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Objective and Motivations



Objective

I Use two-dimensional rewriting techniques to compute homotopical properties of
presentations of monoids.

. String rewriting is 1-dimensional rewriting.

. Homotopical properties of string rewriting systems are 2-dimensional.

I Motivations/applications :

. Motivation I. Construction of finiteness conditions for finite convergence.
. Explore link with decidability of the word problem.

. Motivation II. Compute syzygies for presentations of monoids.
. Syzygies : relations between relations.

I Prerequises from Part I of the lecture:

. Monoids: presentations by generators and relations, the word problem.

. String rewriting systems described as 1-dimensional rewriting systems.

. Categories: the category of rewriting paths.
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Motivation I. Finiteness condition for finite convergence

I The notion of rewriting system comes from combinatorial algebra:
. Decision procedure for the word problem (Thue, 1914).

I Finite convergent presentations.
. If a monoid M admits a finite convergent presentation, then its word problem is

decidable.

I Jantzen, 1982, asked whether every string rewriting with a decidable word problem has an
equivalent finite convergent string rewriting system.

Theorem. [Squier, 1987]
There are finitely presented monoids with a decidable word problem that do not admit a

finite convergent presentation (for any possible finite set of generators).

I Proof based on a finiteness condition for finite convergence.

. A homological finiteness property, 1987.

. A homotopical finiteness property, 1994.

I Categorical interpretations
. Burroni, 1993.
. Lafont, 2003, Guiraud-Malbos, 2016.
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Motivation II. Compute syzygies for presentations of monoids

I A syzygy is a relation between generators (from Greek συζυγια, a pair).

I Syzygies problem in linear algebra.

. Given a finitely generated module M on a commutative ring R and a set of generators:

{ y1, . . . , yk },

. a syzygy of M is an element (λ1, ...,λk) in Rk for which

λ1y1 + . . .+ λkyk = 0.

I Schreyer, 1980 : computation of linear syzygies by means of the division algorithm.

. Buchberger’s completion algorithm for computing Gröbner bases allows the
computation of the first syzygy module.

. The reduction to zero of the S-polynomial of two polynomials in a Gröbner basis gives a
syzygy.
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Motivation II. Compute syzygies for presentations of monoids

I Syzygy problem for a monoid M

. presented by generators and relations.

I In low dimensions : coherent presentations

. generators, relations, syzygies.

. syzygies = relations among relations.

I Applications:

. Explicit description of actions of a monoid on categories in representation theory.

. Coherence theorems for monoids.

. Algorithms in homological algebra.
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Motivation II. Compute syzygies for presentations of monoids

I The Artin monoid B+
3 of braids on 3 strands.

s = t = =

I The Artin presentation:

〈
s, t

∣∣ tst = sts
〉

I We will prove that there is no syzygy between relations induced by tst = sts.

With this presentation two proofs of the
same equality in B+

3 are equal.
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Plan of the lecture

I. String Rewriting and the Word Problem
- Strings are 1-dimensional
- String rewriting systems and 2-polygraphs
- String Rewriting and the Word Problem

II. Coherent presentations of monoids
- Coherent presentation
- Homotopical Squier Theorem

III. Homotopical completion-reduction procedure
- Homotopical completion-reduction
- Algebraic examples



Part I. String Rewriting and the Word Problem



String rewriting systems and 2-polygraphs

I String rewriting system (Thue 1914).

I Categorical description (Street 1976, Eilenberg-Street 1986, Burroni 1991).

I 2-polygraph (2-computad) with only one 0-cell:

. Σ0 = {• }

. Σ1 set of generators : • = s0(x)
x−→ t0(x) = •

. Σ∗1 free monoid of strings :

• x1−→ • x2−→ • . . . • xk−→ •

. Σ2 set of rules ϕ : u⇒ v with a globular shape:

•
x2
// •

x3
// • . . . •

xk−1
// • xk

$$

•

•

x1 ::

y1 $$

⇓ ϕ •

•
y2
// •

y3
// • . . . •

yl−1
// • yl

::

. 1-source of ϕ : s1(ϕ) = x1x2 . . . xk ,

. 1-target of ϕ : t1(ϕ) = y1y2 . . . yl .
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Rewriting properties of 2-polygraphs

I A 1-polygraph is an oriented graph (Σ0,Σ1)

Σ0 Σ1
t0
oo

s0
oo

I A 2-polygraph is a triple Σ = (Σ0,Σ1,Σ2) where
. (Σ0,Σ1) is a 1-polygraph,
. Σ2 is a globular extension of the free category Σ∗1.

Σ0 Σ∗1
t0
oo

s0
oo

Σ2
t1
oo

s1
oo

α

��

s0s1(α)

=

s0t1(α)

s1(α)

''

t1(α)

77

t0s1(α)

=

t0t1(α)
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Rewriting properties of 2-polygraphs

I Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Consider the free 2-category Σ∗2 over Σ.

I A rewriting step is a 2-cell of the 2-category Σ∗2 with shape

w
//

u

��

v

BBα��
w ′
//

where u
α %9 v is a 2-cell of Σ2 and w , w ′ are 1-cells of Σ∗1.



Rewriting properties of 2-polygraphs

I Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Consider the free 2-category Σ∗2 over Σ.

I A rewriting step is a 2-cell of the 2-category Σ∗2 with shape

w
//

u

��

v

BBα��
w ′
//

where u
α %9 v is a 2-cell of Σ2 and w , w ′ are 1-cells of Σ∗1.



Rewriting properties of 2-polygraphs

I Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Consider the free 2-category Σ∗2 over Σ.

I A rewriting step is a 2-cell of the 2-category Σ∗2 with shape

w
//

u

��

v

BBα��
w ′
//

where u
α %9 v is a 2-cell of Σ2 and w , w ′ are 1-cells of Σ∗1.



Rewriting properties of 2-polygraphs

I Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Consider the free 2-category Σ∗2 over Σ.

