Philippe Malbos

INRIA - πr^2 , Laboratoire Preuves, Programmes et Systèmes, Université Paris Diderot & Institut Camille Jordan, Université Claude Bernard Lyon 1

Joint work with Stéphane Gaussent and Yves Guiraud

USP-Lyon Algebra meeting

October 31, 2013, São Paulo

▶ A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite) set S of involutions, $s^2 = 1$, satisfying braid relations

 $tstst \ldots = ststs \ldots$

▶ A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite) set S of involutions, $s^2 = 1$, satisfying braid relations

 $tstst \ldots = ststs \ldots$

▶ Forgetting the involutive character of generators, one gets the Artin's presentation

 $\mathsf{Art}(\mathbf{W}) = \langle S \mid tstst \ldots = ststs \ldots \rangle$

of the Artin group B(W).

▶ A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite) set S of involutions, $s^2 = 1$, satisfying braid relations

 $tstst \ldots = ststs \ldots$

▶ Forgetting the involutive character of generators, one gets the Artin's presentation

 $\mathsf{Art}(\mathbf{W}) = \langle S \mid tstst \ldots = ststs \ldots \rangle$

of the Artin group B(W).

Objective.

▷ Push further Artin's presentation and study the relations among the braid relations. (Brieskorn-Saito, 1972, Deligne, 1972, Deligne, 1997, Tits, 1981, Michel, 1999).

A Coxeter system (W, S) is a data made of a group W with a presentation by a (finite) set S of involutions, $s^2 = 1$, satisfying braid relations

 $tstst \ldots = ststs \ldots$

▶ Forgetting the involutive character of generators, one gets the Artin's presentation

 $\mathsf{Art}(\mathbf{W}) = \langle S \mid tstst \ldots = ststs \ldots \rangle$

of the Artin group B(W).

Objective.

 Push further Artin's presentation and study the relations among the braid relations. (Brieskorn-Saito, 1972, Deligne, 1972, Deligne, 1997, Tits, 1981, Michel, 1999).

▷ We introduce a rewriting method to compute generators of relations among relations.

Set $W = S_4$ the group of permutations of $\{1, 2, 3, 4\}$, with $S = \{r, s, t\}$ where

$$r = > | | s = | > | t = | > |$$

Set $W = S_4$ the group of permutations of $\{1, 2, 3, 4\}$, with $S = \{r, s, t\}$ where

$$r = > | | s = | > | t = | > >$$

• The associated Artin group $B(S_4)$ is the group of braids on 4 strands:

 $\operatorname{Art}_2(\mathbf{S}_4) = \langle r, s, t | rsr = srs, rt = tr, tst = sts \rangle$

Set $W = S_4$ the group of permutations of $\{1, 2, 3, 4\}$, with $S = \{r, s, t\}$ where

$$r = > | | s = | > | t = | > >$$

The associated Artin group $B(S_4)$ is the group of braids on 4 strands:

 $\operatorname{Art}_2(\mathbf{S}_4) = \langle r, s, t | rsr = srs, rt = tr, tst = sts \rangle$

► The relations among the braid relations on 4 strands are generated by the Zamolodchikov

- Polygraphs as higher-dimensional rewriting systems
- Coherent presentations as cofibrant approximations

II. Homotopical completion-reduction procedure

- Tietze transformations
- Rewriting properties of 2-polygraphs
- The homotopical completion-procedure

III. Applications to Artin monoids

- Garside's coherent presentation
- Artin's coherent presentation

References

- S. Gaussent, Y. Guiraud, P.M., Coherent presentations of Artin monoids, 2013.
- Y. Guiraud, P.M., Higher-dimensional normalisation strategies for acyclicity, 2012.
- Y. Guiraud, P.M., A polygraphic survey on finiteness conditions for rewriting systems, 2013.

Part I. Coherent presentations of categories

► A 1-polygraph is an oriented graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

► A 1-polygraph is an oriented graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

► A 2-polygraph is a triple $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ where $\triangleright (\Sigma_0, \Sigma_1)$ is a 1-polygraph,

 $\triangleright \Sigma_2$ is a globular extension of the free category Σ_1^* .

► A 1-polygraph is an oriented graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

► A 2-polygraph is a triple $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ where $\triangleright (\Sigma_0, \Sigma_1)$ is a 1-polygraph,

 $\triangleright \Sigma_2$ is a globular extension of the free category Σ_1^* .

A rewriting step is a 2-cell of the free 2-category Σ_2^* over Σ with shape

where $u \stackrel{\alpha}{\Longrightarrow} v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

► A 1-polygraph is an oriented graph (Σ_0, Σ_1)

$$\Sigma_0 \xleftarrow{s_0}{t_0} \Sigma_1$$

► A 2-polygraph is a triple $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ where $\triangleright (\Sigma_0, \Sigma_1)$ is a 1-polygraph,

 $\triangleright \Sigma_2$ is a globular extension of the free category Σ_1^* .

► A rewriting step is a 2-cell of the free 2-category Σ_2^* over Σ with shape

where $u \implies v$ is a 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

A (3,1)-polygraph is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of

▷ a 2-polygraph Σ_2 ,

▷ a globular extension Σ_3 of the free (2, 1)-category Σ_2^{\top} .

A (3,1)-polygraph is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of

▷ a 2-polygraph Σ_2 ,

▷ a globular extension Σ_3 of the free (2, 1)-category Σ_2^{\top} .

Let **C** be a category.

