General considerations
 Classical spectral curve, TR
 Perturbative wave functions
 Non-perturbative wave functions
 Lax pairs
 Lax systems and isomonodrom

Quantization of classical spectral curves and isomonodromic deformations

Marchal Olivier

Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France Institut Universitaire de France

April 12th 2023

Non-perturbative wave functions Lax pairs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Classical spectral curve, TR

- Classical spectral curve and technical assumptions
- Topological recursion
- Perturbative wave functions
 - Definition
 - KZ equations
 - Regularization for divisors at infinity
 - PDE form of KZ equations and operators
- 3 Non-perturbative wave functions
- 4 Lax pairs
 - Compatible systems arising from KZ equations
 - Gauge transformations and quantum curve
- 5 Lax systems and isomonodromic deformations
 - Meromorphic connections and isomonodromic deformations
 - Determinantal formulas
- 6 Example
 - Classical spectral curve and coordinates
 - KZ equations and Lax pairs
 - Time evolution and Painlevé 2
 - Open questions

General position of the talk

General problem

How to quantize a "classical spectral curve" $([y, \lambda] = 0)$

 $P(\lambda, y) = 0$, P rational in λ , monic polynomial in y

into a linear differential equation $([\hbar \partial_{\lambda}, \lambda] = \hbar)$:

$$\left(\hat{P}\left(\lambda,\hbar\frac{d}{d\lambda}\right)\right)\psi(\lambda,\hbar)=0?$$

 \hat{P} rational in λ with same pole structure as P.

Key ingredients

Key ingredient 1: Topological recursion [24]. Key ingredient 2: Integrable systems, Lax pairs:

$$\hbar \frac{\partial}{\partial \lambda} \Psi(\lambda, \hbar, \mathbf{t}) = L(\lambda, \hbar, \mathbf{t}) \Psi(\lambda, \hbar, \mathbf{t}) , \ \hbar \frac{\partial}{\partial t} \Psi(\lambda, \hbar, \mathbf{t}) = A_t(\lambda, \hbar, \mathbf{t}) \Psi(\lambda, \hbar, \mathbf{t})$$

Strategy of the construction

- Define proper initial data to apply topological recursion (TR)
 ⇒ Minor technical restrictions on the classical spectral curve
- Output: (ω_{h,n})_{h,n≥0}: "TR differentials".
- Stack the $\omega_{h,n}$ into some "perturbative wave functions" $(\psi_i(z))_{i=1}^d$. \Rightarrow formal WKB series in \hbar .
- Take kind of "formal Fourier transform" to get "non-perturbative wave functions" and regroup them into a wave matrix Ψ^{NP}(λ; ħ) ⇒ Formal trans-series in ħ.
- Prove that ħ∂_λΨ^{NP}(λ,ħ) = L(λ,ħ)Ψ^{NP}(λ,ħ) with L rational with controlled pole structure. ⇔ "Quantum curve".
- Obtain auxiliary systems ħ∂_tΨ^{NP}(λ, ħ, t) = A_t(λ, ħ, t)Ψ^{NP}(λ, ħ, t) with A_t rational with dominated pole structure ⇒ Connection with isomonodromic deformations.

Known results and applications

- Review on TR and quantum curves by P. Norbury [36].
- Elements of the strategy already existing in the literature [9, 18, 20, 23, 24, 35].
- Non-perturbative part is not necessary for genus 0 classical spectral curves.
- Several examples worked out in details [14, 15, 16, 17, 28, 30, 39].
- Reverse approach also exists [3, 7, 29, 33]: [Lax pair: $(L(\lambda, \hbar), A(\lambda, \hbar))$ + Topological type property] \Rightarrow Ψ reconstructed by TR applied on the associated classical spectral curve $\lim_{\hbar \to 0} \det(yI_d - L(\lambda, \hbar)) = 0.$

• Applications in enumerative geometry

[2, 5, 6, 10, 11, 12, 19, 37, 38, 40, 25, 26].

Summary of the general results

- Results presented following [32] for \$l₂ case (hyper-elliptic case) and [22] for the general \$l_d\$ case. Similar works for \$l_2\$ case in [21].
- Connection with isomonodromic deformations only in gl₂ case (so far) in [34, 31].
- Technical assumptions on the classical spectral curve include
 - Pole of any degree including infinity.
 - Poles may be ramification points.
 - Ramification points are simple and smooth.

General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs

- <u>Main results</u>: Construction of the matrix wave functions, quantum curve and some compatible auxiliary systems with same pole structure as the initial spectral curve.
- Application of the theory to all genus 1 cases in gl₂(C) recovers the six Painlevé Lax pairs.

