bi-FPn, left-FPn, right-FPn and top-FPn are
equivalent.

Proof. If G is a groupoid, then the groupoid G> generated by G is G itself. Hence, the properties left-
FPn and top-FPn are equivalent. As a consequence, it is sufficient to prove that left-FPn implies FPn to
conclude the proof.

Given a G-module M, we denote by M̃ the natural system of G defined, on a 1-cell w : x → y

of G, by M̃w = M(y) and, on a factorisation w ′ = uwv with w : x → y and w ′ : x ′ → y ′ in G, by
M̃(u, v) =M(v) :M(y)→M(y ′). Let us assume that M is a projective G-module, i.e., there exists a
family X of 1-cells of G and a surjective morphism of groups

⊕
x∈X

ZG(x, y)
πy

// //M(y)

that is natural in y. Let us denote by L the natural system on G defined, on a 1-cell u with target y, by

Lu =
⊕
x∈X

ZFG(1x, 1y).

For fixed 0-cells x and y of G, the set FG(1x, 1y) is the one of pairs (u, v) of 1-cells of G such that
u1xv = 1y. Because G is a groupoid, this is exactly the set of pairs (v−, v) where v : x → y is a 1-cell
of G. Hence, we have a bijection between G(x, y) and FG(1x, 1y) that is natural in y. This gives, for
any 1-cell u with target y in G, a surjective morphism of groups

Lu =
⊕
x∈X

ZG(x, y)
πt(u)

// //M(y) = M̃(u).

Moreover, one checks that this is natural in u, yielding an epimorphism πt(−) : L � M̃ of natural
systems on G, proving that M is projective. Moreover, by construction, if M is finitely generated, then
we can choose the family X to be finite, so that M̃ is finitely generated too.

As a conclusion, from a partial resolution P∗ � Z of length n by projective and finitely generated
G-modules, we can build a partial resolution P̃∗ � Z of length n by projective and finitely generated
natural systems on G. Thus, the property left-FPn implies the property FPn for groupoids.

5.2.7. Finite homological type and homology. The cohomology of categories with values in natural
systems was defined in [47] and [7]. One can also define the homology of a category C with values in a
contravariant natural system D on C, that is an (FC)o-module, and relate its finiteness properties to the
fact that C is FPn. Note that this is independent of the rest of this article.
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5.3. The Reidemeister-Fox-Squier complex

We consider the nerve N∗(C) of C, with boundary maps di : Nn(C) → Nn−1(C), for 0 ≤ i ≤ n.
For s = (u1, . . . , un) in Nn(C), we denote by s the composite 1-cell u1 · · ·un of C. For every natural
number n, the n-th chain group Cn(C, D) is defined as the Abelian group

Cn(C, D) =
⊕

s∈Nn(C)

Ds.

We denote by ιs the embedding of Ds into Cn(C, D). The boundary map d : Cn(C, D)→ Cn−1(C, D)
is defined, on the component Ds of Cn(C, D), by:

dιs = ιd0(s)u1∗ +

n−1∑
i=1

(−1)iιdi(s) + (−1)nιdn(s)u
∗
n ,

with s = (u1, . . . , un) and where u1∗ and u∗n respectively denoteD(u1, 1) andD(1, un). The homology
of C with coefficients in D is defined as the homology of the complex (C∗(C, D), d∗):

H∗(C, D) = H∗(C∗(C, D), d∗).

We denote by TorFC∗ (D,−) the left derived functor from the functor D ⊗FC −. One proves that there is
an isomorphism which is natural in D:

H∗(C, D) ' TorFC∗ (D,Z).

As a consequence, using Lemma 5.1.3, we get:

5.2.8. Proposition. If a category C is of homological type FPn, for a natural number n, then the Abelian
group Hk(C,Z) is finitely generated for every 0 ≤ k ≤ n.

5.3. The Reidemeister-Fox-Squier complex

Let Σ be an (n, 1)-polygraph. The mapping of every 1-cell x of Σ to the element [x] of FΣ[Σ1]x is
extended to associate to every 1-cell u of Σ∗1 the element [u] of FΣ[Σ1]u, defined by induction on the size
of u as follows:

[1x] = 0 and [uv] = [u]v+ u[v].

This is well-defined since the given relations are compatible with the associativity and identity relations
of Σ∗1. Note that the mapping [·] is a special case of the notion of derivation of the category Σ∗1 into the
natural system FΣ[Σ1] on Σ, seen as a natural system on Σ∗1 by composition with the canonical projection
Σ∗1 � Σ, see [7].

Then, for 1 < k ≤ n, the mapping of every k-cell α of Σ to the element [α] of FΣ[Σk]α is extended
to associate to every k-cell f of Σ>k the element [f] of FΣ[Σk]f, defined by induction on the size of f as
follows:

[1u] = 0 [f−] = −[f] [f ?i g] =

{
[f]g+ g[f] if i = 0
[f] + [g] otherwise.

