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General position of the talk

General problem

How to quantize a “classical spectral curve” ([y , λ] = 0)

P(λ, y) = 0 , P rational in λ, monic polynomial in y

into a linear differential equation ([ℏ∂λ, λ] = ℏ):(
P̂

(
λ, ℏ d

dλ

))
ψ(λ, ℏ) = 0 ?

P̂ rational in λ with same pole structure as P.

Key ingredients

Key ingredient 1: Topological recursion [24].
Key ingredient 2: Integrable systems, Lax pairs:

ℏ ∂

∂λ
Ψ(λ, ℏ, t) = L(λ, ℏ, t)Ψ(λ, ℏ, t) , ℏ ∂

∂t
Ψ(λ, ℏ, t) = At(λ, ℏ, t)Ψ(λ, ℏ, t)
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Strategy of the construction

1 Define proper initial data to apply topological recursion (TR)
⇒ Minor technical restrictions on the classical spectral curve

2 Apply TR to initial data: ⇒ Output: (ωh,n)h,n≥0: “TR
differentials”.

3 Stack the ωh,n into some “perturbative wave functions” (ψi (z))
d
i=1.

⇒ formal WKB series in ℏ.
4 Take kind of “formal Fourier transform” to get “non-perturbative

wave functions” and regroup them into a wave matrix ΨNP(λ; ℏ)
⇒ Formal trans-series in ℏ.

5 Prove that ℏ∂λΨNP(λ, ℏ) = L(λ, ℏ)ΨNP(λ, ℏ) with L rational with
controlled pole structure. ⇔ “Quantum curve”.

6 Obtain auxiliary systems ℏ∂tΨNP(λ, ℏ, t) = At(λ, ℏ, t)ΨNP(λ, ℏ, t)
with At rational with dominated pole structure ⇒ Connection with
isomonodromic deformations.
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Known results and applications

Review on TR and quantum curves by P. Norbury [36].

Elements of the strategy already existing in the literature
[9, 18, 20, 23, 24, 35].

Non-perturbative part is not necessary for genus 0 classical
spectral curves.

Several examples worked out in details [14, 15, 16, 17, 28, 30, 39].

Reverse approach also exists [3, 7, 29, 33]:
[Lax pair: (L(λ, ℏ),A(λ, ℏ)) + Topological type property] ⇒
Ψ reconstructed by TR applied on the associated classical spectral
curve lim

ℏ→0
det(yId − L(λ, ℏ)) = 0.

Applications in enumerative geometry
[2, 5, 6, 10, 11, 12, 19, 37, 38, 40, 25, 26].
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Summary of the general results

Results presented following [32] for sl2 case (hyper-elliptic case) and
[22] for the general gld case. Similar works for sl2 case in [21].

Connection with isomonodromic deformations only in gl2 case (so
far) in [34, 31].

Technical assumptions on the classical spectral curve include

Pole of any degree including infinity.
Poles may be ramification points.
Ramification points are simple and smooth.

Main results: Construction of the matrix wave functions,
quantum curve and some compatible auxiliary systems with
same pole structure as the initial spectral curve.

Application of the theory to all genus 1 cases in gl2(C) recovers the
six Painlevé Lax pairs.
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Classical spectral curve, TR
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Classical spectral curve

Classical spectral curve

Let (Λ1, . . . ,ΛN) be N ≥ 0 distinct points on P1 \ {∞}. Let
Hd(Λ1, . . . ,ΛN ,∞) be the Hurwitz space of covers x : Σ → P1 of degree
d defined as the Riemann surface

Σ :=
{
(λ, y) | P(λ, y) = 0

}
,

where

P(λ, y) =
d∑

l=0

(−1)lyd−lPl(λ) = 0, P0(λ) = 1

with each coefficient (Pl)l∈J1,dK being a rational function with

possible poles at λ ∈ P := {Λi}Ni=1

⋃
{∞}.

A classical spectral curve (Σ, x) is the data of the Riemann surface Σ
and its realization as a Hurwitz cover of P1.
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Classical spectral curve with fixed pole structure

Classical spectral curve with fixed pole structure

For l ∈ J1, dK, let r (l)∞ and
(
r
(l)
Λi

)N

i=1
be some non-negative integers. We

consider the subspace

Hd

((
Λ1, (r

(l)
Λ1
)dl=1

)
, . . . ,

(
ΛN , (r

(l)
ΛN

)dl=1

)
,
(
∞, (r (l)∞ )dl=1

))
⊂ Hd(Λ1, . . . ,ΛN ,∞)

of covers x such that the rational functions (Pl)
d
l=1 are of the form

Pl(λ) :=
∑
P∈P

∑
k∈S

(l)
P

P
(l)
P,k ξP(λ)

−k , for l ∈ J1, dK,

where we have defined

∀ i ∈ J1,NK : S
(l)
Λi

:= J1, r(l)Λi
K and S(l)

∞ := J0, r(l)∞K,

and the local coordinates {ξP(λ)}P∈P around P ∈ P are defined by

∀ i ∈ J1,NK : ξΛi (λ) := (λ− Λi ) and ξ∞(λ) := λ−1



General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs Lax systems and isomonodromic deformations Example Open questions References

Canonical local coordinates and spectral times

Canonical local coordinates

Let P ∈ P1 and p ∈ x−1(P). Canonical coordinates on P1 near P are

ξP(λ) := λ− P if P ̸= ∞ , ξP(λ) :=
1

λ
if P = ∞

Canonical local coordinates near any p ∈ x−1(P) are

ζp(z) = ξP(x(z))
1
dp , dp = orderp(ξP)

