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Objective

» Use two-dimensional rewriting techniques to compute homotopical properties of
presentations of monoids.

> String rewriting is 1-dimensional rewriting.
> Homotopical properties of string rewriting systems are 2-dimensional.
» Motivations/applications :

> Motivation |. Construction of finiteness conditions for finite convergence.
> Explore link with decidability of the word problem.

> Motivation Il. Compute syzygies for presentations of monoids.
> Syzygies : relations between relations.
» Prerequises from Part | of the lecture:
> Monoids: presentations by generators and relations, the word problem.
> String rewriting systems described as 1-dimensional rewriting systems.

> Categories: the category of rewriting paths.
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Motivation |. Finiteness condition for finite convergence

» The notion of rewriting system comes from combinatorial algebra:
> Decision procedure for the word problem (Thue, 1914).

» Finite convergent presentations.
> If a monoid M admits a finite convergent presentation, then its word problem is
decidable.

» Jantzen, 1982, asked whether every string rewriting with a decidable word problem has an

equivalent finite convergent string rewriting system.

Theorem. [Squier, 1987]
There are finitely presented monoids with a decidable word problem that do not admit a
finite convergent presentation (for any possible finite set of generators).

» Proof based on a finiteness condition for finite convergence.
> A homological finiteness property, 1987.

> A homotopical finiteness property, 1994.

» Categorical interpretations
> Burroni, 1993.
> Lafont, 2003, Guiraud-Malbos, 2016.
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Motivation Il. Compute syzygies for presentations of monoids

» A syzygy is a relation between generators (from Greek cv vy, a pair).

» Syzygies problem in linear algebra.

> Given a finitely generated module M on a commutative ring R and a set of generators:

{y1, oy b

> a syzygy of M is an element (Ag, ..., Ax) in R¥ for which

A1y1 + ...+ Akyk = 0.

» Schreyer, 1980 : computation of linear syzygies by means of the division algorithm.

> Buchberger's completion algorithm for computing Grobner bases allows the
computation of the first syzygy module.

> The reduction to zero of the S-polynomial of two polynomials in a Grébner basis gives a

Syzygy-
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Motivation Il. Compute syzygies for presentations of monoids

» Syzygy problem for a monoid M

> presented by generators and relations.

» In low dimensions : coherent presentations
> generators, relations, syzygies.

> syzygies = relations among relations.

» Applications:
> Explicit description of actions of a monoid on categories in representation theory.
> Coherence theorems for monoids.

> Algorithms in homological algebra.



Motivation Il. Compute syzygies for presentations of monoids

» The Artin monoid B;’r of braids on 3 strands.

i1 el Y= (3



Motivation Il. Compute syzygies for presentations of monoids

» The Artin monoid B;.r of braids on 3 strands

i1 el Y= (3

» The Artin presentation:

(st | tst=sts)



Motivation Il. Compute syzygies for presentations of monoids

» The Artin monoid B;’r of braids on 3 strands.

i1 el Y= (3

» The Artin presentation:

(st | tst=sts)

» We will prove that there is no syzygy between relations induced by tst = sts.



Motivation Il. Compute syzygies for presentations of monoids

» The Artin monoid B;’r of braids on 3 strands

i1 el Y= (3

» The Artin presentation:
(st | tst=sts)

» We will prove that there is no syzygy between relations induced by tst = sts.
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Plan of the lecture

l. String Rewriting and the Word Problem
- Strings are 1-dimensional
- String rewriting systems and 2-polygraphs
- String Rewriting and the Word Problem

Il. Coherent presentations of monoids
- Coherent presentation
- Homotopical Squier Theorem

I1l. Homotopical completion-reduction procedure
- Homotopical completion-reduction
- Algebraic examples
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String rewriting systems and 2-polygraphs

» String rewriting system (Thue 1914).
» Categorical description (Street 1976, Eilenberg-Street 1986, Burroni 1991).
» 2-polygraph (2-computad) with only one 0-cell:

>Xo={e}

> 1 set of generators : ® = so(x) —— to(x) = ®

> 2] free monoid of strings :

> X5 set of rules @ : u = v with a globular shape:

X2 X3 Xk—1
e ——e —— e e —— e

Jo

e ——e—— 0 e —— e
y2 y3 Yi—1

> 1-source of @ : s3(@) = x1x2. .. Xk,
> 1-target of @ : t1(@) =y1y2...y.
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Rewriting properties of 2-polygraphs

» A 1l-polygraph is an oriented graph (Zg, X1)

So
o P py
to

» A 2-polygraph is a triple ¥ = (Xg, X1, X2) where
> (X, X1) is a 1-polygraph,

> X is a globular extension of the free category Xj.

S0 Ss1 sos1 ()
e * £
B X
0 1
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» Let X = (X, X1, X5) be a 2-polygraph.
» Consider the free 2-category L3 over X.

» A rewriting step is a 2-cell of the 2-category X5 with shape

where u % v is a 2-cell of £, and w, w’ are 1-cells of Xj.

» Notation wuw'’
@

wvw !

» A rewriting sequence of X is a finite or infinite sequence

fi f; fo f,
ulﬁluz#2 ﬁlun%

of rewriting steps.