► A presentation of C is a 2-polygraph Σ such that

 $\bm{C}\simeq \bm{\Sigma_1^*}/\bm{\Sigma_2}$

A (3,1)-polygraph is a pair $\Sigma = (\Sigma_2, \Sigma_3)$ made of

▷ a 2-polygraph Σ_2 ,

▷ a globular extension Σ_3 of the free (2, 1)-category Σ_2^{\top} .

Let **C** be a category.

► A presentation of C is a 2-polygraph Σ such that

 $\bm{C}\simeq \bm{\Sigma_1^*}/\bm{\Sigma_2}$

▶ An extended presentation of **C** is a (3, 1)-polygraph Σ such that

 $\bm{C}\simeq \bm{\Sigma}_1^*/\bm{\Sigma}_2$

► A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_3 is a homotopy basis.

► A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_3 is a homotopy basis.

In other words:

```
▷ the quotient (2, 1)-category \Sigma_2^{\top}/\Sigma_3 is aspherical,
```

► A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_3 is a homotopy basis.

In other words:

▷ the quotient (2, 1)-category Σ_2^{\top}/Σ_3 is aspherical,

▷ the congruence generated by Σ_3 on the (2, 1)-category Σ_2^{\top} contains every pair of parallel 2-cells.

► A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_3 is a homotopy basis.

In other words:

▷ the quotient (2, 1)-category Σ_2^{\top}/Σ_3 is aspherical,

▷ the congruence generated by Σ_3 on the (2, 1)-category Σ_2^{\top} contains every pair of parallel 2-cells.

▷ 3-cells of Σ_3 generate a tiling of Σ_2^{\top} .

► A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_3 is a homotopy basis.

In other words:

▷ the quotient (2, 1)-category Σ_2^{\top}/Σ_3 is aspherical,

▷ the congruence generated by Σ_3 on the (2, 1)-category Σ_2^{\top} contains every pair of parallel 2-cells.

▷ 3-cells of Σ_3 generate a tiling of Σ_2^{\top} .

Example. The full coherent presentation contains all the 3-cells.

► A coherent presentation of C is an extended presentation Σ of C such that the cellular extension Σ_3 is a homotopy basis.

In other words:

▷ the quotient (2, 1)-category Σ_2^{\top}/Σ_3 is aspherical,

▷ the congruence generated by Σ_3 on the (2, 1)-category Σ_2^{\top} contains every pair of parallel 2-cells.

▷ 3-cells of Σ_3 generate a tiling of Σ_2^{\top} .

Example. The full coherent presentation contains all the 3-cells.

Theorem. [Gaussent-Guiraud-M., 2013]

Let Σ be an extended presentation of a category C. Consider the Lack's model structure for 2-categories.

The following assertions are equivalent:

i) The (3,1)-polygraph Σ is a coherent presentation of C.

ii) The (2,1)-category $\Sigma_{2}^{\top}/\Sigma_{3}$ is a cofibrant 2-category weakly equivalent to C, that is a cofibrant approximation of C.

Free monoid : no relation, an empty homotopy basis.

Free monoid : no relation, an empty homotopy basis.

Free commutative monoid of rank 3:

▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid$$
all the 3-cells \rangle

Free monoid : no relation, an empty homotopy basis.

▶ Free commutative monoid of rank 3:

▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma rs} rs, ts \xrightarrow{\gamma st} st, tr \xrightarrow{\gamma rt} rt \mid$$
all the 3-cells

▷ A homotopy basis can be made with only one 3-cell

$$\langle r, s, t \mid sr \stackrel{\gamma_{rs}}{\Longrightarrow} rs, ts \stackrel{\gamma_{st}}{\Longrightarrow} st, tr \stackrel{\gamma_{rt}}{\Longrightarrow} rt \mid Z_{r,s,t} \rangle$$

Free monoid : no relation, an empty homotopy basis.

▶ Free commutative monoid of rank 3:

▷ the full coherent presentation:

$$\langle r, s, t \mid sr \xrightarrow{\gamma rs} rs, ts \xrightarrow{\gamma st} st, tr \xrightarrow{\gamma rt} rt \mid$$
all the 3-cells

▷ A homotopy basis can be made with only one 3-cell

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \mid Z_{r,s,t} \rangle$$

where the 3-cell $Z_{r,s,t}$ is the **permutohedron**

▶ Artin's coherent presentation of the monoid $B^+(S_3)$

▶ Artin's coherent presentation of the monoid $B^+(S_3)$

$$\mathsf{Art}_3(\mathbf{S}_3) = \langle s, t \mid tst \implies^{\gamma_{st}} sts \mid \emptyset \rangle$$

▶ Artin's coherent presentation of the monoid B⁺(S₃)

$$\mathsf{Art}_3(\mathbf{S}_3) = \langle s, t \mid tst \implies^{\gamma_{st}} sts \mid \emptyset \rangle$$

Artin's coherent presentation of the monoid B⁺(S₄)

$$\mathsf{Art}_3(\mathbf{S}_4) = \langle r, s, t \mid rsr \stackrel{\gamma_{sr}}{\Longrightarrow} srs, rt \stackrel{\gamma_{tr}}{\Longrightarrow} tr, tst \stackrel{\gamma_{st}}{\Longrightarrow} sts \mid Z_{r,s,t} \rangle$$

Problems.

- 1. How to compute a coherent presentation ?
- 2. How to transform a coherent presentation ?

