

Two-dimensional Rewriting Techniques and Applications

Part II. Coherence and Rewriting

Philippe Malbos

Institut Camille Jordan
Université Claude Bernard Lyon 1

9th International School on Rewriting

July 7 2017, Eindhoven, The Netherlands

Objective and Motivations

Objective

- ▶ Use **two-dimensional rewriting techniques** to compute **homotopical properties** of presentations of monoids.
 - ▷ String rewriting is **1-dimensional rewriting**.
 - ▷ Homotopical properties of string rewriting systems are **2-dimensional**.

Objective

- ▶ Use **two-dimensional rewriting techniques** to compute **homotopical properties** of presentations of monoids.
 - ▷ String rewriting is **1-dimensional rewriting**.
 - ▷ Homotopical properties of string rewriting systems are **2-dimensional**.
- ▶ Motivations/applications :
 - ▷ **Motivation I.** Construction of finiteness conditions for finite convergence.
 - ▷ Explore link with decidability of the word problem.

Objective

- ▶ Use **two-dimensional rewriting techniques** to compute **homotopical properties** of presentations of monoids.
 - ▷ String rewriting is **1-dimensional rewriting**.
 - ▷ Homotopical properties of string rewriting systems are **2-dimensional**.
- ▶ Motivations/applications :
 - ▷ **Motivation I.** Construction of finiteness conditions for finite convergence.
 - ▷ Explore link with decidability of the word problem.
 - ▷ **Motivation II.** Compute syzygies for presentations of monoids.
 - ▷ **Syzygies** : relations between relations.

Objective

- ▶ Use **two-dimensional rewriting techniques** to compute **homotopical properties** of presentations of monoids.
 - ▷ String rewriting is **1-dimensional rewriting**.
 - ▷ Homotopical properties of string rewriting systems are **2-dimensional**.
- ▶ Motivations/applications :
 - ▷ **Motivation I.** Construction of finiteness conditions for finite convergence.
 - ▷ Explore link with decidability of the word problem.
 - ▷ **Motivation II.** Compute syzygies for presentations of monoids.
 - ▷ **Syzygies** : relations between relations.
- ▶ Prerequisites from Part I of the lecture:
 - ▷ **Monoids**: presentations by **generators** and **relations**, the **word problem**.
 - ▷ **String rewriting systems** described as **1-dimensional rewriting systems**.
 - ▷ **Categories**: the category of rewriting paths.

Motivation I. Finiteness condition for finite convergence

- ▶ The notion of rewriting system comes from combinatorial algebra:
 - ▷ Decision procedure for the word problem ([Thue](#), 1914).

Motivation I. Finiteness condition for finite convergence

- ▶ The notion of rewriting system comes from combinatorial algebra:
 - ▷ Decision procedure for the word problem ([Thue](#), 1914).
- ▶ Finite convergent presentations.
 - ▷ If a monoid \mathbf{M} admits a finite convergent presentation, then its word problem is decidable.

Motivation I. Finiteness condition for finite convergence

- ▶ The notion of rewriting system comes from combinatorial algebra:
 - ▷ Decision procedure for the word problem ([Thue](#), 1914).
- ▶ Finite convergent presentations.
 - ▷ If a monoid **M** admits a finite convergent presentation, then its word problem is decidable.
- ▶ [Jantzen](#), 1982, asked whether every string rewriting with a decidable word problem has an equivalent finite convergent string rewriting system.

Motivation I. Finiteness condition for finite convergence

- ▶ The notion of rewriting system comes from combinatorial algebra:
 - ▷ Decision procedure for the word problem ([Thue](#), 1914).
- ▶ Finite convergent presentations.
 - ▷ If a monoid \mathbf{M} admits a finite convergent presentation, then its word problem is decidable.
- ▶ [Jantzen](#), 1982, asked whether every string rewriting with a decidable word problem has an equivalent finite convergent string rewriting system.

Theorem. [[Squier](#), 1987]

There are finitely presented monoids with a decidable word problem that do not admit a finite convergent presentation (for any possible finite set of generators).

Motivation I. Finiteness condition for finite convergence

- ▶ The notion of rewriting system comes from combinatorial algebra:
 - ▷ Decision procedure for the word problem ([Thue](#), 1914).
- ▶ Finite convergent presentations.
 - ▷ If a monoid \mathbf{M} admits a finite convergent presentation, then its word problem is decidable.
- ▶ [Jantzen](#), 1982, asked whether every string rewriting with a decidable word problem has an equivalent finite convergent string rewriting system.

Theorem. [\[Squier, 1987\]](#)

There are finitely presented monoids with a decidable word problem that do not admit a finite convergent presentation (for any possible finite set of generators).

- ▶ Proof based on a finiteness condition for finite convergence.
 - ▷ A homological finiteness property, 1987.
 - ▷ A **homotopical finiteness property**, 1994.

Motivation I. Finiteness condition for finite convergence

- ▶ The notion of rewriting system comes from combinatorial algebra:
 - ▷ Decision procedure for the word problem ([Thue](#), 1914).
- ▶ Finite convergent presentations.
 - ▷ If a monoid \mathbf{M} admits a finite convergent presentation, then its word problem is decidable.
- ▶ [Jantzen](#), 1982, asked whether every string rewriting with a decidable word problem has an equivalent finite convergent string rewriting system.

Theorem. [\[Squier, 1987\]](#)

There are finitely presented monoids with a decidable word problem that do not admit a finite convergent presentation (for any possible finite set of generators).

- ▶ Proof based on a finiteness condition for finite convergence.
 - ▷ A homological finiteness property, 1987.
 - ▷ A **homotopical finiteness property**, 1994.
- ▶ Categorical interpretations
 - ▷ [Burroni](#), 1993.
 - ▷ [Lafont](#), 2003, [Guiraud-Malbos](#), 2016.

Motivation II. Compute syzygies for presentations of monoids

- ▶ A **syzygy** is a relation between generators (from Greek $\sigmaυζυγια$, a pair).

Motivation II. Compute syzygies for presentations of monoids

- ▶ A **syzygy** is a relation between generators (from Greek $\sigmaυζυγια$, a pair).
- ▶ Syzygies problem in linear algebra.
 - ▷ Given a finitely generated module M on a commutative ring R and a set of generators:

$$\{ \mathbf{y}_1, \dots, \mathbf{y}_k \},$$

- ▷ a **syzygy** of M is an element $(\lambda_1, \dots, \lambda_k)$ in R^k for which

$$\lambda_1 \mathbf{y}_1 + \dots + \lambda_k \mathbf{y}_k = 0.$$

Motivation II. Compute syzygies for presentations of monoids

- ▶ A **syzygy** is a relation between generators (from Greek $\sigmaυζυγια$, a pair).
- ▶ Syzygies problem in linear algebra.
 - ▷ Given a finitely generated module M on a commutative ring R and a set of generators:

$$\{ \mathbf{y}_1, \dots, \mathbf{y}_k \},$$

- ▷ a **syzygy** of M is an element $(\lambda_1, \dots, \lambda_k)$ in R^k for which

$$\lambda_1 \mathbf{y}_1 + \dots + \lambda_k \mathbf{y}_k = 0.$$

- ▶ Schreyer, 1980 : computation of linear syzygies by means of the **division algorithm**.
 - ▷ Buchberger's completion algorithm for computing Gröbner bases allows the computation of the first syzygy module.
 - ▷ The reduction to zero of the S-polynomial of two polynomials in a Gröbner basis gives a syzygy.

Motivation II. Compute syzygies for presentations of monoids

- ▶ Syzygy problem for a monoid \mathbf{M}

Motivation II. Compute syzygies for presentations of monoids

- ▶ Syzygy problem for a monoid **M**
 - ▷ presented by **generators** and **relations**.

Motivation II. Compute syzygies for presentations of monoids

- ▶ Syzygy problem for a monoid **M**
 - ▷ presented by **generators** and **relations**.
- ▶ In low dimensions : **coherent presentations**

Motivation II. Compute syzygies for presentations of monoids

- ▶ Syzygy problem for a monoid **M**
 - ▷ presented by **generators** and **relations**.
- ▶ In low dimensions : **coherent presentations**
 - ▷ generators, relations, **syzygies**.
 - ▷ **syzygies** = relations among relations.

Motivation II. Compute syzygies for presentations of monoids

- ▶ Syzygy problem for a monoid \mathbf{M}
 - ▷ presented by **generators** and **relations**.
- ▶ In low dimensions : **coherent presentations**
 - ▷ generators, relations, **syzygies**.
 - ▷ **syzygies** = relations among relations.
- ▶ Applications:
 - ▷ Explicit description of actions of a monoid on categories in representation theory.
 - ▷ Coherence theorems for monoids.
 - ▷ Algorithms in homological algebra.

Motivation II. Compute syzygies for presentations of monoids

- ▶ The **Artin monoid** B_3^+ of braids on 3 strands.

$$s = \text{braiding diagram} \quad | \quad t = \text{braiding diagram} \quad = \quad \text{braiding diagram}$$

Motivation II. Compute syzygies for presentations of monoids

- ▶ The **Artin monoid** B_3^+ of braids on 3 strands.

- ▶ The **Artin presentation**:

$$\langle s, t \mid tst = sts \rangle$$

Motivation II. Compute syzygies for presentations of monoids

- ▶ The **Artin monoid** B_3^+ of braids on 3 strands.

$$s = \text{X} \quad | \quad t = | \quad \text{X} \quad \quad \quad \text{X} \quad = \quad \text{X}$$

- ▶ The **Artin presentation**:

$$\langle s, t \mid tst = sts \rangle$$

- ▶ We will prove that there is no syzygy between relations induced by $tst = sts$.

Motivation II. Compute syzygies for presentations of monoids

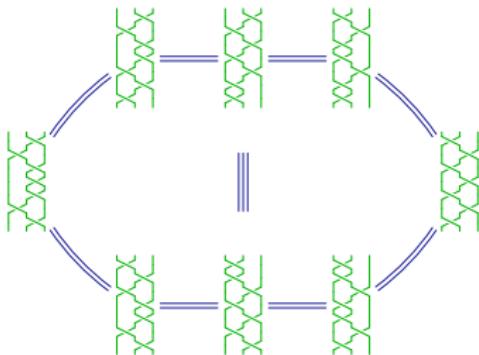
- ▶ The **Artin monoid** B_3^+ of braids on 3 strands.

$$s = \text{braiding move} \quad | \quad t = \text{vertical strand} \quad \text{braiding move} = \text{braiding move}$$

- ▶ The **Artin presentation**:

$$\langle s, t \mid tst = sts \rangle$$

- ▶ We will prove that there is no syzygy between relations induced by $tst = sts$.



With this presentation two proofs of the same equality in B_3^+ are equal.

Plan of the lecture

Plan of the lecture

I. String Rewriting and the Word Problem

- Strings are 1-dimensional
- String rewriting systems and 2-polygraphs
- String Rewriting and the Word Problem

II. Coherent presentations of monoids

- Coherent presentation
- Homotopical Squier Theorem

III. Homotopical completion-reduction procedure

- Homotopical completion-reduction
- Algebraic examples

Part I. String Rewriting and the Word Problem

String rewriting systems and 2-polygraphs

- String rewriting system ([Thue](#) 1914).

String rewriting systems and 2-polygraphs

- ▶ String rewriting system ([Thue](#) 1914).
- ▶ Categorical description ([Street](#) 1976, [Eilenberg-Street](#) 1986, [Burroni](#) 1991).

String rewriting systems and 2-polygraphs

- ▶ String rewriting system (Thue 1914).
- ▶ Categorical description (Street 1976, Eilenberg-Street 1986, Burroni 1991).
- ▶ **2-polygraph (2-computad)** with only one 0-cell:
 - ▷ $\Sigma_0 = \{ \bullet \}$
 - ▷ Σ_1 set of **generators** : $\bullet = s_0(x) \xrightarrow{x} t_0(x) = \bullet$
 - ▷ Σ_1^* free monoid of **strings** :

$$\bullet \xrightarrow{x_1} \bullet \xrightarrow{x_2} \bullet \dots \bullet \xrightarrow{x_k} \bullet$$

String rewriting systems and 2-polygraphs

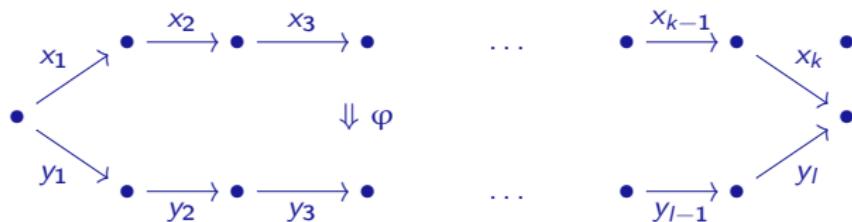
- ▶ String rewriting system (Thue 1914).
- ▶ Categorical description (Street 1976, Eilenberg-Street 1986, Burroni 1991).
- ▶ **2-polygraph (2-computad)** with only one 0-cell:
 - ▷ $\Sigma_0 = \{\bullet\}$

- ▷ Σ_1 set of **generators** : $\bullet = s_0(x) \xrightarrow{x} t_0(x) = \bullet$

- ▷ Σ_1^* free monoid of **strings** :

$$\bullet \xrightarrow{x_1} \bullet \xrightarrow{x_2} \bullet \dots \bullet \xrightarrow{x_k} \bullet$$

- ▷ Σ_2 set of **rules** $\varphi : u \Rightarrow v$ with a globular shape:



- ▷ 1-source of $\varphi : s_1(\varphi) = x_1 x_2 \dots x_k$,
- ▷ 1-target of $\varphi : t_1(\varphi) = y_1 y_2 \dots y_l$.

Rewriting properties of 2-polygraphs

- A **1-polygraph** is an oriented graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow[\substack{t_0}]{} \xleftarrow[\substack{s_0}]{} \Sigma_1$$

Rewriting properties of 2-polygraphs

- A **1-polygraph** is an oriented graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow[s_0]{t_0} \Sigma_1$$

- A **2-polygraph** is a triple $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ where

- ▷ (Σ_0, Σ_1) is a 1-polygraph,
- ▷ Σ_2 is a globular extension of the free category Σ_1^* .

$$\Sigma_0 \xleftarrow[s_0]{t_0} \Sigma_1^* \xleftarrow[s_1]{t_1} \Sigma_2$$

$$\begin{array}{ccc} s_0 s_1(\alpha) & \xrightarrow{\hspace{2cm}} & t_0 s_1(\alpha) \\ \parallel \alpha & \downarrow & \\ s_0 t_1(\alpha) & \xrightarrow{\hspace{2cm}} & t_0 t_1(\alpha) \end{array}$$

Rewriting properties of 2-polygraphs

- ▶ Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

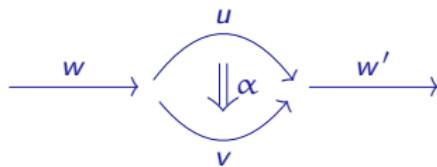
Rewriting properties of 2-polygraphs

► Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

► Consider the free 2-category Σ_2^* over Σ .