Spectral times (KP times)

The 1-form ydx has the following expansion:

ydx =

rp−1∑
k=0

tp,kζ
−k−1
p dζp + analytic at p.

t = (tp,k)p∈x−1(P),k∈J1,rp−1K are called “irregular or spectral times”.

t0 = (tp,0)p∈x−1(P) are called “monodromies”.
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Ramification points and critical values

Ramification points and critical values

We denote by R0 the set of all ramification points of the cover x , and by
R the set of all ramification points that are not poles (i.e. not in
x−1(P)),

R0 :=
{
p ∈ Σ / 1 + orderp dx ̸= ±1

}
,

R :=
{
p ∈ Σ / dx(p) = 0 , x(p) /∈ P

}
= R0 \ x−1(P).

We shall refer to their images x(R) as the critical values of x .
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Admissible spectral curve

Admissible classical spectral curves

We say that a classical spectral curve (Σ, x) is admissible if it satisfies:

The Riemann surface Σ defined by P(λ, y) = 0 is an irreducible
algebraic curve, i.e. P(λ, y) does not factorize.

All ramification points are simple, i.e. dx has only a simple zero at
a ∈ R.

Critical values are distinct: for any (ai , aj) ∈ R×R such that
ai ̸= aj then x(ai ) ̸= x(aj).

Ramification points are smooth: for any a ∈ R, dy(a) ̸= 0 (i.e. the
tangent vector (dx(a), dy(a)) to the immersed curve
{(λ, y) | P(λ, y) = 0} is not vanishing at a).

Generic ramified poles: for any pole p ∈ x−1(P) ramified, the
1-form ydx has a pole of degree rp ≥ 3 at p, and the corresponding
spectral times satisfy tp,rp−2 ̸= 0.
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Remarks on the technical assumptions

Topology of admissible spectral curves relatively to spectral times is
complicated. ⇒ Spectral times are not independent. Tangent space
and deformations hard to define for d ≥ 3.

Tangent space defined for d = 2 ↔ Existence of deformations ∂tp,k .
Split into trivial deformations (Mobius transformations and
gl2 → sl2) and g isomonodromic deformations.

Ingredients to remove some technical assumptions already exist in
the literature: simple ramification points, smooth ramification
points, reducible algebraic curves.

Defining properly the tangent space (in the spirit of [34]) would allow
to make the connection with isomonodromic deformations for d ≥ 3.

Condition that ramified poles are generic allows to exclude
ramified poles in the residues of TR.
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Admissible initial data

Admissible initial data

Given an admissible spectral curve (Σ, x) of genus g , we add

Choice of Torelli marking (Ai ,Bi )
g
i=1).

⇔ Associated “Bergman” kernel (normalized fundamental second
kind differential) B(Ai ,Bi )

g
i=1 .

A generic smooth point o ∈ Σ \ x−1(P) and some choice of
non-intersecting homology chains Co→p for each p ∈ x−1(P)
compatible with the Torelli marking:

∀ p ∈ x−1(P), ∀ i ∈ J1, gK , Ai ∩ Co→p = 0 = Bi ∩ Co→p,

These three ingredients define some “admissible initial data” on which
TR can be applied. Denoted ((Σ, x), (Ai ,Bi )

g
i=1).
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General considerations

Initial version [24] of TR dating back to 2007 is sufficient since
ramification points are assumed simple.

Some generalizations of TR exist to deal with non-simple
ramification points, non-irreducible curves [8, 13].

TR takes admissible initial data as input and provides some
TR differentials (ωh,n)h≥0,n≥0 as output.

These differentials are computed by recursion on s = n + 2h starting
from

ω0,1 := ydx , ω0,2 := B(Ai ,Bi )
g
i=1 ,
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Definition of TR

Definition of Topological Recursion

We have for h ≥ 0, n ≥ 0 with (h, n) /∈ {(0, 0), (0, 1)}:

ωh,n+1(z0, z) :=
∑
a∈R

Res
z→a

1

2

∫ z
σa(z)

ω0,2(z0, ·)

ω0,1(z)− σ∗
aω0,1(z)

W̃(2)
h,n+1(z, σa(z); z),

with

W̃(2)
h,n+1(z, z

′; z) := ωh−1,n+2(z, z
′, z)

+
∑

A ⊔ B = z, s ∈ J0, hK
(s, |A|) /∈ {(0, 0), (h, n)}

ωs,|A|+1(z,A)ωh−s,|B|+1(z
′,B)

and

ωh,0 :=
1

2− 2h

∑
a∈R

Res
z→a

ωh,1(z)Φ(z), ∀ h ≥ 2

and (ω0,0, ω1,0) defined by specific formulas (See [24])
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Loop equations

Some combinations of the TR differentials have interesting
properties ⇒ “Loop equations”

Following [9], for (h, n, l) ∈ N3:

Q
(0)
h,n+1

(λ; z) = Q̂
(0)
h,n+1

(λ; z) = Q̃
(0)
h,n+1

(λ; z) := δh,0δn,0,

Q
(l)
h,n+1

(λ; z) :=
∑

β⊆
l
x−1(λ)

∑
µ∈S(β)

∑
l(µ)⊔
i=1

Ji=z

∑
l(µ)∑
i=1

gi=h+l(µ)−l

l(µ)∏
i=1

ωgi ,|µi |+|Ji |
(µi , Ji )