» Rewriting sequences form a 2-category %3.
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Rewriting properties of 2-polygraphs

Let ¥ = (Xo, X1, X2) be a 2-polygraph.
» X terminates if it does not generate any infinite reduction sequence

== =y => -

» A branching of X is a pair (f, g) of 2-cells of £ with a common source

e
o

» X is confluent if all of its branchings are confluent:
u u’
g\> w /g

» X is convergent if it terminates and it is confluent.
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» A branching

f/v

u

P

is local if f and g are rewriting steps.

» Local branchings are classified as follows:
> aspherical branchings have shape

> Peiffer branchings have shape

I f/T}
v fvxiu'g =ugx v

uu’ H‘ %
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% uv’ %



Rewriting properties of 2-polygraphs

» A branching

f/§v

u

P

» Local branchings are classified as follows:

is local if f and g are rewriting steps.

> aspherical branchings have shape

> Peiffer branchings have shape

I
v fvxiu'g =ugx v

w | il
&l
% uv’ %

> critical branchings are all the other cases
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> A Peiffer branching:
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Example.
Consider the 2-polygraph

(s, t]tst g sts )

> A Peiffer branching:
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> It has only one critical branching:
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Rewriting properties of 2-polygraphs

Example.
Consider the 2-polygraph

(s, t]tst g sts )

> A Peiffer branching:

tsttst
k\ tststs = YstSts

> It has only one critical branching:

VstSt_S, stsst

tstst

% tssts
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Example.
Consider the 2-polygraph

Y Y Y
(r,s,t\sr:@rs,ts%st,tr%rt)
> It has only one critical branching

str
Ystl

tsr
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Example.
Consider the 2-polygraph

Y Y Y
(r,s,t\sr:@rs,ts%st,tr%rt)
> It has only one critical branching

str
Vstr

ty
s trs



Rewriting properties of 2-polygraphs

Example.
Consider the 2-polygraph

(r,s t]sr L& rs, ts g st, tr g rt)

> It has only one critical branching

SVYr
str —— srt
Ystl
tsr
ty
* trs rts



Rewriting properties of 2-polygraphs

Example.
Consider the 2-polygraph

(r,s t]sr L& rs, ts g st, tr g rt)

> It has only one critical branching

_’7 N‘
rst
tyrs %

SYrt

str —— srt
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String Rewriting and the Word Problem

» Finite convergent presentations give a method for solving the word problem
algorithmically.

> Given a 2-polygraph Z.

> Consider the monoid M presented by X, i.e., the quotient of the free monoid Z] by

the congruence generated by X5:
M=2x]/%,.

> The word problem for the monoid M:
- two strings w and w’ in X%,

- doesw = w'inM?
> Normal form algorithm for finite and convergent 2-polygraphs:

" "\
A\
e

Fact. Monoids having a finite convergent presentation are decidable.

v
Ny

VANVAN
ININY
AV
NN\
AWAVAN

? _,

w
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» Knuth-Bendix completion procedure, 1970.
> Input : X a terminating 2-polygraph with a total termination order <.
> The procedure will try to compute a 2-polygraph KB (X) such that
> u > v holds for each u = v in XB(X),,
> KB (X) is confluent,
> KB(X) and X are Tietze equivalent.

>KB(X):=X
> Cb :={ critical branchings of X }
> While Cb # 0

> Picks a branching in Cb:
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» Knuth-Bendix completion procedure, 1970.
> Input : X a terminating 2-polygraph with a total termination order <.
> The procedure will try to compute a 2-polygraph KB (X) such that
> u > v holds for each u = v in XB(X),,
> KB (X) is confluent,
> KB(X) and X are Tietze equivalent.

>KB(X):=X

> Cb :={ critical branchings of X }

> While Cb # 0
> Reduce v to a normal form v with respect to KB (%),
> Reduce w to a normal form w with respect to KB (X)»



Finite Convergent Presentations

» Knuth-Bendix completion procedure, 1970.

> Input : X a terminating 2-polygraph with a total termination order <.

> The procedure will try to compute a 2-polygraph KB (X) such that
> u > v holds for each u = v in XB(X),,
> KB (X) is confluent,

> KB(X) and X are Tietze equivalent.

>KB(X):=X

> Cb :={ critical branchings of X }

> While Cb # 0
>IfvV>w
> fK'B(Z)Z :

KB(Z)pU{o: V= w)

v

X

%v:>
S

<

> Cb := Cb U {critical branching created by «}



Finite Convergent Presentations

» Knuth-Bendix completion procedure, 1970.
> Input : X a terminating 2-polygraph with a total termination order <.
> The procedure will try to compute a 2-polygraph KB (X) such that
> u > v holds for each u = v in XB(X),,
> KB (X) is confluent,
> KB(X) and X are Tietze equivalent.

>KB(X):=X%
> Cb :={ critical branchings of X }
> While Cb # 0
>Ifw>v
>KB(Z)y := KB(Z)oU{x:w=Vv}

> Cb := Cb U {critical branching created by «}



Finite Convergent Presentations

» Knuth-Bendix completion procedure, 1970.
> Input : X a terminating 2-polygraph with a total termination order <.
> The procedure will try to compute a 2-polygraph KB (X) such that
> u > v holds for each u = v in XB(X),,
> KB (X) is confluent,
> KB(X) and X are Tietze equivalent.