Lax systems and isomonodro

Classical spectral curve, TR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Classical spectral curve

Classical spectral curve

Let $(\Lambda_1, \ldots, \Lambda_N)$ be $N \ge 0$ distinct points on $\mathbb{P}^1 \setminus \{\infty\}$. Let $\mathcal{H}_d(\Lambda_1, \ldots, \Lambda_N, \infty)$ be the Hurwitz space of covers $x \colon \Sigma \to \mathbb{P}^1$ of degree d defined as the Riemann surface

$$\Sigma \coloneqq \overline{\{(\lambda, y) \mid P(\lambda, y) = 0\}},$$

where

$$P(\lambda, y) = \sum_{l=0}^{d} (-1)^{l} y^{d-l} P_{l}(\lambda) = 0, \ P_{0}(\lambda) = 1$$

with each coefficient $(P_l)_{l \in [\![1,d]\!]}$ being a rational function with possible poles at $\lambda \in \mathcal{P} := \{\Lambda_i\}_{i=1}^N \bigcup \{\infty\}$.

A classical spectral curve (Σ, x) is the data of the Riemann surface Σ and its realization as a Hurwitz cover of \mathbb{P}^1 .

Classical spectral curve with fixed pole structure

rations Classical spectral curve. TR Perturbative wave functions Non-perturbative wave functions Lax pairs

Classical spectral curve with fixed pole structure

For $l \in [\![1,d]\!]$, let $r_{\infty}^{(l)}$ and $(r_{\Lambda_i}^{(l)})_{i=1}^N$ be some non-negative integers. We consider the subspace

$$\mathcal{H}_d\left(\left(\Lambda_1,(r_{\Lambda_1}^{(l)})_{l=1}^d\right),\ldots,\left(\Lambda_N,(r_{\Lambda_N}^{(l)})_{l=1}^d\right),\left(\infty,(r_\infty^{(l)})_{l=1}^d\right)\right)\subset\mathcal{H}_d(\Lambda_1,\ldots,\Lambda_N,\infty)$$

of covers x such that the rational functions $(P_l)_{l=1}^d$ are of the form

$$P_{I}(\lambda) \coloneqq \sum_{P \in \mathcal{P}} \sum_{k \in \mathcal{S}_{P}^{(l)}} P_{P,k}^{(l)} \xi_{P}(\lambda)^{-k}, ext{ for } I \in \llbracket 1, d
bracket.$$

where we have defined

$$\forall i \in \llbracket 1, N \rrbracket : \mathbf{S}_{\mathbf{A}_i}^{(l)} \coloneqq \llbracket \mathbf{1}, \mathbf{r}_{\mathbf{A}_i}^{(l)} \rrbracket \quad \text{and} \quad \mathbf{S}_{\infty}^{(l)} \coloneqq \llbracket \mathbf{0}, \mathbf{r}_{\infty}^{(l)} \rrbracket,$$

and the local coordinates $\{\xi_P(\lambda)\}_{P\in\mathcal{P}}$ around $P\in\mathcal{P}$ are defined by

 $\forall i \in \llbracket 1, N \rrbracket : \xi_{\Lambda_i}(\lambda) \coloneqq (\lambda - \Lambda_i) \quad \text{and} \quad \xi_{\infty}(\lambda) \coloneqq \lambda^{-1}$

ms and isomonodro

Canonical local coordinates and spectral times

considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs

Canonical local coordinates

Let $P\in \mathbb{P}^1$ and $p\in x^{-1}(P).$ Canonical coordinates on \mathbb{P}^1 near P are

$$\xi_P(\lambda) \coloneqq \lambda - P \quad ext{if } P
eq \infty \;,\; \xi_P(\lambda) \coloneqq rac{1}{\lambda} \quad ext{if } P = \infty$$

Canonical local coordinates near any $p \in x^{-1}(P)$ are

$$\zeta_p(z) = \xi_P(x(z))^{rac{1}{d_p}}, \ d_p = \operatorname{order}_p(\xi_P)$$

Spectral times (KP times)

The 1-form ydx has the following expansion:

$$ydx = \sum_{k=0}^{r_{
ho}-1} t_{
ho,k} \zeta_{
ho}^{-k-1} d\zeta_{
ho} + ext{analytic at }
ho.$$

 $\begin{aligned} \mathbf{t} &= (t_{p,k})_{p \in x^{-1}(\mathcal{P}), k \in [\![1, r_p - 1]\!]} \text{ are called "irregular or spectral times".} \\ \mathbf{t}_{\mathbf{0}} &= (t_{p,0})_{p \in x^{-1}(\mathcal{P})} \text{ are called "monodromies".} \end{aligned}$

stems and isomonodro

Ramification points and critical values

General considerations Classical spectral curve. TR Perturbative wave functions Non-perturbative wave functions Lax pairs

Ramification points and critical values

We denote by \mathcal{R}_0 the set of all ramification points of the cover x, and by \mathcal{R} the set of all ramification points that are not poles (i.e. not in $x^{-1}(\mathcal{P})$),

Lax systems and isomonodro

$$\mathcal{R}_0 \coloneqq \{ p \in \Sigma \, / \, 1 + \text{order}_p \, dx \neq \pm 1 \},$$

$$\mathcal{R} \coloneqq \left\{ p \in \Sigma \, / \, dx(p) = 0 \ , \ x(p) \notin \mathcal{P} \right\} = \mathcal{R}_0 \setminus x^{-1}(\mathcal{P}).$$

We shall refer to their images $x(\mathcal{R})$ as the *critical values* of x.