Q̂
(l)
h,n+1

(z; z) :=
∑

β⊆
l

(
x−1(x(z))\{z}

) ∑
µ∈S(β)

∑
l(µ)⊔
i=1

Ji=z

∑
l(µ)∑
i=1

gi=h+l(µ)−l

l(µ)∏
i=1

ωgi ,|µi |+|Ji |
(µi , Ji )



Q̃
(l)
h,n+1

(λ; z) :=
Q
(l)
h,n+1

(λ; z)

(dλ)l
−

n∑
j=1

dzj

 1

λ − x(zj )

Q̂
(l−1)
h,n

(zj ; z \ {zj})

(dx(zj ))
l−1



Loop equations

For any (h, n, l) ∈ N3 and any z ∈ (Σ \ R)n, the function λ 7→ Q
(l)
h,n+1(λ;z)

(dλ)l

has no poles at critical values.
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Perturbative wave functions
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Generic perturbative wave functions

Perturbative wave functions

((Σ, x), (Ai ,Bi )
g
i=1) admissible initial data, D =

s∑
i=1

αi [pi ] generic divisor

on Σ. Perturbative wave functions associated to D are

ψ(D, ℏ) := exp

( ∑
h,n≥0

ℏ2h−2+n

n!

∫
D
· · ·
∫
D
ωh,n(z)− δh,0δn,2

dx(z1)dx(z2)

(x(z1)− x(z2))2

)

∀ i ∈ J1, sK : ψ0,i (D, ℏ) := ψ(D, ℏ),

∀ i ∈ J1, sK , l ≥ 1 : ψl,i (D, ℏ) :=

[∑
h≥0

∑
n≥0

ℏ2h+n

n!

n︷ ︸︸ ︷∫
D
· · ·
∫
D

Q̂
(l)
h,n+1(pi ; ·)
(dx(pi ))l

]
ψ(D, ℏ).

Remark

Definition as a formal power series in ℏ times exponential terms in
finite negative powers of ℏ (formal WKB series):

e−ℏ−2ω0,0e−ℏ−1
∫
D
ω0,1ψ(D, ℏ) ∈ C[[ℏ]].
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KZ equations

Loop equations translate into Knizhnik–Zamolodchikov (KZ)
equations [9]

Generic KZ equations

For i ∈ J1, sK and l ∈ J0, d − 1K, we have

ℏ
αi

dψl,i (D, ℏ)
dx(pi )

= −ψl+1,i (D, ℏ)− ℏ
∑

j∈J1,sK\{i}
αj
ψl,i (D, ℏ)− ψl,j (D, ℏ)

x(pi )− x(pj )

+
∑
h≥0

∑
n≥0

ℏ2h+n

n!

∫
z1∈D

· · ·
∫
zn∈D

Q̃
(l+1)
h,n+1(x(pi ); z) ψ(D, ℏ)

+

(
1

αi
− αi

)[ ∑
(h,n)∈N2

ℏ2h+n+1

n!

n︷ ︸︸ ︷∫
D
· · ·
∫
D

d

dx(pi )

( Q̂
(l)
h,n+1(pi ; ·)

(dx(pi ))
l

)]
ψ(D, ℏ).

Valid for generic divisors (pi not a pole or a ramification point).

Simplification for two points divisors with (α1, α2) ∈ {−1,+1}2.
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Remarks

KZ equations allow to obtain PDEs for ψ(D, ℏ).
Generic divisors provide PDEs with derivatives ∂

∂x(z) up to order d2

generically.

Quantum curve is expected to be of order d and not d2.

At least two specific choices of divisors allow for order d :
D = [z ]− [∞(α)] or D = [z ]− [σ(z)].

Open question: are there other choices that provide PDEs of order
d?
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Regularization of perturbative wave functions for

D = [z ]− [∞(α)]

Infinity is a pole of the classical spectral curve ⇒ D = [z ]− [∞(α)] is not
a generic divisor ⇒ Some quantities (ω0,1 and ω0,2) require regularization
obtained from lim

p→∞(α)
([z ]− [p])

Definition of regularized wave function

ψreg(D = [z]− [∞(α)], ℏ) := exp

(
ℏ−1

(
V∞(α) (z) +

∫ z

∞(α)
(ydx − dV∞(α) )

))
1

E(z,∞(α))
√

dx(z)dζ∞(α) (∞(α))
exp

( ∑
n≥3δh,0

ℏ2h−2+n

n!

∫ z

∞(α)
· · ·
∫ z

∞(α)
ωh,n

)
ψreg
l (D = [z]− [∞(α)], ℏ) :=( ∑
n≥3δh,0

ℏ2h+n

n!

∫ z

∞(α)
· · ·
∫ z

∞(α)

Q̂
(l)
h,n+1(z; z1, . . . , zn)

dx(z)l

)
ψreg(D = [z]− [∞(α)], ℏ)
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KZ equations for regularized wave functions

KZ equations for regularized wave functions

ℏ
d

dx(z)
ψreg
l (D = [z]− [∞(α)], ℏ) + ψreg

l+1(D = [z]− [∞(α)], ℏ)

=

[∑
h≥0

∑
n≥0

ℏ2h+n

n!

∑
P∈P

∑
k∈S

(l+1)
P

ξP(x(z))
−k Res

λ→P
dξP(λ) ξP(λ)

k−1

∫ z1=z

z1=∞(α)
· · ·
∫ zn=z

zn=∞(α)

Q
(l+1)
h,n+1(λ; z)

(dλ)l+1

]
ψreg(D = [z]− [∞(α)], ℏ)
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Comments and technical issue

RHS of KZ equations uses residues, i.e. integrals.

