A Homotopical Completion Procedure with Applications to Coherence of Monoids

Yves Guiraud¹, Philippe Malbos^{1,2}, Samuel Mimram³

INRIA - πr², Laboratoire Preuves, Programmes et Systèmes, Université Paris Diderot.
 Institut Camille Jordan, Université Lyon 1
 CEA, LIST.

Rewriting Techniques and Applications

June 24, 2013, Eindhoven

- I. Motivation
- **II.** Coherent presentations
- III. Homotopical completion and reduction procedure
- **IV.** Applications

- I. Motivation
- **II.** Coherent presentations
- III. Homotopical completion and reduction procedure
- **IV.** Applications

- Computation of homological and homotopical invariants:
 - Homological and homotopical finiteness conditions for convergence (Squier, '87, '94),
 - Higher-dimensional categories with finite derivation type (G.-M., '09).

• Computation of homological and homotopical invariants:

- Homological and homotopical finiteness conditions for convergence (Squier, '87, '94),
- Higher-dimensional categories with finite derivation type (G.-M., '09).

• Classification of normalisation strategies:

- Higher-dimensional normalisation strategies for acyclicity (G.-M., '12).

• Computation of homological and homotopical invariants:

- Homological and homotopical finiteness conditions for convergence (Squier, '87, '94),
- Higher-dimensional categories with finite derivation type (G.-M., '09).

• Classification of normalisation strategies:

- Higher-dimensional normalisation strategies for acyclicity (G.-M., '12).

• Coherence theorems for algebraic and categorical structures:

- Monoidal categories (MacLane, '63, G.-M., '12),
- A homotopical completion procedure (G.-M.-M., '13),
- Coherent presentations of Artin groups (Deligne, '72, Tits '81, Gaussent-G.-M., '13, arXiv :1203.5358v2).

• The positive braids on 3 strands are generated by

 \bowtie and \bowtie

and satisfy the Yang-Baxter relation

• The positive braids on 3 strands are generated by

 \bowtie and \bowtie

and satisfy the Yang-Baxter relation

Coherence Problem.

- Given two braids equal modulo Yang-Baxter.

• The positive braids on 3 strands are generated by

 \bowtie | and | \bowtie

and satisfy the Yang-Baxter relation

Coherence Problem.

- Given two braids equal modulo Yang-Baxter.
- In general, there are several proofs of their equality.

• The positive braids on 3 strands are generated by

 \bowtie | and | \bowtie

and satisfy the Yang-Baxter relation

Coherence Problem.

- Given two braids equal modulo Yang-Baxter.
- In general, there are several proofs of their equality.

• The positive braids on 3 strands are generated by

 \bowtie | and | \bowtie

and satisfy the Yang-Baxter relation

Coherence Problem.

- Given two braids equal modulo Yang-Baxter.
- In general, there are several proofs of their equality.

Coherence Problem.

- How to compare proofs of equalities of two braids ?

Method.

1. Consider Artin's presentation of the monoid B_3^+ of positive braids on 3 strands

```
\Sigma_{\mathrm{Artin}} = \langle \text{ s, } t \mid \textit{tst} \stackrel{\rho}{\Rightarrow} \textit{sts} \rangle
```

where
$$s = >> |$$
 and $t = | >> |$

Method.

1. Consider Artin's presentation of the monoid B_3^+ of positive braids on 3 strands

```
\Sigma_{\mathrm{Artin}} = \langle s, t \mid tst \stackrel{\rho}{\Rightarrow} sts \rangle
```

where
$$s = \bigvee$$
 | and $t = | \bigvee$

2. Compute a coherent convergent presentation by adding

new generators, new relations and coherence generators.

Method.

1. Consider Artin's presentation of the monoid B_3^+ of positive braids on 3 strands

$$\Sigma_{\mathrm{Artin}} = \langle s, t \mid tst \stackrel{\rho}{\Rightarrow} sts \rangle$$

where
$$s = >> |$$
 and $t = |>> |$

2. Compute a coherent convergent presentation by adding

new generators, new relations and coherence generators.