Rewriting properties of 2-polygraphs

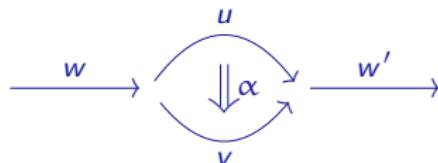
- ▶ Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.
- ▶ Consider the free 2-category Σ_2^* over Σ .
- ▶ A **rewriting step** is a 2-cell of the 2-category Σ_2^* with shape



where $u \xrightarrow{\alpha} v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

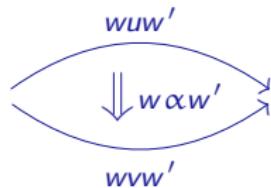
Rewriting properties of 2-polygraphs

- ▶ Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.
- ▶ Consider the free 2-category Σ_2^* over Σ .
- ▶ A **rewriting step** is a 2-cell of the 2-category Σ_2^* with shape



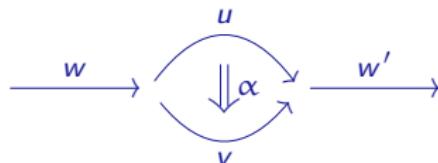
where $u \xrightarrow{\alpha} v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

- ▶ Notation



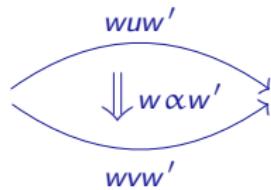
Rewriting properties of 2-polygraphs

- ▶ Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.
- ▶ Consider the free 2-category Σ_2^* over Σ .
- ▶ A **rewriting step** is a 2-cell of the 2-category Σ_2^* with shape



where $u \xrightarrow{\alpha} v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_2^* .

- ▶ Notation



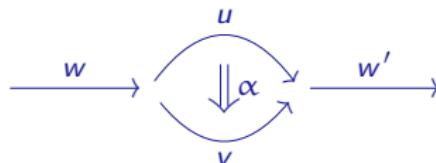
- ▶ A **rewriting sequence** of Σ is a finite or infinite sequence

$$u_1 \xrightarrow{f_1} u_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} u_n \xrightarrow{f_n} \cdots$$

of rewriting steps.

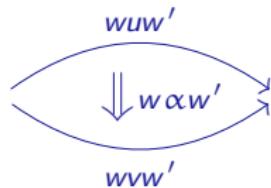
Rewriting properties of 2-polygraphs

- ▶ Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.
- ▶ Consider the free 2-category Σ_2^* over Σ .
- ▶ A **rewriting step** is a 2-cell of the 2-category Σ_2^* with shape



where $u \xrightarrow{\alpha} v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

- ▶ Notation



- ▶ A **rewriting sequence** of Σ is a finite or infinite sequence

$$u_1 \xrightarrow{f_1} u_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} u_n \xrightarrow{f_n} \cdots$$

of rewriting steps.

- ▶ Rewriting sequences form a 2-category Σ_2^* .

Rewriting properties of 2-polygraphs

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

Rewriting properties of 2-polygraphs

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

- Σ **terminates** if it does not generate any infinite reduction sequence

$$u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n \Rightarrow \cdots$$

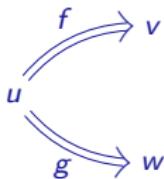
Rewriting properties of 2-polygraphs

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

- Σ **terminates** if it does not generate any infinite reduction sequence

$$u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n \Rightarrow \cdots$$

- A **branching** of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source



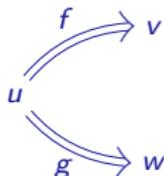
Rewriting properties of 2-polygraphs

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

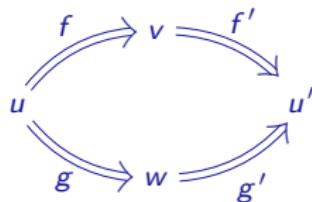
- Σ **terminates** if it does not generate any infinite reduction sequence

$$u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n \Rightarrow \cdots$$

- A **branching** of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source



- Σ is **confluent** if all of its branchings are confluent:



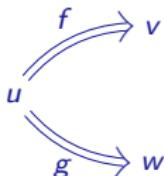
Rewriting properties of 2-polygraphs

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

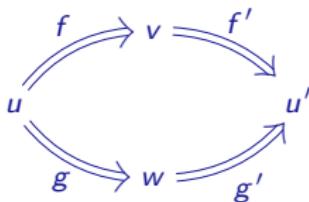
- Σ **terminates** if it does not generate any infinite reduction sequence

$$u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_n \Rightarrow \dots$$

- A **branching** of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source



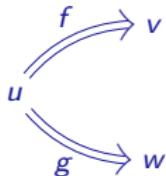
- Σ is **confluent** if all of its branchings are confluent:



- Σ is **convergent** if it terminates and it is confluent.

Rewriting properties of 2-polygraphs

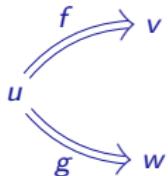
- A branching



is **local** if f and g are rewriting steps.

Rewriting properties of 2-polygraphs

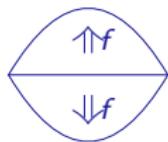
- A branching



is **local** if f and g are rewriting steps.

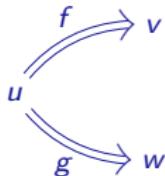
- Local branchings are classified as follows:

- ▷ **aspherical** branchings have shape



Rewriting properties of 2-polygraphs

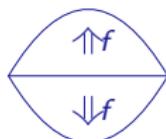
- A branching



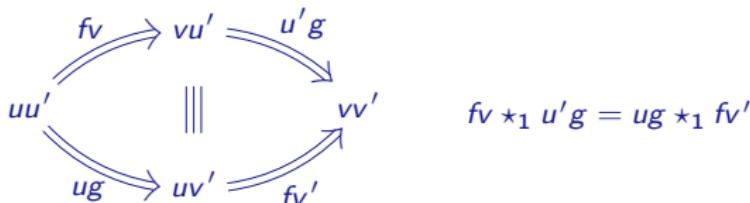
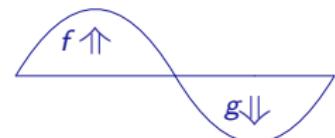
is **local** if f and g are rewriting steps.

- Local branchings are classified as follows:

▷ **aspherical** branchings have shape

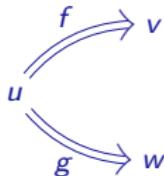


▷ **Peiffer** branchings have shape



Rewriting properties of 2-polygraphs

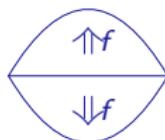
- A branching



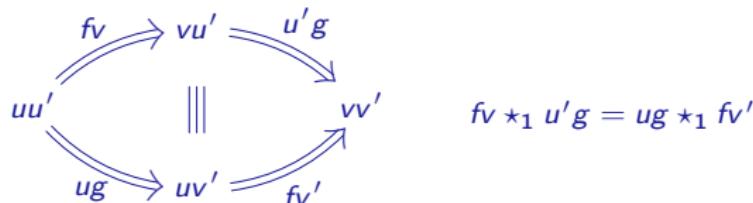
is **local** if f and g are rewriting steps.

- Local branchings are classified as follows:

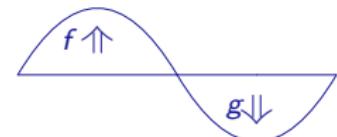
▷ **aspherical** branchings have shape



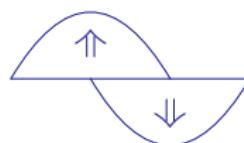
▷ **Peiffer** branchings have shape



$$fv \star_1 u'g = ug \star_1 fv'$$



▷ **critical branchings** are all the other cases



Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

▷ A Peiffer branching:

tsttst

Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

▷ A Peiffer branching:

$$\begin{array}{c} \gamma_{st} \xrightarrow{tst} \mathbf{sts} \\ \swarrow \quad \searrow \\ \mathbf{tst} \quad \mathbf{tst} \end{array}$$

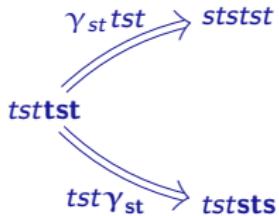
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

▷ A Peiffer branching:



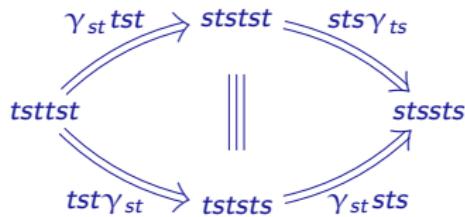
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

▷ A Peiffer branching:



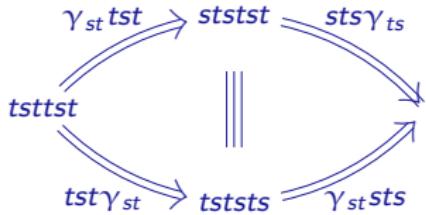
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

▷ A Peiffer branching:



▷ It has only one critical branching:

$tstst$

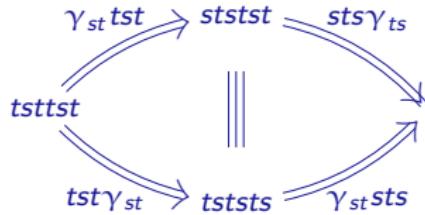
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

▷ A Peiffer branching:



▷ It has only one critical branching:

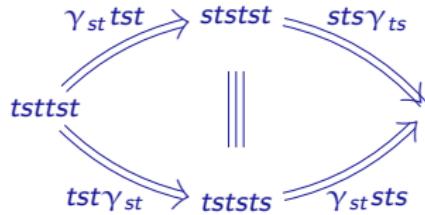
Rewriting properties of 2-polygraphs

Example.

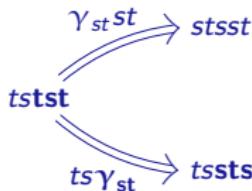
Consider the 2-polygraph

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \rangle$$

▷ A Peiffer branching:



▷ It has only one critical branching:



Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \rangle$$

Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \rangle$$

- ▷ It has only one critical branching

tsr

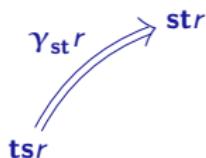
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \rangle$$

- ▷ It has only one critical branching



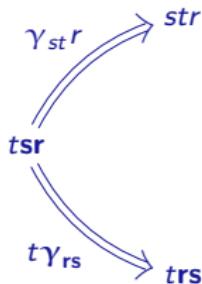
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \rangle$$

- ▷ It has only one critical branching



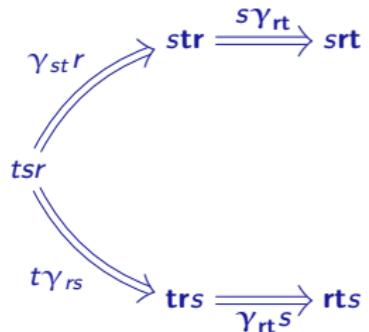
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \rangle$$

- ▷ It has only one critical branching



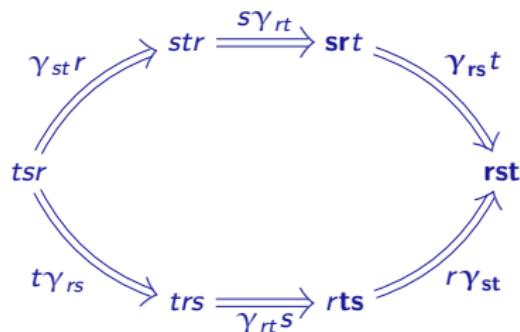
Rewriting properties of 2-polygraphs

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \rangle$$

- ▷ It has only one critical branching



String Rewriting and the Word Problem

String Rewriting and the Word Problem

► **Finite convergent presentations** give a method for solving the word problem algorithmically.

- ▷ Given a 2-polygraph Σ .
- ▷ Consider the monoid **M presented** by Σ , i.e., the quotient of the free monoid Σ_1^* by the congruence generated by Σ_2 :

$$M = \Sigma_1^* / \Sigma_2.$$

String Rewriting and the Word Problem

► **Finite convergent presentations** give a method for solving the word problem algorithmically.

- ▷ Given a 2-polygraph Σ .
- ▷ Consider the monoid \mathbf{M} **presented** by Σ , i.e., the quotient of the free monoid Σ_1^* by the congruence generated by Σ_2 :

$$\mathbf{M} = \Sigma_1^* / \Sigma_2.$$

- ▷ The **word problem** for the monoid \mathbf{M} :
 - two strings w and w' in Σ_1^* ,
 - does $w = w'$ in \mathbf{M} ?

String Rewriting and the Word Problem

► **Finite convergent presentations** give a method for solving the word problem algorithmically.

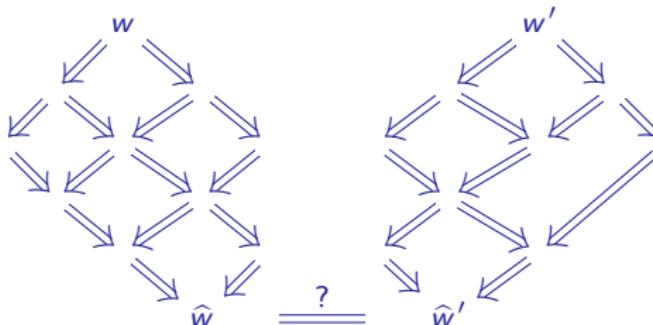
- ▷ Given a 2-polygraph Σ .
- ▷ Consider the monoid \mathbf{M} **presented** by Σ , i.e., the quotient of the free monoid Σ_1^* by the congruence generated by Σ_2 :

$$\mathbf{M} = \Sigma_1^* / \Sigma_2.$$

- ▷ The **word problem** for the monoid \mathbf{M} :

- two strings w and w' in Σ_1^* ,
- does $w = w'$ in \mathbf{M} ?