>KB(X):=X%
> Cb :={ critical branchings of X }
> While Cb # 0

» If the procedure stops, it returns the 2-polygraph KB (X).

» Otherwise, it builds an increasing sequence of 2-polygraphs, whose limit is denoted
by KB (X).
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» Finite convergent presentations.

> If a monoid M admits a finite convergent presentation, then its word problem is
decidable.

> Knuth-Bendix, 1970, Nivat, 1972,

> Book, Otto, Diekert, Jantzen, Kapur-Narendran, Squier, ... in eighties.

» Jantzen, 1982, asked whether every string rewriting with a decidable word problem has an

equivalent finite convergent string rewriting system.

Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)
1. Does a finitely presented decidable monoid have a finite convergent presentation ?
2. Does rewriting is universal to decide the word problem in a finite presented monoid ?

3. What conditions a monoid must satisfy if it can be presented by a finite convergent

rewriting system 7



Finite Convergent Presentations

Example. (Kapur-Narendran, 1985)
» Artin's presentation of monoid of positive braids on 3 strands:

By = (s, t]|sts=tst)

el K = [

> BJ has a decidable word problem.
> There does not exist finite convergent presentation of B;’r with two generators.

> But with three generators by adding a generator a standing for the product st.
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Finite Convergent Presentations

Z:<s,t,a\ ta % as , st :ﬁ> a, sas % aa

Ba/ aa
sta /)V
% sas

% aat V% aaas

sast sasas

% saa sa%x saaa



Finite Convergent Presentations

Z:<s,t,a\ ta % as , st :ﬁ> a, sas % aa, saa :b> aat

Ba aa
sta/ /)V
s

sas

% aat W% aaas %oc
sast S sasas aata

sap > saa say> saaa = g4



Finite Convergent Presentations

Z:<s,t,a\ ta % as , st :[5} a, sas % aa, saa :b> aat>

Ba aa
sta/ /)V
s

sas

% aat W% aaas %oc
sast S sasas aata

% saa sa% saaa 4

22 aaafd
Y aaaa & aaast

sasaa aaxt

s35” Saaat = aatat
dat
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Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)
1. Does a finitely presented decidable monoid have a finite convergent presentation ?
2. Does rewriting is universal to decide the word problem in a finite presented monoid ?

3. What conditions a monoid must satisfy if it can be presented by a finite convergent

rewriting system 7

Answears. (Squier, 1987)

1. No in general.
2. No.

3. Homological finiteness condition and homotopical finiteness condition (1994).

» Generalization of finiteness conditions, Anick, 1987, Kobayashi, 1991, Brown, 1992.



Exercise | (Kapur-Narendran '85)

» Consider the monoid B; of positive braids on three strands and the Artin’s presentation
(s, t | v :sts = tst).
1. Compute a convergent presentation of the monoid B; with two generating 1-cells.
2. Show that the word problem is decidable for B;.
3. Show that for any i > 0 and any j > 0, the words
sHPT25 and tst 2/
are equals in BJ.

4. Denote by [w] the equivalence class modulo the relation -y containing the word w. Prove
that for any n > 0 the two following equalities hold

[(t"st]={t"sts' |0 < i< n}.
[tst"]={Jtst" 7 |0 < j < n}.

5. Show that there does not exist any finite convergent presentation of the monoid B; with

two generators s and t.



Part 1l. Coherent presentations of monoids



2-Polygraphs

» A 1-polygraph is an oriented graph (Xg, X1)

so
b S
to

» A 2-polygraph is a triple ¥ = (Xg, X1, X2) where
> (X0, X1) is a 1-polygraph,

> 2> is a globular extension of the free category Xj.

s1(ex)
/\
S0 S1 sos1 (o) tosy ()
Zo P Z; A Zz = x =
ti t: sota () toty ()
0 1
ty (o)

» A rewriting step is a 2-cell of the free 2-category X3 over X with shape

wuw’

N ~—

wvw

where u % v is a 2-cell of £5 and w, w’ are 1-cells of 3.



Homotopical Squier Theorem

» X a 2-polygraph.

» Denote by Z; the free (2, 1)-category on L, that is
> free category enriched in groupoid on X,
> free 2-category whose any 2-cell is invertible.

» Description of £]
> O-cells : Xg,
> 1-cells strings in X7,
> 2-cells : reductions and their inverses <,
> submited Peiffer elements:

!
uoacwl'y ulwl'v ulwpv

i I
urwl'v = ulwr'v

urwBv=> e’y < uowr’v

for any 2-cells / % rand I’ :B> r.



(3,1)-Polygraphs

» A (3,1)-polygraph is a pair £ = (X5, X3) made of
> a 2-polygraph Z»,

> a globular extension X3 of the free (2, 1)-category ):2T_
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» A (3,1)-polygraph is a pair £ = (X5, X3) made of
> a 2-polygraph Z»,
> a globular extension X3 of the free (2, 1)-category ):2T_

S0 S1 52

o 3 bl pa o

to t1 to

» Let M be a monoid.