Part II. Homotopical completion-reduction procedure

Tietze transformations

Tietze transformations

 \blacktriangleright Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*.$

Tietze transformations

Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.
► Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*.$

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*.$

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a generator: for $u \in \Sigma_1^*$,

и

▶ Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*.$

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a generator: for $u \in \Sigma_1^*$, add a generating 1-cell x

u x

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*.$

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a generator: for $u \in \Sigma_1^*$, add a generating 1-cell x and add a generating 2-cell

$$u \xrightarrow{\delta} x$$

▶ Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \overset{\approx}{\longrightarrow} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*.$

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a generator: for $u \in \Sigma_1^*$, add a generating 1-cell x and add a generating 2-cell

$$u \xrightarrow{\delta} x$$

remove a generator: for a generating 2-cell α in Σ_2 with $x \in \Sigma_1$,

$$u \xrightarrow{\alpha} x$$

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^*\simeq \Upsilon_1^*.$

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a generator: for $u \in \Sigma_1^*$, add a generating 1-cell x and add a generating 2-cell

 $u \xrightarrow{\delta} x$

remove a generator: for a generating 2-cell α in Σ_2 with $x \in \Sigma_1$, remove x and α

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a relation: for a 2-cell $f \in \Sigma_2^{\top}$,

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a relation: for a 2-cell $f \in \Sigma_2^{\top}$, add a generating 2-cell χ_f

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a relation: for a 2-cell $f \in \Sigma_2^{\top}$, add a generating 2-cell χ_f add a generating 3-cell A_f

Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a relation: for a 2-cell $f \in \Sigma_2^{\top}$, add a generating 2-cell χ_f add a generating 3-cell A_f

remove a relation: for a 3-cell A where $\alpha \in \Sigma_2$,

Two (3,1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a relation: for a 2-cell $f \in \Sigma_2^{\top}$, add a generating 2-cell χ_f add a generating 3-cell A_f

remove a relation: for a 3-cell A where $\alpha \in \Sigma_2$, remove α and A

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a 3-cell: for 3-cells B,

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a 3-cell: for 3-cells B, add a generating 3-cell $A: f \Rightarrow g$

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

▶ add a 3-cell: for 3-cells B, add a generating 3-cell $A : f \Rightarrow g$ **remove a 3-cell**: for a generating 3-cell $A: f \Rightarrow g$

► Two (3, 1)-polygraphs Σ and Υ are Tietze-equivalent if there is an equivalence of 2-categories

 $\Sigma_2^\top/\Sigma_3 \xrightarrow{\approx} \Upsilon_2^\top/\Upsilon_3$

inducing an isomorphism on presented categories: $\Sigma_1^* \simeq \Upsilon_1^*$.

▶ In particular, two coherent presentations of the same category are Tietze-equivalent.

An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with source Σ^{\top} that belongs to one of the following three pairs of dual operations:

Theorem. [Gaussent-Guiraud-M., 2013]

Two (finite) (3,1)-polygraphs Σ and Υ are Tietze equivalent if, and only if, there exists a (finite) Tietze transformation

 $\mathfrak{T}: \Sigma^\top \longrightarrow \Upsilon^\top$

Theorem. [Gaussent-Guiraud-M., 2013]

Two (finite) (3,1)-polygraphs Σ and Υ are Tietze equivalent if, and only if, there exists a (finite) Tietze transformation

$\mathfrak{T}: \Sigma^\top \longrightarrow \Upsilon^\top$

Consequence.

If Σ is a coherent presentation of a category ${\sf C}$ and if there exists a Tietze transformation

$$\mathfrak{T}: \Sigma^{\top} \longrightarrow \Upsilon^{\top}$$

then Υ is a coherent presentation of **C**.

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph (string rewriting system).

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph (string rewriting system).

 \blacktriangleright Σ terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph (string rewriting system).

 \triangleright Σ terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

▶ A branching of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph (string rewriting system).

 \triangleright Σ terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

▶ A branching of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source

 \triangleright Σ is confluent if all of its branchings are confluent:

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph (string rewriting system).

 \triangleright Σ terminates if it does not generate any infinite reduction sequence

 $u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$

▶ A branching of Σ is a pair (f, g) of 2-cells of Σ_2^* with a common source

 \triangleright Σ is confluent if all of its branchings are confluent:

Σ is convergent if it terminates and it is confluent.

▶ The notion of rewriting system comes from combinatorial algebra:

▷ Decision procedure for the word problem (Thue, 1914).

▶ The notion of rewriting system comes from combinatorial algebra:

▷ Decision procedure for the word problem (Thue, 1914).

▶ Finite convergent presentations.

 \triangleright If a monoid M admits a finite convergent presentation, then its word problem is decidable.

▷ Nivat, 1972, Book, Otto, Diekert, Jantzen, Kapur-Narendran, Squier, ... in eighties.

▶ The notion of rewriting system comes from combinatorial algebra:

▷ Decision procedure for the word problem (Thue, 1914).

Finite convergent presentations.

 \triangleright If a monoid M admits a finite convergent presentation, then its word problem is decidable.

▷ Nivat, 1972, Book, Otto, Diekert, Jantzen, Kapur-Narendran, Squier, ... in eighties.

Theorem. [Squier, 1987]

A monoid having a finite convergent presentation is of homological type FP₃.

▶ The notion of rewriting system comes from combinatorial algebra:

▷ Decision procedure for the word problem (Thue, 1914).

Finite convergent presentations.

 \triangleright If a monoid M admits a finite convergent presentation, then its word problem is decidable.

▷ Nivat, 1972, Book, Otto, Diekert, Jantzen, Kapur-Narendran, Squier, ... in eighties.