- ▷ **Normal form algorithm** for finite and convergent 2-polygraphs:



Fact. Monoids having a finite convergent presentation are decidable.

Finite Convergent Presentations

► Knuth-Bendix **completion procedure**, 1970.

► **Input** : Σ a terminating 2-polygraph with a total termination order \prec .

► The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that

► $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,

► $\mathcal{KB}(\Sigma)$ is confluent,

► $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.

Finite Convergent Presentations

► Knuth-Bendix **completion procedure**, 1970.

► **Input** : Σ a terminating 2-polygraph with a total termination order \prec .

► The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that

► $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,

► $\mathcal{KB}(\Sigma)$ is confluent,

► $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.

► $\mathcal{KB}(\Sigma) := \Sigma$

► $\mathcal{C}b := \{ \text{critical branchings of } \Sigma \}$

Finite Convergent Presentations

- ▶ Knuth-Bendix **completion procedure**, 1970.
 - ▷ **Input** : Σ a terminating 2-polygraph with a total termination order \prec .
 - ▷ The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that
 - ▷ $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,
 - ▷ $\mathcal{KB}(\Sigma)$ is confluent,
 - ▷ $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.
 - ▷ $\mathcal{KB}(\Sigma) := \Sigma$
 - ▷ $\mathcal{C}b := \{ \text{critical branchings of } \Sigma \}$
 - ▷ **While** $\mathcal{C}b \neq \emptyset$

Finite Convergent Presentations

- ▶ Knuth-Bendix **completion procedure**, 1970.

- ▷ **Input** : Σ a terminating 2-polygraph with a total termination order \prec .

- ▷ The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that

- ▷ $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,

- ▷ $\mathcal{KB}(\Sigma)$ is confluent,

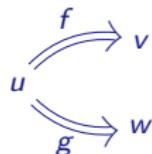
- ▷ $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.

- ▷ $\mathcal{KB}(\Sigma) := \Sigma$

- ▷ $\mathcal{C}b := \{\text{critical branchings of } \Sigma\}$

- ▷ **While** $\mathcal{C}b \neq \emptyset$

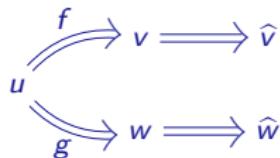
- ▷ Picks a branching in $\mathcal{C}b$:



- ▷ $\mathcal{C}b := \mathcal{C}b \setminus \{(f, g)\}$

Finite Convergent Presentations

- ▶ Knuth-Bendix **completion procedure**, 1970.
 - ▷ **Input** : Σ a terminating 2-polygraph with a total termination order \prec .
 - ▷ The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that
 - ▷ $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,
 - ▷ $\mathcal{KB}(\Sigma)$ is confluent,
 - ▷ $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.
 - ▷ $\mathcal{KB}(\Sigma) := \Sigma$
 - ▷ $\mathcal{Cb} := \{ \text{critical branchings of } \Sigma \}$
 - ▷ **While** $\mathcal{Cb} \neq \emptyset$
 - ▷ Reduce v to a normal form \hat{v} with respect to $\mathcal{KB}(\Sigma)_2$
 - ▷ Reduce w to a normal form \hat{w} with respect to $\mathcal{KB}(\Sigma)_2$



Finite Convergent Presentations

- ▶ Knuth-Bendix **completion procedure**, 1970.

- ▷ **Input** : Σ a terminating 2-polygraph with a total termination order \prec .

- ▷ The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that

- ▷ $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,

- ▷ $\mathcal{KB}(\Sigma)$ is confluent,

- ▷ $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.

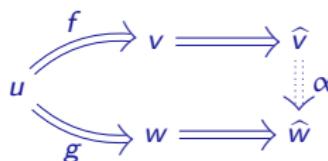
- ▷ $\mathcal{KB}(\Sigma) := \Sigma$

- ▷ $\mathcal{Cb} := \{ \text{critical branchings of } \Sigma \}$

- ▷ **While** $\mathcal{Cb} \neq \emptyset$

- ▷ **If** $\hat{v} > \hat{w}$

- ▷ $\mathcal{KB}(\Sigma)_2 := \mathcal{KB}(\Sigma)_2 \cup \{ \alpha : \hat{v} \Rightarrow \hat{w} \} :$



- ▷ $\mathcal{Cb} := \mathcal{Cb} \cup \{ \text{critical branching created by } \alpha \}$

Finite Convergent Presentations

- ▶ Knuth-Bendix **completion procedure**, 1970.

- ▷ **Input** : Σ a terminating 2-polygraph with a total termination order \prec .

- ▷ The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that

- ▷ $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,

- ▷ $\mathcal{KB}(\Sigma)$ is confluent,

- ▷ $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.

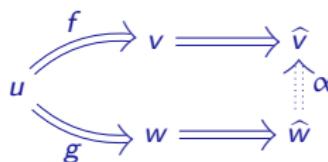
- ▷ $\mathcal{KB}(\Sigma) := \Sigma$

- ▷ $\mathcal{Cb} := \{ \text{critical branchings of } \Sigma \}$

- ▷ **While** $\mathcal{Cb} \neq \emptyset$

- ▷ **If** $\hat{w} > \hat{v}$

- ▷ $\mathcal{KB}(\Sigma)_2 := \mathcal{KB}(\Sigma)_2 \cup \{ \alpha : \hat{w} \Rightarrow \hat{v} \} :$



- ▷ $\mathcal{Cb} := \mathcal{Cb} \cup \{ \text{critical branching created by } \alpha \}$

Finite Convergent Presentations

- ▶ Knuth-Bendix **completion procedure**, 1970.
 - ▷ **Input** : Σ a terminating 2-polygraph with a total termination order \prec .
 - ▷ The procedure will try to compute a 2-polygraph $\mathcal{KB}(\Sigma)$ such that
 - ▷ $u > v$ holds for each $u \Rightarrow v$ in $\mathcal{KB}(\Sigma)_2$,
 - ▷ $\mathcal{KB}(\Sigma)$ is confluent,
 - ▷ $\mathcal{KB}(\Sigma)$ and Σ are Tietze equivalent.
 - ▷ $\mathcal{KB}(\Sigma) := \Sigma$
 - ▷ $\mathcal{C}b := \{\text{critical branchings of } \Sigma\}$
 - ▷ **While** $\mathcal{C}b \neq \emptyset$
- ▶ If the procedure stops, it returns the 2-polygraph $\mathcal{KB}(\Sigma)$.
- ▶ Otherwise, it builds an increasing sequence of 2-polygraphs, whose limit is denoted by $\mathcal{KB}(\Sigma)$.

Finite Convergent Presentations

- ▶ Finite convergent presentations.
 - ▷ If a monoid **M** admits a finite convergent presentation, then its word problem is decidable.
 - ▷ Knuth-Bendix, 1970, Nivat, 1972,
 - ▷ Book, Otto, Diekert, Jantzen, Kapur-Narendran, Squier, ... in eighties.

Finite Convergent Presentations

- ▶ Finite convergent presentations.
 - ▷ If a monoid **M** admits a finite convergent presentation, then its word problem is decidable.
 - ▷ [Knuth-Bendix](#), 1970, [Nivat](#), 1972,
 - ▷ [Book](#), [Otto](#), [Diekert](#), [Jantzen](#), [Kapur-Narendran](#), [Squier](#), ... in eighties.
- ▶ [Jantzen](#), 1982, asked whether every string rewriting with a decidable word problem has an equivalent finite convergent string rewriting system.

Finite Convergent Presentations

- ▶ Finite convergent presentations.
 - ▷ If a monoid **M** admits a finite convergent presentation, then its word problem is decidable.
 - ▷ [Knuth-Bendix](#), 1970, [Nivat](#), 1972,
 - ▷ [Book](#), [Otto](#), [Diekert](#), [Jantzen](#), [Kapur-Narendran](#), [Squier](#), ... in eighties.
- ▶ [Jantzen](#), 1982, asked whether every string rewriting with a decidable word problem has an equivalent finite convergent string rewriting system.

Questions. ([Book](#), 1985, [Kapur-Narendran](#), 1985, [Jantzen](#), 1985, ...)

1. Does a finitely presented decidable monoid have a finite convergent presentation ?
2. Does rewriting is universal to decide the word problem in a finite presented monoid ?
3. What conditions a monoid must satisfy if it can be presented by a finite convergent rewriting system ?

Finite Convergent Presentations

Example. (Kapur-Narendran, 1985)

► Artin's presentation of monoid of **positive braids on 3 strands**:

$$\mathbf{B}_3^+ = \langle s, t \mid sts = tst \rangle$$

- \mathbf{B}_3^+ has a decidable word problem.
- There does not exist finite convergent presentation of \mathbf{B}_3^+ with two generators.
- But with three generators by adding a generator a standing for the product st .

Finite Convergent Presentations

$$\Sigma = \langle s, t \mid tst \Rightarrow sts$$

Finite Convergent Presentations

$$\Sigma = \langle s, t, a \mid tst \Rightarrow sts$$

Finite Convergent Presentations

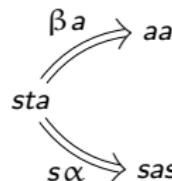
$$\Sigma = \langle s, t, a \mid tst \Rightarrow sts, st \xrightarrow{\beta} a \rangle$$

Finite Convergent Presentations

$$\Sigma = \langle \textcolor{blue}{s}, \textcolor{blue}{t}, \textcolor{red}{a} \mid \textcolor{red}{ta} \xrightarrow{\alpha} \textcolor{red}{as}, \textcolor{red}{st} \xrightarrow{\beta} \textcolor{red}{a} \rangle$$

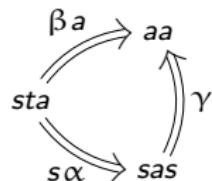
Finite Convergent Presentations

$$\Sigma = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a$$



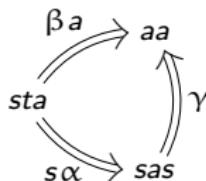
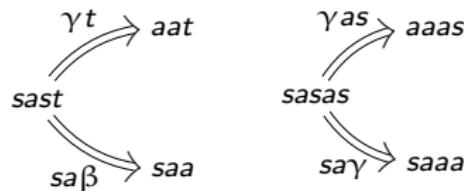
Finite Convergent Presentations

$$\Sigma = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa \rangle$$



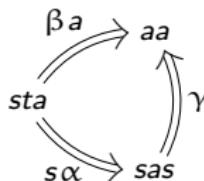
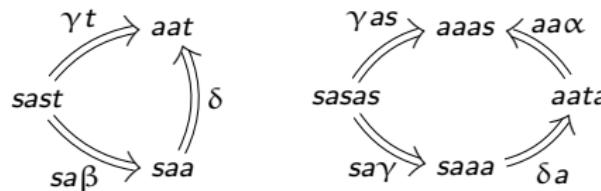
Finite Convergent Presentations

$$\Sigma = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa \rangle$$



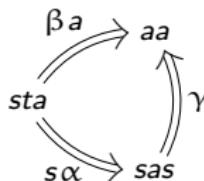
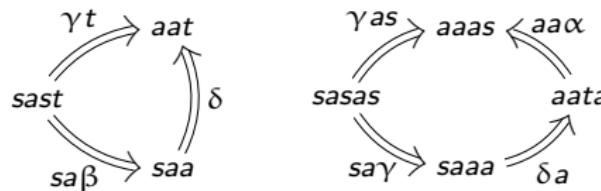
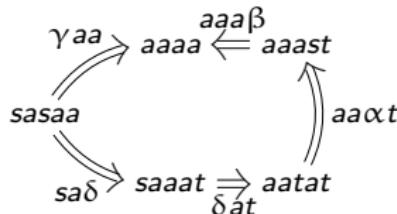
Finite Convergent Presentations

$$\Sigma = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \rangle$$



Finite Convergent Presentations

$$\Sigma = \langle \textcolor{blue}{s}, \textcolor{blue}{t}, \textcolor{red}{a} \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \rangle$$



Finite Convergent Presentations

Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)

1. Does a finitely presented decidable monoid have a finite convergent presentation ?
2. Does rewriting is universal to decide the word problem in a finite presented monoid ?
3. What conditions a monoid must satisfy if it can be presented by a finite convergent rewriting system ?

Answers. (Squier, 1987)

1. No in general.
2. No.
3. Homological finiteness condition and **homotopical finiteness condition** (1994).

Finite Convergent Presentations

Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)

1. Does a finitely presented decidable monoid have a finite convergent presentation ?
2. Does rewriting is universal to decide the word problem in a finite presented monoid ?
3. What conditions a monoid must satisfy if it can be presented by a finite convergent rewriting system ?

Answers. (Squier, 1987)

1. No in general.
2. No.
3. Homological finiteness condition and **homotopical finiteness condition** (1994).

► Generalization of finiteness conditions, Anick, 1987, Kobayashi, 1991, Brown, 1992.

Exercise I (Kapur-Narendran '85)

► Consider the monoid B_3^+ of positive braids on three strands and the Artin's presentation

$$\langle s, t \mid \gamma : sts \Rightarrow tst \rangle.$$

1. Compute a convergent presentation of the monoid B_3^+ with two generating 1-cells.
2. Show that the word problem is decidable for B_3^+ .
3. Show that for any $i \geq 0$ and any $j \geq 0$, the words

$$s^{i+1}t^{j+2}st \quad \text{and} \quad tst^{i+2}s^{j+1}$$

are equals in B_3^+ .