3. Coherently reduce this presentation by Tietze transformations.

Method.

1. Consider Artin's presentation of the monoid B_3^+ of positive braids on 3 strands

$$\Sigma_{\mathrm{Artin}} = \langle s, t \mid tst \stackrel{\rho}{\Rightarrow} sts \rangle$$

where
$$s = >> |$$
 and $t = |>> |$

2. Compute a coherent convergent presentation by adding

new generators, new relations and coherence generators.

3. Coherently reduce this presentation by Tietze transformations.

Proposition.

For the presentation Σ_{Artin} of B_3^+ any two proofs of the same equality are equal.

- I. Motivation
- **II.** Coherent presentations
- III. Homotopical completion and reduction procedure
- **IV.** Applications

 \bullet Let \langle Σ_1 | Σ_2 \rangle be a string rewriting system.

- \bullet Let \langle Σ_1 | Σ_2 \rangle be a string rewriting system.
- The rewriting sequences form the 2-category of reductions Σ_2^* .

- \bullet Let \langle Σ_1 | Σ_2 \rangle be a string rewriting system.
- The rewriting sequences form the 2-category of reductions Σ_2^* .
 - the sequential composition $f_1 \star_1 f_2$ of rewriting steps is associative and unitary

$$u_1 \stackrel{f_1}{\Longrightarrow} u_2 \stackrel{f_2}{\Longrightarrow} u_3$$

- \bullet Let \langle Σ_1 | Σ_2 \rangle be a string rewriting system.
- The rewriting sequences form the 2-category of reductions Σ₂^{*}.
 - the sequential composition $f_1 \star_1 f_2$ of rewriting steps is associative and unitary

$$u_1 \stackrel{f_1}{\Longrightarrow} u_2 \stackrel{f_2}{\Longrightarrow} u_3$$

- the parallel composition of rewriting steps

$$\bigcup_{v \in V}^{u} f^{*_0} \bigcup_{v'}^{u'} g_{v'}$$

is associative, unitary and compatible with the sequential composition

 $fv \star_1 u'g = ug \star_1 fv'$

• The equalities $u \Leftrightarrow v$ form a 2-category Σ_2^{\top} similar to Σ_2^* but with all 2-cells invertible.

The 2-category of equalities

- The equalities $u \Leftrightarrow v$ form a 2-category Σ_2^{\top} similar to Σ_2^* but with all 2-cells invertible.
- An extended presentation consists of a presentation $\langle \Sigma_1 | \Sigma_2 \rangle$, together with a set Σ_3 of coherence generators with shape

The 2-category of equalities

• The equalities $u \Leftrightarrow v$ form a 2-category Σ_2^{\top} similar to Σ_2^* but with all 2-cells invertible.

• An extended presentation consists of a presentation $\langle \Sigma_1 | \Sigma_2 \rangle$, together with a set Σ_3 of coherence generators with shape

• A coherent presentation is an extended presentation $\langle \Sigma_1 | \Sigma_2 | \Sigma_3 \rangle$ such that the congruence generated by Σ_3 , that is

- the equivalence relation \equiv on parallel 2-cells in Σ_2^{\top} ,

- closed by context: $f \equiv g$ implies $ufv \equiv ugv$,

- closed by composition: $f \equiv g$ implies $k \star_1 f \star_1 h \equiv k \star_1 g \star_1 h$.

contains every pair of parallel 2-cells.

Problems.

- 1. How to compute a coherent presentation ?
- 2. How to transform a coherent presentation ?

• A family of generating confluences of \langle Σ_1 | Σ_2 \rangle is a set of coherence generators of shape

where (f, g) is a critical pair.

• A family of generating confluences of $\langle \Sigma_1 | \Sigma_2 \rangle$ is a set of coherence generators of shape

where (f, g) is a critical pair.

• If $\langle \Sigma_1 | \Sigma_2 \rangle$ is confluent, it always admits at least one family of generating confluences.