I A rewriting step is a 2-cell of the 2-category Σ∗2 with shape

w
//

u

��

v

BBα��
w ′
//

where u
α %9 v is a 2-cell of Σ2 and w , w ′ are 1-cells of Σ∗1.

I Notation wuw ′

$$

wvw ′

::wαw ′��



Rewriting properties of 2-polygraphs

I Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Consider the free 2-category Σ∗2 over Σ.

I A rewriting step is a 2-cell of the 2-category Σ∗2 with shape

w
//

u

��

v

BBα��
w ′
//

where u
α %9 v is a 2-cell of Σ2 and w , w ′ are 1-cells of Σ∗1.

I Notation wuw ′

$$

wvw ′

::wαw ′��

I A rewriting sequence of Σ is a finite or infinite sequence

u1
f1 %9 u2

f2 %9 · · ·
fn−1%9 un

fn %9 · · ·

of rewriting steps.
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Rewriting properties of 2-polygraphs

Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Σ terminates if it does not generate any infinite reduction sequence

u1 %9 u2 %9 · · · %9 un %9 · · ·

I A branching of Σ is a pair (f , g) of 2-cells of Σ∗2 with a common source

v

u

f &:

g $8 w

I Σ is confluent if all of its branchings are confluent:

v f ′

�)
u

f &:

g $8

u ′

w g ′

7K

I Σ is convergent if it terminates and it is confluent.



Rewriting properties of 2-polygraphs

Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Σ terminates if it does not generate any infinite reduction sequence

u1 %9 u2 %9 · · · %9 un %9 · · ·

I A branching of Σ is a pair (f , g) of 2-cells of Σ∗2 with a common source

v

u

f &:

g $8 w

I Σ is confluent if all of its branchings are confluent:

v f ′

�)
u

f &:

g $8

u ′

w g ′

7K

I Σ is convergent if it terminates and it is confluent.



Rewriting properties of 2-polygraphs

Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Σ terminates if it does not generate any infinite reduction sequence

u1 %9 u2 %9 · · · %9 un %9 · · ·

I A branching of Σ is a pair (f , g) of 2-cells of Σ∗2 with a common source

v

u

f &:

g $8 w

I Σ is confluent if all of its branchings are confluent:

v f ′

�)
u

f &:

g $8

u ′

w g ′

7K

I Σ is convergent if it terminates and it is confluent.



Rewriting properties of 2-polygraphs

Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Σ terminates if it does not generate any infinite reduction sequence

u1 %9 u2 %9 · · · %9 un %9 · · ·

I A branching of Σ is a pair (f , g) of 2-cells of Σ∗2 with a common source

v

u

f &:

g $8 w

I Σ is confluent if all of its branchings are confluent:

v f ′

�)
u

f &:

g $8

u ′

w g ′

7K

I Σ is convergent if it terminates and it is confluent.



Rewriting properties of 2-polygraphs

Let Σ = (Σ0,Σ1,Σ2) be a 2-polygraph.

I Σ terminates if it does not generate any infinite reduction sequence

u1 %9 u2 %9 · · · %9 un %9 · · ·

I A branching of Σ is a pair (f , g) of 2-cells of Σ∗2 with a common source

v

u

f &:

g $8 w

I Σ is confluent if all of its branchings are confluent:

v f ′

�)
u

f &:

g $8

u ′

w g ′

7K

I Σ is convergent if it terminates and it is confluent.



Rewriting properties of 2-polygraphs

I A branching
v

u

f &:

g $8 w

is local if f and g are rewriting steps.

I Local branchings are classified as follows:

. aspherical branchings have shape
f
EY

f��

. Peiffer branchings have shape

vu ′ u ′g

�+
uu ′

fv ';

ug #7

vv ′

uv ′ fv ′

6J fv ?1 u ′g = ug ?1 fv ′
f
EY

g ��

. critical branchings are all the other cases

EY

��
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. aspherical branchings have shape
f
EY

f��

. Peiffer branchings have shape

vu ′ u ′g

�+
uu ′

fv ';

ug #7

vv ′

uv ′ fv ′

6J fv ?1 u ′g = ug ?1 fv ′
f
EY

g ��

. critical branchings are all the other cases

EY

��
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Example.
Consider the 2-polygraph
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. It has only one critical branching
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Rewriting properties of 2-polygraphs

Example.
Consider the 2-polygraph

〈 r , s, t | sr
γrs %9 rs, ts

γst %9 st, tr
γrt %9 rt 〉

. It has only one critical branching

str
sγrt %9 srt

γrst

�"
tsr

γst r
*>

tγrs  4

rst

trs
γrts

%9 rts
rγst
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String Rewriting and the Word Problem

I Finite convergent presentations give a method for solving the word problem
algorithmically.

. Given a 2-polygraph Σ.

. Consider the monoid M presented by Σ, i.e., the quotient of the free monoid Σ∗1 by
the congruence generated by Σ2:

M = Σ∗1/Σ2.

. The word problem for the monoid M:
- two strings w and w ′ in Σ∗1,
- does w = w ′ in M ?

. Normal form algorithm for finite and convergent 2-polygraphs:

w

u	 �,

w ′

q� �*

u	 �, p� �, q� �/ �)q�

�) r� �. r� �- o�

s��, p� �, q� �/

�, u	 �* q�
ŵ

?
ŵ ′

Fact. Monoids having a finite convergent presentation are decidable.
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Finite Convergent Presentations

I Knuth-Bendix completion procedure, 1970.
. Input : Σ a terminating 2-polygraph with a total termination order ≺.
. The procedure will try to compute a 2-polygraph KB(Σ) such that

. u > v holds for each u⇒ v in KB(Σ)2,

. KB(Σ) is confluent,

. KB(Σ) and Σ are Tietze equivalent.