» A presentation of M is a 2-polygraph X such that

M~ 55/,



(3,1)-Polygraphs

» A (3,1)-polygraph is a pair £ = (X5, X3) made of
> a 2-polygraph Z»,
> a globular extension X3 of the free (2, 1)-category ):2T_

o 3 bl pa o

to t to \_/

» Let M be a monoid.
» A presentation of M is a 2-polygraph X such that

M~ 55/,

» An extended presentation of M is a (3, 1)-polygraph X such that

MZZT/ZQ



Homotopical Squier Theorem

Definition. A homotopy relation on Z2T is an equivalence relation = on parallel 2-cells stable
under

> context: f = g implies ufv = ugv,

> composition: f = g implies k x1 f x1 h = k x1 g x1 h.



Homotopical Squier Theorem

Definition. A homotopy relation on Z2T is an equivalence relation = on parallel 2-cells stable
under

> context: f = g implies ufv = ugv,

> composition: f = g implies k x1 f x1 h = k x1 g x1 h.

Definition. A homotopy basis is a cellular extension X3 made of 3-cells

S
r Ut

u 4

on spheres of ZZT such that the homotopy relation generated by X3 contains every pair of
parallel 2-cells in X .



Coherent presentations of categories

» A coherent presentation of M is an extended presentation X of M such that the cellular
extension X3 is a homotopy basis, that is
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Coherent presentations of categories

» A coherent presentation of M is an extended presentation X of M such that the cellular
extension X3 is a homotopy basis, that is

B> the congruence generated by X3 on Z] contains every pair of parallel 2-cells.

> the 3-cells of X3 generate a tiling of Z; wrt any possible composition of 3-cells:
> by %o, along their 0-dimensional boundary:

u v uv

AN S e A N,
=y el = e — | = el -
\/

N NS

I
u’ v/ u'v



Coherent presentations of categories

» A coherent presentation of M is an extended presentation X of M such that the cellular
extension X3 is a homotopy basis, that is

B> the congruence generated by X3 on Z] contains every pair of parallel 2-cells.

> the 3-cells of X3 generate a tiling of Z; wrt any possible composition of 3-cells:
> by %o, along their 0-dimensional boundary:

u v uv

AN S e A
CE Y
T

NN >

I
u’ v/ u'v

> by %1, along their 1-dimensional boundary:

u

N
SEi%



Coherent presentations of categories

» A coherent presentation of M is an extended presentation X of M such that the cellular
extension X3 is a homotopy basis, that is

B> the congruence generated by X3 on Z] contains every pair of parallel 2-cells.

> the 3-cells of X3 generate a tiling of Z; wrt any possible composition of 3-cells:
> by %o, along their 0-dimensional boundary:

u v uv

AN S e A
CE Y
T

NN >

I
u’ v/ u'v

> by %1, along their 1-dimensional boundary:

u

N
SEi%

> by %2, along their 2-dimensional boundary:

xf\ﬂég = [ny — = Iy



Examples

» The full coherent presentation contains all the 3-cells.



Examples

» The full coherent presentation contains all the 3-cells.

» Free monoid : no relation, an empty homotopy basis.



Examples

» Free commutative monoid of rank 3:
> the full coherent presentation:

Il th
(r,s,t\srgrs,tsgst,trgrtl 2 ¢ )

3-cells
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» Free commutative monoid of rank 3:
> the full coherent presentation:

Il th
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3-cells

> A homotopy basis can be made with only one 3-cell
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Examples

» Free commutative monoid of rank 3:
> the full coherent presentation:

Il th
(r,s,t\srgrs,tsgst,try%rtl 2 ¢ )

3-cells

> A homotopy basis can be made with only one 3-cell

(r,s t]sr L& rs, ts g st, tr g rt| Zrse )

where the 3-cell Z, 5 ; is the permutohedron

t % t
str sr
Vstr Yrst
tsr MZ,,SI rst
ty ryst
" trs ———> rts



Examples

» Artin’s coherent presentation of the monoid B;r

sl K = [



Examples

» Artin’s coherent presentation of the monoid B;r

sl K = [

> The homotopy basis is empty.

(s, t] tst y% sts| Q)



Homotopical Squier's Theorem



Homotopical Squier’s Theorem: objective

» A method to compute a coherent presentation starting from a convergent presentation.

» Squier’s completion procedure provides a way to extend a convergent presentation of a
monoid M into a coherent presentation.

» Given a convergent 2-polygraph X.

» We compute a coherent presentation whose 3-cells are generating confluences,
> that is, one 3-cell:

u JJore u’
g w <

> for every critical branching (f, g) of X.



Homotopical Squier's Theorem



Branchings

» Let X be a 2-polygraph.
» A branching of Z is a pair (f, g) of 2-cells of X3 with a common source:

» A branching (f, g) is local when f and g are rewriting steps.
» Local branchings are
> aspherical

> Peiffer

> or overlapping.



Generating confluences

» A branching (f,g) : u = (v, w) is confluent when there exist 2-cells f’ : v = u’ and

g’ :w = u’in L} such that
o
u
e

f/

\ /
=



Generating confluences

» A branching (f,g) : u = (v, w) is confluent when there exist 2-cells f’ : v = u’ and
g’ :w = u"in X5 such that

» A family of generating confluences of X is a cellular extension of £ that contains exactly
one 3-cell

for every critical branching (f, g) of X.
» If X is confluent, it always admit a family of generating confluences.
» However, such a family is not necessarily unique, since
> the 3-cell of, can be directed in the reverse way,
> for a given branching (f, g), we can have several possible 2-cells f’ and g’ with the
required shape.