• A family of generating confluences of $\langle \Sigma_1 | \Sigma_2 \rangle$ is a set of coherence generators of shape

where (f, g) is a critical pair.

• If $\langle \Sigma_1 | \Sigma_2 \rangle$ is confluent, it always admits at least one family of generating confluences.

Theorem. (Squier, 1994) Let Σ be a convergent presentation of a monoid M. The extended presentation defined by a chosen family of generating confluences is a coherent and convergent presentation of M.

• add a generator: for a word *u*,

• add a generator: for a word u, add a generator x

u x

• add a generator: for a word u, add a generator x and add a rule

$$u \xrightarrow{\delta} x$$

• add a generator: for a word u, add a generator x and add a rule

$$u \xrightarrow{\delta} x$$

• remove a generator: for a rule α with x a generator,

$$u \xrightarrow{\alpha} x$$

• add a generator: for a word u, add a generator x and add a rule

$$u \xrightarrow{\delta} x$$

• remove a generator: for a rule α with x a generator, remove x and α

• add a generator: for a word u, add a generator x and add a rule

$$u \xrightarrow{\delta} x$$

 $u \xrightarrow{\times} \chi$

• remove a generator: for a rule α with x a generator, remove x and α

• add a generator: for a word u, add a generator x and add a rule

• remove a generator: for a rule α with x a generator, remove x and α

• add a relation: for an equality f, add a rule χ_f

• add a generator: for a word u, add a generator x and add a rule

• remove a generator: for a rule α with x a generator, remove x and α

• add a relation: for an equality f, add a rule χ_f and add a coherence generator A_f

• add a generator: for a word u, add a generator x and add a rule

• remove a generator: for a rule α with x a generator, remove x and α

• add a relation: for an equality f, add a rule χ_f and add a coherence generator A_f

• remove a relation: for a 3-cell A with α a rule,

• add a generator: for a word u, add a generator x and add a rule

u ××

• remove a generator: for a rule α with x a generator, remove x and α

• remove a relation: for a 3-cell A with α a rule, remove α and A

• add a 3-cell: for two congruent equalities $f \equiv g$,

• add a 3-cell: for two congruent equalities $f \equiv g$, add a coherence generator $f \stackrel{A}{\Rightarrow} g$

• add a 3-cell: for two congruent equalities $f \equiv g$, add a coherence generator $f \stackrel{A}{\Rightarrow} g$

• remove a 3-cell: for a congruence generator $f \stackrel{A}{\Rightarrow} g$ with $f \equiv g$,

• add a 3-cell: for two congruent equalities $f \equiv g$, add a coherence generator $f \stackrel{A}{\Rightarrow} g$

• remove a 3-cell: for a congruence generator $f \stackrel{A}{\Rightarrow} g$ with $f \equiv g$, remove A

• add a 3-cell: for two congruent equalities $f \equiv g$, add a coherence generator $f \stackrel{A}{\Rightarrow} g$

• remove a 3-cell: for a congruence generator $f \stackrel{A}{\Rightarrow} g$ with $f \equiv g$, remove A

Theorem.

If Σ is a coherent presentation of a monoid M, then for any Tietze transformation \mathcal{T} , the presentation $\mathcal{T}(\Sigma)$ is a coherent presentation of M.

- I. Motivation
- **II.** Coherent presentations
- III. Homotopical completion and reduction procedure
- **IV.** Applications

• Let Σ be a terminating presentation (with a total termination order).

- Let Σ be a terminating presentation (with a total termination order).
 - For every critical pair

u w w

- Let Σ be a terminating presentation (with a total termination order).
 - For every critical pair

the homotopical completion procedure computes f' and g' reducing to some normal forms.

- Let Σ be a terminating presentation (with a total termination order).
 - For every critical pair

the homotopical completion procedure computes f' and g' reducing to some normal forms. - if $\hat{v} = \hat{w}$, the 3-cell $A_{f,g}$ is added by Tietze transformation

- Let Σ be a terminating presentation (with a total termination order).
 - For every critical pair

the homotopical completion procedure computes f' and g' reducing to some normal forms. - if $\hat{v} = \hat{w}$, the 3-cell $A_{f,g}$ is added by Tietze transformation

- if $\hat{v} < \hat{w}$, the 2-cell χ and the 3-cell $A_{f,g}$ are added by Tietze transformation

Theorem. Let Σ be a terminating presentation of a monoid M.