. KB(Σ) := Σ

. Cb :={ critical branchings of Σ }

. While Cb 6= ∅
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. Input : Σ a terminating 2-polygraph with a total termination order ≺.
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. u > v holds for each u⇒ v in KB(Σ)2,
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. Cb :={ critical branchings of Σ }
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. Picks a branching in Cb:
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g
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. Cb := Cb \ {(f , g)}



Finite Convergent Presentations

I Knuth-Bendix completion procedure, 1970.
. Input : Σ a terminating 2-polygraph with a total termination order ≺.
. The procedure will try to compute a 2-polygraph KB(Σ) such that

. u > v holds for each u⇒ v in KB(Σ)2,

. KB(Σ) is confluent,

. KB(Σ) and Σ are Tietze equivalent.

. KB(Σ) := Σ

. Cb :={ critical branchings of Σ }

. While Cb 6= ∅
. Reduce v to a normal form v̂ with respect to KB(Σ)2

. Reduce w to a normal form ŵ with respect to KB(Σ)2

v %9 v̂
u

f #7

g
&: w %9 ŵ



Finite Convergent Presentations

I Knuth-Bendix completion procedure, 1970.
. Input : Σ a terminating 2-polygraph with a total termination order ≺.
. The procedure will try to compute a 2-polygraph KB(Σ) such that

. u > v holds for each u⇒ v in KB(Σ)2,

. KB(Σ) is confluent,

. KB(Σ) and Σ are Tietze equivalent.

. KB(Σ) := Σ

. Cb :={ critical branchings of Σ }

. While Cb 6= ∅
. If v̂ > ŵ

. KB(Σ)2 := KB(Σ)2 ∪ {α : v̂ ⇒ ŵ }:

v %9 v̂
α��u

f #7

g
&: w %9 ŵ

. Cb := Cb ∪ { critical branching created by α }



Finite Convergent Presentations

I Knuth-Bendix completion procedure, 1970.
. Input : Σ a terminating 2-polygraph with a total termination order ≺.
. The procedure will try to compute a 2-polygraph KB(Σ) such that

. u > v holds for each u⇒ v in KB(Σ)2,

. KB(Σ) is confluent,

. KB(Σ) and Σ are Tietze equivalent.

. KB(Σ) := Σ

. Cb :={ critical branchings of Σ }

. While Cb 6= ∅
. If ŵ > v̂

. KB(Σ)2 := KB(Σ)2 ∪ {α : ŵ ⇒ v̂ }:

v %9 v̂
u

f #7

g
&: w %9 ŵ

α
EY

. Cb := Cb ∪ { critical branching created by α }



Finite Convergent Presentations

I Knuth-Bendix completion procedure, 1970.
. Input : Σ a terminating 2-polygraph with a total termination order ≺.
. The procedure will try to compute a 2-polygraph KB(Σ) such that

. u > v holds for each u⇒ v in KB(Σ)2,

. KB(Σ) is confluent,

. KB(Σ) and Σ are Tietze equivalent.

. KB(Σ) := Σ

. Cb :={ critical branchings of Σ }

. While Cb 6= ∅

I If the procedure stops, it returns the 2-polygraph KB(Σ).

I Otherwise, it builds an increasing sequence of 2-polygraphs, whose limit is denoted
by KB(Σ).



Finite Convergent Presentations

I Finite convergent presentations.
. If a monoid M admits a finite convergent presentation, then its word problem is

decidable.
. Knuth-Bendix, 1970, Nivat, 1972,
. Book, Otto, Diekert, Jantzen, Kapur-Narendran, Squier, ... in eighties.

I Jantzen, 1982, asked whether every string rewriting with a decidable word problem has an
equivalent finite convergent string rewriting system.

Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)

1. Does a finitely presented decidable monoid have a finite convergent presentation ?

2. Does rewriting is universal to decide the word problem in a finite presented monoid ?

3. What conditions a monoid must satisfy if it can be presented by a finite convergent
rewriting system ?
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Finite Convergent Presentations

Example. (Kapur-Narendran, 1985)
I Artin’s presentation of monoid of positive braids on 3 strands:

B+
3 = 〈 s, t | sts = tst 〉

s = t = =

. B+
3 has a decidable word problem.

. There does not exist finite convergent presentation of B+
3 with two generators.

. But with three generators by adding a generator a standing for the product st.



Finite Convergent Presentations

Σ =
〈
s, t

, a

| tst ⇒ sts

, st
β %9 a, sas

γ %9 aa, saa δ %9 aat
〉

aa

sta

βa ';

sα #7 sas

aat

sast

γt ';

saβ
#7 saa

aaas

sasas

γas )=

saγ !5 saaa

aaaa aaast
aaaβey

sasaa

γaa )=

saδ
!5 saaat

δat
%9 aatat

aaαt

Ma
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Finite Convergent Presentations

Questions. (Book, 1985, Kapur-Narendran, 1985, Jantzen, 1985, ...)

1. Does a finitely presented decidable monoid have a finite convergent presentation ?

2. Does rewriting is universal to decide the word problem in a finite presented monoid ?

3. What conditions a monoid must satisfy if it can be presented by a finite convergent
rewriting system ?

Answears. (Squier, 1987)

1. No in general.

2. No.

3. Homological finiteness condition and homotopical finiteness condition (1994).

I Generalization of finiteness conditions, Anick, 1987, Kobayashi, 1991, Brown, 1992.
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Exercise I (Kapur-Narendran ’85)

I Consider the monoid B+
3 of positive braids on three strands and the Artin’s presentation〈

s, t
∣∣ γ : sts ⇒ tst

〉
.

1. Compute a convergent presentation of the monoid B+
3 with two generating 1-cells.

2. Show that the word problem is decidable for B+
3 .

3. Show that for any i > 0 and any j > 0, the words

s i+1t j+2st and tst i+2s j+1

are equals in B+
3 .

4. Denote by [w ] the equivalence class modulo the relation γ containing the word w . Prove
that for any n > 0 the two following equalities hold

[tnst]= { tn−i sts i | 0 6 i 6 n }.

[tstn]= { s j tstn−j | 0 6 j 6 n }.