4. Denote by $[w]$ the equivalence class modulo the relation γ containing the word w . Prove that for any $n > 0$ the two following equalities hold

$$[t^n st] = \{ t^{n-i} sts^i \mid 0 \leq i \leq n \}.$$

$$[tst^n] = \{ s^j tst^{n-j} \mid 0 \leq j \leq n \}.$$

5. Show that there does not exist any finite convergent presentation of the monoid B_3^+ with two generators s and t .

Part II. Coherent presentations of monoids

2-Polygraphs

► A **1-polygraph** is an oriented graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow[\substack{s_0 \\ t_0}]{} \Sigma_1$$

► A **2-polygraph** is a triple $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ where

- ▷ (Σ_0, Σ_1) is a 1-polygraph,
- ▷ Σ_2 is a globular extension of the free category Σ_1^* .

$$\Sigma_0 \xleftarrow[\substack{s_0 \\ t_0}]{} \Sigma_1^* \xleftarrow[\substack{s_1 \\ t_1}]{} \Sigma_2$$

$$\begin{array}{ccc} s_1(\alpha) & & t_0 s_1(\alpha) \\ \Downarrow \alpha & \Downarrow & \Downarrow \\ s_0 s_1(\alpha) & = & t_0 t_1(\alpha) \\ s_0 t_1(\alpha) & & = \\ & & t_0 t_1(\alpha) \end{array}$$

► A **rewriting step** is a 2-cell of the free 2-category Σ_2^* over Σ with shape

$$\begin{array}{ccc} w & \xrightarrow{\quad u \quad} & w' \\ & \Downarrow \alpha & \\ & v & \end{array}$$

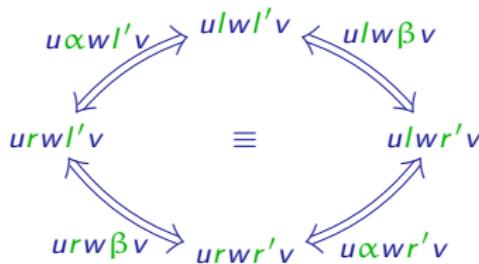
$$\begin{array}{ccc} wuw' & & \\ \Downarrow w\alpha w' & & \\ www' & & \end{array}$$

where $u \xrightarrow{\alpha} v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

Homotopical Squier Theorem

- ▶ Σ a 2-polygraph.
- ▶ Denote by Σ_2^\top the free **(2, 1)-category** on Σ , that is
 - ▷ free **category enriched in groupoid** on Σ ,
 - ▷ free 2-category whose any 2-cell is invertible.

- ▶ Description of Σ_2^\top
 - ▷ 0-cells : Σ_0 ,
 - ▷ 1-cells strings in Σ_1^* ,
 - ▷ 2-cells : reductions and their inverses \Leftrightarrow ,
 - ▷ submitted **Peiffer elements**:



for any 2-cells $l \xrightarrow{\alpha} r$ and $l' \xrightarrow{\beta} r'$.

(3, 1)-Polygraphs

- A **(3, 1)-polygraph** is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of
 - ▷ a 2-polygraph Σ_2 ,
 - ▷ a globular extension Σ_3 of the free $(2, 1)$ -category Σ_2^\top .

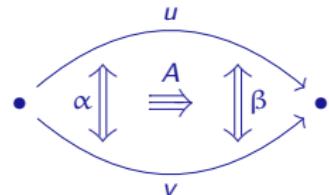
$$\Sigma_0 \xleftarrow[s_0]{t_0} \Sigma_1^* \xleftarrow[s_1]{t_1} \Sigma_2^\top \xleftarrow[s_2]{t_2} \Sigma_3$$



(3, 1)-Polygraphs

- ▶ A **(3, 1)-polygraph** is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of
 - ▷ a 2-polygraph Σ_2 ,
 - ▷ a globular extension Σ_3 of the free $(2, 1)$ -category Σ_2^\top .

$$\Sigma_0 \xleftarrow[s_0]{t_0} \Sigma_1^* \xleftarrow[s_1]{t_1} \Sigma_2^\top \xleftarrow[s_2]{t_2} \Sigma_3$$



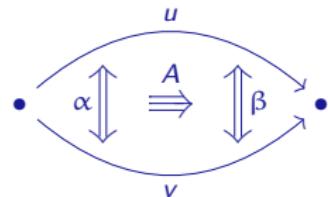
- ▶ Let \mathbf{M} be a monoid.
- ▶ A **presentation** of \mathbf{M} is a 2-polygraph Σ such that

$$\mathbf{M} \simeq \Sigma_1^*/\Sigma_2$$

(3, 1)-Polygraphs

- ▶ A **(3, 1)-polygraph** is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of
 - ▷ a 2-polygraph Σ_2 ,
 - ▷ a globular extension Σ_3 of the free $(2, 1)$ -category Σ_2^\top .

$$\Sigma_0 \xleftarrow[s_0]{t_0} \Sigma_1^* \xleftarrow[s_1]{t_1} \Sigma_2^\top \xleftarrow[s_2]{t_2} \Sigma_3$$



- ▶ Let \mathbf{M} be a monoid.
- ▶ A **presentation** of \mathbf{M} is a 2-polygraph Σ such that

$$\mathbf{M} \simeq \Sigma_1^*/\Sigma_2$$

- ▶ An **extended presentation** of \mathbf{M} is a (3, 1)-polygraph Σ such that

$$\mathbf{M} \simeq \Sigma_1^*/\Sigma_2$$

Homotopical Squier Theorem

Definition. A **homotopy relation** on Σ_2^\top is an equivalence relation \equiv on parallel 2-cells stable under

- ▷ **context:** $f \equiv g$ implies $ufv \equiv ugv$,
- ▷ **composition:** $f \equiv g$ implies $k \star_1 f \star_1 h \equiv k \star_1 g \star_1 h$.

Homotopical Squier Theorem

Definition. A **homotopy relation** on Σ_2^T is an equivalence relation \equiv on parallel 2-cells stable under

- ▷ **context:** $f \equiv g$ implies $ufv \equiv ugv$,
- ▷ **composition:** $f \equiv g$ implies $k \star_1 f \star_1 h \equiv k \star_1 g \star_1 h$.

Definition. A **homotopy basis** is a cellular extension Σ_3 made of 3-cells

on spheres of Σ_2^T such that the homotopy relation generated by Σ_3 contains every pair of parallel 2-cells in Σ_2^T .

Coherent presentations of categories

- A **coherent presentation** of \mathbf{M} is an extended presentation Σ of \mathbf{M} such that the cellular extension Σ_3 is a **homotopy basis**, that is

Coherent presentations of categories

- ▶ A **coherent presentation** of \mathbf{M} is an extended presentation Σ of \mathbf{M} such that the cellular extension Σ_3 is a **homotopy basis**, that is
 - ▷ the congruence generated by Σ_3 on Σ_2^\top contains every pair of parallel 2-cells.

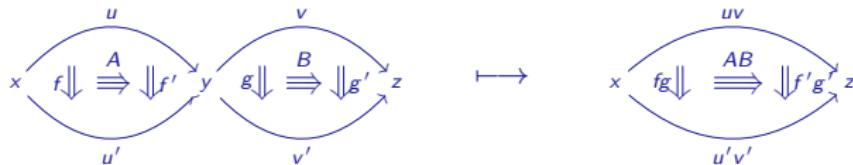
Coherent presentations of categories

- ▶ A **coherent presentation** of \mathbf{M} is an extended presentation Σ of \mathbf{M} such that the cellular extension Σ_3 is a **homotopy basis**, that is
 - ▷ the congruence generated by Σ_3 on Σ_2^\top contains every pair of parallel 2-cells.
 - ▷ the 3-cells of Σ_3 generate a tiling of Σ_2^\top wrt any possible composition of 3-cells:

Coherent presentations of categories

► A **coherent presentation** of \mathbf{M} is an extended presentation Σ of \mathbf{M} such that the cellular extension Σ_3 is a **homotopy basis**, that is

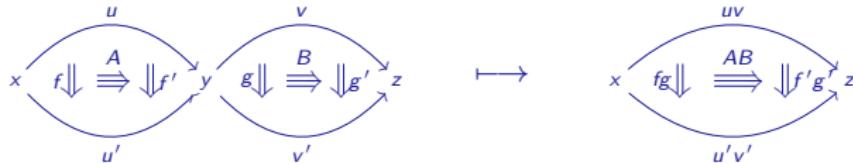
- ▷ the congruence generated by Σ_3 on Σ_2^\top contains every pair of parallel 2-cells.
- ▷ the 3-cells of Σ_3 generate a tiling of Σ_2^\top wrt any possible composition of 3-cells:
 - ▷ by \star_0 , along their 0-dimensional boundary:



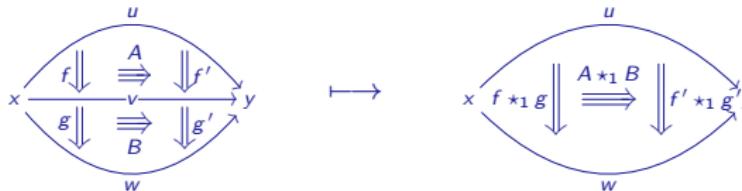
Coherent presentations of categories

► A **coherent presentation** of \mathbf{M} is an extended presentation Σ of \mathbf{M} such that the cellular extension Σ_3 is a **homotopy basis**, that is

- ▷ the congruence generated by Σ_3 on Σ_2^\top contains every pair of parallel 2-cells.
- ▷ the 3-cells of Σ_3 generate a tiling of Σ_2^\top wrt any possible composition of 3-cells:
 - ▷ by \star_0 , along their 0-dimensional boundary:



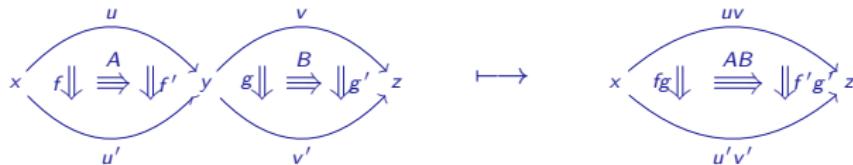
- ▷ by \star_1 , along their 1-dimensional boundary:



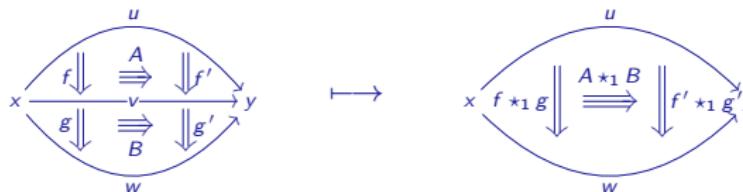
Coherent presentations of categories

► A **coherent presentation** of \mathbf{M} is an extended presentation Σ of \mathbf{M} such that the cellular extension Σ_3 is a **homotopy basis**, that is

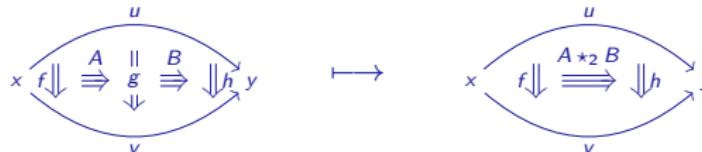
- ▷ the congruence generated by Σ_3 on Σ_2^\top contains every pair of parallel 2-cells.
- ▷ the 3-cells of Σ_3 generate a tiling of Σ_2^\top wrt any possible composition of 3-cells:
 - ▷ by \star_0 , along their 0-dimensional boundary:



- ▷ by \star_1 , along their 1-dimensional boundary:



- ▷ by \star_2 , along their 2-dimensional boundary:



Examples

- ▶ The full coherent presentation contains all the 3-cells.

Examples

- ▶ The full coherent presentation contains all the 3-cells.
- ▶ Free monoid : no relation, an empty homotopy basis.

Examples

- ▶ Free commutative monoid of rank 3:

- ▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid \text{all the 3-cells} \rangle$$

Examples

- ▶ Free commutative monoid of rank 3:

- ▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid \text{all the 3-cells} \rangle$$

- ▷ A homotopy basis can be made with only one 3-cell

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid Z_{r,s,t} \rangle$$

Examples

- ▶ Free commutative monoid of rank 3:

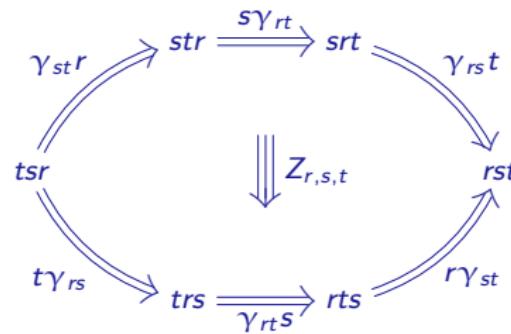
- ▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid \text{all the 3-cells} \rangle$$

- ▷ A homotopy basis can be made with only one 3-cell

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid Z_{r,s,t} \rangle$$

where the 3-cell $Z_{r,s,t}$ is the **permutohedron**



Examples

► Artin's coherent presentation of the monoid B_3^+

$$s = \text{X} \quad | \quad t = | \quad \text{X} \quad \quad \quad \text{X} \quad = \quad \text{X}$$

Examples

- Artin's coherent presentation of the monoid B_3^+

$$s = \begin{array}{c} \diagup \\ \diagdown \end{array} \quad | \quad t = \begin{array}{c} | \\ \diagup \\ \diagdown \end{array}$$
$$\begin{array}{c} | \\ \diagup \\ \diagdown \end{array} = \begin{array}{c} \diagup \\ \diagdown \\ | \end{array}$$

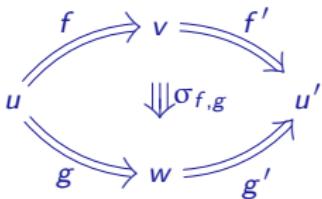
- The homotopy basis is empty.

$$\langle s, t \mid tst \xrightarrow{\gamma_{st}} sts \mid \emptyset \rangle$$

Homotopical Squier's Theorem

Homotopical Squier's Theorem: objective

- ▶ A method to compute a coherent presentation starting from a convergent presentation.
- ▶ **Squier's completion procedure** provides a way to extend a convergent presentation of a monoid \mathbf{M} into a coherent presentation.
- ▶ Given a convergent 2-polygraph Σ .
- ▶ We compute a coherent presentation whose 3-cells are **generating confluences**,
 - ▷ that is, one 3-cell:

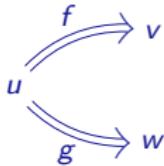


- ▷ for every critical branching (f, g) of Σ .

Homotopical Squier's Theorem

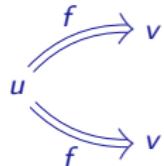
Branchings

- ▶ Let Σ be a 2-polygraph.
- ▶ A **branching** of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source:

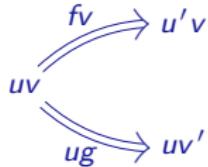


- ▶ A branching (f, g) is **local** when f and g are rewriting steps.
- ▶ Local branchings are

▷ **aspherical**



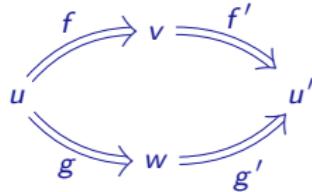
▷ **Peiffer**



▷ or **overlapping**.