The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Theorem. Let Σ be a terminating presentation of a monoid M.

The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

$$\Sigma_{\mathrm{KN}} = \langle \ s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, \ st \stackrel{\beta}{\Rightarrow} a \mid \emptyset \rangle$$

Theorem. Let Σ be a terminating presentation of a monoid M.The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Example. The Kapur-Narendran presentation of B_3^+ :

 $\Sigma_{\mathrm{KN}} = \left\langle \text{ s, t, a } \mid \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as, st} \stackrel{\beta}{\Rightarrow} \text{ a } \mid \emptyset \right\rangle$ $\mathfrak{HC}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as, st} \stackrel{\beta}{\Rightarrow} \text{ a}$

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Example. The Kapur-Narendran presentation of B_3^+ :

 $\Sigma_{\rm KN} = \langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, st \stackrel{\beta}{\Rightarrow} a \mid \emptyset \rangle$ $\mathfrak{HC}(\Sigma_{\rm KN}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, st \stackrel{\beta}{\Rightarrow} a, sas \stackrel{\gamma}{\Rightarrow} aa, saa \stackrel{\delta}{\Rightarrow} aat \mid A, B$ $\overbrace{sta}^{\beta a} aa \qquad \overbrace{Yt}^{\gamma t} aat$ $\overbrace{sas}^{\gamma t} sast \stackrel{\beta}{\Rightarrow} ba$ $\overbrace{sas}^{\gamma t} sast \stackrel{\beta}{\Rightarrow} saa$

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Example. The Kapur-Narendran presentation of B_3^+ :

 $\Sigma_{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, st \stackrel{\beta}{\Rightarrow} a \mid \emptyset \rangle$ $\mathfrak{HC}(\Sigma_{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, st \stackrel{\beta}{\Rightarrow} a, sas \stackrel{\gamma}{\Rightarrow} aa, saa \stackrel{\delta}{\Rightarrow} aat \mid A, B$ $\overset{\beta a}{\underset{sta}{\longrightarrow}} aa \xrightarrow{\gamma t} aat \xrightarrow{\gamma as} aaas$ $\overset{\gamma t}{\underset{sa}{\longrightarrow}} sas \xrightarrow{\gamma t} saaa \xrightarrow{\delta} saa \xrightarrow{\delta} saaa$

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Example. The Kapur-Narendran presentation of B_3^+ :

 $\Sigma_{\rm KN} = \langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, st \stackrel{\beta}{\Rightarrow} a \mid \emptyset \rangle$ $\mathfrak{HC}(\Sigma_{\rm KN}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, st \stackrel{\beta}{\Rightarrow} a, sas \stackrel{\gamma}{\Rightarrow} aa, saa \stackrel{\delta}{\Rightarrow} aat \mid A, B, C$ $\overset{\beta a}{\underset{sta}{\overset{q}{\Rightarrow}} saa} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}} saa} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saas} \overset{\alpha a}{\underset{sas}{\overset{aa}{\Rightarrow}} saa} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saaa} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}} saaa} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saaa} \overset{\gamma a}{\underset{sas}{\overset{aa}{\Rightarrow}} aaas} \overset{\alpha a}{\underset{sas}{\overset{aa}{\Rightarrow}} aaas} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saaa} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}} saaa} \overset{\alpha a}{\underset{sas}{\overset{\gamma}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}}} saaa} \overset{\gamma t}{\underset{sas}{\overset{aa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{saa}{\overset{aa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{saa}{\overset{saa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{saa}{\overset{saa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{saa}{\overset{saa}{\Rightarrow}} saaa} \overset{\gamma t}{\underset{saa}{\overset{saa}{saa}} saaa} \overset{\gamma t}{\underset{saa}{\overset{saa}{saa}} saaa} \overset{\gamma t}{\underset{saa}{saa}} saaa} \overset{\gamma t}{\underset{saa}{\overset{saa}{saa}} saaa} \overset{\gamma t}{\underset{saa}{saa}} \overset{\gamma t}{\underset{saa}{saa}} \overset{\gamma t}{\underset{saa}{saa}} \overset{\gamma t}{\underset{saa}{saa}} \overset{\gamma t}{\underset{saa}{saa}} \overset{\gamma t}{\underset{saa}{saa}} saaa} \overset{\gamma t}{\underset{saa}{saa}} \overset{\tau}{\underset{saa}{saa}} \overset{\tau}{\underset{saa}{saa}} \overset{\tau}{\underset{saa}} \overset{\tau}{\underset{$