Theorem. [Squier, 1987]

A monoid having a finite convergent presentation is of homological type FP3.

Theorem. [Anick, 1987, Kobayashi, 1991, Brown, 1992] A monoid having a finite convergent presentation is of homological type FP_m.

A branching

v и w

is local if f and g are rewriting steps.

A branching

is local if f and g are rewriting steps.

► Local branchings are classified as follows:

aspherical branchings have shape

A branching

is local if f and g are rewriting steps.

Local branchings are classified as follows:

aspherical branchings have shape

Peiffer branchings have shape

 $fv \star_1 u'g = ug \star_1 fv'$

A branching

is local if f and g are rewriting steps.

Local branchings are classified as follows:

aspherical branchings have shape

Peiffer branchings have shape

 $fv \star_1 u'g = ug \star_1 fv'$

JF

f↑↑ 𝕵Ų

critical branchings are all the other cases

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \stackrel{\Upsilon st}{\Longrightarrow} sts \rangle$$

Example.

Consider the 2-polygraph

$$\langle s,t \mid tst \stackrel{\gamma_{st}}{\Longrightarrow} sts \rangle$$

▷ A Peiffer branching:

tsttst

Example.

Consider the 2-polygraph

$$\langle s,t \mid tst \stackrel{\gamma_{st}}{\Longrightarrow} sts \rangle$$

▷ A Peiffer branching:

 γ_{st} tst ststst tst tst

Example.

Consider the 2-polygraph

$$\langle s, t \mid tst \stackrel{\Upsilon st}{\Longrightarrow} sts \rangle$$

▷ A Peiffer branching:

Example.

Consider the 2-polygraph

$$\langle s,t \mid tst \stackrel{\gamma_{st}}{\Longrightarrow} sts \rangle$$

▷ A Peiffer branching:

Example.

Consider the 2-polygraph

$$\langle s,t \mid tst \stackrel{\gamma_{st}}{\Longrightarrow} sts \rangle$$

▷ A Peiffer branching:

▶ It has only one critical branching:

tstst
Example.

Consider the 2-polygraph

$$\langle s,t \mid tst \stackrel{\gamma_{st}}{\Longrightarrow} sts \rangle$$

▷ A Peiffer branching:

 $\gamma_{st}st$ ⇒ stsst tstst

Example.

Consider the 2-polygraph

$$\langle s,t \mid tst \stackrel{\gamma_{st}}{\Longrightarrow} sts \rangle$$

▷ A Peiffer branching:

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma rs} rs, ts \xrightarrow{\gamma st} st, tr \xrightarrow{\gamma rt} rt \rangle$$

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \stackrel{\gamma_{rs}}{\Longrightarrow} rs, ts \stackrel{\gamma_{st}}{\Longrightarrow} st, tr \stackrel{\gamma_{rt}}{\Longrightarrow} rt \rangle$$

▷ It has only one critical branching

tsr

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \stackrel{\gamma rs}{\Longrightarrow} rs, ts \stackrel{\gamma st}{\Longrightarrow} st, tr \stackrel{\gamma rt}{\Longrightarrow} rt \rangle$$

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \stackrel{\gamma rs}{\Longrightarrow} rs, ts \stackrel{\gamma st}{\Longrightarrow} st, tr \stackrel{\gamma rt}{\Longrightarrow} rt \rangle$$

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \xrightarrow{\gamma_{rs}} rs, ts \xrightarrow{\gamma_{st}} st, tr \xrightarrow{\gamma_{rt}} rt \rangle$$

Example.

Consider the 2-polygraph

$$\langle r, s, t \mid sr \stackrel{\gamma rs}{\Longrightarrow} rs, ts \stackrel{\gamma st}{\Longrightarrow} st, tr \stackrel{\gamma rt}{\Longrightarrow} rt \rangle$$

Theorem. [Newman's diammond lemma, 1942]

For terminating 2-polygraphs, local confluence and confluence are equivalent properties.

Theorem. [Newman's diammond lemma, 1942]

For terminating 2-polygraphs, local confluence and confluence are equivalent properties.

► The Knuth-Bendix procedure computes a convergent presentation from a terminating presentation (Knuth-Bendix, 1970).

Theorem. [Newman's diammond lemma, 1942]

For terminating 2-polygraphs, local confluence and confluence are equivalent properties.

► The Knuth-Bendix procedure computes a convergent presentation from a terminating presentation (Knuth-Bendix, 1970).

Theorem. [Squier, 1994]

For a convergent presentation Σ of a category C, the (3,1)-polygraph obtained from Σ by adjunction of a generating confluence

for every critical branching (f, g) is a coherent presentation of **C**.

Let Σ be a terminating 2-polygraph (with a total termination order).

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical pair

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical pair

compute f' and g' reducing to some normal forms.

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical pair

compute f' and g' reducing to some normal forms.

▷ if $\hat{v} = \hat{w}$, add a 3-cell $A_{f,g}$

Let Σ be a terminating 2-polygraph (with a total termination order).

► The homotopical completion of Σ is the (3,1)-polygraph $S(\Sigma)$ obtained from Σ by successive application of following Tietze transformations

▷ for every critical pair

compute f' and g' reducing to some normal forms.

▷ if $\hat{v} = \hat{w}$, add a 3-cell $A_{f,g}$

▷ if $\hat{v} < \hat{w}$, add the 2-cell χ and the 3-cell $A_{f,g}$

▶ Potential adjunction of additional 2-cells x can create new critical branchings, ▷ whose confluence must also be examined,

▷ possibly generating the adjunction of additional 2-cells and 3-cells

▷...