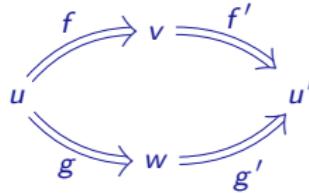
Generating confluences

- ▶ A branching $(f, g) : u \Rightarrow (v, w)$ is **confluent** when there exist 2-cells $f' : v \Rightarrow u'$ and $g' : w \Rightarrow u'$ in Σ_2^* such that

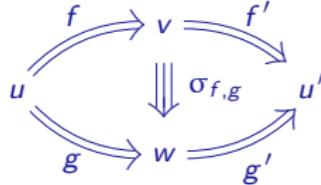


Generating confluences

- A branching $(f, g) : u \Rightarrow (v, w)$ is **confluent** when there exist 2-cells $f' : v \Rightarrow u'$ and $g' : w \Rightarrow u'$ in Σ_2^* such that



- A family of **generating confluences** of Σ is a cellular extension of Σ_2^\top that contains exactly one 3-cell



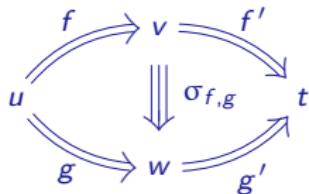
for every critical branching (f, g) of Σ .

- If Σ is confluent, it always admit a family of generating confluences.
- However, such a family is not necessarily unique, since
 - the 3-cell $\sigma_{f,g}$ can be directed in the reverse way,
 - for a given branching (f, g) , we can have several possible 2-cells f' and g' with the required shape.

Homotopical Squier's Theorem

Theorem. [Squier, 1994]

For a convergent presentation Σ of a monoid \mathbf{M} , the $(3, 1)$ -polygraph obtained from Σ by adjunction of a generating confluence



for every critical branching (f, g) is a coherent presentation of \mathbf{M} .

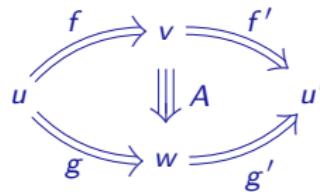
Homotopical Squier's Theorem: proof

Generating confluences

- ▶ Let Σ be a convergent 2-polygraph.
- ▶ Let Γ be a family of generating confluences of Σ .

Lemma 1.

For every local branching $(f, g) : u \Rightarrow (v, w)$ of Σ , there exist 2-cells f' and g' in Σ_2^* and a 3-cell A in Γ^\top , as in the following diagram:

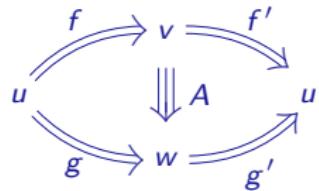


Generating confluences

- ▶ Let Σ be a convergent 2-polygraph.
- ▶ Let Γ be a family of generating confluences of Σ .

Lemma 1.

For every local branching $(f, g) : u \Rightarrow (v, w)$ of Σ , there exist 2-cells f' and g' in Σ_2^* and a 3-cell A in Γ^\top , as in the following diagram:

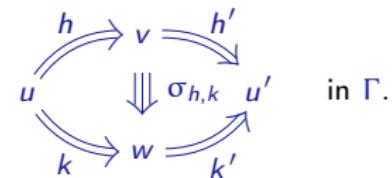


Proof.

▷ For aspherical or Peiffer branching, choose f' and g' such that $f \star_1 f' = g \star_1 g'$ and A is identity.

▷ An overlapping branching (f, g) that is not critical is of the form $(f, g) = (uhv, ukv)$ with (h, k) critical.

▷ Consider a generating confluence



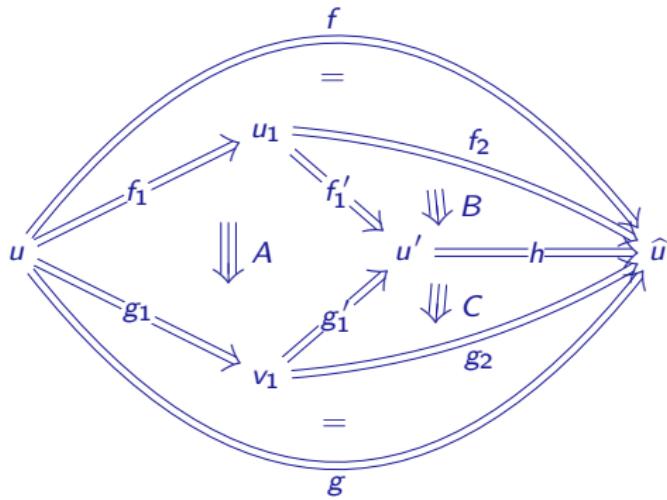
▷ We set $A = u\sigma_{h,k}v$, $f' = uh'v$ and $g' = uk'v$.

Generating confluences

Lemma 2.

For every parallel 2-cells f and g of Σ_2^* whose common target is a normal form, there exists a 3-cell from f to g in Γ^\top .

Proof. By Noetherian induction on the common source of f and g .



Homotopical Squier's Theorem

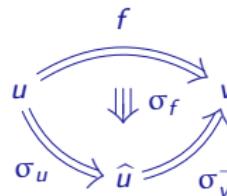
Proposition. Let Σ be a convergent 2-polygraph. Every family Γ of generating conflences of Σ is a homotopy basis of Σ_2^\top .

Proof.

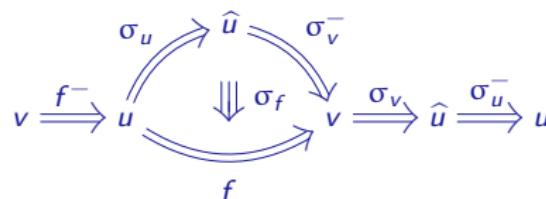
- ▷ Consider a 2-cell $f : u \Rightarrow v$ in Σ_2^* .
- ▷ Using the confluence, choose 2-cells

$$\sigma_u : u \Rightarrow \hat{u} \quad \text{and} \quad \sigma_v : v \Rightarrow \hat{v} = \hat{u} \quad \text{in} \quad \Sigma_2^*.$$

- ▷ By Lemma 2, there exists a 3-cell



- ▷ Moreover, the $(3, 1)$ -category Γ^\top contains a 3-cell $\sigma_f^- : f^- \Rightarrow \sigma_v \star_1 \sigma_u^-$, given as the composite:



Homotopical Squier's Theorem

Proposition. Let Σ be a convergent 2-polygraph. Every family Γ of generating confluences of Σ is a homotopy basis of Σ_2^\top .

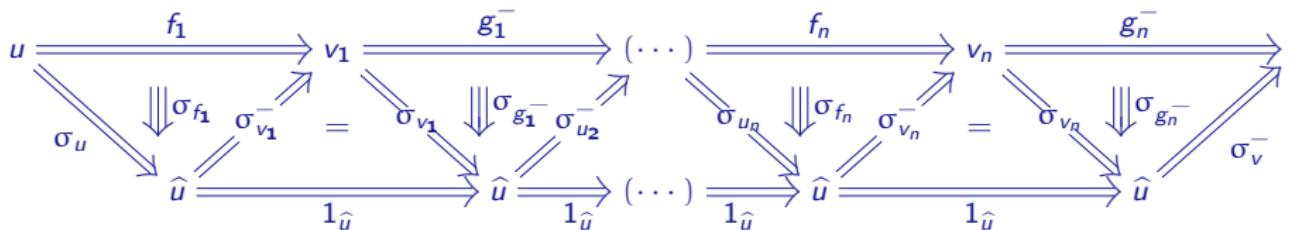
Proof.

- ▷ Consider a 2-cell $f : u \Rightarrow v$ in Σ_2^\top . It can be decomposed into a “zig-zag” sequence

$$u \xrightarrow{f_1} v_1 \xrightarrow{g_1^-} u_2 \xrightarrow{f_2} (\dots) \xrightarrow{g_{n-1}^-} u_n \xrightarrow{f_n} v_n \xrightarrow{g_n^-} v$$

where each f_i and g_i is a 2-cell of Σ_2^* .

- ▷ We construct a 3-cell of Γ^\top , with source f and target $\sigma_u \star_1 \sigma_v^-$:



- ▷ We proceed similarly for any 2-cell $g : u \Rightarrow v$ of Σ_2^\top , to get a 3-cell from g to $\sigma_u \star_1 \sigma_v^-$.
- ▷ Thus, the composite is a 3-cell of Γ^\top from f to g .

Finite derivation type

Definition. Σ has **finite derivation type (FDT)** if

- i) Σ is finite,
- ii) Σ_2^\top has a finite homotopy basis Σ_3 .

$$\Sigma_0 \quad \overbrace{\hspace{1.5cm}}^{\frac{t_0}{s_0}} \quad \Sigma_1^* \quad \overbrace{\hspace{1.5cm}}^{\frac{t_1}{s_1}} \quad \Sigma_2^\top \quad \overbrace{\hspace{1.5cm}}^{\frac{t_2}{s_2}} \quad \Sigma_3$$

Finite derivation type

Definition. Σ has **finite derivation type (FDT)** if

- i) Σ is finite,
- ii) Σ_2^\top has a finite homotopy basis Σ_3 .

$$\Sigma_0 \quad \overbrace{\hspace{1.5cm}}^{t_0 \atop s_0} \quad \Sigma_1^* \quad \overbrace{\hspace{1.5cm}}^{t_1 \atop s_1} \quad \Sigma_2^\top \quad \overbrace{\hspace{1.5cm}}^{t_2 \atop s_2} \quad \Sigma_3$$

Theorem. (Squier, 1994)

- i) Property FDT is Tietze invariant for finite rewriting systems.
- ii) A monoid having a finite convergent rewriting system has FDT.

Example. (Squier, 1994) The monoid

$$S_1 = \langle a, b, t, x, y \mid at^n b \Rightarrow 1, xa \Rightarrow atx, xt \Rightarrow tx, xb \Rightarrow bx, xy \Rightarrow 1 \rangle.$$

- has a decidable word problem,
- does not have finite derivation type.

► Hence, the monoid S_1 does not have a finite convergent presentation,

Part III. Homotopical completion-reduction procedure

Tietze transformations

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a generator**: for $u \in \Sigma_1^*$,

u

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a generator**: for $u \in \Sigma_1^*$, add a generating 1-cell x

u x

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a generator**: for $u \in \Sigma_1^*$, add a generating 1-cell x and add a generating 2-cell

$$u \xrightarrow{\delta} x$$

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a generator**: for $u \in \Sigma_1^*$, add a generating 1-cell x and add a generating 2-cell

$$u \xrightarrow{\delta} x$$

- ▷ **remove a generator**: for a generating 2-cell α in Σ_2 with $x \in \Sigma_1$,

$$u \xrightarrow{\alpha} x$$

Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a generator**: for $u \in \Sigma_1^*$, add a generating 1-cell x and add a generating 2-cell

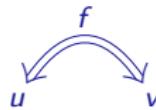
$$u \xrightarrow{\delta} x$$

- ▷ **remove a generator**: for a generating 2-cell α in Σ_2 with $x \in \Sigma_1$, remove x and α

$$u \xrightarrow{\delta} \cancel{x}$$

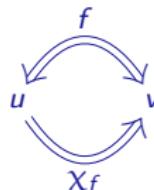
Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a relation:** for a 2-cell f in Σ_2^\top ,



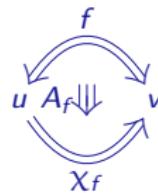
Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a relation:** for a 2-cell f in Σ_2^{\top} , add a generating 2-cell χ_f



Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a relation:** for a 2-cell f in Σ_2^T , add a generating 2-cell χ_f
add a generating 3-cell A_f



Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:

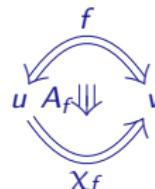
- ▷ **add a relation:** for a 2-cell f in Σ_2^T , add a generating 2-cell χ_f
add a generating 3-cell A_f

- ▷ **remove a relation:** for a 3-cell A where $\alpha \in \Sigma_2$,

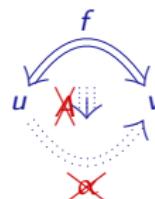
Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:

- ▷ **add a relation:** for a 2-cell f in Σ_2^T , add a generating 2-cell χ_f
add a generating 3-cell A_f



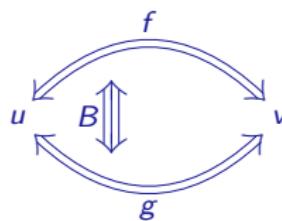
- ▷ **remove a relation:** for a 3-cell A where $\alpha \in \Sigma_2$, remove α and A



Tietze transformations

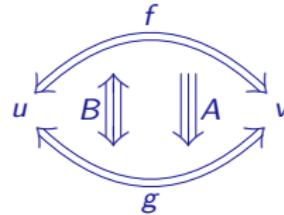
- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:

- ▷ **add a 3-cell**: for 3-cells B ,



Tietze transformations

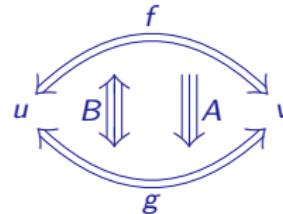
- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a 3-cell**: for 3-cells B , add a generating 3-cell $A : f \Rightarrow g$



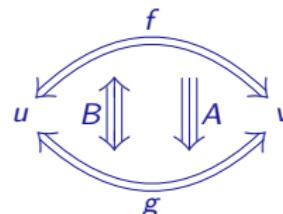
Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:

- ▷ **add a 3-cell:** for 3-cells B , add a generating 3-cell $A : f \Rightarrow g$

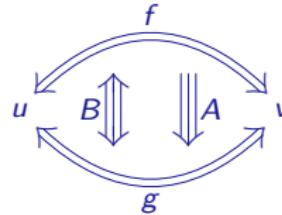


- ▷ **remove a 3-cell:** for a generating 3-cell $A : f \Rightarrow g$

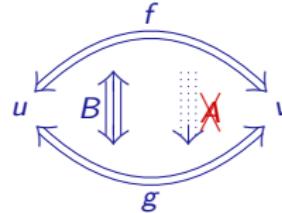


Tietze transformations

- ▶ Two 2-polygraphs are **Tietze-equivalent** if they present the same monoid.
- ▶ We generalize this notion to $(3, 1)$ -polygraphs.
- ▶ An **elementary Tietze transformation** of a $(3, 1)$ -polygraph Σ is one of the following three pairs of dual operations:
 - ▷ **add a 3-cell**: for 3-cells B , add a generating 3-cell $A : f \Rightarrow g$



- ▷ **remove a 3-cell**: for a generating 3-cell $A : f \Rightarrow g$ remove A



Tietze transformations

Theorem. [Gaussent-Guiraud-Malbos, 2015]

If

- ▷ Σ is a coherent presentation of a monoid \mathbf{M} ,
- ▷ \mathcal{T} is a composition of elementary Tietze transformations,

then

- ▷ $\mathcal{T}(\Sigma)$ is a coherent presentation of \mathbf{M} .