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

Theorem. Let Σ be a terminating presentation of a monoid M. The homotopical completed presentation $\mathfrak{HC}(\Sigma)$ is a coherent and convergent presentation of M.

However. The extended presentation $\mathcal{HC}(\Sigma_{\mathrm{KN}})$ obtained is bigger than necessary.

• Let Σ be a convergent and coherent presentation.

- \bullet Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

v h ≯x

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- The homotopical reduction in dimension 3, denoted by $\overline{\mathcal{HC}}$,
 - builds such a 4-cell, for each critical triple branching,

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- The homotopical reduction in dimension 3, denoted by $\overline{\mathcal{HC}}$,
 - builds such a 4-cell, for each critical triple branching,
 - uses these 4-cells to reduce the coherent presentation.

- Let Σ be a convergent and coherent presentation.
 - The critical triples are confluent.

- The homotopical reduction in dimension 3, denoted by $\overline{\mathcal{HC}}$,
 - builds such a 4-cell, for each critical triple branching,
 - uses these 4-cells to reduce the coherent presentation.

Theorem. Let Σ be a terminating presentation of a monoid M. The extended presentation $\overline{\mathfrak{HC}}(\Sigma)$ is a reduced coherent and convergent presentation of M.

$$\mathfrak{HC}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a} \mid \text{ta} \stackrel{\alpha}{\Rightarrow} \text{as, st} \stackrel{\beta}{\Rightarrow} \text{a, sas} \stackrel{\gamma}{\Rightarrow} \text{aa, saa} \stackrel{\delta}{\Rightarrow} \text{aat} \mid \text{A, B, C, D} \right\rangle$$

Example.

 $\mathfrak{HC}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a} \mid \textit{ta} \xrightarrow{\alpha} \textit{as, st} \xrightarrow{\beta} \textit{a, sas} \xrightarrow{\gamma} \textit{aa, saa} \xrightarrow{\delta} \textit{aat} \mid \textit{A, B, C, D} \right\rangle$

• There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

Example.

$$\mathfrak{HC}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as, st} \stackrel{\beta}{\Rightarrow} \text{ a, sas} \stackrel{\gamma}{\Rightarrow} \text{ aa, saa} \stackrel{\delta}{\Rightarrow} \text{ aat} \mid \text{ A, B,} \bigstar D \right\rangle$$

• There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

- Critical triple branching on sasta

- The 4-cell Ω_1 proves that ${\it C}$ is superfluous in the coherent presentation.

- The 3-cell C can be written as a composition of 3-cells A and B

 $C = sas \alpha^{-1} \star_1 (Ba \star_1 aa \alpha) \star_2 (saA \star_1 \delta a \star_1 aa \alpha)$

Example.

• There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

- Critical triple branching on sasast

- This 4-cell Ω_2 proves that D is superfluous in the coherent presentation.