Here, to check that this is well-defined, we also have to show that this definition is compatible with
exchange relations, for every 0 ≤ i < j ≤ k:

[(f ?i g) ?j (h ?i k)] = [(f ?j h) ?i (g ?j k)] =

{
[f]g+ f[g] + [h]k+ h[k] if i = 0
[f] + [g] + [h] + [k] otherwise.
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5. Abelianisation of polygraphic resolutions

5.3.1. The Reidemeister-Fox-Squier complex. Let Σ be an (n, 1)-polygraph. For 1 ≤ k ≤ n, the k-th
Reidemeister-Fox-Squier boundary map of Σ is the morphism of natural systems

δk : FΣ[Σk] −→ FΣ[Σk−1]

defined, on the generator [α] corresponding to a k-cell α of Σ, by:

δk[α] =

{
(α, 1) − (1, α) if k = 1

[s(α)] − [t(α)] otherwise.

The augmentation map of Σ is the morphism of natural systems ε : FΣ[Σ0] → Z defined, for every pair
(u, v) of composable 1-cells of Σ, by:

ε(u, v) = 1.

By induction on the size of cells of Σ>, one proves that, for every k-cell f in Σ>, with k ≥ 1, the
following holds:

δk[f] =

{
(f, 1) − (1, f) if k = 1

[s(f)] − [t(f)] otherwise.

As a consequence, we have εδ1 = 0 and δkδk+1 = 0, for every 1 ≤ k < n. Thus, we get the following
chain complex of natural systems on Σ, called the Reidemeister-Fox-Squier complex of Σ and denoted
by FΣ[Σ]:

FΣ[Σn]
δn
// FΣ[Σn−1]

δn−1
// · · ·

δ2
// FΣ[Σ1]

δ1
// FΣ[Σ0]

ε
// Z // 0.

The terminology is due to the fact that this complex is inspired by constructions by Reidemeister, Fox
and Squier, see [40, 15, 41]. In particular, the Fox Jacobian used by Squier is the boundary map δ2,
sending every 2-cell f : u⇒ v, i.e., every relation u = v of the presentation Σ2, to the element [u] − [v]
of FΣ[Σ1]u.

5.4. Abelianisation of polygraphic resolutions

Let us fix a partial polygraphic resolution Σ of length n ≥ 1 of the category C.

5.4.1. Contracting homotopies. Since Σ is acyclic, it admits a left normalisation strategy σ. We denote
by σk, for −1 ≤ k ≤ p, the following families of morphisms of groups, indexed by a 1-cell w of C:

(σ−1)w : Z −→ FC[Σ0]w
1 7−→ (1,w)

(σ0)w : FC[Σ0]w −→ FC[Σ1]w
(u, v) 7−→ [û]v

(σk)w : FC[Σk]w −→ FC[Σk+1]w
u[x]v 7−→ [σûx]v

5.4.2. Lemma. For every k ∈ {1, . . . , n− 1}, every k-cell f of Σ> and every 1-cells u and v of C such
that ufv exists, we have:

σk(u[f]v) = [σûf]v.
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5.4. Abelianisation of polygraphic resolutions

Proof. We proceed by induction on the size of f. If f = 1w, for some (k − 1)-cell w of Σ>, then we
have, on the one hand,

σk(u[1w]v) = σk(0) = 0

and, on the other hand,
[σ1ûw ]v = [11ûw ]v = 0.

If f has size 1, then the result holds by definition of σk. Let us assume that f = gh, where g and h are
non-identity k-cells of Σ>. Then we use the induction hypothesis on g and h to get, on the one hand:

σk(u[gh]v) = σk(u[g]hv) + σk(ug[h]v) = [σûg]hv+ [σ
ûgh

]v.

On the other hand, since σ is a left normalisation strategy, we have:

[σûgh]v =
[
σûgs1(h) ?1 σûgh

]
v = [σûg]hv+ [σ

ûgh
]v.

Finally, let us assume that f = g ?i h, where g and h are non-identity k-cells of Σ> and i ≥ 1. Then we
get:

σk(u[g ?i h]v) = σk(u[g]v) + σk(u[h]v) = [σûg]v+ [σûh]v.

And we also have:

[σû(g?ih)]v = [σûg?iûh]v = [σûg ?i σûh]v = [σûg]v+ [σûh]v.

5.4.3. Theorem. If Σ is a (partial) polygraphic resolution (of length n) of a category C, then the
Reidemeister-Fox-Squier complex FC[Σ] is a free (partial) resolution (of length n) of the constant natural
system Z on C.

Proof. Let us prove that σ∗ is a contracting homotopy. Each (σ−1)w is a section of εw, hence ε is an
epimorphism of natural systems. By linearity of the boundary and section maps, it is sufficient to check
the relation

δ1σ0(u, v) = (u, v) − (1, uv) = (u, v) − σ−1ε(u, v),

on a generator (u, v) of FC[Σ0]w to get the exactness of FC[Σ] at FC[Σ0]. Then, on a generator u[x]v of
FC[Σ1]w, we compute

δ2σ1(u[x]v) = δ2([σûx])v = [ûx]v− [ûx]v = [û]xv+ u[x]v− [ûx]v.

and
σ0δ1(u[x]v) = σ0(ux, v) − σ0(u, xv) = [ûx]v− [û]xv.