RHS may be rewritten using generalized integrals, i.e. linear
operators ICp,k

.

ICp,k
is expected to correspond to ∂tp,k . Valid for d = 2 and

examples.

Action of these operators is defined only on a sub-algebra generated
by

∫
C1
· · ·

∫
Cn
ωh,n. ⇔ Algebra of symbols

One need to check that these operators never act on something else.
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PDE form of KZ equations

PDE form of KZ equations

ℏ
d

dx(z)
ψreg
l ([z]−[∞(α)])+ψreg

l+1([z]−[∞(α)]) = ev. L̃l (x(z))
[
ψreg symb([z]− [∞(α)])

]
with

L̃l (x(z)) =
∑
P∈P

∑
k∈S

(l+1)
P

ξP(x(z))
−k L̃P,k,l
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Definition of the operators

Definition of the operators L̃P,k,l

L̃P,k,l := ϵ
l+1
P

[
ξP (x(z))−(l+1)ϵP

l+1∑
ℓ′=0

∑
ν′⊂

ℓ′ J1,dK

∏
j∈ν′

( r
P(j)−1∑
m=0

t
P(j),m

d
P(j)

ξ

− m
d
P(j)

P

)

∑
0≤ℓ′′≤ l+1−ℓ′

2

∑
ν′′∈S(2)(J1,dK\ν′)

l(ν′′)=ℓ′′

ℓ′′∏
i=1

ℏ2R(P)
ν′′
i

d

P
(ν′′

i,+
)
d

P
(ν′′

i,−)

∑
ν ⊆
l+1−ℓ′−2ℓ′′

J1,dK\(ν′∪ν′′)

∏
j∈ν

(
ℏ2

∞∑
m=1

ξ

m
d
P(j)

P

d
P(j)

IC
P(j),k

)]
−k

+ ℏδP,∞
ϵl+1
∞

d
∞(α)

[
ξ∞(x(z))−(l+1)ϵ∞

l+1∑
ℓ′=0

∑
ν′⊂

ℓ′ J1,dK\{α}

∏
j∈ν′

( r
∞(j)−1∑
m=0

t
∞(j),k

d
∞(j)

ξ

− m
d
∞(j)

∞
)

∑
0≤ℓ′′≤ l+1−ℓ′

2

∑
ν′′∈S(2)(J1,dK\(ν′∪{α}))

l(ν′′)=ℓ′′

ℓ′′∏
i=1

ℏ2R(∞)
ν′′
i

d

∞
(ν′′

i,+
)
d

∞
(ν′′

i,−)

∑
ν ⊆
l−ℓ′−2ℓ′′

J1,dK\(ν′∪ν′′∪{α})

∏
j∈ν

(
ℏ2

∞∑
m=1

ξ

m
d
∞(j)

∞
d
∞(j)

IC
∞(j),m

)]
−k
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Monodromies

Perturbative wave functions have bad monodromies on B-cycles.
Monodromies are directly connected to a shift of the filling fractions
ϵi =

∮
Ai
ω0,1 by ℏ.

Monodromies issues only arise for genus g > 0 classical spectral
curves.

Solution is to “sum over filling fractions” ⇒ Formal Fourier
transform ⇒ non-perturbative corrections.
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Non-perturbative wave functions
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Non perturbative wave functions

Integrals of TR differentials

For any divisor D, let us define G
(0)
(i1,...,ik )

(D) = δk,0 and for r ≥ 1:

G
(r)
(i1,i2,...,ik )

(D) =
r∑
ℓ=1

1

ℓ!

∑
(h1,n1),...,(hℓ,nℓ)

δ

(
r = k +

ℓ∑
j=1

2hj − 2 + nj

)
(
IBi1

. . . IBik

ℓ∏
j=1

(
1

nj !

nj︷ ︸︸ ︷∫
D

· · ·
∫
D

ωhj ,nj

))
stable

G
(1)
∅ (D) =

∫
D
ω1,1 +

1

6

∫
D

∫
D

∫
D
ω0,3 , G

(1)
(i1)

(D) =

∫
Bi1

ω1,1 +
1

2

∫
D

∫
D

∫
Bi1

ω0,3

G
(2)
(i1,i2)

(D) =
1

2

∫
Bi1

ω1,1

∫
Bi2

ω1,1 +
1

2

∫
D

∫
D

∫
Bi2

∫
Bi1

ω0,4

+
1

2

∫
Bi1

ω1,1

∫
D

∫
D

∫
Bi2

ω0,3 +
1

2

∫
Bi2

ω1,1

∫
D

∫
D

∫
Bi1

ω0,3

+
1

8

∫
D

∫
D

∫
Bi1

ω0,3

∫
D

∫
D

∫
Bi2

ω0,3



General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs Lax systems and isomonodromic deformations Example Open questions References

Non perturbative wave functions

Non perturbative wave functions

ψNP(D; ℏ,ρ) := eℏ
−2ω0,0+ω1,0eℏ

−1 ∫
D ω0,1

1

E(D)

∞∑
r=0

ℏrG (r)(D;ρ)

where E prime form on Σ and

G (r)(D;ρ) :=
3r∑
k=0

∑
(i1,...,ik )∈J1,gKk

Θ(i1,...,ik )(v, τ)G
(r)
(i1,...,ik )

(D)

with

vj :=
ρj + ϕj

ℏ
+ µ

(α)
j (z), ϕj :=

1

2πi

∮
Bj

ω0,1, µ
(α)
j (z) :=

1

2πi

∫
D

∮
Bj

ω0,2.