Homotopical completion-reduction procedure

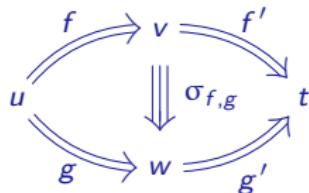
- ▶ **Homotopical completion** combines completion procedure and Squier's theorem.

Homotopical completion-reduction procedure

- ▶ **Homotopical completion** combines completion procedure and Squier's theorem.
- ▶ The **Knuth-Bendix procedure** computes a convergent presentation from a terminating presentation, [Knuth-Bendix](#), 1970.

Homotopical completion-reduction procedure

- ▶ **Homotopical completion** combines completion procedure and Squier's theorem.
- ▶ The **Knuth-Bendix procedure** computes a convergent presentation from a terminating presentation, Knuth-Bendix, 1970.
- ▶ The **Squier theorem** constructs a coherent presentation of a monoid **M** from a convergent presentation of **M** by adjunction of a generating confluence



for any critical branching (f, g) , Squier, 1994.

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

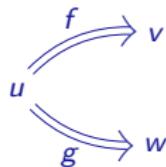
► The **homotopical completion** of Σ is the $(3, 1)$ -polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

► The **homotopical completion** of Σ is the $(3, 1)$ -polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical pair

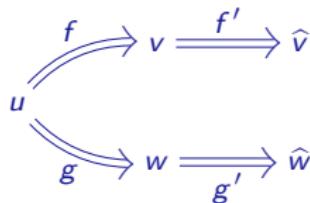


Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

► The **homotopical completion** of Σ is the $(3, 1)$ -polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

► for every critical pair



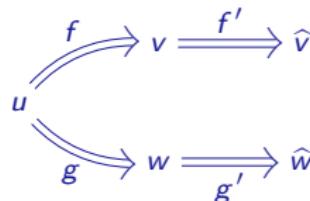
compute f' and g' reducing to some normal forms.

Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

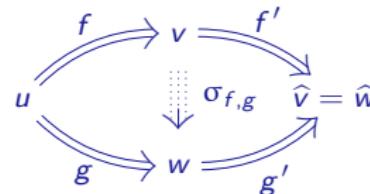
► The **homotopical completion** of Σ is the $(3, 1)$ -polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

► for every critical pair



compute f' and g' reducing to some normal forms.

► if $\hat{v} = \hat{w}$, add a 3-cell $\sigma_{f,g}$

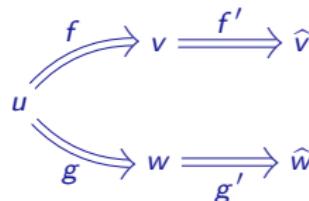


Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

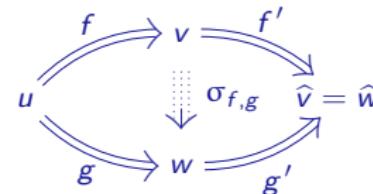
► The **homotopical completion** of Σ is the $(3, 1)$ -polygraph $\mathcal{S}(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

► for every critical pair

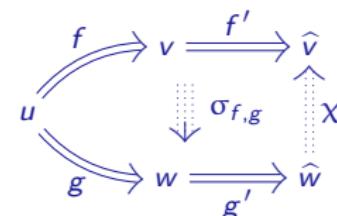


compute f' and g' reducing to some normal forms.

► if $\hat{v} = \hat{w}$, add a 3-cell $\sigma_{f,g}$



► if $\hat{v} < \hat{w}$, add a 2-cell χ and a 3-cell $\sigma_{f,g}$



Homotopical completion procedure

- ▶ Potential adjunction of additional 2-cells X can create new critical branchings,
 - ▷ whose confluence must also be examined,
 - ▷ possibly generating the adjunction of additional 2-cells and 3-cells...

Homotopical completion procedure

- ▶ Potential adjunction of additional 2-cells χ can create new critical branchings,
 - ▷ whose confluence must also be examined,
 - ▷ possibly generating the adjunction of additional 2-cells and 3-cells...
- ▶ This defines an increasing sequence of $(3, 1)$ -polygraphs

$$\langle \Sigma \mid \emptyset \rangle = \Sigma^0 \subseteq \Sigma^1 \subseteq \dots \subseteq \Sigma^n \subseteq \Sigma^{n+1} \subseteq \dots$$

- ▶ The **homotopical completion** of Σ is the $(3, 1)$ -polygraph

$$\mathcal{S}(\Sigma) = \bigcup_{n \geq 0} \Sigma^n.$$

Homotopical completion procedure

- ▶ Potential adjunction of additional 2-cells χ can create new critical branchings,
 - ▷ whose confluence must also be examined,
 - ▷ possibly generating the adjunction of additional 2-cells and 3-cells...
- ▶ This defines an increasing sequence of $(3, 1)$ -polygraphs

$$\langle \Sigma \mid \emptyset \rangle = \Sigma^0 \subseteq \Sigma^1 \subseteq \dots \subseteq \Sigma^n \subseteq \Sigma^{n+1} \subseteq \dots$$

- ▶ The **homotopical completion** of Σ is the $(3, 1)$ -polygraph

$$\mathcal{S}(\Sigma) = \bigcup_{n \geq 0} \Sigma^n.$$

Theorem. (Gaussent-Guiraud-Malbos, 2015)

For every terminating presentation Σ of a monoid \mathbf{M} , the homotopical completion $\mathcal{S}(\Sigma)$ of Σ is a coherent convergent presentation of \mathbf{M} .

Homotopical completion procedure

- ▶ Potential adjunction of additional 2-cells χ can create new critical branchings,
 - ▷ whose confluence must also be examined,
 - ▷ possibly generating the adjunction of additional 2-cells and 3-cells...
- ▶ This defines an increasing sequence of $(3, 1)$ -polygraphs

$$\langle \Sigma \mid \emptyset \rangle = \Sigma^0 \subseteq \Sigma^1 \subseteq \cdots \subseteq \Sigma^n \subseteq \Sigma^{n+1} \subseteq \cdots$$

- ▶ The **homotopical completion** of Σ is the $(3, 1)$ -polygraph

$$\mathcal{S}(\Sigma) = \bigcup_{n \geq 0} \Sigma^n.$$

Theorem. (Gaussent-Guiraud-Malbos, 2015)

For every terminating presentation Σ of a monoid \mathbf{M} , the homotopical completion $\mathcal{S}(\Sigma)$ of Σ is a coherent convergent presentation of \mathbf{M} .

Proof. $\mathcal{S}(\Sigma)$ is obtained from Σ by successive application of Knuth-Bendix's and Squier's completions.

Homotopical completion procedure

- ▶ Potential adjunction of additional 2-cells χ can create new critical branchings,
 - ▷ whose confluence must also be examined,
 - ▷ possibly generating the adjunction of additional 2-cells and 3-cells...
- ▶ This defines an increasing sequence of $(3, 1)$ -polygraphs

$$\langle \Sigma \mid \emptyset \rangle = \Sigma^0 \subseteq \Sigma^1 \subseteq \cdots \subseteq \Sigma^n \subseteq \Sigma^{n+1} \subseteq \cdots$$

- ▶ The **homotopical completion** of Σ is the $(3, 1)$ -polygraph

$$\mathcal{S}(\Sigma) = \bigcup_{n \geq 0} \Sigma^n.$$

Theorem. (Gaussent-Guiraud-Malbos, 2015)

For every terminating presentation Σ of a monoid \mathbf{M} , the homotopical completion $\mathcal{S}(\Sigma)$ of Σ is a coherent convergent presentation of \mathbf{M} .

Proof. $\mathcal{S}(\Sigma)$ is obtained from Σ by successive application of Knuth-Bendix's and Squier's completions.

- ▶ A prototype implementation of homotopical completion-reduction procedure
 - ▷ <http://www.pps.univ-paris-diderot.fr/~smimram/rewr/>

Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a$$

$\xrightarrow{\beta a} aa$
 $\xrightarrow{sta} aa$
 $\xrightarrow{s\alpha} sas$

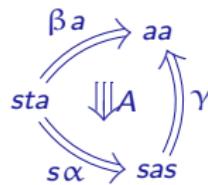
Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$S(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa \rangle \quad | \ A$$



Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa \rangle \quad | \ A$$

```
graph TD
    sta -- "beta a" --> aa
    sta -- "salpha" --> sas
    sast -- "gamma t" --> aat
    sast -- "s(beta)" --> saa
    sast <--> sas [gamma]
    sta <-- A --> sast
```

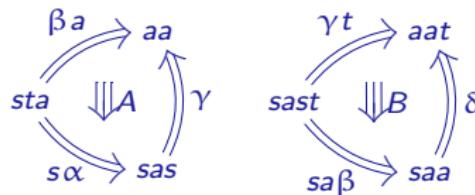
Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$S(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B \rangle$$



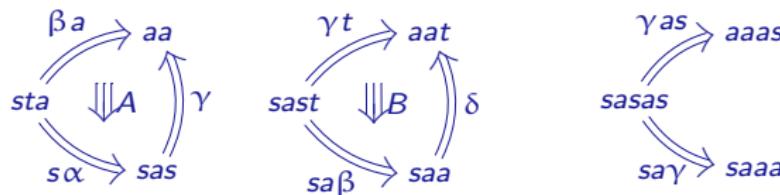
Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$S(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B \rangle$$



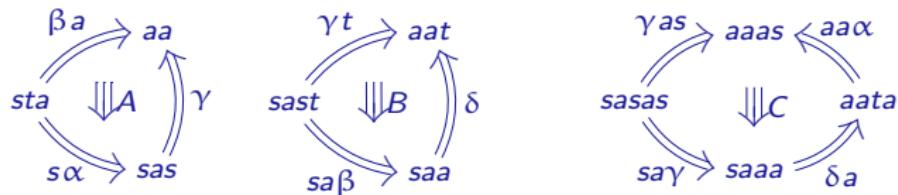
Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$S(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C \rangle$$



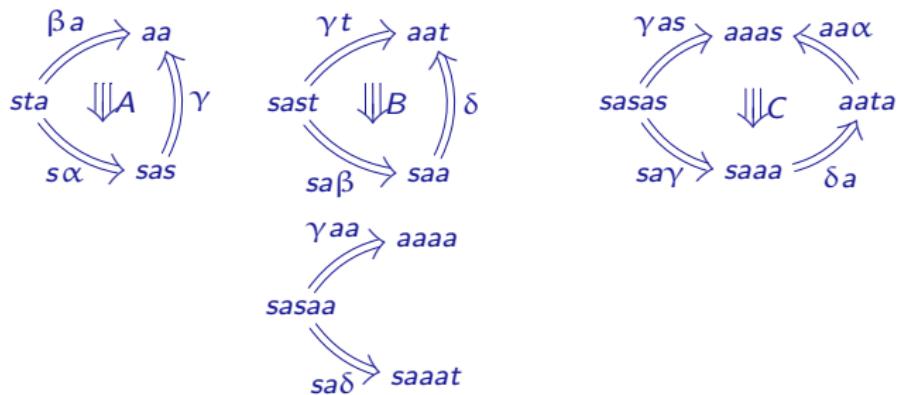
Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C \rangle$$



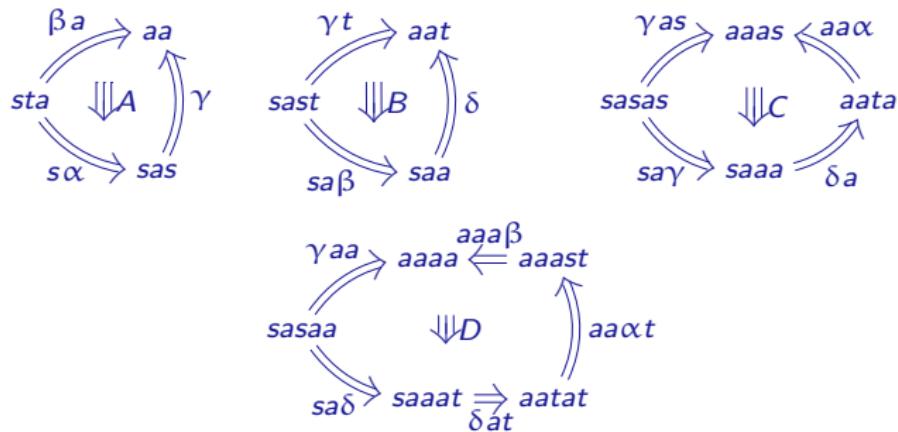
Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$S(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$



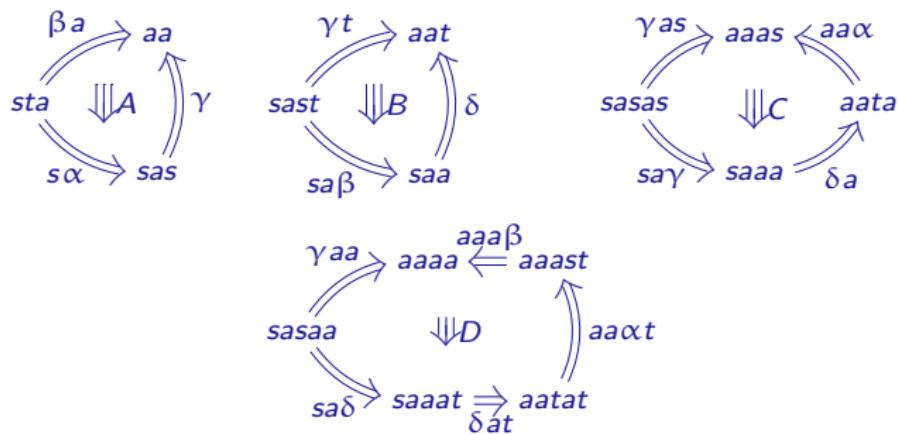
Homotopical completion procedure

Example. The **Kapur-Narendran's presentation** of B_3^+ , obtained from Artin's presentation by coherent adjunction of the element st

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle.$$

The deglex order generated by $t > s > a$ proves the termination of Σ_2^{KN} .