- The 3-cell D can be written as a composition of 3-cells A and B

 $D = sasa\beta^{-1} \star_1 ((Ct \star_1 aaa\beta) \star_2 (saB \star_1 \delta at \star_1 aa\alpha t \star_1 aaa\beta))$

Example.

$$\mathfrak{HC}(\Sigma_{\mathrm{KN}}) = \langle \mathsf{s}, \mathsf{t}, \mathsf{a} \mid \mathsf{ta} \stackrel{\alpha}{\Rightarrow} \mathsf{as}, \mathsf{st} \stackrel{\beta}{\Rightarrow} \mathsf{a}, \mathsf{sas} \stackrel{\gamma}{\Rightarrow} \mathsf{aa}, \mathsf{saa} \stackrel{\delta}{\Rightarrow} \mathsf{aat} \mid \mathsf{A}, \mathsf{B}, \bigstar \mathfrak{K} \not \mathfrak{K} \rangle$$

• There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

Conclusion.

$$\overline{\mathfrak{HC}}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as, st} \stackrel{\beta}{\Rightarrow} \text{ a, sas} \stackrel{\gamma}{\Rightarrow} \text{ aa, saa} \stackrel{\delta}{\Rightarrow} \text{ aat} \mid \text{A, B} \right\rangle$$

- Let Σ be a coherent presentation.
- The homotopical reduction in dimension 2 eliminates the rules added during the homotopical completion process.

- both χ and A are removed by a Tietze transformation.

- Let Σ be a coherent presentation.
- The homotopical reduction in dimension 2 eliminates the rules added during the homotopical completion process.

- both χ and A are removed by a Tietze transformation.
- The homotopical reduction in dimension 2 applied on $\overline{\mathcal{HC}}(\Sigma)$ construct the extended presentation $\mathcal{HCR}(\Sigma)$.

- Let Σ be a coherent presentation.
- The homotopical reduction in dimension 2 eliminates the rules added during the homotopical completion process.

- both χ and A are removed by a Tietze transformation.
- The homotopical reduction in dimension 2 applied on $\overline{\mathcal{HC}}(\Sigma)$ construct the extended presentation $\mathcal{HCR}(\Sigma)$.

Theorem. Let Σ be a terminating presentation of a monoid M.

The extended presentation $\mathfrak{HCR}(\Sigma)$ is a coherent presentation of M, whose underlying presentation is Σ .

$$\overline{\mathcal{HC}}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a } | \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as, st} \stackrel{\beta}{\Rightarrow} \text{ a, sas } \stackrel{\gamma}{\Rightarrow} \text{ aa, saa} \stackrel{\delta}{\Rightarrow} \text{ aat } | \text{ A, B } \right\rangle$$

Example.

$$\overline{\mathcal{HC}}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a } | \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as, st} \stackrel{\beta}{\Rightarrow} \text{ a, sas } \stackrel{\gamma}{\Rightarrow} \text{ aa, saa} \stackrel{\delta}{\Rightarrow} \text{ aat } | \text{ A, B} \right\rangle$$

- The 3-cells A and B correspond to the adjunction of the rules γ and δ during the ${\mathfrak {HC}}$ procedure

Example.

$$\overline{\mathcal{HC}}(\Sigma_{\mathrm{KN}}) = \langle \mathsf{s}, \mathsf{t}, \mathsf{a} \mid \mathsf{ta} \stackrel{\alpha}{\Rightarrow} \mathsf{as}, \mathsf{st} \stackrel{\beta}{\Rightarrow} \mathsf{a}, \mathsf{sas} \stackrel{\gamma}{\Rightarrow} \mathsf{aa}, \mathsf{saa} \stackrel{\delta}{\Rightarrow} \mathsf{aat} \mid \mathsf{A}, \mathsf{B} \rangle$$

- The 3-cells A and B correspond to the adjunction of the rules γ and δ during the ${\mathfrak {HC}}$ procedure

- They are removed by the \mathcal{HCR} procedure:

Example.

$$\overline{\mathcal{HC}}(\Sigma_{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, st \stackrel{\beta}{\Rightarrow} a, sas \stackrel{\beta}{\Rightarrow} aa, sas \stackrel{\delta}{\Rightarrow} aat \mid A, \mathcal{K} \rangle$$

- The 3-cells A and B correspond to the adjunction of the rules γ and δ during the ${\mathfrak {HC}}$ procedure

- They are removed by the \mathfrak{HCR} procedure:

$$\mathfrak{HCR}(\Sigma_{\mathrm{KN}}) = \left\langle \mathsf{s}, \mathsf{t}, \mathsf{a} \mid \mathsf{ta} \stackrel{\alpha}{\Rightarrow} \mathsf{as}, \mathsf{st} \stackrel{\beta}{\Rightarrow} \mathsf{a} \mid \emptyset \right\rangle$$

• The generators added before the homotopical completion can be removed at the end.