▶ Potential adjunction of additional 2-cells \(\chi) can create new critical branchings, \(\ni) whose confluence must also be examined, \)

 \triangleright possibly generating the adjunction of additional 2-cells and 3-cells

▷...

▶ This defines an increasing sequence of (3, 1)-polygraphs

 $\langle \Sigma \mid \emptyset \rangle = \Sigma^{0} \subseteq \Sigma^{1} \subseteq \cdots \subseteq \Sigma^{n} \subseteq \Sigma^{n+1} \subseteq \cdots$

▶ The homotopical completion of Σ is the (3, 1)-polygraph

$$\mathbb{S}(\Sigma) = \bigcup_{n \ge 0} \Sigma^n.$$

▶ Potential adjunction of additional 2-cells \(\chi) can create new critical branchings, \(\ni) whose confluence must also be examined, \)

 \triangleright possibly generating the adjunction of additional 2-cells and 3-cells \triangleright ...

▶ This defines an increasing sequence of (3, 1)-polygraphs

 $\langle \Sigma \mid \emptyset \rangle = \Sigma^{0} \subseteq \Sigma^{1} \subseteq \cdots \subseteq \Sigma^{n} \subseteq \Sigma^{n+1} \subseteq \cdots$

• The homotopical completion of Σ is the (3, 1)-polygraph

 $\mathbb{S}(\Sigma) = \bigcup_{n \ge 0} \Sigma^n.$

Theorem. [Gaussent-Guiraud-M., 2013]

For every terminating presentation Σ of a category C, the homotopical completion $S(\Sigma)$ of Σ is a coherent convergent presentation of C.

Example. The Kapur-Narendran's presentation of $\mathsf{B}^+(\mathsf{S}_3),$ obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\boldsymbol{\alpha}}{\Longrightarrow} as, st \stackrel{\boldsymbol{\beta}}{\Longrightarrow} a \rangle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

$$\mathbb{S}(\Sigma_2^{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\boldsymbol{\alpha}}{\Longrightarrow} as, st \stackrel{\boldsymbol{\beta}}{\Longrightarrow} as$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \ \mathsf{s}, \mathsf{t}, \mathsf{a} \ | \ \mathsf{ta} \stackrel{\boldsymbol{lpha}}{\Longrightarrow} \mathsf{as}, \ \mathsf{st} \stackrel{\boldsymbol{eta}}{\Longrightarrow} \mathsf{a}
angle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \text{ s, t, a} \mid \text{ta} \stackrel{\boldsymbol{\alpha}}{\Longrightarrow} \text{ as, st} \stackrel{\boldsymbol{\beta}}{\Longrightarrow} \text{ a} \rangle$$

$$S(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a | ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa \qquad | A$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \text{ s, t, a} \mid \text{ta} \stackrel{\boldsymbol{\alpha}}{\Longrightarrow} \text{ as, st} \stackrel{\boldsymbol{\beta}}{\Longrightarrow} \text{ a} \rangle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \ \mathsf{s}, \mathsf{t}, \mathsf{a} \ | \ \mathsf{ta} \ \overset{\boldsymbol{lpha}}{\Longrightarrow} \ \mathsf{as}, \ \mathsf{st} \ \overset{\boldsymbol{eta}}{\Longrightarrow} \ \mathsf{a}
angle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \text{ s, t, a} \mid \text{ta} \stackrel{\boldsymbol{\alpha}}{\Longrightarrow} \text{ as, st} \stackrel{\boldsymbol{\beta}}{\Longrightarrow} \text{ a} \rangle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \ \mathsf{s}, \mathsf{t}, \mathsf{a} \ | \ \mathsf{ta} \ \overset{\boldsymbol{lpha}}{\Longrightarrow} \ \mathsf{as}, \ \mathsf{st} \ \overset{\boldsymbol{eta}}{\Longrightarrow} \ \mathsf{a}
angle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle \ \mathsf{s}, \mathsf{t}, \mathsf{a} \ | \ \mathsf{ta} \ \overset{\boldsymbol{lpha}}{\Longrightarrow} \ \mathsf{as}, \ \mathsf{st} \ \overset{\boldsymbol{eta}}{\Longrightarrow} \ \mathsf{a}
angle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

Example. The Kapur-Narendran's presentation of $B^+(S_3)$, obtained from Artin's presentation by coherent adjunction of the Coxeter element *st*

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

However. The extended presentation $S(\Sigma_2^{KN})$ obtained is bigger than necessary.

INPUT: A terminating 2-polygraph Σ .

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

\$ ×

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

- Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of
 - \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

- **Step 1.** Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).
- Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of
 - \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

- **Step 1.** Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).
- Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of
 - \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

- **Step 1.** Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).
- Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of
 - \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

- **Step 1.** Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).
- Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of
 - \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a collapsible part Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

▷ the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a **collapsible part** Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

▷ the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

 \triangleright some collapsible 2-cells or 3-cells already present in the initial presentation Σ .

INPUT: A terminating 2-polygraph Σ .

Step 1. Compute the homotopical completion $S(\Sigma)$ (convergent and coherent).

Step 2. Apply the homotopical reduction to $S(\Sigma)$ with a **collapsible part** Γ made of

 \triangleright 3-spheres induced by some of the generating triple confluences of $S(\Sigma)$,

▷ the 3-cells adjoined with a 2-cell by homotopical completion to reach confluence,

 \triangleright some collapsible 2-cells or 3-cells already present in the initial presentation Σ .