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$



However. The extended presentation $\mathcal{S}(\Sigma_2^{\text{KN}})$ obtained is bigger than necessary.

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

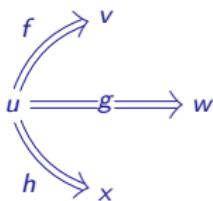
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple conflences** of $\mathcal{S}(\Sigma)$,



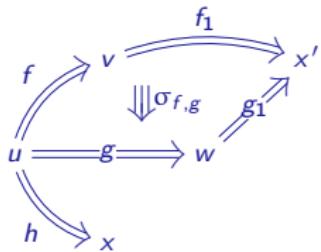
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple conflences** of $\mathcal{S}(\Sigma)$,



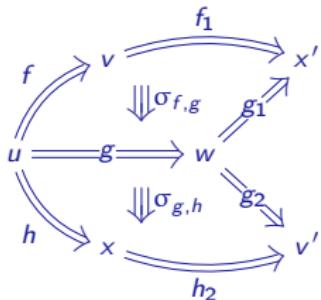
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple conflences** of $\mathcal{S}(\Sigma)$,



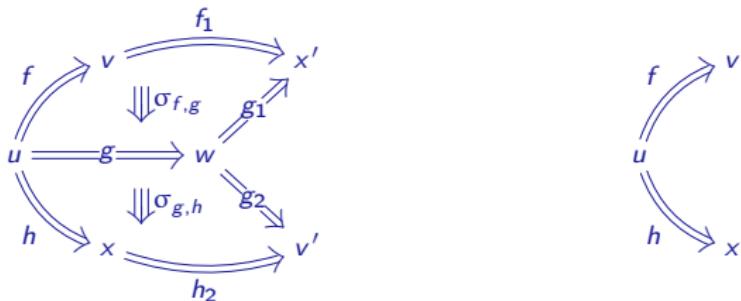
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple conflences** of $\mathcal{S}(\Sigma)$,



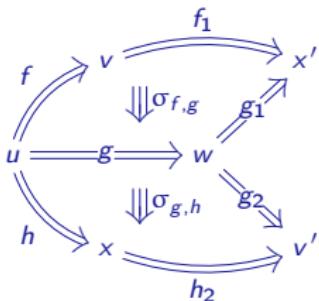
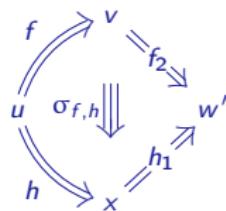
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple confluences** of $\mathcal{S}(\Sigma)$,



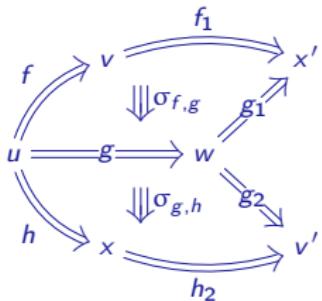
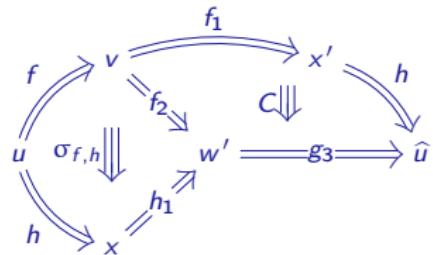
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple confluences** of $\mathcal{S}(\Sigma)$,



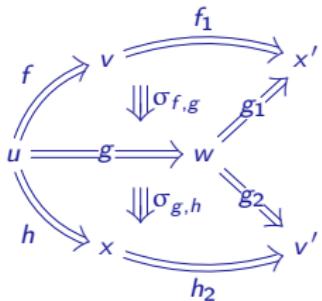
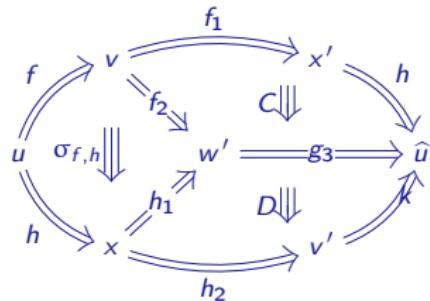
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- removes 3-cells occurring in **critical triple confluences** of $\mathcal{S}(\Sigma)$,



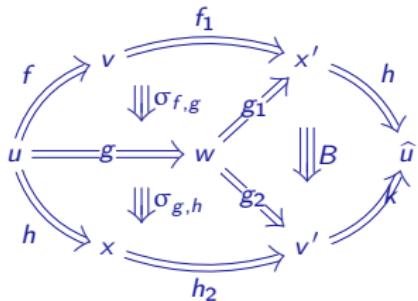
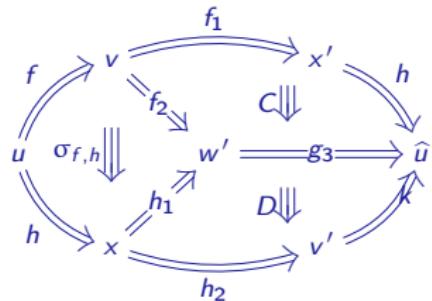
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- removes 3-cells occurring in **critical triple confluences** of $\mathcal{S}(\Sigma)$,



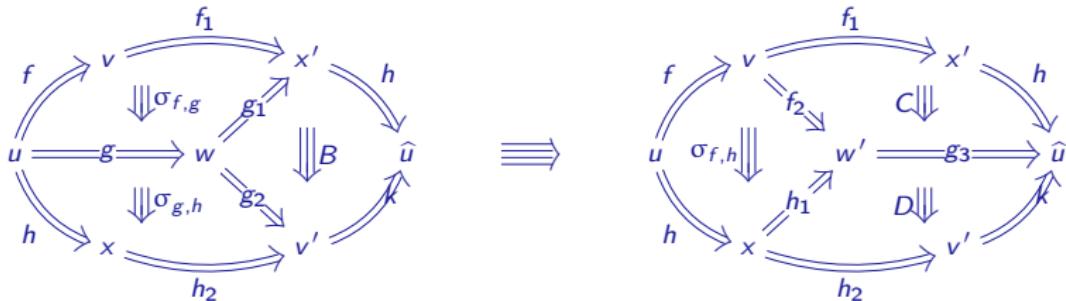
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- removes 3-cells occurring in **critical triple confluences** of $\mathcal{S}(\Sigma)$,



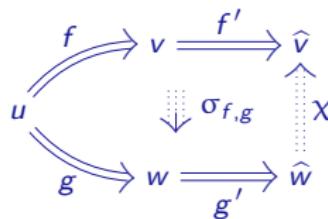
Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple confluences** of $\mathcal{S}(\Sigma)$,
- ▷ removes 2-cells and 3-cells added in the completion procedure



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple confluentes** of $\mathcal{S}(\Sigma)$,
- ▷ removes 2-cells and 3-cells added in the completion procedure
- ▷ removes collapsible 2-cells or 3-cells already present in the initial presentation Σ .

Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $\mathcal{S}(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $\mathcal{S}(\Sigma)$ that

- ▷ removes 3-cells occurring in **critical triple conflences** of $\mathcal{S}(\Sigma)$,
- ▷ removes 2-cells and 3-cells added in the completion procedure
- ▷ removes collapsible 2-cells or 3-cells already present in the initial presentation Σ .

We obtain the **homotopical completion-reduction** $\mathcal{R}(\Sigma)$ of the terminating 2-polygraph Σ .

Theorem. [Gaussent-Guiraud-Malbos, 2015]

For every terminating presentation Σ of a monoid \mathbf{M} , the homotopical completion-reduction $\mathcal{R}(\Sigma)$ is a coherent presentation of \mathbf{M} .

- ▶ Note that $\mathcal{R}(\Sigma)$ is not convergent in general.

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

- ▶ There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

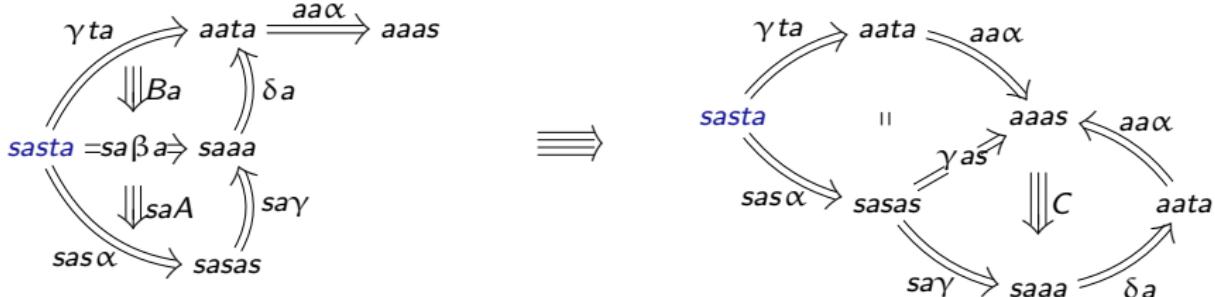
$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, \cancel{C}, D \rangle$$

- There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasa.

► Critical triple branching on *sasta* proves that *C* is redundant:



$$C = sas\alpha^{-1} \star_1 (Ba \star_1 aa\alpha) \star_2 (saA \star_1 \delta a \star_1 aa\alpha)$$

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

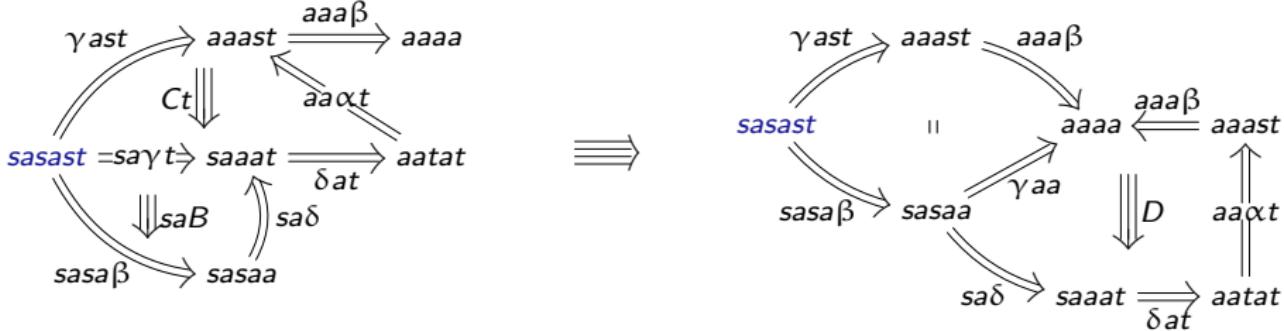
$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, \cancel{C}, \cancel{D} \rangle$$

► There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaaa.

► Critical triple branching on *sasast* proves that *D* is redundant:



$$D = sasa\beta^{-1} \star_1 ((Ct \star_1 aaa\beta) \star_2 (saB \star_1 \delta at \star_1 aa\alpha t \star_1 aaa\beta))$$

The homotopical completion-reduction procedure

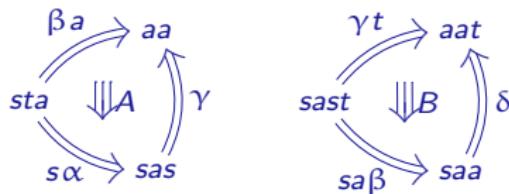
Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$S(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, \cancel{C}, \cancel{D} \rangle$$

- The 3-cells A and B are collapsible and the rules γ and δ are redundant.



The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, \cancel{sas} \xrightarrow{\gamma} \cancel{aa}, \cancel{saa} \xrightarrow{\delta} \cancel{aat} \mid \cancel{A}, \cancel{B}, \cancel{C}, \cancel{D} \rangle$$

- ▷ The 3-cells A and B are collapsible and the rules γ and δ are redundant.

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, \cancel{a} \mid ta \xrightarrow{\alpha} as, \cancel{st} \xrightarrow{\beta} \cancel{a}, \cancel{sas} \xrightarrow{\gamma} \cancel{aa}, \cancel{saa} \xrightarrow{\delta} \cancel{aat} \mid \cancel{A}, \cancel{B}, \cancel{C}, \cancel{D} \rangle$$

- The rule $st \xrightarrow{\beta} a$ is collapsible and the generator a is redundant.

The homotopical completion-reduction procedure

Example.

$$\Sigma_2^{\text{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$\mathcal{S}(\Sigma_2^{\text{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, \cancel{a} \mid tst \xrightarrow{\alpha} sts, \cancel{st} \xrightarrow{\beta} \cancel{a}, \cancel{sas} \xrightarrow{\gamma} \cancel{aa}, \cancel{saa} \xrightarrow{\delta} \cancel{aat} \mid \cancel{A}, \cancel{B}, \cancel{C}, \cancel{D} \rangle$$

► Artin's coherent presentation:

$$\mathcal{R}(\Sigma_2^{\text{KN}}) = \langle s, t \mid tst \xrightarrow{\alpha} sts \mid \emptyset \rangle$$

Exercice II

- ▶ Consider the **Artin monoid** B_4^+ of braids on 4 strands.

$$r = \chi - | \quad s = | \chi - \quad t = | | \chi$$

► given by the **Artin presentation**

$$\langle r, s, t \quad | \quad rsr \Rightarrow srs, \quad rt \Rightarrow tr, \quad tst \Rightarrow sts \rangle$$

$$\overbrace{\text{X}}^{\text{X}} = \overbrace{\text{X}}^{\text{X}} \quad \overbrace{\text{X}}^{\text{X}} = \overbrace{\text{X}}^{\text{X}} \quad \overbrace{\text{X}}^{\text{X}} = \overbrace{\text{X}}^{\text{X}}$$

- ▶ Show that this presentation can be extended into a coherent presentation with only one 3-cell

► It is called **Zamolodchikov relation** (Deligne, 1997).

Algebraic examples

Artin monoids: Garside's presentation

- ▶ Let W be a **Coxeter group**

$$W = \langle S \mid s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word $tsts\dots$ with m_{st} letters.

Artin monoids: Garside's presentation

- ▶ Let \mathbf{W} be a **Coxeter group**

$$\mathbf{W} = \langle S \mid s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word $tsts\dots$ with m_{st} letters.