Homotopical Squier’'s Theorem

Theorem. [Squier, 1994]
For a convergent presentation X of a monoid M, the (3, 1)-polygraph obtained from X by

adjunction of a generating confluence
N
m%
& ’

for every critical branching (f, g) is a coherent presentation of M.



Homotopical Squier's Theorem: proof



Generating confluences

» Let X be a convergent 2-polygraph.
» Let I" be a family of generating confluences of Z.
Lemma 1.
For every local branching (f,g) : u = (v, w) of X, there exist 2-cells f" and g’ in
and a 3-cell Ain T'T, as in the following diagram:

Sow—"

I
u

>



Generating confluences

» Let X be a convergent 2-polygraph.
» Let I" be a family of generating confluences of Z.
Lemma 1.
For every local branching (f,g) : u = (v, w) of X, there exist 2-cells f" and g’ in
and a 3-cell Ain T'T, as in the following diagram:

%/?H\l\f'& |
Sow—"

>

Proof.
> For aspherical or Peiffer branching, choose ' and g’such that f x; f' = g %1 g’ and A
is identity.
> An overlapping branching (f, g) that is not critical is of the form (f, g) = (uhv, ukv)
with (h, k) critical. h
> Consider a generating confluence /é v N
u \LU, Onk u inT
S et

> We set A= uopkv, f' = uh'v and g’ = kuk'v.



Generating confluences

Lemma 2.
For every parallel 2-cells f and g of X3 whose common target is a normal form, there
exists a 3-cell from f to g in ',

Proof. By Noetherian induction on the common source of f and g.




Homotopical Squier’'s Theorem

Proposition. Let X be a convergent 2-polygraph. Every family I" of generating confluences of
Y is a homotopy basis of ZZT.

Proof.
> Consider a 2-cell f : u = v in Z3.
> Using the confluence, choose 2-cells

oy U= 0 and o,V =>V=1 in P

> By Lemma 2, there exists a 3-cell

> Moreover, the (3,1)-category I'T contains a 3-cell or— :f7 = 0, *1 0, given as the

VW

composite:

v:> :>u



Homotopical Squier’'s Theorem

Proposition. Let ¥ be a convergent 2-polygraph. Every family I of generating confluences of
% is a homotopy basis of Z, .

Proof.
> Consider a 2-cell f : u=- v in ZzT. It can be decomposed into a “zig-zag" sequence

f1 &1 f2 8n1 fa &n
u vi u () up Vi v

where each f; and g; is a 2-cell of X3.
> We construct a 3-cell of T'T, with source f and target o, *1 o,

fi 81 fn

[ A G
i N Ny 7

u u e u
1; 1z 1z 1z

> We proceed similarly for any 2-cell g : u = v of ZzT, to get a 3-cell from g to o, *1 0y, .

> Thus, the composite is a 3-cell of T'T from f to g.



Finite derivation type

Definition. I has finite derivation type (FDT) if
i) X is finite,
i) ZzT has a finite homotopy basis ¥ 3.

to t1 to
Yo f— T E— I = =



Finite derivation type

Definition. I has finite derivation type (FDT) if
i) X is finite,
i) ):27 has a finite homotopy basis ¥ 3.

to t1 to
Yo f— T E— I = =

Theorem. (Squier, 1994)
i) Property FDT is Tietze invariant for finite rewriting systems.
ii) A monoid having a finite convergent rewriting system has FDT.
Example. (Squier, 1994) The monoid
Si=(ab t,x,ylat"b=1, xa= atx, xt = tx, xb = bx, xy = 1).
> has a decidable word problem,

> does not have finite derivation type.

» Hence, the monoid S; does not have a finite convergent presentation,



Part Ill. Homotopical completion-reduction procedure



Tietze transformations
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Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a generator: for u € Z7, add a generating 1-cell x and add a generating 2-cell

y=23

> remove a generator: for a generating 2-cell « in X5 with x € X1,

29

u——x



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a generator: for u € Z7, add a generating 1-cell x and add a generating 2-cell

y=23

> remove a generator: for a generating 2-cell & in X with x € 1, remove x and «

u ><>><



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a relation: for a 2-cell f in ZZT,

f

VERY

u v



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a relation: for a 2-cell f in ZJ, add a generating 2-cell x¢



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a relation: for a 2-cell f in ZJ, add a generating 2-cell x¢
add a generating 3-cell A

f
v \y
u Al v
AA

Xf



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a relation: for a 2-cell f in ZJ, add a generating 2-cell x¢
add a generating 3-cell A

f
v \y
u Al v
AA

Xf

> remove a relation: for a 3-cell A where € X5,



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a relation: for a 2-cell f in ZJ, add a generating 2-cell x¢
add a generating 3-cell A

f
AR
u Al v

Xf

> remove a relation: for a 3-cell A where o« € X5, remove o and A

Y
u R
b

f'
v
-



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:
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Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a 3-cell: for 3-cells B, add a generating 3-cell A: f = g
f



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a 3-cell: for 3-cells B, add a generating 3-cell A: f = g
f



Tietze transformations

» Two 2-polygraphs are Tietze-equivalent if they present the same monoid.
» We generalize this notion to (3, 1)-polygraphs.