The homotopical completion-reduction of terminating 2-polygraph Σ is the (3, 1)-polygraph

 $\Re(\Sigma) = \pi_{\Gamma}(\Im(\Sigma))$

Theorem. [Gaussent-Guiraud-M., 2013]

For every terminating presentation Σ of a category C, the homotopical completion-reduction $\Re(\Sigma)$ of Σ is a coherent convergent presentation of C.

Example.

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \implies as, st \implies a \rangle$$

Example.

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \implies as, st \implies a \rangle$$

 $\mathbb{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta } \overset{\alpha}{\Longrightarrow} \text{ as, st } \overset{\beta}{\Longrightarrow} \text{ a, sas } \overset{\gamma}{\Longrightarrow} \text{ aa, saa } \overset{\delta}{\Longrightarrow} \text{ aat } \mid \text{ A, B, C, D} \right\rangle$

Example.

$$\Sigma_2^{\mathrm{KN}} = \left\langle \ \textit{s, t, a} \ | \ \textit{ta} \ \stackrel{\boldsymbol{lpha}}{\Longrightarrow} \ \textit{as, st} \ \stackrel{\boldsymbol{eta}}{\Longrightarrow} \ \textit{a} \
ight
angle$$

 $\mathbb{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle \text{ s, t, a } | \text{ ta } \xrightarrow{\alpha} \text{ as, st } \xrightarrow{\beta} \text{ a, sas } \xrightarrow{\gamma} \text{ aa, saa } \xrightarrow{\delta} \text{ aat } | \text{ A, B, C, D } \right\rangle$

$$\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$

Example.

$$\Sigma_2^{\mathrm{KN}} = \left\langle \ \textit{s, t, a} \ | \ \textit{ta} \ \overset{\boldsymbol{lpha}}{\Longrightarrow} \ \textit{as, st} \ \overset{\boldsymbol{eta}}{\Longrightarrow} \ \textit{a} \
ight
angle$$

$$\mathbb{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta } \overset{\alpha}{\Longrightarrow} \text{ as, st } \overset{\beta}{\Longrightarrow} \text{ a, sas } \overset{\gamma}{\Longrightarrow} \text{ aa, saa } \overset{\delta}{\Longrightarrow} \text{ aat } \mid \text{A, B, C, D} \right\rangle$$

$$\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$

▶ There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

Example.

$$\Sigma_2^{\mathrm{KN}} = \left\langle \; \textit{s, t, a} \; | \; \textit{ta} \; \stackrel{\boldsymbol{lpha}}{\Longrightarrow} \; \textit{as, st} \; \stackrel{\boldsymbol{eta}}{\Longrightarrow} \; \textit{a} \;
ight
angle$$

$$\mathbb{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta } \stackrel{\alpha}{\Longrightarrow} \text{ as, st } \stackrel{\beta}{\Longrightarrow} \text{ a, sas } \stackrel{\gamma}{\Longrightarrow} \text{ aa, saa } \stackrel{\delta}{\Longrightarrow} \text{ aat } \mid \text{A, B, C, D} \right\rangle$$

$$\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, \not \propto D \rangle$$

▶ There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

▷ Critical triple branching on *sasta* proves that *C* is redundant:

 $C = sas\alpha^{-1} \star_1 (Ba \star_1 aa\alpha) \star_2 (saA \star_1 \delta a \star_1 aa\alpha)$

Example.

$$\Sigma_2^{ ext{KN}} = \left\langle ext{ s, t, a } \mid ext{ta } \stackrel{\pmb{lpha}}{\Longrightarrow} ext{ as, st } \stackrel{\pmb{eta}}{\Longrightarrow} ext{ a }
ight
angle$$

$$\mathbb{S}(\Sigma_{2}^{\mathrm{KN}}) = \left\langle \text{ s, t, a } | \text{ ta } \xrightarrow{\alpha} \text{ as, st } \xrightarrow{\beta} \text{ a, sas } \xrightarrow{\gamma} \text{ aa, saa } \xrightarrow{\delta} \text{ aat } | \text{ A, B, C, D } \right\rangle$$

 $\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, \varkappa \varkappa \rangle$

▶ There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

▷ Critical triple branching on *sasast* proves that *D* is redundant:

 $D = sasa\beta^{-1} \star_1 \left((Ct \star_1 aaa\beta) \star_2 (saB \star_1 \delta at \star_1 aa\alpha t \star_1 aaa\beta) \right)$

Example.

$$\Sigma_{2}^{\mathrm{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$
$$\mathbb{S}(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{p}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, \mathbf{X}, \mathbf{X} \rangle$$

 \triangleright The 3-cells A and B are collapsible and the rules γ and δ are redundant.

Examp

$$\begin{split} \text{mple.} \qquad & \Sigma_{2}^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle \\ & \delta(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle \\ & \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle \end{split}$$

 \triangleright The 3-cells A and B are collapsible and the rules γ and δ are redundant.

Example

S

$$\Sigma_{2}^{\mathrm{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

 \triangleright The rule $st \stackrel{\beta}{\Longrightarrow} a$ is collapsible and the generator a is redundant.

Examp

$$\Sigma_{2}^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

$$\delta(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$

$$\langle s, t, \lambda \mid tst \stackrel{\alpha}{\Longrightarrow} sts, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$

$$\begin{aligned} &\mathcal{R}(\boldsymbol{\Sigma}_{2}^{\mathrm{KN}}) = \left\langle \ \boldsymbol{s}, t \mid tst \quad \overset{\boldsymbol{\alpha}}{\Longrightarrow} \ \boldsymbol{s}ts \mid \boldsymbol{\emptyset} \ \right\rangle \\ &= \mathsf{Art}_{3}(\mathbf{S}_{3}) \end{aligned}$$

Part III. Applications to Artin monoids

▶ Let W be a Coxeter group

$$\mathbf{W} = \langle S | s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word $tsts \dots$ with m_{st} letters.