Hence, using the linearity of the boundary and section maps, we get δ2σ1 + σ0δ1 = 1FC[Σ1], proving
exactness at FC[Σ1]. Finally, for k ∈ {2, . . . , p− 1} and a generator u[α]v of FC[Σk]w, we have:

δk+1σk(u[α]v) = δk+1[σûα]v

= [ûα]v− [σûs(α) ?k−1 σ
−
ût(α)]v

= u[α]v− [σûs(α)]v+ [σût(α)]v

= u[α]v− σk−1(u[sα]v) + σk−1(u[tα]v)

= u[α]v− σk−1δk(u[α]v).

Thus, by linearity of the boundary and section maps, we get δk+1σk + σk−1δk = 1FC[Σk], proving exact-
ness at FC[Σk] and concluding the proof.
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5. Abelianisation of polygraphic resolutions

By construction, if Σ is a finite (n, 1)-polygraph, then each FΣ[Σk] is finitely generated. In particular,
every category with a finite number of 0-cells is of homological type FP0 and every category that is
finitely generated (resp. presented) is of homological type FP1 (resp. FP2). More generally, we have the
following result, generalising the fact that a finite derivation type monoid is of homological type FP3,
see [13, 39]:

5.4.4. Corollary. For categories, the property FDTn implies the property FPn, for every 0 ≤ n ≤∞.

Finally, as a consequence of Theorem 4.5.3, we get:

5.4.5. Corollary. If a category admits a finite and convergent presentation, then it is of homological
type FP∞.

5.4.6. Example. Let C be a category. The Reidemeister-Fox-Squier complex corresponding to the re-
duced standard polygraphic resolution c∞(N C) of C is (isomorphic to) the following one

· · ·
δn+1

// FC[Cn]
δn
// FC[Cn−1]

δn−1
// · · ·

δ2
// FC[C1]

δ1
// FC[C0]

ε
// Z // 0

where Cn is the set of composable non-identity 1-cells u1, . . . , un of C. The differential map is given,
on a generator [u1, . . . , un], by:

δ[u1, . . . , un] =

n∑
i=0

(−1)n−i[di(u1, . . . , un)]

= (−1)nu1[u2, . . . , un] +

n−1∑
i=1

(−1)n−i[u1, . . . , uiui+1, . . . , un] + [u1, . . . , un−1]un .

5.5. Homological syzygies and cohomological dimension

5.5.1. Homological syzygies. For every k in {1, . . . , p+ 1}, the kernel of δk is denoted by hk(Σ) and
called the natural system of homological k-syzygies of Σ. The kernel of ε is denoted by h0(Σ) and called
the augmentation ideal of Σ.

When Σ0 is finite, then the natural system h0(Σ) is finitely generated if, and only if, the category Σ
has homological type FP1. If Σ is a generating 1-polygraph for a category C, one checks that h0(C) is
generated by the set {(x, 1) − (1, x) | x ∈ Σ1}. Thus a category has homological type FP1 if, and only if,
it is finitely generated.

From Theorem 5.4.3, we get a characterisation of the homological properties FPn in terms of poly-
graphic resolutions:

5.5.2. Proposition. Let C be a category and Σ be a partial finite polygraphic resolution of C of length n.
If the natural system hn(Σ) of homological n-syzygies of Σ is finitely generated, then C is of homological
type FPn+1.

Theorem 5.4.3 also gives a description of homological n-syzygies in terms of critical n-fold branchings
of a convergent presentation:
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5.6. Homological syzygies and identities among relations

5.5.3. Proposition. Let C be a category with a convergent presentation Σ. Then, for every n ≥ 2, the
natural system hn(Σ) of homological n-syzygies of Σ is generated by the elements

δn+1[ωb] = [(ωcv̂)
∗] − [ω̂cv

∗]

where b = (cv̂, ρuv̂) ranges over the critical n-fold branchings of Σ.

5.5.4. Cohomological dimension. Finally, Theorem 5.4.3 gives the following bounds for the cohomo-
logical dimension of a category. We recall that the cohomological dimension of a category C, is defined,
when it exists as the lowest 0 ≤ n ≤∞ such that the constant natural system Z on C admits a projective
resolution

0 // Pn // · · · // P1 // P0 // Z // 0.

In that case, the cohomological dimension of C is denoted by cd(C). In particular, when C is free, then
we have cd(F) ≤ 1, see [7].

5.5.5. Proposition. The cohomological dimension of a category C admits the following upper bounds:

i) The inequality cd(C) ≤ dpol(C) holds.

ii) If C admits an aspherical partial polygraphic resolution of length n, then cd(C) ≤ n.

iii) If C admits a convergent presentation with no critical n-fold branching, then cd(C) ≤ n.