5. Show that there does not exist any finite convergent presentation of the monoid B+
3 with

two generators s and t.



Part II. Coherent presentations of monoids



2-Polygraphs

I A 1-polygraph is an oriented graph (Σ0,Σ1)

Σ0 Σ1
t0
oo

s0
oo

I A 2-polygraph is a triple Σ = (Σ0,Σ1,Σ2) where
. (Σ0,Σ1) is a 1-polygraph,
. Σ2 is a globular extension of the free category Σ∗1.

Σ0 Σ∗1
t0
oo

s0
oo

Σ2
t1
oo

s1
oo

α

��

s0s1(α)

=

s0t1(α)

s1(α)

''

t1(α)

77

t0s1(α)

=

t0t1(α)

I A rewriting step is a 2-cell of the free 2-category Σ∗2 over Σ with shape

w
//

u

��

v

BBα��
w ′
//

wuw ′

$$

wvw ′

::wαw ′��

where u
α %9 v is a 2-cell of Σ2 and w , w ′ are 1-cells of Σ∗1.



Homotopical Squier Theorem

I Σ a 2-polygraph.

I Denote by Σ>2 the free (2, 1)-category on Σ, that is
. free category enriched in groupoid on Σ,
. free 2-category whose any 2-cell is invertible.

I Description of Σ>2
. 0-cells : Σ0,
. 1-cells strings in Σ∗1,
. 2-cells : reductions and their inverses ⇔,
. submited Peiffer elements:

ulwl ′v*>uαwl ′v

x�

`t ulwβv

�&
urwl ′vQe

urwβv  4

≡ ulwr ′v9M

uαwr ′vj~
urwr ′v

for any 2-cells l
α %9 r and l ′

β %9 r ′.



(3, 1)-Polygraphs

I A (3, 1)-polygraph is a pair Σ = (Σ2,Σ3) made of
. a 2-polygraph Σ2,
. a globular extension Σ3 of the free (2, 1)-category Σ>2 .

Σ0 Σ∗1
t0
oo

s0
oo

Σ>2
t1
oo

s1
oo

Σ3
t2
oo

s2
oo •

u

!!

v

<< •
EY

α
��

EY
β
��

A
%9

I Let M be a monoid.

I A presentation of M is a 2-polygraph Σ such that

M ' Σ∗1/Σ2

I An extended presentation of M is a (3, 1)-polygraph Σ such that

M ' Σ∗1/Σ2
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Homotopical Squier Theorem

Definition. A homotopy relation on Σ>2 is an equivalence relation ≡ on parallel 2-cells stable
under

. context: f ≡ g implies ufv ≡ ugv ,

. composition: f ≡ g implies k ?1 f ?1 h ≡ k ?1 g ?1 h.

Definition. A homotopy basis is a cellular extension Σ3 made of 3-cells

A��u
q� �-
Ym 1E v

on spheres of Σ>2 such that the homotopy relation generated by Σ3 contains every pair of
parallel 2-cells in Σ>2 .
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Coherent presentations of categories

I A coherent presentation of M is an extended presentation Σ of M such that the cellular
extension Σ3 is a homotopy basis, that is

. the congruence generated by Σ3 on Σ>2 contains every pair of parallel 2-cells.

. the 3-cells of Σ3 generate a tiling of Σ>2 wrt any possible composition of 3-cells:
. by ?0, along their 0-dimensional boundary:
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I The full coherent presentation contains all the 3-cells.

I Free monoid : no relation, an empty homotopy basis.
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Examples

I Free commutative monoid of rank 3:
. the full coherent presentation:

〈 r , s, t | sr
γrs %9 rs, ts

γst %9 st, tr
γrt %9 rt |

all the
3-cells

〉

. A homotopy basis can be made with only one 3-cell

〈 r , s, t | sr
γrs %9 rs, ts

γst %9 st, tr
γrt %9 rt | Zr ,s,t 〉

where the 3-cell Zr ,s,t is the permutohedron

str
sγrt %9 srt

γrs t


!
tsr

γst r
+?

tγrs �3

rst

trs
γrts

%9 rts
rγst

=QZr ,s,t
��
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Examples

I Artin’s coherent presentation of the monoid B+
3

s = t = =

. The homotopy basis is empty.

〈 s, t | tst
γst %9 sts | ∅ 〉



Examples

I Artin’s coherent presentation of the monoid B+
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. The homotopy basis is empty.
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γst %9 sts | ∅ 〉



Homotopical Squier’s Theorem



Homotopical Squier’s Theorem: objective

I A method to compute a coherent presentation starting from a convergent presentation.

I Squier’s completion procedure provides a way to extend a convergent presentation of a
monoid M into a coherent presentation.

I Given a convergent 2-polygraph Σ.

I We compute a coherent presentation whose 3-cells are generating confluences,
. that is, one 3-cell:

v f ′

�)
σf ,g��u

f &:

g $8

u ′

w g ′

7K

. for every critical branching (f , g) of Σ.



Homotopical Squier’s Theorem



Branchings

I Let Σ be a 2-polygraph.
I A branching of Σ is a pair (f , g) of 2-cells of Σ∗2 with a common source:

v

u

f $8

g
%9 w

I A branching (f , g) is local when f and g are rewriting steps.
I Local branchings are

. aspherical

v

u

f $8

f
&: v

. Peiffer
u ′v

uv

fv &:

ug $8 uv ′

. or overlapping.



Generating confluences

I A branching (f , g) : u⇒ (v ,w) is confluent when there exist 2-cells f ′ : v ⇒ u ′ and
g ′ : w ⇒ u ′ in Σ∗2 such that

v f ′

�+
u

f %9

g %9

u ′

w
g ′

6J

I A family of generating confluences of Σ is a cellular extension of Σ>2 that contains exactly
one 3-cell

v f ′

�,
σf ,g��u

f %9

g %9

u ′

w
g ′

5I

for every critical branching (f , g) of Σ.
I If Σ is confluent, it always admit a family of generating confluences.
I However, such a family is not necessarily unique, since

. the 3-cell σf ,g can be directed in the reverse way,

. for a given branching (f , g), we can have several possible 2-cells f ′ and g ′ with the
required shape.
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Homotopical Squier’s Theorem

Theorem. [Squier, 1994]
For a convergent presentation Σ of a monoid M, the (3, 1)-polygraph obtained from Σ by

adjunction of a generating confluence

v f ′

�(
σf ,g
��

u

f &:

g $8

t

w g ′

7K

for every critical branching (f , g) is a coherent presentation of M.