- The generators added before the homotopical completion can be removed at the end.
 - Each superfluous generator (u) comes with a defining relation

 $u \stackrel{\alpha}{\Longrightarrow} (u)$

- The generators added before the homotopical completion can be removed at the end.
 - Each superfluous generator (u) comes with a defining relation

- A Tietze transformation removes (u) and α

- The generators added before the homotopical completion can be removed at the end.
 - Each superfluous generator (u) comes with a defining relation

- A Tietze transformation removes (u) and α

$$\mathfrak{HCR}(\Sigma_{\mathrm{KN}}) = \left\langle \mathsf{s}, \mathsf{t}, \mathsf{a} \mid \mathsf{ta} \stackrel{\alpha}{\Rightarrow} \mathsf{as}, \mathsf{st} \stackrel{\beta}{\Rightarrow} \mathsf{a} \mid \emptyset \right\rangle$$

- The generators added before the homotopical completion can be removed at the end.
 - Each superfluous generator (u) comes with a defining relation

- A Tietze transformation removes (u) and α

$$\mathcal{HCR}(\Sigma_{\mathrm{KN}}) = \left\langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, \ st \stackrel{\beta}{\Rightarrow} a \mid \emptyset \right\rangle$$

$$\overline{\mathcal{HCR}}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as , st} \stackrel{\beta}{\Rightarrow} a \mid \emptyset \right\rangle$$

- The generators added before the homotopical completion can be removed at the end.
 - Each superfluous generator (u) comes with a defining relation

- A Tietze transformation removes (u) and α

$$\mathcal{HCR}(\Sigma_{\mathrm{KN}}) = \left\langle \text{ s, t, a } \mid \text{ ta} \stackrel{\alpha}{\Rightarrow} \text{ as, st} \stackrel{\beta}{\Rightarrow} \text{ a } \mid \emptyset \right\rangle$$

$$\overline{\mathcal{HCR}}(\Sigma_{\mathrm{KN}}) = \left\langle \textbf{ s}, \textbf{ t}, \mathbf{\check{y}} \mid \textbf{ ta} \stackrel{\alpha}{\Rightarrow} \textbf{ as}, \textbf{ st} \stackrel{\boldsymbol{k}}{\Rightarrow} \mathbf{a} \mid \emptyset \right\rangle$$

- The generators added before the homotopical completion can be removed at the end.
 - Each superfluous generator (u) comes with a defining relation

- A Tietze transformation removes (u) and α

Example.

$$\mathcal{HCR}(\Sigma_{\mathrm{KN}}) = \left\langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, \ st \stackrel{\beta}{\Rightarrow} a \mid \emptyset \right\rangle$$

 $\overline{\mathfrak{HCR}}(\Sigma_{\mathrm{KN}}) = \left\langle \textit{ s, t } \mid \textit{tst} \stackrel{\alpha}{\Rightarrow} \textit{sts} \mid \emptyset \right. \right\rangle$

- The generators added before the homotopical completion can be removed at the end.
 - Each superfluous generator (u) comes with a defining relation

- A Tietze transformation removes (u) and α

Example.

$$\mathcal{HCR}(\Sigma_{\mathrm{KN}}) = \left\langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as, \ st \stackrel{\beta}{\Rightarrow} a \mid \emptyset \right\rangle$$

$$\overline{\mathcal{HCR}}(\Sigma_{\mathrm{KN}}) = \left\langle \textit{ s, t } \mid \textit{tst} \stackrel{\alpha}{\Rightarrow} \textit{sts} \mid \emptyset \right. \right\rangle$$

Proposition.