» An elementary Tietze transformation of a (3, 1)-polygraph X is one of the following three
pairs of dual operations:

> add a 3-cell: for 3-cells B, add a generating 3-cell A: f = g
f

> remove a 3-cell: for a generating 3-cell A: f = g remove A

f'



Tietze transformations

Theorem. [Gaussent-Guiraud-Malbos, 2015]
If
> X is a coherent presentation of a monoid M,
> T is a composition of elementary Tietze transformations,
then
> T (X) is a coherent presentation of M.



Homotopical completion-reduction procedure

» Homotopical completion combines completion procedure and Squier’'s theorem.
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Homotopical completion-reduction procedure

» Homotopical completion combines completion procedure and Squier’'s theorem.

» The Knuth-Bendix procedure computes a convergent presentation from a terminating
presentation, Knuth-Bendix, 1970.

» The Squier theorem constructs a coherent presentation of a monoid M from a convergent

presentation of M by adjunction of a generating confluence

for any critical branching (f, g), Squier, 1994.
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Homotopical completion procedure

Let X be a terminating 2-polygraph (with a total termination order).
» The homotopical completion of X is the (3,1)-polygraph S(X) obtained from X by
successive application of following Tietze transformations

> for every critical pair
f/

%@w:ﬁ
%W?W

compute f’ and g’ reducing to some normal forms.

w

%V\F
>if V=w, add a 3-cell of 4 u o Ofg V=
g\w%



Homotopical completion procedure

Let X be a terminating 2-polygraph (with a total termination order).
» The homotopical completion of X is the (3,1)-polygraph S(X) obtained from X by
successive application of following Tietze transformations

> for every critical pair



Homotopical completion procedure

» Potential adjunction of additional 2-cells x can create new critical branchings,
> whose confluence must also be examined,
> possibly generating the adjunction of additional 2-cells and 3-cells...
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s(z)=Jz"

n=0

Theorem. (Gaussent-Guiraud-Malbos, 2015)
For every terminating presentation £ of a monoid M, the homotopical completion §(X)

of X is a coherent convergent presentation of M.

Proof. S(X) is obtained from X by successive application of Knuth-Bendix's and Squier's

completions.
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Homotopical completion procedure

» Potential adjunction of additional 2-cells x can create new critical branchings,
> whose confluence must also be examined,
> possibly generating the adjunction of additional 2-cells and 3-cells...

» This defines an increasing sequence of (3,1)-polygraphs
<Z‘Q)> _ ZO g Zl g g yn g Zn+1 g

» The homotopical completion of X is the (3,1)-polygraph
s(z)=Jz"

n=0

Theorem. (Gaussent-Guiraud-Malbos, 2015)
For every terminating presentation £ of a monoid M, the homotopical completion §(X)
of X is a coherent convergent presentation of M.

Proof. S(X) is obtained from X by successive application of Knuth-Bendix's and Squier's

completions.

» A prototype implementation of homotopical completion-reduction procedure
> http://www.pps.univ-paris-diderot.fr/~smimram/rewr/


http://www.pps.univ-paris-diderot.fr/~smimram/rewr/

Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B, obtained from Artin’s presentation
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Z§N2<s,t,a\ta % as, st :B> ay.
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Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B, obtained from Artin’s presentation

by coherent adjunction of the element st

Z§N2<s,t,a\ta % as, st :B> ay.

The deglex order generated by t > s > a proves the termination of ZgN.

v

S(ZEN):<s,t,a|ta % as, st i} a, sas —> aa | A

Ba/}aa



Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B, obtained from Artin’s presentation

by coherent adjunction of the element st

SN — sta\ta%asst:>

The deglex order generated by t > s > a proves the termination of ZgN.

S(ZEN):<sta|ta%as st%a,sas%aa | A

t/ aat

sast

T <
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Example. The Kapur-Narendran’s presentation of B, obtained from Artin’s presentation

by coherent adjunction of the element st
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Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B, obtained from Artin’s presentation

by coherent adjunction of the element st

SN — sta\ta%asst:>

The deglex order generated by t > s > a proves the termination of ZgN.

S(ZEN):<s,t,a|ta % as, st i} a, sas % aa, saa :6> aat | A, B, C, D>
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Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B, obtained from Artin’s presentation

by coherent adjunction of the element st

Z§N2<s,t,a\ta % as, st :B> ay.

The deglex order generated by t > s > a proves the termination of ZgN.

S(ZEN):<s,t,a|ta % as, st i} a, sas % aa, saa :6> aat | A, B, C, D>

[Sa/> aa % aat W% aaas ﬁ(x

sta lUA Y sast MB 5 sasas M/C aata
%535 %saa say saaa%\

aaafd
Y33, 2233 & aaast
sasaa Yo aaxt

528 ” Saaat =y aatat
dat

However. The extended presentation S(Z?N) obtained is bigger than necessary.
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INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) that

> removes 3-cells occuring in critical triple confluences of §(X),
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) that

> removes 3-cells occuring in critical triple confluences of §(X),
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).
Step 2. Apply the homotopical reduction to S(X) that

> removes 3-cells occuring in critical triple confluences of §(X),
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) that

> removes 3-cells occuring in critical triple confluences of §(X),
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) that
> removes 3-cells occuring in critical triple confluences of §(X),

> removes 2-cells and 3-cells added in the completion procedure

!
%V =
AN
u Vo—fg X
N v



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) that
> removes 3-cells occuring in critical triple confluences of §(X),
> removes 2-cells and 3-cells added in the completion procedure

> removes collapsible 2-cells or 3-cells already present in the initial presentation X.