- ▶ **Artin's presentation** of the Artin monoid $\mathbf{B}^+(\mathbf{W})$

$$\text{Art}_2(\mathbf{W}) = \langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

Artin monoids: Garside's presentation

- Let \mathbf{W} be a **Coxeter group**

$$\mathbf{W} = \langle S \mid s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word $tsts\dots$ with m_{st} letters.

- **Artin's presentation** of the Artin monoid $\mathbf{B}^+(\mathbf{W})$

$$\text{Art}_2(\mathbf{W}) = \langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

Examples.

- If $\mathbf{W} = \mathbf{S}_n$, the Artin monoid $\mathbf{B}^+(\mathbf{W})$ is the monoid \mathbf{B}_n^+ of braids on n strands.

Artin monoids: Garside's presentation

► **Garside's extended presentation** of the Artin monoid $\mathbf{B}^+(\mathbf{W})$

▷ 1-cells:

$$\text{Gar}_1(\mathbf{W}) = \mathbf{W} \setminus \{1\}$$

▷ 2-cells:

$$\text{Gar}_2(\mathbf{W}) = \{ u|v \xrightarrow{\alpha_{u,v}} uv \text{ whenever } I(uv) = I(u) + I(v) \}$$

where uv is the product in \mathbf{W} and $u|v$ is the product in the free monoid over \mathbf{W} .

▷ $\text{Gar}_3(\mathbf{W})$ made of one 3-cell

$$\begin{array}{ccccc} & \alpha_{u,v}|w & \longrightarrow & uv|w & \xrightarrow{\alpha_{uv,w}} \\ u|v|w & \swarrow & & \downarrow & \searrow \\ & & A_{u,v,w} & & \\ & \alpha_{v,w} & \longrightarrow & u|vw & \xrightarrow{\alpha_{u,vw}} \\ & \swarrow & & \downarrow & \searrow \\ & u|\alpha_{v,w} & \longrightarrow & u|vw & \end{array}$$

for every u, v, w in $\mathbf{W} \setminus \{1\}$ such that the lengths can be added.

Theorem. [Gaussent-Guiraud-Malbos, 2015]

$\text{Gar}_3(\mathbf{W})$ is a coherent presentation the Artin monoid $\mathbf{B}^+(\mathbf{W})$

Proof. By homotopical completion-reduction of the 2-polygraph $\text{Gar}_2(\mathbf{W})$.

Artin monoids: Artin's coherent presentation

Theorem. [Gaussent-Guiraud-M., 2015]

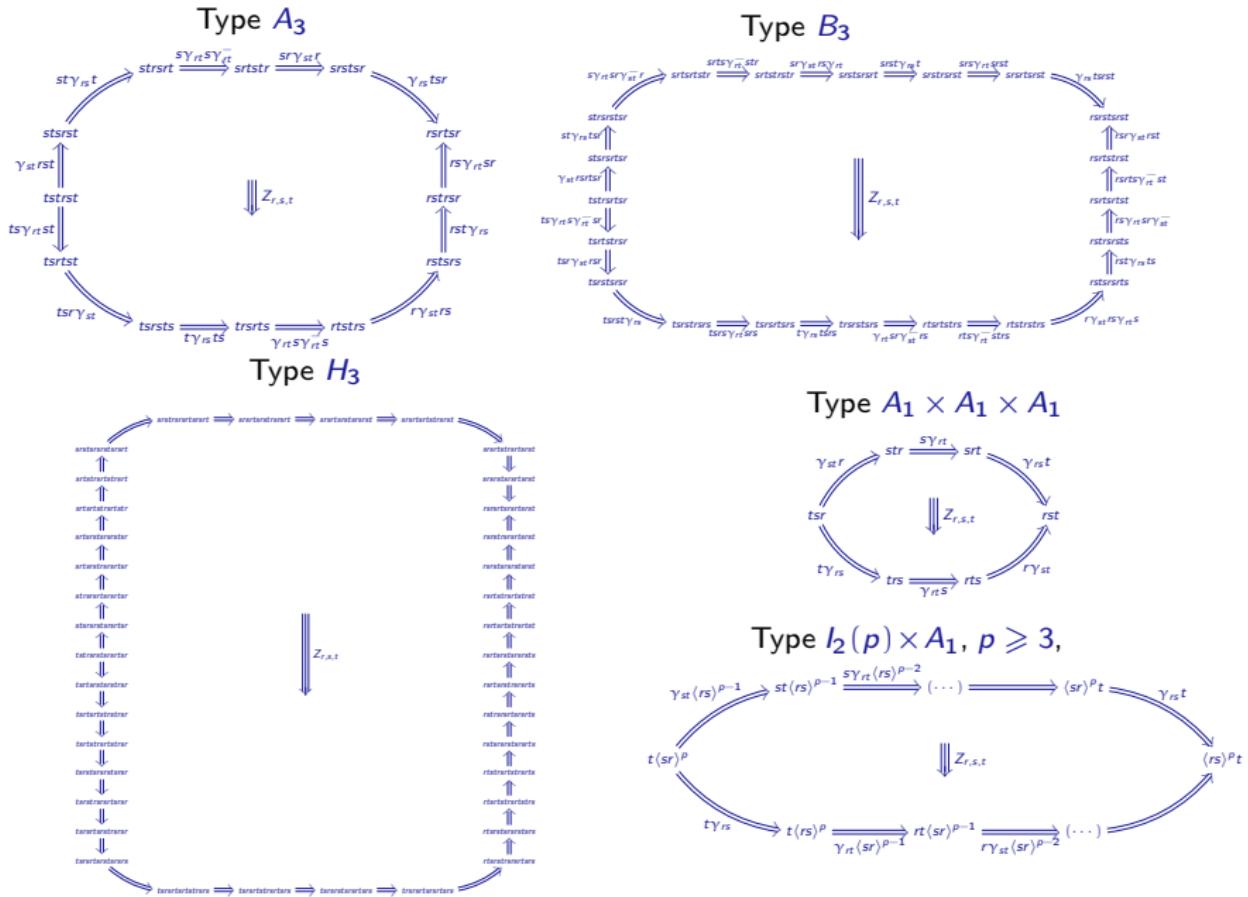
The Artin monoid $\mathbf{B}^+(\mathbf{W})$ admits the coherent presentation $\text{Art}_3(\mathbf{W})$ made of

▷ Artin's presentation

$$\text{Art}_2(\mathbf{W}) = \langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

▷ one 3-cell $Z_{r,s,t}$ for every $t > s > r$ in S such that the subgroup $\mathbf{W}_{\{r,s,t\}}$ is finite.

Artin monoids: Zamolodchikov $Z_{r,s,t}$ according to Coxeter type



Plactic monoids

- ▶ Knuth's presentation of the plactic monoid P_n

Plactic monoids

► Knuth's presentation of the plactic monoid \mathbf{P}_n

▷ Generators:

$$\text{Knuth}_1(n) = \{ 1, \dots, n \}$$

Plactic monoids

► Knuth's presentation of the plactic monoid \mathbf{P}_n

▷ Generators:

$$\text{Knuth}_1(n) = \{ 1, \dots, n \}$$

▷ Knuth relations:

$$\text{Knuth}_2(n) = \{ \begin{array}{ll} zxy \Rightarrow xzy & \text{for all } 1 \leq x \leq y < z \leq n \\ yzx \Rightarrow yxz & \text{for all } 1 \leq x < y \leq z \leq n \end{array} \}$$

Plactic monoids

► Knuth's presentation of the plactic monoid \mathbf{P}_n

▷ Generators:

$$\text{Knuth}_1(n) = \{1, \dots, n\}$$

▷ Knuth relations:

$$\text{Knuth}_2(n) = \left\{ \begin{array}{ll} zxy \Rightarrow xzy & \text{for all } 1 \leq x \leq y < z \leq n \\ yzx \Rightarrow yxz & \text{for all } 1 \leq x < y \leq z \leq n \end{array} \right\}$$

► For $n \geq 4$, there is no finite completion of $\text{Knuth}_2(n)$ on $\text{Knuth}_1(n)$ compatible with the degree lexicographic order, [Kubat-Okniński](#), 2014.

Plactic monoids: column presentation

- **Column presentation** of the plactic monoid P_n , Cain-Gray-Malheiro, 2015.

Plactic monoids: column presentation

- ▶ **Column presentation** of the plactic monoid \mathbf{P}_n , Cain-Gray-Malheiro, 2015.

- ▷ add **columns** as generators:

$$c_u = x_p \dots x_2 x_1 \in \text{Knuth}_1^*(n) \quad \text{such that} \quad x_p > \dots > x_2 > x_1.$$

$$\text{Col}_1(n) = \{ c_u \mid u \text{ is a column} \}$$

Plactic monoids: column presentation

► **Column presentation** of the plactic monoid P_n , Cain-Gray-Malheiro, 2015.

► add **columns** as generators:

$$c_u = x_p \dots x_2 x_1 \in \text{Knuth}_1^*(n) \quad \text{such that} \quad x_p > \dots > x_2 > x_1.$$

$$\text{Col}_1(n) = \{ c_u \mid u \text{ is a column} \}$$

► 2-cells: $\text{Col}_2(n)$ is the set of 2-cells

$$c_u c_v \xrightarrow{\alpha_{u,v}} c_w c_{w'}$$

such that

► u and v are columns,

► the planar representation of the Schensted tableau $P(uv)$ is not the juxtaposition of columns u and v and where w and w' are respectively the left and right columns of $P(uv)$.

Plactic monoids: column presentation

► **Column presentation** of the plactic monoid P_n , Cain-Gray-Malheiro, 2015.

▷ add **columns** as generators:

$$c_u = x_p \dots x_2 x_1 \in \text{Knuth}_1^*(n) \quad \text{such that} \quad x_p > \dots > x_2 > x_1.$$

$$\text{Col}_1(n) = \{ c_u \mid u \text{ is a column} \}$$

▷ 2-cells: $\text{Col}_2(n)$ is the set of 2-cells

$$c_u c_v \xrightarrow{\alpha_{u,v}} c_w c_{w'}$$

such that

▷ u and v are columns,

▷ the planar representation of the Schensted tableau $P(uv)$ is not the juxtaposition of columns u and v and where w and w' are respectively the left and right columns of $P(uv)$.

1	1	1	2	2	3	4
2	2	3	3	4	6	
4	5	6	6			
6	7					

Plactic monoids: column presentation

Theorem. [Hage-Malbos, 2015]

For $n \geq 2$, the 2-polygraph $\text{Col}_2(n)$ can be extended into a coherent presentation of the plactic monoid \mathbf{P}_n , whose 3-cells are of the following form

$$\begin{array}{ccccc} & & c_e c_{e'} c_t & & \\ & \swarrow \alpha_{x,v} c_t & & \searrow c_e \alpha_{e',t} & \\ c_x c_v c_t & & \downarrow \cong & & c_e c_b c_{b'} \\ & \swarrow c_u \alpha_{v,t} & & & \searrow \alpha_{e,b} c_{b'} \\ & & c_x c_w c_{w'} & & c_a c_d c_{b'} \\ & \searrow \alpha_{x,w} c_{w'} & & \swarrow c_a \alpha_{a',w'} & \\ & & c_a c_{a'} c_{w'} & & \end{array}$$

with x in $\text{Knuth}_1(n)$ and v, t are columns.

Plactic monoids: column presentation

Theorem. [Hage-Malbos, 2015]

For $n \geq 2$, the 2-polygraph $\text{Col}_2(n)$ can be extended into a coherent presentation of the plactic monoid \mathbf{P}_n , whose 3-cells are of the following form

$$\begin{array}{ccccc} & & c_e c_{e'} c_t & \xrightarrow{c_e \alpha_{e',t}} & c_e c_b c_{b'} \\ & \swarrow \alpha_{x,v} c_t & & & \searrow \alpha_{e,b} c_{b'} \\ c_x c_v c_t & & \Downarrow \chi_{x,v,t} & & c_a c_d c_{b'} \\ & \searrow c_u \alpha_{v,t} & & & \swarrow c_a \alpha_{a',w'} \\ & & c_x c_w c_{w'} & \xrightarrow{\alpha_{x,w} c_{w'}} & c_a c_{a'} c_{w'} \end{array}$$

with x in $\text{Knuth}_1(n)$ and v, t are columns.

Proof.

By homotopical completion-reduction of the 2-polygraph $\text{Col}_2(n)$.

Exercise III

1. Compute a coherent presentation of the plactic monoid \mathbf{P}_2 .

[Hint. There are two ways to prove that $2211 = 2121$ in \mathbf{P}_2 .]

2. Complete the 2-polygraph $\text{Knuth}_2(3)$ that presents the plactic monoid \mathbf{P}_3 into a coherent presentation.

[Hint. $\text{Knuth}_2(3)$ can be completed with 3 relations and 27 3-cells.]

3. (Kubat-Okniński, 2014) Prove that for $n \geq 4$, there is no finite completion of the 2-polygraph $\text{Knuth}_2(n)$ on $\text{Knuth}_1(n)$ compatible with the degree lexicographic order.

4. Compute a coherent presentation of the plactic monoid \mathbf{P}_4 .

References

References

► On Squier's Theorems

- ▷ [C. C. Squier](#), [F. Otto](#), The word problem for finitely presented monoids and finite canonical rewriting systems, RTA, 1987.
- ▷ [C.C. Squier](#), Word problems and a homological finiteness condition for monoids, *Journal of Pure and Applied Algebra*, 1987.
- ▷ [C. C. Squier](#), [F. Otto](#), and [Y. Kobayashi](#). A finiteness condition for rewriting systems, *Theoret. Comput. Sci.*, 1994.

► Polygraphs and convergence

- ▷ [Y. Guiraud](#) and [P. Malbos](#). Polygraphs of finite derivation type, *Mathematical Structures in Computer Science*, 2016.
- ▷ [Y. Guiraud](#), [P. Malbos](#), Higher-dimensional normalisation strategies for acyclicity, *Advances in Mathematics*, 2012.

► Computation of coherent presentations

- ▷ [S. Gaußent](#), [Y. Guiraud](#), [P. Malbos](#), Coherent presentations of Artin monoids, *Compositio Mathematica*, 2015.
- ▷ [N. Hage](#), [P. Malbos](#) Knuth's coherent presentations of plactic monoids of type A, *Algebras and Representation Theory*, 2017.