Homotopical Squier’s Theorem: proof



Generating confluences

I Let Σ be a convergent 2-polygraph.
I Let Γ be a family of generating confluences of Σ.
Lemma 1.

For every local branching (f , g) : u⇒ (v ,w) of Σ, there exist 2-cells f ′ and g ′ in Σ∗2
and a 3-cell A in Γ>, as in the following diagram:

v f ′

�,
A��u

f %9

g %9

u ′

w
g ′

5I

Proof.
. For aspherical or Peiffer branching, choose f ′ and g ′such that f ?1 f ′ = g ?1 g ′ and A

is identity.
. An overlapping branching (f , g) that is not critical is of the form (f , g) = (uhv , ukv)

with (h, k) critical.
. Consider a generating confluence

v h ′

�)
σh,k��u

h %9

k
%9

u ′

w
k ′

9M in Γ .

. We set A = uσh,kv , f ′ = uh ′v and g ′ = kuk ′v .
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Generating confluences

Lemma 2.
For every parallel 2-cells f and g of Σ∗2 whose common target is a normal form, there

exists a 3-cell from f to g in Γ>.

Proof. By Noetherian induction on the common source of f and g .

u1

f ′1
�+

f2

�/
A��

u

f

�&

g

8L

f1

-A

g1

�1

u ′ h %9 û

v1

g ′1

3G

g2

/C

=

=

B��

C��



Homotopical Squier’s Theorem

Proposition. Let Σ be a convergent 2-polygraph. Every family Γ of generating confluences of
Σ is a homotopy basis of Σ>2 .

Proof.
. Consider a 2-cell f : u⇒ v in Σ∗2.
. Using the confluence, choose 2-cells

σu : u ⇒ û and σv : v ⇒ v̂ = û in Σ∗2.

. By Lemma 2, there exists a 3-cell

u

f

�/

σu !5

v

û σ−
v

>Rσf��

. Moreover, the (3, 1)-category Γ> contains a 3-cell σf− : f −⇒ σv ?1 σ
−
u , given as the

composite:
û σ−

v

� 
v

f − %9 u

f

/C

σu
*>

v
σv %9 û

σ−
u %9 uσf��



Homotopical Squier’s Theorem

Proposition. Let Σ be a convergent 2-polygraph. Every family Γ of generating confluences of
Σ is a homotopy basis of Σ>2 .

Proof.
. Consider a 2-cell f : u⇒ v in Σ>2 . It can be decomposed into a “zig-zag” sequence

u
f1 %9 v1

g−
1 %9 u2

f2 %9 (· · · )
g−
n−1 %9 un

fn %9 vn
g−
n %9 v

where each fi and gi is a 2-cell of Σ∗2.
. We construct a 3-cell of Γ>, with source f and target σu ?1 σ

−
v :

u
f1 %9

σu
�+

v1
g−
1 %9

σv1

�+

(· · · )
fn %9

σun

�+

vn
g−
n %9

σvn

�+

v

û

σ−
v1

3G

1û
%9 û

σ−
u2

3G

1û
%9 (· · · )

1û
%9 û

σ−
vn

3G

1û
%9 û

σ−
v

3G
σf1��

σg−1��
σfn��

σg−n��= =

. We proceed similarly for any 2-cell g : u⇒ v of Σ>2 , to get a 3-cell from g to σu ?1 σ
−
v .

. Thus, the composite is a 3-cell of Γ> from f to g .



Finite derivation type

Definition. Σ has finite derivation type (FDT) if
i) Σ is finite,
ii) Σ>2 has a finite homotopy basis Σ3.

Σ0 Σ∗1
s0
oo

t0
oo

Σ>2
s1
oo

t1
oo

Σ3
s2

oo

t2
oo

Theorem. (Squier, 1994)
i) Property FDT is Tietze invariant for finite rewriting systems.
ii) A monoid having a finite convergent rewriting system has FDT.

Example. (Squier, 1994) The monoid

S1 = 〈 a, b, t, x , y | atnb⇒ 1, xa⇒ atx , xt ⇒ tx , xb⇒ bx , xy ⇒ 1 〉.

. has a decidable word problem,

. does not have finite derivation type.

I Hence, the monoid S1 does not have a finite convergent presentation,
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Part III. Homotopical completion-reduction procedure



Tietze transformations



Tietze transformations

I Two 2-polygraphs are Tietze-equivalent if they present the same monoid.

I We generalize this notion to (3, 1)-polygraphs.

I An elementary Tietze transformation of a (3, 1)-polygraph Σ is one of the following three
pairs of dual operations:
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Tietze transformations

I Two 2-polygraphs are Tietze-equivalent if they present the same monoid.

I We generalize this notion to (3, 1)-polygraphs.

I An elementary Tietze transformation of a (3, 1)-polygraph Σ is one of the following three
pairs of dual operations:

. add a generator: for u ∈ Σ∗1, add a generating 1-cell x and add a generating 2-cell

u
δ %9 x

. remove a generator: for a generating 2-cell α in Σ2 with x ∈ Σ1, remove x and α

u �Zα %9
�Ax
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I Two 2-polygraphs are Tietze-equivalent if they present the same monoid.

I We generalize this notion to (3, 1)-polygraphs.
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Tietze transformations

I Two 2-polygraphs are Tietze-equivalent if they present the same monoid.