For the presentation Σ_{Artin} of B_3^+ any two proofs of the same equality are equal.

- I. Motivation
- **II.** Coherent presentations
- III. Homotopical completion and reduction procedure
- **IV.** Applications

Braids on 4 strands

• Artin presentation of the monoid B_4^+ of braids on 4 strands:

 $\Sigma_{Artin} = \langle r, s, t | rsr = srs, sts = tst, rt = tr \rangle$

Braids on 4 strands

• Artin presentation of the monoid B_4^+ of braids on 4 strands:

$$\Sigma_{\text{Artin}} = \langle r, s, t | rsr = srs, sts = tst, rt = tr \rangle$$

$$r = \swarrow | | s = | \swarrow | t = | | \asymp$$

$$\downarrow = | \downarrow \downarrow = | \downarrow \downarrow \downarrow = | \downarrow \downarrow \downarrow$$

Braids on 4 strands

• Artin presentation of the monoid B_4^+ of braids on 4 strands:

$$\Sigma_{\text{Artin}} = \langle r, s, t | rsr = srs, sts = tst, rt = tr \rangle$$

$$r = \swarrow | | s = | \Join | t = | | \Join$$

$$\downarrow = \bigcup | \Box | \Box = | \Box | \Box = | \Box | \Box$$

Proposition.

For the presentation Σ_{Artin} of B_4^+ any two proofs of the same equality are equal modulo the Zamolodchikov relation

Computations

• The monoid of braids on *n* strands

$$\mathsf{B}_n^+ = \left\langle s_1, \dots, s_{n-1} \mid \begin{array}{c} s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} & \text{for } 1 \leqslant i < n-1 \\ s_i s_j = s_j s_i & \text{for } |i-j| \geqslant 2 \end{array} \right\rangle$$

- Computations with Artin, Kapur-Narendran and Brieskorn-Saito presentations.

- more generally, for the generalised Artin monoid $B^+(W)$ on a Coxeter group W, using Garside presentation, see [Gaussent-Guiraud-Malbos, 2013].

• The plactic monoid

$$\mathbf{P}_{n} = \langle x_{1}, \dots, x_{n} \mid \begin{array}{c} x_{j} x_{i} x_{k} = x_{j} x_{k} x_{i} \text{ for } i < j \leq k \\ x_{i} x_{k} x_{i} = x_{k} x_{i} x_{i} \text{ for } i \leq j < k \end{array} \rangle$$

- Computations with Knuth and Column presentations.

• The Chinese monoid

$$\mathsf{Ch}_{n} = \left\langle x_{1}, \dots, x_{n} \mid x_{j} x_{k} x_{i} = x_{k} x_{i} x_{j} = x_{k} x_{j} x_{i} \text{ for } i \leqslant j \leqslant k \right\rangle$$

Results of experiments

http://www.pps.univ-paris-diderot.fr/~smimram/rewr

Coherent presentations						
Monoid	Presentation	Gen.	Rel.	Rel. comp.	Hom. gen.	Hom. gen. red.
	Artin	2	1	∞	∞	0
B ₃ +	Kapur-Narendran	3	2	4	4	2
	Brieskorn-Saito	3	2	4	6	2
	Garside	5	4	12	24	8
B ₄ ⁺	Artin	3	3	∞	∞	1
	Kapur-Narendran	7	7	47	356	31
	Brieskorn-Saito	7	7	46	378	35
B ⁺ ₅	Artin	4	6	∞	∞	4
	Kapur-Narendran	15	17	692	48260	?
	Brieskorn-Saito	15	17	598	28384	?
$P_2 = Ch_2$	Knuth	2	2	2	1	1
	Column	3	3	3	1	1
P ₃	Knuth	3	8	11	27	23
	Column	7	12	22	42	30
P ₄	Knuth	4	20	∞	∞	?
	Column	15	31	115	621	212
P ₅	Column	31	66	531	6893	?