Moreover

ψ∞(α)

l,NP (z, ℏ,ρ) :=
∑

β⊆
l
(x−1(x(z))\{z})

1

l!
ev.

 l∏
j=1

ICβj ,1

 ψsymbol
NP ([z]− [∞(α)]; ℏ,ρ)

and d × d wave functions matrix

Ψ̂NP(λ, ℏ,ρ) :=
[
ψ∞(α)

l−1,NP(z
(α)(λ), ℏ,ρ)

]
1≤l,α≤d

,
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Trans-series in ℏ

Non-perturbative quantities are formal trans-series in ℏ of the form

∞∑
r=0

∑
n∈Zg

ℏre

1
ℏ

g∑
j=1

njϕj

Fr ,n,

Equalities should only be considered coefficients by coefficients in
the trans-monomials.

Non-perturbative wave functions satisfy same KZ equations as the
perturbative wave functions.

Non-perturbative wave functions have good monodromies. ⇒
rational functions of λ.
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Lax pairs
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Lax systems

Lax systems

We have the Lax systems

ℏ
dΨ̂NP(λ, ℏ)

dλ
= L̂(λ, ℏ)Ψ̂NP(λ, ℏ)

ℏ−1ev.LP,k,l Ψ̂
symbol
NP (λ, ℏ) = ÂP,k,l (λ, ℏ)Ψ̂NP(λ, ℏ)

with

L̂(λ, ℏ) =

[
− P̂(λ) + ℏ

∑
P∈P

∑
k∈N

ξ−k
P (λ)∆̂P,k (λ, ℏ)

]
[
∆̂P,k (λ, ℏ)

]
2,j

=
[
ÂP,k,l (λ, ℏ)

]
1,j
, ∀ j ∈ J1, dK,

and

P̂(λ) :=


−P1(λ) 1 0 . . . 0
−P2(λ) 0 1 . . . 0

...
...

...
. . .

...
−Pd−1(λ) 0 0 . . . 1
−Pd (λ) 0 0 . . . 0
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Gauge transformation to recover companion-like matrix
when ℏ → 0

Define

G(λ) :=



1 0 0 . . . 0 0
P1(λ) −1 0 . . . 0 0
P2(λ) −P1(λ) 1 . . . 0 0

...
...

...
. . .

...
...

Pd−2(λ) −Pd−3(λ) Pd−4(λ) . . . (−1)d−2 0
Pd−1(λ) −Pd−2(λ) Pd−3(λ) . . . (−1)d−2P1(λ) (−1)d−1


and

Ψ̃(λ, ℏ) := (G(λ))−1 Ψ̂NP(λ, ℏ)

ℏ
dΨ̃(λ, ℏ)

dλ
= L̃(λ, ℏ)Ψ̃(λ, ℏ)

ℏ−1ev.LP,k,l Ψ̃(λ, ℏ) = ÃP,k,l (λ, ℏ)Ψ̃(λ)

with
L̃(λ, ℏ) =

[
P̃(λ) + ℏ

∑
P∈P

∑
k∈N

ξ−k
P (λ)∆̃P,k (λ, ℏ)

]
P̃(λ) companion-like matrix associated to the classical spectral
curve.
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Main result: pole structure of the Lax system

Pole structure of the Lax system

Matrices ÃP,k,l(λ, ℏ) are rational functions of λ with no pole at
critical values u ∈ x (R).

Matrices L̃(λ, ℏ) and L̂(λ, ℏ) are rational functions of λ with possible

poles only at λ ∈ P and at zeros of the Wronskian det Ψ̂NP(λ, ℏ) (i.e.
apparent singularities).

Long and technical proof by induction relatively to the order in the
trans-series.

Proof uses some of admissibility conditions (distinct critical values,
smooth and simple ramification points).

Proof should adapt without the admissibility conditions but involving
more technical computations.
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Quantum curve

Quantum curve

∀ j ∈ J1, dK, ψ∞(α)

0,NP(z
(j)(λ), ℏ) is solution to a degree d ODE of the form

∀ j ∈ J1, dK :
d∑

k=0

bd−k(λ, ℏ)
(
ℏ ∂

∂λ

)k

ψ∞(α)

0,NP (z (j)(λ), ℏ) = 0,

Coefficients (bl(λ, ℏ))l∈J0,dK with b0(λ, ℏ) = 1 are rational functions of
λ with poles only at λ ∈ P and zeros of the Wronskian.

⇔ Matrix form: Ψ(λ, ℏ) :=
[(

ℏ ∂
∂λ

)i−1

ψ∞(α)

0,NP(z
(j)(λ), ℏ)

]
1≤i,j≤d

satisfies:

ℏ
∂

∂λ
Ψ(λ, ℏ) =


0 1 . . . 0
...

. . .
. . .

. . .

0 0 1
−bd (λ, ℏ) −bd−1(λ, ℏ) . . . −b1(λ, ℏ)

Ψ(λ, ℏ)

:= L(λ, ℏ)Ψ(λ, ℏ)
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Gauge transformation to remove apparent singularities

Apparent singularities ⇔ zeros of Wronskian:

W (λ, ℏ) := detΨ(λ, ℏ) = κ

G∏
i=1

(λ− qi (ℏ))

N∏
i=1

(λ− Λi )
GΛi

exp

(
ℏ−1

∫ λ

0
P1(λ)dλ

)
,

Explicit gauge transformation J(λ, ℏ) to remove apparent
singularities

Ψ̌(λ, ℏ) :=



1 . . . 0 0

. . .
. . .