▶ Let W be a Coxeter group

$$\mathbf{W} = \langle S | s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word tsts... with m_{st} letters.

▶ Artin's presentation of the Artin monoid $B^+(W)$:

$$\operatorname{Art}_2(\mathbf{W}) = \left\langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \right\rangle$$

▶ Let W be a Coxeter group

$$\mathbf{W} = \langle S | s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word tsts... with m_{st} letters.

► Artin's presentation of the Artin monoid B⁺(W):

$$\operatorname{Art}_2(\mathbf{W}) = \langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

► Garside's presentation of B⁺(W)

$$Gar_2(\mathbf{W}) = \langle \mathbf{W} \setminus \{1\} \mid u | v \stackrel{\alpha_{u,v}}{\Longrightarrow} uv$$
, whenever $u \land v$

where

uv is the product in **W**,

u | v is the product in the free monoid over **W**.

Let W be a Coxeter group

$$\mathbf{W} = \langle S | s^2 = 1, \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$$

where $\langle ts \rangle^{m_{st}}$ stands for the word tsts... with m_{st} letters.

► Artin's presentation of the Artin monoid B⁺(W):

$$\operatorname{Art}_2(\mathbf{W}) = \left\langle S \mid \langle ts
angle^{m_{st}} = \langle st
angle^{m_{st}}
ight
angle$$

► Garside's presentation of B⁺(W)

$$Gar_2(\mathbf{W}) = \langle \mathbf{W} \setminus \{1\} \mid u | v \stackrel{\alpha_{u,v}}{\Longrightarrow} uv$$
, whenever $u \land v$

where

uv is the product in **W**,

u|v is the product in the free monoid over **W**.

Notations :

▷ u ∨ whenever l(uv) = l(u) + l(v). ▷ u × v whenever l(uv) < l(u) + l(v).

▶ The Garside's coherent presentation of $B^+(W)$ is the extended presentation $Gar_3(W)$ obtained from $Gar_2(W)$ by adjunction of one 3-cell

for every u, v, w in $\mathbf{W} \setminus \{1\}$ with $u \bigvee w$

▶ The Garside's coherent presentation of $B^+(W)$ is the extended presentation $Gar_3(W)$ obtained from $Gar_2(W)$ by adjunction of one 3-cell

for every u, v, w in $\mathbf{W} \setminus \{1\}$ with $u \lor w$.

Theorem. [Gaussent-Guiraud-M., 2013]

For every Coxeter group W, the Artin monoid $B^+(W)$ admits ${\sf Gar}_3(W)$ as a coherent presentation.

Proof. By homotopical completion-reduction of the 2-polygraph $Gar_2(W)$.

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

u v

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

$$u \bigvee w \qquad u|v|w$$

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

w

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

 $\alpha_{u,v}|w \rightarrow uv|w$ u|v|w

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

w

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

▷ There are two possibilities.

if *u*

 $\begin{array}{c} \alpha_{u,v}|w \qquad uv|w \\ w \qquad u|v|w \\ u|\alpha_{v,w} \qquad u|vw \end{array}$

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

▷ There are two possibilities.

if

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

▷ There are two possibilities.

if

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

▷ There are two possibilities.

otherwise $u \xrightarrow{\times} 1$

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

▷ The 2-polygraph $Gar_2(W)$ has one critical branching for every u, v, w in $W \setminus \{1\}$ when

▷ There are two possibilities.

otherwise $u \xrightarrow{\times} v$

Step 1. We compute the coherent convergent presentation $S(Gar_2(W))$

 \triangleright The 2-polygraph Gar₂(**W**) has one critical branching for every u, v, w in **W** \ {1} when

▷ There are two possibilities.

otherwise $u \xrightarrow{\times} v$

Proposition.

For every Coxeter group W, the Artin monoid $B^+(W)$ admits, as a coherent convergent presentation, the (3,1)-polygraph $S(Gar_2(W))$ where

 \triangleright the 1-cells are the elements of $\mathbf{W} \setminus \{1\}$,

▷ there is a 2-cell $u|v \implies uv$ for every u, v in $W \setminus \{1\}$ with $u \frown v$,

▷ the 2-cells $u|vw \implies uv|w$, for every u, v, w in $\mathbf{W} \setminus \{1\}$ with $u \checkmark w$,

▷ the nine families of 3-cells A, B, C, D, E, F, G, H, I.

Step 2. Homotopical reduction of $S(Gar_2(W))$.

and similar 3-spheres for the following cases

Theorem. [Gaussent-Guiraud-M., 2013]

For every Coxeter group W, the Artin monoid $B^+(W)$ admits the coherent presentation ${\rm Art}_3(W)$ made of

 $\triangleright Artin's presentation Art_2(\mathbf{W}) = \langle S \mid \langle ts \rangle^{m_{st}} = \langle st \rangle^{m_{st}} \rangle$

 \triangleright one 3-cell $Z_{r,s,t}$ for every elements t > s > r of S such that the subgroup $W_{\{r,s,t\}}$ is finite.