5.6. Homological syzygies and identities among relations

In [19], the authors have introduced the natural system of identities among relations of an n-polygraph Σ.
If Σ is a convergent 2-polygraph, this natural system on Σ is generated by the critical branchings of Σ. In
Proposition 5.5.3, we have seen that this is also the case of the natural system of homological 2-syzygies
of Σ. In this section, we prove that, more generally, the natural systems of homological 2-syzygies and
of identities among relations of any 2-polygraph are isomorphic.

5.6.1. Natural systems on n-categories. We recall from [18], that a context of an n-category C is an
n-cell C of the n-category C[x], where x is an (n− 1)-sphere of C, and such that C contains exactly one
occurrence of the n-cell x of C[x]. Such a context admits a (generally non-unique) decomposition

C = fn ?n−1 (fn−1 ?n−2 (· · · ?1 f1 x g1 ?1 · · · ) ?n−2 gn−1) ?n−1 gn,

where, for every k in {1, . . . , n}, fk and gk are k-cells of C. The context C is a whisker of C if the n-cells
fn and gn are identities. If f is an n-cell of C with boundary x, one denotes by C[f] the n-cell of C
obtained by replacing x with f in C.

If Γ is a cellular extension of C, then every non-identity (n+ 1)-cell f of C[Γ ] has a decomposition

f = C1[ϕ1] ?n · · · ?n Ck[ϕk],

with k ≥ 1 and, for every i in {1, . . . , k}, ϕi in Γ and Ci a whisker of C[Γ ].
The category of contexts of C is denoted by Ct(C), its objects are the n-cells of C and its morphisms

from f to g are the contexts C of C such that C[f] = g holds. When C is a category, the category Ct(C)
of contexts of C is isomorphic to the category FC of factorisations of C. A natural system on C is a
Ct(C)-module, i.e., a functor D from Ct(C) to the category Ab of Abelian groups; we denote by Du and
by DC the images of an n-cell u and of a context C of C through the functor D.
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5. Abelianisation of polygraphic resolutions

5.6.2. Identities among relations. Let Σ be an n-polygraph, seen as an (n,n − 1)-polygraph. An n-
cell f of Σ> is closed when its source and target coincide. The natural system Π(Σ) on Σ of identities
among relations of Σ is defined as follows:

• If u is an (n − 1)-cell of Σ, the Abelian group Π(Σ)u is generated by one element bfc, for each
n-cell f : v⇒ v of Σ> such that v = u, submitted to the following relations:

– if f : v→ v and g : v→ v are n-cells of Σ>, with v = u, then

bf ?n−1 gc = bfc+ bgc ;

– if f : v→ w and g : w→ v are n-cells of Σ>, with v = w = u, then

bf ?n−1 gc = bg ?n−1 fc .

• If g = C[f] is a factorisation in Σ, then the morphism Π(Σ)C : Π(Σ)f → Π(Σ)g of groups is
defined by

Π(Σ)C(bfc) = bĈ[f]c,

where Ĉ is any representative context for C in Σ∗. We recall from [19] that the value of Π(Σ) does
not depend on the choice of Ĉ, proving that Π(Σ) is a natural system on Σ and allowing one to
denote this element of Π(Σ)g by Cbfc.

As consequences of the defining relations of each group Π(Σ)u, we get the following equalities:

b1uc = 0 bf−c = −bfc bg ?n−1 f ?n−1 g−c = bfc

for every n− 1-cell u and every n-cells f : u→ u and g : v→ u of Σ>.

5.6.3. Lemma. Let Σ be a 2-polygraph. For every closed 2-cell f of Σ>, we have [f] = 0 in FC[Σ2] if,
and only if, bfc = 0 holds in Π(Σ).

Proof. To prove that bfc = 0 implies [f] = 0, we check that the relations defining Π(Σ) are also satisfied
in FC[Σ2]. The first relation is given by the definition of the map [·]. The second relation is checked as
follows:

[f ?1 g] = [f] + [g] = [g] + [f] = [g ?1 f].

Conversely, let us consider a 2-cell f : w⇒ w in Σ> such that [f] = 0 holds. We decompose f into:

f = u1ϕ
ε1
1 v1 ?1 · · · ?1 upϕ

εp
p vp

where ϕi is a 2-cell of Σ, ui and vi are 1-cells of Σ>, εi is an element of {−,+}. Then we get:

0 = [f] =

p∑
i=1

εiui[ϕi]vi

Since FC[Σ2] is freely generated, as an FC-module, by the elements [ϕ] of FC[Σ2]ϕ, for ϕ a 2-cell of Σ,
this implies the existence of a self-inverse permutation τ of {1, . . . , p} such that the following relations
are satisfied:

ϕi = ϕτ(i) ui = uτ(i) vi = vτ(i) εi = −ετ(i).
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5.6. Homological syzygies and identities among relations

Let us denote, for every 1 ≤ i ≤ p, the source and target of ϕεii by wi and w ′i respectively. They satisfy
wi = w ′i . We also fix a section ·̂ and a left strategy σ for the 2-polygraph Σ. In particular, the section
satisfies û = v̂ for every 1-cells u and v such that u = v.