...
0 . . . 1 0

Qd (λ,ℏ)
G∏
i=1

(λ−qi (ℏ))
. . .

Q2(λ,ℏ)
G∏
i=1

(λ−qi (ℏ))

Q1(λ,ℏ)
G∏
i=1

(λ−qi (ℏ))

Ψ(λ, ℏ)

Qj : polynomial of degree G − 1 at most defined by interpolation.

Gauge transformation does not introduce new poles because

det J(λ, ℏ) =

(
N∏

k=1

(λ− Λk )
GΛk

)(
G∏
i=1

(λ− qi (ℏ))

)−1
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Remarks

4 equivalent gauges:

Gauge Ψ̂(λ, ℏ): Natural gauge from KZ equations and provides
compatible auxiliary systems. But leading order in ℏ of L̂(λ, ℏ) is not
companion-like ⇒ Classical spectral curve is not easily recovered.
Contains apparent singularities.

Gauge Ψ̃(λ, ℏ): Same properties as the previous gauge (ℏ0 gauge
transformation) except leading order in ℏ is companion-like and
recovers the classical spectral curve.

Gauge Ψ(λ, ℏ): L(λ, ℏ) is companion-like ⇒ Quantum curve is
directly read in the last line of L(λ, ℏ). Classical spectral curve
directly obtained as ℏ → 0 limit of L(λ, ℏ). But contains apparent
singularities. Natural framework for Darboux coordinates and
isomonodromic deformations.

Gauge Ψ̌: Ľ(λ, ℏ) has no apparent singularity. But no longer
companion like so less adapted to read the classical and quantum
curves.
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Lax systems and isomonodromic deformations
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Meromorphic connections in gld(C)

Start from a differential system ℏ∂λΨ̃ = L̃(λ)Ψ̃ with L̃(λ) rational in
λ with poles in P = {∞,Λ1, . . . ,ΛN}
Classical spectral curve is defined by lim

ℏ→0
det(yId − L̃(λ)) = 0

Choose orders of poles (r∞, r1, . . . , rN) to get same type of classical
spectral curve and define

FR,r :=

{
L̂(λ) =

r∞−1∑
k=1

L̂[∞,k]λk−1 +
n∑

s=1

rs−1∑
k=0

L̂[Xs ,k]

(λ− Xs)k+1

}
/GLd(C)

FR,r has a Poisson structure (loop algebra [27, 1]). Representative

normalized at infinity L̃ (L̃[∞,r∞−1] diagonal and
[
L̃[∞,r∞−2]

]
1,j

= 1 for

j ≥ 2).

Irregular times t = (tp,k)p∈P,1≤k≤rp−1 and monodromies t0 = (tp,0)p∈P

are given as singular part of the local diagonalization of L̃ at each pole.

Symplectic manifold of dimension 2g (g genus of the spectral curve):

M̂R,r,t,t0 :=
{
L̂(λ) ∈ F̂R,r / L̂(λ) has irregular times t and monodromies t0

}
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Isomonodromic deformations

Existence of g isomonodromic deformations

ℏ∂τi Ψ̃ = Aτi (λ)Ψ̃

Aτi rational in λ with dominated pole structure [4].

Existence of a Hamiltonian system and 2g Darboux coordinates
(xi , yi )1≤i≤g parametrizing the Lax pairs.

ℏ∂τi xj =
∂Hi

∂yj
, ℏ∂τi yj = −∂Hi

∂xj

Explicit expression of the Lax pairs, Hamiltonians in gl2 in terms of
the apparent singularities qi and dual coordinates pi in [34, 31].

Lax matrices are the same as the one produced by the quantization
procedure in gl2.

Monodromies and Stokes matrices are independent of the
isomonodromic times. Help for analytic understanding?
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Determinantal formulas

For any differential system ℏ∂λΨ = L(λ, ℏ)Ψ with L rational in λ and
formal Taylor series in ℏ, one may associate determinantal formulas.

Definition

Define (Σ, x(z)) the classical spectral curve: lim
ℏ→0

det(yId − L(λ)) = 0.

Let Ei = diag(0i−1, 1, 0d−1−i ) for i ∈ J1, dK and

M(z ;Ei ) := Ψ(z)EiΨ(z)−1

Set of correlators Wn (“determinantal formulas”) for n ≥ 1:

W1(z1 ⊗ Ei1) = Tr [L(x(z1))M(z1;Ei1)] dx(z1)
Wn(z1 ⊗ Ei1 , . . . , zn ⊗ Ein)

= (−1)n

n

∑
σ∈Sn

Tr
[
M(zσ(1);Eiσ(1)

)...M(zσ(n);Eiσ(n)
)
]

n∏
i=1

(x(zσ(i))−x(zσ(i+1)))

n∏
i=1

dx(zi )
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Properties of determinantal formulas

Correlators Wn satisfy loop equations.

Correlators (Wn)n≥1 can be defined for any linear differential
systems (no need for Lax pairs)

If correlators Wn satisfy “Topological Type Property” then they are
reconstructed by (ωh,n)h,n≥0 TR differentials:

Wn(λ1, . . . , λn; ℏ) =
∞∑
k=0

ωk,n(λ1, . . . , λn)ℏn−2+2k

Topological Type Property requires genus 0 and some additional
pole structure. Can it be generalized to higher genus? Ψ (and Wn)
are expected to be transseries in ℏ, how is the reconstruction
formula adapted?
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Several types of solutions

Hamiltonian system, Lax pairs, spectral curves are independent of
the type of solution Ψ (formal WKB, formal trans-series, etc.)