I We generalize this notion to (3, 1)-polygraphs.
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pairs of dual operations:

. add a relation: for a 2-cell f in Σ>2 , add a generating 2-cell χf
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Tietze transformations

Theorem. [Gaussent-Guiraud-Malbos, 2015]
If

. Σ is a coherent presentation of a monoid M,

. T is a composition of elementary Tietze transformations,
then

. T(Σ) is a coherent presentation of M.



Homotopical completion-reduction procedure

I Homotopical completion combines completion procedure and Squier’s theorem.

I The Knuth-Bendix procedure computes a convergent presentation from a terminating
presentation, Knuth-Bendix, 1970.

I The Squier theorem constructs a coherent presentation of a monoid M from a convergent
presentation of M by adjunction of a generating confluence

v f ′

�(
σf ,g
��

u

f &:

g $8

t

w g ′

7K

for any critical branching (f , g), Squier, 1994.
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Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).

I The homotopical completion of Σ is the (3, 1)-polygraph S(Σ) obtained from Σ by
successive application of following Tietze transformations

. for every critical pair

v

u

f $8

g
%9 w

compute f ′ and g ′ reducing to some normal forms.

. if v̂ = ŵ , add a 3-cell σf ,g

v f ′
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u

f %9

g %9

v̂ = ŵ

w
g ′

4H

. if v̂ < ŵ , add a 2-cell χ and a 3-cell σf ,g
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χ

EY



Homotopical completion procedure

Let Σ be a terminating 2-polygraph (with a total termination order).
I The homotopical completion of Σ is the (3, 1)-polygraph S(Σ) obtained from Σ by
successive application of following Tietze transformations

. for every critical pair

v

u

f $8

g
%9 w

compute f ′ and g ′ reducing to some normal forms.
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w
g ′

4H
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Homotopical completion procedure

I Potential adjunction of additional 2-cells χ can create new critical branchings,
. whose confluence must also be examined,
. possibly generating the adjunction of additional 2-cells and 3-cells...

I This defines an increasing sequence of (3, 1)-polygraphs

〈Σ | ∅〉 = Σ0 ⊆ Σ1 ⊆ · · · ⊆ Σn ⊆ Σn+1 ⊆ · · ·

I The homotopical completion of Σ is the (3, 1)-polygraph

S(Σ) =
⋃
n>0

Σn.

Theorem. (Gaussent-Guiraud-Malbos, 2015)
For every terminating presentation Σ of a monoid M, the homotopical completion S(Σ)

of Σ is a coherent convergent presentation of M.

Proof. S(Σ) is obtained from Σ by successive application of Knuth-Bendix’s and Squier’s
completions.

I A prototype implementation of homotopical completion-reduction procedure
. http://www.pps.univ-paris-diderot.fr/~smimram/rewr/

http://www.pps.univ-paris-diderot.fr/~smimram/rewr/
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Homotopical completion procedure

Example. The Kapur-Narendran’s presentation of B+
3 , obtained from Artin’s presentation

by coherent adjunction of the element st

ΣKN
2 =

〈
s, t, a | ta

α %9 as, st
β %9 a〉.

The deglex order generated by t > s > a proves the termination of ΣKN
2 .

S(ΣKN
2 ) =

〈
s, t, a | ta

α %9 as, st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A, B, C , D
〉

aa

sta

βa ';

sα #7 sas

aat

sast

γt ';

saβ
#7 saa

aaas

sasas

γas )=

saγ !5 saaa

aaaa

sasaa

γaa (<

saδ
!5 saaat

However. The extended presentation S(ΣKN
2 ) obtained is bigger than necessary.
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2 ) obtained is bigger than necessary.



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion S(Σ) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(Σ) that

. removes 3-cells occuring in critical triple confluences of S(Σ),

. removes 2-cells and 3-cells added in the completion procedure

. removes collapsible 2-cells or 3-cells already present in the initial presentation Σ.
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INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion S(Σ) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(Σ) that

. removes 3-cells occuring in critical triple confluences of S(Σ),

. removes 2-cells and 3-cells added in the completion procedure
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. removes 3-cells occuring in critical triple confluences of S(Σ),
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. removes collapsible 2-cells or 3-cells already present in the initial presentation Σ.
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x

h2

*>

σg ,h��
v ′

k
?SB��

x

h1

4H

h2

*>

σf ,h
��

v ′

k
?S

D ��



Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion S(Σ) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(Σ) that

. removes 3-cells occuring in critical triple confluences of S(Σ),
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Homotopical completion-reduction procedure

INPUT: A terminating 2-polygraph Σ.

Step 1. Compute the homotopical completion S(Σ) (convergent and coherent).

Step 2. Apply the homotopical reduction to S(Σ) that

. removes 3-cells occuring in critical triple confluences of S(Σ),

. removes 2-cells and 3-cells added in the completion procedure

. removes collapsible 2-cells or 3-cells already present in the initial presentation Σ.

We obtain the homotopical completion-reduction R(Σ) of the terminating 2-polygraph Σ.

Theorem. [Gaussent-Guiraud-Malbos, 2015]
For every terminating presentation Σ of a monoid M, the homotopical

completion-reduction R(Σ) is a coherent presentation of M.

I Note that R(Σ) is not convergent in general.



The homotopical completion-reduction procedure

Example.
ΣKN

2 =
〈
s, t, a | ta

α %9 as, st
β %9 a

〉

S(ΣKN
2 ) =

〈
s, t, a | ta

α %9 as, st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A,B,C ,D
〉

〈
s, t, a | ta

α %9 as , st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A,B,C ,D
〉
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I There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.