For every 1 ≤ i ≤ p, we denote by fi the following 2-cell of Σ>:

fi = σ−uiwivi ?1 uiϕ
εi
i vi ?1 σuiw ′ivi .

Using the facts that w is equal to both u1w1v1 and upw ′pvp and that uiw ′ivi is equal to ui+1wi+1vi+1
for every 1 ≤ i < p, we can write the 2-cell f of the (2, 1)-category Σ> as the following composite:

f = σw ?1 f1 ?1 f2 ?1 · · · ?1 fp ?1 σ−w.

As a consequence, we get:

bfc = bσ−w ?1 f ?1 σwc =

p∑
i=1

bfic.

In order to conclude this proof, it is sufficient to check that, for every 1 ≤ i ≤ p, we have the equality
bfτ(i)c = −bfic. Let us fix an i in {1, . . . , p} and let us compute bfic. Since σ is a left normalisation
strategy, we have

σuiwivi = σuiwivi ?1 σûiwivi ?1 σûiwivi

and, using the fact that ûiwi = ûiw
′
i ,

σuiw ′ivi = σuiw
′
ivi ?1 σûiw ′ivi ?1 σûiwivi .

This gives:

bfic = bσ−
ûiwivi

?1 σ
−
ûiwi

vi ?1 σ
−
ui
wivi ?1 uiϕ

εi
i vi ?1 σuiw

′
ivi ?1 σûiw ′ivi ?1 σûiwivic.

We can remove the final 2-cell σûiwivi and its inverse at the beginning of the composition, to get:

bfic = bσ−
ûiwi

vi ?1 σ
−
ui
wivi ?1 uiϕ

εi
i vi ?1 σuiw

′
ivi ?1 σûiw ′ivic.

Then, we use exchange relations to get:

bfic = bσ−
ûiwi

?1 ûiϕ
εi
i ?1 σûiw ′icvi.

Now, let us compute bfτ(i)c. We already know that ϕτ(i) = ϕi and ετ(i) = −εi. As a consequence, we
get wτ(i) = w ′i and w ′τ(i) = wi. Moreover, we have ûτ(i) = ûi, so that we have:

bfτ(i)c = bσ−
ûiwivτ(i)

?1 σ
−
ûiw

′
i
vτ(i) ?1 σ

−
ui
w ′ivτ(i)

?1 uτ(i)ϕ
−εi
i vτ(i) ?1 σuiwivτ(i) ?1 σûiwivτ(i) ?1 σûiwivτ(i)c.

We remove the 2-cell σûiwivτ(i) and its inverse and, then, we use exchange relations and vτ(i) = vi, in
order to get:

bfτ(i)c = bσ−
ûiw

′
i
?1 ûiϕ

−εi
i ?1 σûiwicvi = −bfic.

This implies bfc = 0, thus concluding the proof.
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5. Abelianisation of polygraphic resolutions

5.6.4. Lemma. Let Σ be a 2-polygraph. For every element a in h2(Σ), there exists a closed 2-cell f
in Σ> such that a = [f] holds.

Proof. Let w be the 1-cell of Σ such that a belongs to FΣ[Σ2]w and let Σ3 be a homotopy basis of the
(2, 1)-category Σ>. Since δ2(a) = 0, Theorem 5.4.3 implies the existence of an element b in FΣ[Σ3]w
such that a = δ3(b) holds. By definition of FΣ[Σ3]w, we can write

b =

p∑
i=1

εiui[αi]vi

with, for every 1 ≤ i ≤ p, αi in Σ3, ui and vi in Σ and εi in {−,+} such that uiαivi = w holds. We fix
a section ·̂ of Σ and we choose 2-cells

gi : ŵ ⇒ ûis1(α
εi
i )v̂i and hi : ûit1(α

εi
i )v̂i ⇒ ŵ.

Let A be the following 3-cell of Σ>3 :

A =
(
g1 ?1 û1α

ε1
1 v̂1 ?1 h1

)
?1 · · · ?1

(
gk ?1 ûkα

εk
k v̂k ?1 hk

)
.

By definition of [·] on 3-cells, we have

[A] =

p∑
i=1

[
gi ?1 ûiα

εi
i v̂i ?1 hi

]
=

p∑
i=1

(
[1gi ] + εiui[αi]vi + [1hi ]

)
= b.

Finally, we get:
a = δ3[A] = [s(A)] − [t(A)] = [s(A) ?1 t(A)

−].

Hence f = s(A) ?1 t(A)− is a closed 2-cell of Σ> that satisfies a = [f].

5.6.5. Theorem. For every 2-polygraph Σ, the natural systems of homological 2-syzygies and of identi-
ties among relations of Σ are isomorphic.

Proof. We define a morphism of natural systemsΦ : Π(Σ)→ h2(Σ) by

Φ
(
bfc
)
= [f] .