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph X.
Step 1. Compute the homotopical completion S(X) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(X) that
> removes 3-cells occuring in critical triple confluences of §(X),
> removes 2-cells and 3-cells added in the completion procedure

> removes collapsible 2-cells or 3-cells already present in the initial presentation X.
We obtain the homotopical completion-reduction R(X) of the terminating 2-polygraph X.
Theorem. [Gaussent-Guiraud-Malbos, 2015]

For every terminating presentation ¥ of a monoid M, the homotopical

completion-reduction R(X) is a coherent presentation of M.

» Note that R(X) is not convergent in general.
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The homotopical completion-reduction procedure

Example. IEN = (stalta = as, st # )

S(ZgN):<s,t,a\ta % as, st :B> a, sas ;} aa, saa :6> aat\A,B,C,D>
B Y 3
<s,t,a\ ta % as,st —» a,sas —» aa,saa —» aatlA,B,XD)

» There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasta proves that C is redundant:

aax
Yta aata ——— aaas / aata
MBa 5;63

sasta =saf3 & saaa = v ag
M;a A />> say SasX™> sasas MC aata

saso sasas \ /é\
saaa a

1

C =sasx = %1 (Ba*1 aax) *2 (saA x1 6ax1 aax)



The homotopical completion-reduction procedure

Example. zg(N _ < s, t,alta % as, st :B> -3>
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<s,t,a| ta % as , st :B> a, sas % aa, saa :5> aatIA,B,XB(>

» There are four critical triple branchings, overlapping on
sasta, sasast, sasasas, sasasaa.

> Critical triple branching on sasast proves that D is redundant:
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The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :B> a>

S(ZgN):<s,t,a\ta % as, st :B> a, sas ;} aa, saa :6> aat\A,B,C,D>

(s tal ta % as , st :B> a, sas % aa, saa :5> aat | A, B, )& B()

> The 3-cells A and B are collapsible and the rules v and & are redundant.
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The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :B> a>

S(ZgN):<s,t,a\ta % as, st :B> a, sas ;} aa, saa :6> aat\A,B,C,D>

<s,t,a| ta % as , st :ﬁ> a,MMM|X;&/‘XK>

> The 3-cells A and B are collapsible and the rules v and & are redundant.

[33/> aa %} aat

sta sast

& sas % saa



The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :B> a>

S(ZgN):<s,t,a\ta % as, st :B> a, sas ;} aa, saa :6> aat\A,B,C,D>

(ool o2 55 s %XMMKX@B@

B . . .
> The rule st = ais collapsible and the generator a is redundant.



The homotopical completion-reduction procedure

Example. ZgN = < s, t,al ta % as, st :ﬁ> a>

S(ZgN):<s,t,a\ta % as, st :B> a, sas ;} aa, saa :6> aat\A,B,C,D>

(st 4| tst =5 sts,%%m%| HoBOE B0

» Artin's coherent presentation:

R(EKN) = (s, t]tst = sts|0)



Exercice |l

» Consider the Artin monoid Bf{ of braids on 4 strands.
r=e Il s =l x| =11

> given by the Artin presentation

(ris;t | rsr=>srs, rt=tr, tst= sts)
RS R R

» Show that this presentation can be extended into a coherent presentation with only one
3-cell

stsrst == strsrt =——> srtstr =——» srstsr ——>» rsrtsr \

tstrst MZ,, st rstrsr

tsrtst =——> tsrsts ——>» trsrts =——>» rtstrs ——> rstsrs
> It is called Zamolodchikov relation (Deligne, 1997).
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Artin monoids: Garside’'s presentation

» Let W be a Coxeter group

wW=(Ss | s2 =1, (ts)™Mst = (st)™st )

where (ts)™st stands for the word tsts... with ms letters.
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Artin monoids: Garside’'s presentation

» Let W be a Coxeter group

wW=(Ss | s2 =1, (ts)™Mst = (st)™st )

where (ts)™st stands for the word tsts... with ms letters.

» Artin’s presentation of the Artin monoid B (W)

Artz(W) = (S | (ts)™ = (st)™ )

Examples.
> If W =S, the Artin monoid B™ (W) is the monoid B, of braids on n strands.



Artin monoids: Garside’'s presentation

» Garside’s extended presentation of the Artin monoid B (W)
> 1-cells:
Gary (W) = W\ {1}
> 2-cells:
Xyv
Gara (W) = { ulv . =—> uv whenever /(uv) = I(u) + I(v) }

where uv is the product in W and u|v is the product in the free monoid over W.
> Gar3 (W) made of one 3-cell

ulviw MAU,V,W uvw

u% UIVW/L’W

for every u, v, w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-Malbos, 2015]
Gar3 (W) is a coherent presentation the Artin monoid BT (W)

Proof. By homotopical completion-reduction of the 2-polygraph Gary(W).