Formal WKB solutions of the Lax system ⇔ 0-instanton solutions of
the Hamiltonian system (i.e. formal power series in ℏ) ⇔ Classical
spectral curve genus drops to 0 ⇔ Degenerate classical spectral
curve: ramification points coincide by pairs

Auxiliary matrices are crucial to prove “topological type property”
(no pole at double zeros) in the formal WKB solutions case.

General solutions are expected to be ℏ-transseries (k-instanton
solutions, etc.). How auxiliary matrices could help in this case?
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Example
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Classical spectral curve

Classical spectral curve

We take d = 2, N = 0, r
(1)
∞ = 2 and r

(2)
∞ = 4. Two points above infinity

denoted by ∞(1) and ∞(2) non-ramified.

y2 − P1(λ)y + P2(λ) = 0,

with

P1(λ) = P
(1)
∞,2λ

2 + P
(1)
∞,1λ+ P

(1)
∞,0

P2(λ) = P
(2)
∞,4λ

4 + P
(2)
∞,3λ

3 + P
(2)
∞,2λ

2 + P
(2)
∞,1λ+ P

(2)
∞,0

Six spectral times (ti,j)1≤i≤2,0≤j≤3 are defined by ∀ i ∈ {1, 2}:

y(z) = −ti,3x(z)
2−ti,2x(z)−ti,1−ti,0x(z)

−1+O
(
x(z)−2

)
, as z → ∞(i)

Associated isomonodromic system is the Painlevé 2 Lax pair.
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Connection with spectral times

Relations between spectral times and coefficients of the classical spectral
curve:

P
(1)
∞,2 = −t1,3 − t2,3

P
(1)
∞,1 = −t1,2 − t2,2

P
(1)
∞,0 = −t1,1 − t2,1

P
(2)
∞,4 = t1,3t2,3

P
(2)
∞,3 = t1,2t2,3 + t1,3t2,2

P
(2)
∞,2 = t1,2t2,2 + t1,3t2,1 + t1,1t2,3

P
(2)
∞,1 = t1,3t2,0 + t1,0t2,3 + t1,2t2,1 + t1,1t2,2
0 = −t1,0 − t2,0

Only P
(2)
∞,0 remains undetermined (genus 1).
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KZ equations

Using the general theory, we get:

KZ equations

 ℏ ∂ψ
∞(1)

0,NP (z,ℏ)
∂x(z)

+ ψ∞(1)

1,NP (z , ℏ) = P1(x(z))ψ
∞(1)

0,NP (z , ℏ),

ℏ ∂ψ
∞(1)

1,NP (z,ℏ)
∂x(z)

= P2(x(z))ψ
∞(1)

0,NP (z , ℏ) + ℏ ev.LKZ(x(z))
[
ψ∞(1), symbol

0,NP (z , ℏ)
]

where

LKZ(λ) := ℏt1,3IC∞(2),1
+ ℏt2,3IC∞(1),1

− t2,3λ− t2,2
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Lax pair from KZ equations

Define Ψ(λ, ℏ) =

(
ψ∞(α)

0,NP (z(1)(λ), ℏ) ψ∞(α)

0,NP (z(2)(λ), ℏ)
ℏ∂λψ∞(α)

0,NP (z(1)(λ), ℏ) ℏ∂λψ∞(α)

0,NP (z(2)(λ), ℏ)

)
KZ equations are equivalent to

ℏ∂λΨ(λ, ℏ) =
(

0 1

−P2(λ) + ℏP′
1(λ) + H − p

λ−q
+ ℏαλ P1(λ) +

ℏ
λ−q

)
Ψ(λ, ℏ)

ev.LKZ (λ)[Ψ
symbol(λ, ℏ)] =

(
−αλ− H

ℏ + p
ℏ(λ−q)

− 1
λ−q

[AKZ ]2,1 (λ, ℏ) [AKZ ]2,2 (λ, ℏ)

)
Ψ(λ, ℏ)

for α = t1,3 + 2t2,3 and some unknown H.
Equivalently defining

L := LKZ(λ) + t2,3λ+ t2,2 = ℏt1,3I∞(2),1 + ℏt2,3I∞(1),1

we have

ev.L[Ψsymbol(λ, ℏ)] =

(
P

(1)
∞,2λ+ t2,2 − H

ℏ + p
ℏ(λ−q)

− 1
λ−q

A2,1(λ, ℏ) A2,2(λ, ℏ)

)
Ψ(λ, ℏ)

:= A(λ, ℏ)Ψ(λ, ℏ)
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Evolution equations

Compatibility equations L[L(λ, ℏ)] = ℏ∂λA(λ, ℏ) + [A(λ, ℏ), L(λ, ℏ)]:

L[P(2)
∞,4] = L[P(2)

∞,3] = 0

L[P(2)
∞,2] = −2ℏP(2)

∞,4 + ℏ
[
P

(1)
∞,2

]2
L[P(2)

∞,1] = −ℏP(2)
∞,3 + ℏP(1)

∞,1P
(1)
∞,2

L[P(2)
∞,0]− L[H] = 2ℏP(2)

∞,4q
2 + ℏP(2)

∞,3q − P
(1)
∞,2p + ℏP(1)