This definition is correct, since the defining relations of Π(Σ) also hold in FC[Σ2], hence in h2(Σ). Let
us check thatΦ is a morphism of natural systems. Indeed, we have

Φ(ubfcv) = Φ(bûfv̂c) = [ûfv̂] = u[f]v = uΦ(bfc)v

for every 2-cell f : w⇒ w in Σ> and 1-cells u, v in Σ such that ûfv̂ is defined.
Now, let us define a morphism of natural systems Ψ : h2(Σ)→ Π(Σ). Let a be an element of h2(Σ)w.

Then there exists a closed 2-cell f : u⇒ u such that a = [f] and w = u. We define

Ψ(a) = bfc.
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5.7. Abelian finite derivation type

This definition does not depend on the choice of f. Indeed, let us assume that g : v⇒ v is a closed 2-cell
such that a = [g] holds. It follows that v = w = u. Hence, we can choose a 2-cell h : u ⇒ v in Σ>.
Then we have:

a = [f] = [g] = [h ?1 g ?1 h
−].

As a consequence, we get:

[f ?1 h
− ?1 g

− ?1 h] = [f] − [h ?1 g ?1 h
−] = 0.

Thus
0 = bf ?1 h− ?1 g

− ?1 hc = bfc− bh ?1 g ?1 h
−c = bfc− bgc.

The relations ΨΦ = 1Π(Σ) and ΦΨ = 1h2(Σ) are direct consequences of the definitions ofΦ and Ψ.

5.7. Abelian finite derivation type

An (n,n− 1)-category C is Abelian if, for every (n− 1)-cell u of C, the group AutCu of closed n-cells of
C with source u is Abelian. The Abelian (n,n− 1)-category generated by C is the (n,n− 1)-category,
denoted by Cab and defined as the quotient of C by the cellular extension that contains one n-sphere

f ?n−1 g −→ g ?n−1 f

for every closed n-cells f and g of C with the same source.
One says that ann-polygraphΣ is of Abelian finite derivation type, FDTab for short, when the Abelian

(n,n− 1)-category Σ>ab admits a finite homotopy basis. In this section, we prove that an n-polygraph is
FDTab if, and only if, the natural system Π(Σ) of identities among relations of Σ is finitely generated.

In [19], it is proved that, given an n-polygraph Σ, there exists an isomorphism of natural systems on
the free (n− 1)-category Σ∗n−1:

Π(Σ)u ' AutΣ
>
ab
u .

In fact, this property characterises the natural system Π(Σ) on the (n−1)-category Σ up to isomorphism.
In [19], we also proved the following result.

5.7.1. Lemma ([19]). Let C be an (n,n− 1)-category and let B be a family of closed n-cells of C. The
following assertions are equivalent:

i) The cellular extension B̃ =
{
β̃ : β→ 1sβ, β ∈ B

}
of C is a homotopy basis.

ii) Every closed n-cell f in C has a decomposition

f =
(
g1 ?n−1 C1

[
βε11
]
?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gp ?n−1 Cp

[
β
εp
p

]
?n−1 g

−
p

)
(3)

with, for every 1 ≤ i ≤ p, βi in B, εi in {−,+}, Ci a whisker of C and gi an n-cell of C.

5.7.2. Proposition. An n-polygraph Σ is FDTab if, and only if, the natural system Π(Σ) on Σ is finitely
generated.
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5. Abelianisation of polygraphic resolutions

Proof. Let us assume that the n-polygraph Σ is FDTab. Then the Abelian (n,n− 1)-category Σ>ab has a
finite homotopy basis B. Let ∂B be the set of closed n-cells of Σ>ab defined by:

∂B =
{
∂β = s(β) ?n−1 t(β)

− , β ∈ B
}
.

By Lemma 5.7.1, any closed n-cell f in Σ>ab can be written

f =
(
g1 ?n−1 C1[∂β

ε1
1 ] ?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gp ?n−1 Cp[∂β

εp
p ] ?n−1 g

−
p

)
,

with, for every 1 ≤ i ≤ p, βi in B, εi in {−,+}, Ci a whisker of Σ> and gi an n-cell of Σ>. As a
consequence, for any identity among relations bfc in Π(Σ), we have:

bfc =

k∑
i=1

εibgi ?n−1 Ci[∂βi] ?n−1 g−i c =

k∑
i=1

εiCib∂βic.

Thus, the elements of b∂Bc form a generating set for the natural system Π(Σ). Hence Π(Σ) is finitely
generated.

Conversely, suppose that the natural system Π(Σ) is finitely generated. This means that there exists
a finite set B of closed n-cells of Σ>ab such that the following property is satisfied: for every (n− 1)-cell
u of Σ and every closed n-cell f with source v of Σ>ab such that v̂ = u, one can write

bfc =

p∑
i=1

εiCibβic

with, for every 1 ≤ i ≤ p, βi in B, Ci a whisker of Σ and εi an integer; moreover, each whisker Ci
is such that, for every representative Ĉi of Ci in Σ>ab, Ĉi[βi] is a closed n-cell of Σ>ab whose source vi
satisfies vi = v. We fix, for every i, an n-cell gi : v̂⇒ vi in Σ>. Then, the properties of Π(Σ) imply:

bfc =

p∑
i=1

bgi ?n−1 Ĉi[βεii ] ?n−1 g
−
i c

= b
(
g1 ?n−1 Ĉ1[β

ε1
1 ] ?n−1 g

−
1

)
?n−1 · · · ?n−1

(
gp ?n−1 Ĉp[β

εp
p ] ?n−1 g

−
p

)
c.