The homotopical completion-reduction procedure

Example.
ΣKN

2 =
〈
s, t, a | ta

α %9 as, st
β %9 a

〉
S(ΣKN

2 ) =
〈
s, t, a | ta

α %9 as, st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A,B,C ,D
〉

〈
s, t, a | ta

α %9 as , st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A,B,�ZC ,D
〉

I There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

. Critical triple branching on sasta proves that C is redundant:
aata
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The homotopical completion-reduction procedure

Example.
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〉
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〉

I There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

. Critical triple branching on sasast proves that D is redundant:
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The homotopical completion-reduction procedure

Example.
ΣKN

2 =
〈
s, t, a | ta

α %9 as, st
β %9 a

〉
S(ΣKN

2 ) =
〈
s, t, a | ta
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γ %9 aa, saa δ %9 aat | A,B,C ,D
〉

〈
s, t, a | ta
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〉

. The 3-cells A and B are collapsible and the rules γ and δ are redundant.
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The homotopical completion-reduction procedure

Example.
ΣKN

2 =
〈
s, t, a | ta

α %9 as, st
β %9 a

〉
S(ΣKN

2 ) =
〈
s, t, a | ta

α %9 as, st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A,B,C ,D
〉

〈
s, t, a | ta

α %9 as , st
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��
��
�HHH
HH
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���XXXXXX, saa
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The homotopical completion-reduction procedure

Example.
ΣKN

2 =
〈
s, t, a | ta

α %9 as, st
β %9 a

〉
S(ΣKN

2 ) =
〈
s, t, a | ta

α %9 as, st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A,B,C ,D
〉

〈
s, t,�Aa | ta

α %9 as ,
�
�
�
�Z

Z
Z
Z

st
β %9 a,

�
��

��H
HHHH

sas
γ %9 aa,���

���XXXXXX, saa
δ %9 aat | �AA,�ZB,�ZC ,�ZD

〉

. The rule st
β %9 a is collapsible and the generator a is redundant.



The homotopical completion-reduction procedure

Example.
ΣKN

2 =
〈
s, t, a | ta

α %9 as, st
β %9 a

〉
S(ΣKN

2 ) =
〈
s, t, a | ta

α %9 as, st
β %9 a, sas

γ %9 aa, saa δ %9 aat | A,B,C ,D
〉

〈
s, t,�Aa | tst

α %9 sts,
�
�
�
�Z

Z
Z
Z

st
β %9 a,

�
��

��H
HHHH

sas
γ %9 aa,���

���XXXXXX, saa
δ %9 aat | �AA,�ZB,�ZC ,�ZD

〉

I Artin’s coherent presentation:

R(ΣKN
2 ) =

〈
s, t | tst

α %9 sts | ∅
〉



Exercice II

I Consider the Artin monoid B+
4 of braids on 4 strands.

r = s = t =

. given by the Artin presentation〈
r , s, t

∣∣ rsr ⇒ srs, rt ⇒ tr , tst ⇒ sts
〉

= = =

I Show that this presentation can be extended into a coherent presentation with only one
3-cell

stsrst %9 strsrt %9 srtstr %9

Zr ,s,t

��

srstsr %9 rsrtsr

tstrst

*>

 4

rstrsr

`t

tsrtst %9 tsrsts %9 trsrts %9 rtstrs %9 rstsrs

;O

. It is called Zamolodchikov relation (Deligne, 1997).



Algebraic examples



Artin monoids: Garside’s presentation

I Let W be a Coxeter group

W =
〈
S

∣∣ s2 = 1, 〈ts〉mst = 〈st〉mst
〉

where 〈ts〉mst stands for the word tsts . . . with mst letters.

I Artin’s presentation of the Artin monoid B+(W)

Art2(W) =
〈
S

∣∣ 〈ts〉mst = 〈st〉mst
〉

Examples.
. If W = Sn, the Artin monoid B+(W) is the monoid B+

n of braids on n strands.
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Artin monoids: Garside’s presentation

I Garside’s extended presentation of the Artin monoid B+(W)

. 1-cells:
Gar1(W) = W \ {1}

. 2-cells:

Gar2(W) =
{

u|v
αu,v%9 uv whenever l(uv) = l(u) + l(v)

}
where uv is the product in W and u|v is the product in the free monoid over W.

. Gar3(W) made of one 3-cell

uv |w αuv ,w

�*
Au,v ,w
��

u|v |w

αu,v |w (<

u|αv ,w
"6

uvw

u|vw αu,vw

4H

for every u, v , w in W \ {1} such that the lengths can be added.

Theorem. [Gaussent-Guiraud-Malbos, 2015]
Gar3(W) is a coherent presentation the Artin monoid B+(W)

Proof. By homotopical completion-reduction of the 2-polygraph Gar2(W).



Artin monoids: Artin’s coherent presentation

Theorem. [Gaussent-Guiraud-M., 2015]
The Artin monoid B+(W) admits the coherent presentation Art3(W) made of

. Artin’s presentation

Art2(W) =
〈
S

∣∣ 〈ts〉mst = 〈st〉mst
〉

. one 3-cell Zr ,s,t for every t > s > r in S such that the subgroup W{r ,s,t} is finite.