▶ The 3-cells $Z_{r,s,t}$ for Coxeter types A_3

▶ The 3-cells $Z_{r,s,t}$ for Coxeter types B_3

▶ The 3-cells $Z_{r,s,t}$ for Coxeter types $A_1 \times A_1 \times A_1$

▶ The 3-cells $Z_{r,s,t}$ for Coxeter type H_3

▶ The 3-cells $Z_{r,s,t}$ for Coxeter type $I_2(p) \times A_1$, $p \ge 3$

Definition. (Deligne, 1997)

An action T of a monoid M on categories is specified by

- ▷ a category $C = T(\bullet)$
- ▷ an endofunctor $T(u) : \mathbf{C} \to \mathbf{C}$, for every element u of \mathbf{M} ,
- ▷ natural isomorphisms $T_{u,v}: T(u)T(v) \Rightarrow T(uv)$ and $T_{\bullet}: 1_{\mathsf{C}} \Rightarrow T(1)$

satisfying the following coherence conditions:

Theorem. [Gaussent-Guiraud-M., 2013]

Let M be a monoid and let Σ be a coherent presentation of M. There is an equivalence of categories

 $\operatorname{Act}(\mathbf{M}) \approx 2\operatorname{Cat}(\Sigma_2^{\top} / \Sigma_3, \mathsf{Cat})$

Theorem. [Gaussent-Guiraud-M., 2013]

Let M be a monoid and let Σ be a coherent presentation of M. There is an equivalence of categories

```
\operatorname{Act}(\mathbf{M}) \approx 2\operatorname{Cat}(\Sigma_2^{\top} / \Sigma_3, \mathsf{Cat})
```

▶ Such equivalence was known for the Garside's presentation of spherical Artin monoids (Deligne, 1997)

Theorem. [Gaussent-Guiraud-M., 2013]

Let M be a monoid and let Σ be a coherent presentation of M. There is an equivalence of categories

```
\operatorname{Act}(\mathbf{M}) \approx 2\operatorname{Cat}(\Sigma_2^{\top} / \Sigma_3, \operatorname{Cat})
```

 Such equivalence was known for the Garside's presentation of spherical Artin monoids (Deligne, 1997)

Consequence.

To determine an action of an Artin monoid $B^+(W)$ on a category C, it suffices to attach b to any generating 1-cell $s \in S$ an endofunctor $T(s) : C \to C$,

▷ to any generating 2-cell an isomorphism of functors such that these satisfy coherence Zamolochikov relations.

Other applications

▷ Coherent presentation of Garside monoids [Gaussent-Guiraud-M., 2013].

Other applications

- ▷ Coherent presentation of Garside monoids [Gaussent-Guiraud-M., 2013].
- ▷ Coherent presentation of plactic and Chinese monoids [Guiraud-M.-Mimram, 2013].

$$\mathbf{P}_{n} = \left\langle x_{1}, \dots, x_{n} \mid \begin{array}{c} x_{j}x_{i}x_{k} = x_{j}x_{k}x_{i} \text{ for } i < j \leq k \\ x_{i}x_{k}x_{j} = x_{k}x_{i}x_{j} \text{ for } i \leq j < k \end{array} \right\rangle$$

$$\mathbf{Ch}_{n} = \left\langle x_{1}, \dots, x_{n} \mid x_{j} x_{k} x_{i} = x_{k} x_{i} x_{j} = x_{k} x_{j} x_{i} \text{ for } i \leq j \leq k \right\rangle$$

Other applications

▷ Coherent presentation of Garside monoids [Gaussent-Guiraud-M., 2013].

▷ Coherent presentation of plactic and Chinese monoids [Guiraud-M.-Mimram, 2013].

$$\mathbf{P}_{n} = \left\langle x_{1}, \dots, x_{n} \mid \begin{array}{c} x_{j} x_{i} x_{k} = x_{j} x_{k} x_{i} \text{ for } i < j \leqslant k \\ x_{i} x_{k} x_{j} = x_{k} x_{i} x_{j} \text{ for } i \leqslant j < k \end{array} \right\rangle$$

$$\mathsf{Ch}_{n} = \left\langle x_{1}, \dots, x_{n} \mid x_{j} x_{k} x_{i} = x_{k} x_{i} x_{j} = x_{k} x_{j} x_{i} \text{ for } i \leqslant j \leqslant k \right\rangle$$

A prototype implementation of homotopical completion-reduction procedure http://www.pps.univ-paris-diderot.fr/~smimram/rewr/

Other applications

▷ Coherent presentation of Garside monoids [Gaussent-Guiraud-M., 2013].

▷ Coherent presentation of plactic and Chinese monoids [Guiraud-M.-Mimram, 2013].

$$\mathbf{P}_{n} = \langle x_{1}, \dots, x_{n} \mid \begin{array}{c} x_{j}x_{i}x_{k} = x_{j}x_{k}x_{i} \text{ for } i < j \leq k \\ x_{i}x_{k}x_{j} = x_{k}x_{i}x_{j} \text{ for } i \leq j < k \end{array} \rangle$$

$$\mathsf{Ch}_{n} = \left\langle x_{1}, \dots, x_{n} \mid x_{j} x_{k} x_{i} = x_{k} x_{i} x_{j} = x_{k} x_{j} x_{i} \text{ for } i \leqslant j \leqslant k \right\rangle$$

A prototype implementation of homotopical completion-reduction procedure > http://www.pps.univ-paris-diderot.fr/~smimram/rewr/

Conjecture.

Higher Artin's coherent presentation of B(W, S) has exactly on k-cell, $k \ge 0$, for every subset I of S of rank k such that the subgroup W_I is finite.