We use the isomorphism between Π(Σ)u and AutΣ
>
ab
v and Lemma 5.7.1 to deduce that the cellular exten-

sion B̃ =
{
β̃ : β→ 1sβ, β ∈ B

}
of Σ>ab is a homotopy basis. Thus Σ is FDTab.

In [19], the authors have proved that the property to be finitely generated for Π(Σ) is Tietze-invariant for
finite polygraphs: if Σ and Υ are two Tietze-equivalent finite n-polygraphs, then the natural system Π(Σ)
is finitely generated if, and only if, the natural system Π(Υ) is finitely generated.

By Proposition 5.7.2, we deduce that the property FDTab is Tietze-invariant for finite polygraphs,
so that one can say that an n-category is FDTab when it admits a presentation by a finite (n + 1)-
polygraph which is FDTab. In this way, the following result relates the homological property FP3 and the
homotopical property FDTab.

5.7.3. Theorem. Let C be a category with a finite presentation Σ. The following conditions are equiva-
lent:
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i) the category C is of homological type FP3,

ii) the natural system h2(Σ) on C is finitely generated,

iii) the natural system Π(Σ) on C is finitely generated,

iv) the category C is FDTab.

Proof. The equivalence between i) and ii) comes from the definition of the property FP3. The equivalence
between ii) and iii) is a consequence of Theorem 5.6.5. The last equivalence is given by Proposition 5.7.2.

In Corollary 5.4.4, we have seen that FDT3 implies FP3. We expect that the reverse implication is false
in general, which is equivalent to proving that FDTab does not imply FDT3, since FP3 is equivalent to
FDTab for finitely presented categories.

6. EXAMPLES

6.1. A concrete example of reduced standard polygraphic resolution

Let us denote by A the monoid with one non-unit element, a, and with product given by aa = a. The
standard presentation ofA, seen as a category, is the reduced and convergent 2-polygraph, denoted by As,
with one 0-cell (for 1), one 1-cell (for a) and one 2-cell aa ⇒ a. Here we use diagrammatic notations,
where a is denoted by a vertical string and the 2-cell aa ⇒ a is pictured as . The 2-polygraph As
has one critical branching: (

,
)
.

The corresponding generating confluence (for the rightmost normalisation strategy) is the 3-cell:

%9

By extending As with that 3-cell, one gets a finite, acyclic (3, 1)-polygraph, still denoted by As and which
is a partial polygraphic resolution of A of length 3. We conclude that the monoid A has the property
FDT3 and, thus, is of homological type FP3. In particular, the natural system h2(As) of homological
2-syzygies of As is generated by the following element:

δ3[ ] =
[ ]

−
[ ]

=
[ ]

+
[ ]

−
[ ]

−
[ ]

=
[ ]

a− a
[ ]

.

The 2-polygraph As has exactly one critical triple branching:

b =
(

, ,
)
.

This triple critical branching b has shape (fâ, gâ, ρuâ) with

f = and g = .
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6. Examples

We compute the 3-cells ωf,g, σ∗fâ and σ∗gâ, using their definitions and the properties of the rightmost
normalisation strategy σ, to get:

ωf,gâ = σ∗fâ = ?2 σ∗gâ = ?2 .

We fill the diagram definingωb = , obtaining:

%9

�%

%9

�% �%

9M

%9

�%

9M

�%

�?

9M

�%

c© %9

%9

9M 9M

%9

9M

Contracting one dimension, we see that the 4-cell is, in fact, Mac Lane’s pentagon, or Stasheff’s
polytope K4:

%9

��

�(

6J

�1

-A

We get a finite, acyclic (4, 1)-polygraph c3(As) which is a partial polygraphic resolution ofA of length 4,
proving that A has the property FDT4 and, as a consequence, that it is of homological type FP4. In
particular, the natural system h3(As) of homological 3-syzygies of As is generated by the following
element:

δ4[ ] =
[ ]

+
[ ]

+
[ ]

−
[ ]

−
[ ]

= [ ] + [ ] + [ ] − [ ] − [ ]

= a [ ] − [ ] + [ ]a.

Iterating the process, we get a resolution of A by an acyclic (∞, 1)-polygraph c∞(As). For every nat-
ural number, c∞(As) has exactly one n-cell, whose shape is Stasheff’s polytope Kn. For example, in
dimension 5, the generating 5-cellωb is associated to the following critical quadruple branching:

b =
(

, , ,
)
.

To compute the source and target of the corresponding 4-cellωb, we use the inductive construction of the
rightmost strategy σ. Alternatively, one can also start from the 2-dimensional source and target of ωb,
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6.1. A concrete example of reduced standard polygraphic resolution

which are obtained as the 2-cells associated to the source aaaaa of the critical quadruple branching b
by the leftmost and the rightmost strategies, respectively:

s2(ωb) = and t2(ωb) = .