Artin monoids: Zamolodchikov Zr ,s,t according to Coxeter type
Type A3

strsrt
sγrtsγ

−
rt%9 srtstr

srγst r %9

Zr ,s,t
��

srstsr
γrs tsr

�%
stsrst

stγrs t
*>

rsrtsr

tstrst

γst rst

EY

tsγrtst

��

rstrsr

rsγrtsr

EY

tsrtst

tsrγst  4

rstsrs

rstγrs

EY

tsrsts
tγrs ts

%9 trsrts
γrtsγ

−
rt s
%9 rtstrs

rγst rs

9M

Type B3

srtsrtstr
srtsγ−rt str%9 srtstrstr

srγst rsγrt%9 srstsrsrt
srstγrs t%9

Zr ,s,t

��

srstrsrst
srsγrt srst%9 srsrtsrst γrs tsrst

�%
strsrstsr

sγrt srγ
−
st r (<

rsrstsrst

stsrsrtsr

stγrs tsr
EY

rsrtstrst

rsrγst rst
EY

tstrsrtsr

γst rsrtsr
EY

tsγrt sγ
−
rt sr ��

rsrtsrtst

rsrtsγ−rt st

EY

tsrtstrsr

tsrγst rsr ��

rstrsrsts

rsγrt srγ
−
st

EY

tsrstsrsr

tsrstγrs "6

rstsrsrts

rstγrs ts
EY

tsrstrsrs
tsrsγrt srs

%9 tsrsrtsrs
tγrs tsrs
%9 trsrstsrs

γrt srγ
−
st rs

%9 rtsrtstrs
rtsγ−rt strs

%9 rtstrstrs rγst rsγrt s

8L

Type H3

srstrsrsrtsrsrt %9 srsrtsrstrsrsrt %9 srsrtsrstsrsrst %9 srsrtsrtstrsrst
�+

srstsrsrstsrsrt

(<

srsrtstrsrtsrst

��
srtstrsrtstrsrt

EY

srsrstsrsrtsrst

��
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rsrsrtsrsrtsrst

srtsrstsrsrstsr
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rsrstrsrsrtsrst
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srtsrstrsrsrtsr

EY
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EY

strsrsrtsrsrtsr

EY

rsrtstrsrtstrst

EY

stsrsrstsrsrtsr

EY

rsrtsrtstrsrtst

EY

tstrsrstsrsrtsr

EY

��
rsrtsrstsrsrsts

EY

tsrtsrstsrstrsr

��
rsrtsrstrsrsrts

EY

tsrtsrtstrstrsr

��
rstrsrsrtsrsrts

EY

tsrtstrsrtstrsr

��
rstsrsrstsrsrts

EY

tsrstsrsrstsrsr
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rtstrsrtstrsrts

EY

tsrstrsrsrtsrsr

��
rtsrtstrsrtstrs

EY

tsrsrtsrstrsrsr

��
rtsrstsrsrstsrs

EY

tsrsrtsrstsrsrs

"6

rtsrstrsrsrtsrs

EY

tsrsrtsrtstrsrs %9 tsrsrtstrsrtsrs %9 tsrsrstsrsrtsrs %9 trsrsrtsrsrtsrs

3G

Zr ,s,t

��

Type A1×A1×A1

str
sγrt %9 srt

γrs t


!
tsr

γst r
+?

tγrs �3

rst

trs
γrts

%9 rts
rγst

=QZr ,s,t
��

Type I2(p)×A1, p > 3,
st〈rs〉p−1 sγrt〈rs〉p−2

%9 (· · · ) %9

Zr ,s,t
��

〈sr〉pt γrs t

�&
t〈sr〉p
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Plactic monoids

I Knuth’s presentation of the plactic monoid Pn

. Generators:
Knuth1(n) = { 1, . . . , n }

. Knuth relations:

Knuth2(n) =
{ zxy ⇒ xzy for all 1 6 x 6 y < z 6 n

yzx ⇒ yxz for all 1 6 x < y 6 z 6 n

}

I For n > 4, there is no finite completion of Knuth2(n) on Knuth1(n) compatible with the
degree lexicographic order, Kubat-Okniński, 2014.
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Plactic monoids: column presentation

I Column presentation of the plactic monoid Pn, Cain-Gray-Malheiro, 2015.

. add columns as generators:

cu = xp . . . x2x1 ∈ Knuth∗1(n) such that xp > . . . > x2 > x1.

Col1(n) =
{
cu
∣∣ u is a column

}
. 2-cells: Col2(n) is the set of 2-cells

cucv
αu,v%9 cw cw ′

such that
. u and v are columns,

. the planar representation of the Schensted tableau P(uv) is not the juxtaposition
of columns u and v and where w and w ′ are respectively the left and right columns of P(uv).

1 1 1 2 2 3 4
2 2 3 3 4 6
4 5 6 6
6 7
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Plactic monoids: column presentation

Theorem. [Hage-Malbos, 2015]
For n > 2, the 2-polygraph Col2(n) can be extended into a coherent presentation of the

plactic monoid Pn, whose 3-cells are of the following form

cece ′ct
ceαe ′,t %9

Xx ,v ,t

��

cecbcb ′ αe,bcb ′

�3
cxcv ct

αx ,v ct +?

cuαv ,t �3
cacdcb ′

cxcw cw ′
αx ,w cw ′

%9 caca′cw ′
caαa′,w ′

+?

with x in Knuth1(n) and v , t are columns.

Proof.
By homotopical completion-reduction of the 2-polygraph Col2(n).
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Exercise III

1. Compute a coherent presentation of the plactic monoid P2.
[Hint. There are two ways to prove that 2211 = 2121 in P2.]

2. Complete the 2-polygraph Knuth2(3) that presents the plactic monoid P3 into a coherent
presentation.

[Hint. Knuth2(3) can be completed with 3 relations and 27 3-cells.]

3. (Kubat-Okniński, 2014) Prove that for n > 4, there is no finite completion of the
2-polygraph Knuth2(n) on Knuth1(n) compatible with the degree lexicographic order.

4. Compute a coherent presentation of the plactic monoid P4.



References



References

I On Squier’s Theorems
. C. C. Squier, F. Otto, The word problem for finitely presented monoids and finite

canonical rewriting systems, RTA, 1987.

. C.C. Squier, Word problems and a homological finiteness condition for monoids, Journal
of Pure and Applied Algebra, 1987.

. C. C. Squier, F. Otto, and Y. Kobayashi. A finiteness condition for rewriting systems,
Theoret. Comput. Sci., 1994.

I Polygraphs and convergence
. Y. Guiraud and P. Malbos. Polygraphs of finite derivation type, Mathematical

Structures in Computer Science, 2016.
. Y. Guiraud, P. Malbos, Higher-dimensional normalisation strategies for acyclicity,

Advances in Mathematics, 2012.

I Computation of coherent presentations
. S. Gaussent, Y. Guiraud, P. Malbos, Coherent presentations of Artin monoids,

Compositio Mathematica, 2015.
. N. Hage, P. Malbos Knuth’s coherent presentations of plactic monoids of type A,

Algebras and Representation Theory, 2017.