Artin monoids: Artin’s coherent presentation

Theorem. [Gaussent-Guiraud-M., 2015]
The Artin monoid B™ (W) admits the coherent presentation Art3 (W) made of

> Artin’s presentation

Art2(W) = (S | (ts)™ = (st)™ )

> one 3-cell Z, s for every t > s > r in S such that the subgroup Wy, ; ¢, is finite.



Artin monoids: Zamolodchikov Z, s ; according to Coxeter type

Type A3 Type B3

SYrSYq Srystt, o
SVt srysrsyn  sstygt srsyagst
stynt strsrt ——=5 srtstr =——=> srstsr Vutsr Sysrvar Sy srtsrtstr S srstrstr L rstsrsrt TS srstrsst ey srspsrst Xﬁrsr

strsrstsr rsrstsrst.

stsrst rsrtsr sevnesd] Prrvarse
Vserst rsYnsr stsrsrtsr rsstest
yaansd Prresviese
tstrst MZ"“ rstrsr tstrsrsr Zrse rertsitst
tsynsvrs vasrya
st wys o] v
tsstrse rstrsrses
trtst rstsrs srvars| Prstvss
tsstsrse rstsrsres
5y TYsers

tsrsts ——— trsrts —— rtstrs SIS tarstrsrs === tsrrtsrs trsrstsrs === rtsrtstrs == ristrstrs rysersyns
Vit wsrvhrs ey et
Tyt VrsVas s v

Type H3
et s o i s s Type A1 X A1 X Ag
/ = = = ~ o

str st
Yﬂ/ —— N

tor |z st

v trs — rts ¢
YnsS

Type (p) X A1, p = 3,

svn(rs)P2

Yarlrs)pL i) T () s ()Pt yut
t(sr)? [ ()7t

e trs)P =——=p rt(sr)P  =—=5 (")

Yre(sr)? ryse(sn)?
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Plactic monoids

» Knuth’s presentation of the plactic monoid P,

> Generators:
Knuthy(n) = {1,...,n}

> Knuth relations:

zxy = xzy foralll<x<y<z<n
Knuthg(n):{ }
yzx => yxz foralll<{x<y<z<n

» For n > 4, there is no finite completion of Knuth,(n) on Knuthy (n) compatible with the
degree lexicographic order, Kubat-Okninski, 2014.
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» Column presentation of the plactic monoid P,, Cain-Gray-Malheiro, 2015.

> add columns as generators:

Cy = Xp...xox1 € Knuthi(n) such that x, >
p 1 P

Coli(n) = { cu | uis a column }

> 2-cells: Coly(n) is the set of 2-cells

(2 97R%

CuCy = CwCyr

such that

> u and v are columns,

L. > X2 > X1.

> the planar representation of the Schensted tableau P(uv) is not the juxtaposition

of columns v and v and where w and w' are respectively the left and right columns of P(uv).



Plactic monoids: column presentation

» Column presentation of the plactic monoid P,, Cain-Gray-Malheiro, 2015.

> add columns as generators:

Cy = Xp...xox1 € Knuthi(n) such that x, >
p 1 P

Coli(n) = { cu | uis a column }

> 2-cells: Coly(n) is the set of 2-cells

(2 97R%

CuCy = CwCyr

such that

> u and v are columns,

L. > X2 > X1.

> the planar representation of the Schensted tableau P(uv) is not the juxtaposition

of columns v and v and where w and w' are respectively the left and right columns of P(uv).

1]1]1]2]2]3]4]

2[2[3][3]4]6
14/5/6]6]

6]7




Plactic monoids: column presentation

Theorem. [Hage-Malbos, 2015]
For n > 2, the 2-polygraph Coly(n) can be extended into a coherent presentation of the
plactic monoid P, whose 3-cells are of the following form
CeXel ¢

e CeCol Ct === CeChCp/ e bChr

CxCyCt Xv,t CaCdCpr

CxCw Cy/ é C2Cyr Cpy/
K, w Cyy !

with x in Knuthy(n) and v, t are columns.



Plactic monoids: column presentation

Theorem. [Hage-Malbos, 2015]
For n > 2, the 2-polygraph Coly(n) can be extended into a coherent presentation of the
plactic monoid P, whose 3-cells are of the following form
CeXel ¢

e CeCol Ct === CeChCp/ e bChr

CxCvCt Lt CaCdCp/

CxCw Cy/ é C2Cyr Cpy/
K, w Cyy !

with x in Knuthy(n) and v, t are columns.

Proof.
By homotopical completion-reduction of the 2-polygraph Colz(n).



Exercise 111

1. Compute a coherent presentation of the plactic monoid P,.
[Hint. There are two ways to prove that 2211 = 2121 in P3.]

2. Complete the 2-polygraph Knuthy(3) that presents the plactic monoid P3 into a coherent
presentation.

[Hint. Knuthz(3) can be completed with 3 relations and 27 3-cells.]

3. (Kubat-Okninski, 2014) Prove that for n > 4, there is no finite completion of the
2-polygraph Knuthz(n) on Knuthy (n) compatible with the degree lexicographic order.

4. Compute a coherent presentation of the plactic monoid Pj4.
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