Then one computes all the possible 3-cells from s2(ωb) to t2(ωb) and one fills all the 3-dimensional
spheres with 4-cells built from the generating 4-cell . Either way, we obtain the following com-
posite 4-cell as the source ofωb:

�0

%9 %9

c©

��

/C /C

%9 %9

��

c©

��

EY /C

%9 %9 %9

And the following composite 4-cell is the target ofωb:

�0

%9 %9

�/

c©

�/

EY

%9 %9

�/
��

EY

c©

%9 %9

EY

%9
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The corresponding generator of the natural system h4(As) of homological 4-syzygies of As is:

δ5[ωb] =
[ ]

+
[ ]

+
[ ]

−
[ ]

−
[ ]

−
[ ]

= [ ]a− a [ ] .

6.2. The category Epi

We denote by Epi the subcategory of the simplicial category whose 0-cells are the natural numbers and
whose morphisms from n to p are the monotone surjections from {0, . . . , n} to {0, . . . , p}. This category
is studied in [28], where it is denoted by ∆epi.

The category Epi admits a presentation by the (infinite) 2-polygraph Σ with the natural numbers as
0-cells, with 1-cells

n+ 1
si

// n 0 ≤ i ≤ n,

where si represents the map

si(j) =

{
j if 0 ≤ j ≤ i,
j− 1 if i+ 1 ≤ j ≤ n+ 1,

and with 2-cells

n+ 1 sj

  
si,j
��

n+ 2

si 33

sj+1 ++

n 0 ≤ i ≤ j ≤ n+ 1.

n+ 1 si

==

Let us prove that this 2-polygraph is convergent. For termination, given a 1-cell u = si1 . . . sik of Σ∗, we
define the natural number ν(u) as the number of pairs (ip, iq) such that ip ≤ iq, with 1 ≤ p < q ≤ k.
In particular, we have ν(sisj) = 1 and ν(sj+1si) = 0 when i ≤ j, i.e., when sisj is the source and sj+1si
is the target of a 2-cell of Σ. Moreover, we have ν(wuw ′) > ν(wvw ′) when ν(u) > ν(v) holds. Thus,
for every non-identity 2-cell f : u ⇒ v in Σ∗, the strict inequality ν(u) > ν(v) is satisfied, yielding
termination of Σ.

The 2-polygraph Σ has one critical branching (si,jsk, sisj,k) for every possible 0 ≤ i ≤ j ≤ k ≤ n+2
and it is confluent, so that we get a partial resolution of Epi by the acyclic (3, 1)-polygraph c2(Σ) obtained
by extending Σ with all the 3-cells filling the confluence diagrams associated to the critical branchings:

sj+1sisk
sj+1si,k %9 sj+1sk+1si

sj+1,k+1si

�.
sisjsk

si,jsk
+?

sisj,k  4

sk+2sj+1si.

sisk+1sj si,k+1sj
%9 sk+2sisj

sk+2si,j

/C
si,j,k

��
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6.2. The category Epi

To simplify notations, we draw each 1-cell si as a vertical string i , each 2-cell si,j as i,j, so that each
3-cell si,j,k has the same shape as the Yang-Baxter relation, or permutohedron of order 3:

i,j,k

i,j,k %9
i,j,k

Using those notations, the natural system h2(Σ) of homological 2-syzygies of Σ is generated by the
elements

δ3
[

i,j,k

]
=

[
i,j,k

]
−

[
i,j,k

]
=


(
[ i,j]sk − sk+2[ i,j]

)
+
(
sj+1[ i,k] − [ i,k+1]sj

)
+
(
[ j+1,k+1]si − si[ j,k]

)
.

The 2-polygraph Σ has one critical triple branching(
si,jsksl, sisj,ksl, sisjsk,l

)
for every possible 0 ≤ i ≤ j ≤ k ≤ l ≤ n + 3. This yields a partial resolution of Epi by the acyclic
(4, 1)-polygraph c3(Σ) with one 4-cell si,j,k,l for every possible 0 ≤ i ≤ j ≤ k ≤ l ≤ n + 3. In string
diagrams, omitting the subscripts, each critical triple branching is written(

, ,
)
.

With the same conventions, the corresponding 4-cell has the shape of the permutohedron of order 4:

%9 %9

��

�(

0D

�.
%9 %9

6J

As usual, the elements δ4
[

i,j,k,l

]
, for 0 ≤ i ≤ j ≤ k ≤ k ≤ n + 3, form a generating set for the

natural system h3(Σ) of homological 3-syzygies of Σ.
More generally, this construction extends to a polygraphic resolution of Epi where, for every natural

number n, the generating n-cell has the shape of a permutohedron of order n.

57



REFERENCES

REFERENCES

[1] David J. Anick, On the homology of associative algebras, Transactions of the American Mathematical Soci-
ety 296 (1986), no. 2, 641–659.

[2] Dimitri Ara and François Métayer, The Brown-Golasiński model structure on strict ∞-groupoids revisited,
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