∞,0P
(1)
∞,2

H =
p2

ℏ2
− P1(q)

p

ℏ
+ P2(q)− ℏP ′

1(q) + ℏ(P(1)
∞,2 − t2,3)q

L[q] = P1(q)− 2
p

ℏ
L[p] = −P ′

1(q)p + ℏP ′
2(q) + ℏ2t2,3

Equivalent to

L[t1,3] = L[t2,3] = L[t1,2] = L[t1,0] = L[t2,0] = 0 , L[t1,1] = ℏt2,3 , L[t2,1] = ℏt1,3

Equivalent to L = ℏt2,3∂t1,1 + ℏt1,3∂t2,1
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Hamiltonian evolution

Hamiltonian evolution

“Time” (L)-evolution is Hamiltonian ⇔ (p, q) are Darboux coordinates

L[q] = −ℏ
∂H0

∂p
, L[p] = ℏ

∂H0

∂q

for Hamiltonian H0(p, q, ℏ):

H0(p, q, ℏ) =
p2

ℏ2
− P1(q)

p

ℏ
+ P2(q)− ℏP ′

1(q) + ℏq(2P(1)
∞,2 − t2,3)

giving H = H0(p, q, ℏ) + ℏ(t1,3 + t2,3)q.
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Connection with the Painlevé 2 equation

q satisfies the evolution equation:

L2[q] = 2(t1,3 − t2,3)
2q3 + 3(t1,3 − t2,3)(t1,2 − t2,2)q

2

+
(
(t1,2 − t2,2)

2 + 2(t1,3 − t2,3)(t1,1 − t2,1)
)
q

+(t1,2 − t2,2)(t1,1 − t2,1) + (2t1,0 − ℏ)(t1,3 − t2,3)

Change of variables (t1,1, t2,1) ↔ (τ, τ̃) and affine rescaling:

τ =
1

t1,3 − t2,3
(t2,1 − t1,1) , τ̃ =

1

t1,3 − t2,3
(t1,3t1,1 − t2,3t2,1)

t =
(
−2(t1,3 − t2,3)

2
) 1

3

(
τ +

(t1,2 − t2,2)
2

4(t1,3 − t2,3)2

)
q̃ =

(
−(t1,3 − t2,3)

2

) 1
3
(
q +

t1,2 − t2,2
2(t1,3 − t2,3)

)
Then q̃(t, ℏ) satisfies the Painlevé 2 equation

ℏ2∂2t2 q̃ = 2q̃3 + tq̃ −
(
t1,0 −

ℏ
2

)
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Gauge without apparent singularities

Gauge transformation to remove apparent singularity:

Ψ̌(λ, ℏ) =
(

1 0
− p

ℏ(λ−q)
1

λ−q

)
Ψ(λ, ℏ) := J(λ, ℏ)Ψ(λ, ℏ)

Provides another Lax pair (Jimbo-Miwa type) without apparent
singularity:

Ľ(λ, ℏ) =

( p
ℏ λ− q

−((λ+ q)(t1,3 + t2,3) + t2,2 + t1,2)
p
ℏ + Q3(λ, ℏ) − p

ℏ + P1(λ)

)
Ǎ(λ, ℏ) =

(
−(t1,3 + t2,3)λ− H

ℏ + t2,2 −1

(t1,3 + t2,3)
p
ℏ + Q2(λ, ℏ) (t1,3 + t2,3)q + t1,2 + 2t2,2 − H

ℏ

)
where

Q3(λ, ℏ) = −P
(2)
∞,4λ

3 − (P
(2)
∞,4q + P

(2)
∞,3)λ

2 − (P
(2)
∞,4q

2 + P
(2)
∞,3q + P

(2)
∞,2)λ

+P
(2)
∞,4q

3 + P
(2)
∞,3q

2 + P
(2)
∞,2q + P

(2)
∞,1 + ℏt1,3)

Q2(λ, ℏ) = P
(2)
∞,4λ

2 + 2P
(2)
∞,4qλ+ P

(2)
∞,3λ+ (3P

(2)
∞,4q

2 + 2P
(2)
∞,3q + P

(2)
∞,2)
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Connection with isomonodromic deformations

Classical spectral curve corresponds to isomonodromic deformations
of

L̃(λ) = L[∞,3]λ2 + L[∞,2]λ1 + L[∞,1]

Results of [34] immediately recovers the previous Lax matrices and
the Hamiltonian system.

Hamiltonian system is proved invariant under the choice of trivial
times. A canonical choice is equivalent to ti,2 = −ti,1 for all
0 ≤ i ≤ 3 (gl2 → sl2) and t3,1 = 1, t2,1 = 0 (Mobius
transformations). Equivalent to the invariance of TR under rational
reparametrization and y → y + f (λ).

Results of [34] provide explicit formulas for the quantum curve, Lax
pairs and Hamiltonians in terms of the apparent singularities
(qi )1≤i≤g and dual coordinates (pi )1≤i≤g . Results only available for
gl2 connections so far.
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Open questions
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Open questions

Can we give some analytic meaning to the formal WKB solutions or
formal ℏ-transseries? Compute Stokes matrices? Write a
Riemann-Hilbert-Problem for Ψ?

What about the underlying Hamiltonian structure coming from
isomonodromic deformations? How is it helpful?

How can the auxiliary matrices be useful to describe analytic
solutions of the quantum curve?

Are determinantal formulas (reverse approach) easier to use than the
wave matrix?

Can we obtain explicit expressions for the isomonodromic
deformations for gld?
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