Admissible spectral curve

Admissible classical spectral curves

We say that a classical spectral curve (Σ, x) is *admissible* if it satisfies:

- The Riemann surface Σ defined by $P(\lambda, y) = 0$ is an irreducible algebraic curve, i.e. $P(\lambda, y)$ does not factorize.
- All ramification points are simple, i.e. dx has only a simple zero at a ∈ R.
- Critical values are distinct: for any $(a_i, a_j) \in \mathcal{R} \times \mathcal{R}$ such that $a_i \neq a_j$ then $x(a_i) \neq x(a_j)$.
- Ramification points are smooth: for any a ∈ R, dy(a) ≠ 0 (i.e. the tangent vector (dx(a), dy(a)) to the immersed curve {(λ, y) | P(λ, y) = 0} is not vanishing at a).
- Generic ramified poles: for any pole $p \in x^{-1}(\mathcal{P})$ ramified, the 1-form ydx has a pole of degree $r_p \geq 3$ at p, and the corresponding spectral times satisfy $t_{p,r_p-2} \neq 0$.

Remarks on the technical assumptions

General considerations Classical spectral curve. TR Perturbative wave functions Non-perturbative wave functions Lax pairs

 Topology of admissible spectral curves relatively to spectral times is complicated. ⇒ Spectral times are not independent. Tangent space and deformations hard to define for d ≥ 3.

stems and isomonodro

- Tangent space defined for $d = 2 \leftrightarrow \text{Existence of deformations } \partial_{t_{p,k}}$. Split into trivial deformations (Mobius transformations and $\mathfrak{gl}_2 \to \mathfrak{sl}_2$) and g isomonodromic deformations.
- Ingredients to remove some technical assumptions already exist in the literature: simple ramification points, smooth ramification points, reducible algebraic curves.
- Defining properly the tangent space (in the spirit of [34]) would allow to make the connection with isomonodromic deformations for d ≥ 3.
- Condition that ramified poles are generic allows to exclude ramified poles in the residues of TR.

Admissible initial data

Admissible initial data

Given an admissible spectral curve (Σ, x) of genus g, we add

- Choice of Torelli marking (A_i, B_i)^g_{i=1}).
 ⇔ Associated "Bergman" kernel (normalized fundamental second kind differential) B<sup>(A_i,B_i)^g_{i=1}.
 </sup>
- A generic smooth point o ∈ Σ \ x⁻¹(P) and some choice of non-intersecting homology chains C_{o→p} for each p ∈ x⁻¹(P) compatible with the Torelli marking:

 $\forall p \in x^{-1}(\mathcal{P}), \ \forall i \in \llbracket 1, g \rrbracket, \qquad \mathcal{A}_i \cap \mathcal{C}_{o \to p} = 0 = \mathcal{B}_i \cap \mathcal{C}_{o \to p},$

These three ingredients define some "admissible initial data" on which TR can be applied. Denoted $((\Sigma, x), (\mathcal{A}_i, \mathcal{B}_i)_{i=1}^g)$.

General considerations

- Initial version [24] of TR dating back to 2007 is sufficient since ramification points are assumed simple.
- Some generalizations of TR exist to deal with non-simple ramification points, non-irreducible curves [8, 13].
- TR takes admissible initial data as input and provides some TR differentials (ω_{h,n})_{h≥0,n≥0} as output.
- These differentials are computed by recursion on s = n + 2h starting from

$$\omega_{0,1} := y dx, \qquad \qquad \omega_{0,2} := B^{(\mathcal{A}_i, \mathcal{B}_i)_{i=1}^{\circ}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition of TR

Definition of Topological Recursion

We have for $h \ge 0$, $n \ge 0$ with $(h, n) \notin \{(0, 0), (0, 1)\}$:

$$\omega_{h,n+1}(z_0,\mathbf{z}) \coloneqq \sum_{\mathbf{a}\in\mathcal{R}} \operatorname{Res}_{z\to a} \frac{1}{2} \frac{\int_{\sigma_a(z)}^z \omega_{0,2}(z_0,\cdot)}{\omega_{0,1}(z) - \sigma_a^* \omega_{0,1}(z)} \widetilde{\mathcal{W}}_{h,n+1}^{(2)}(z,\sigma_a(z);\mathbf{z}),$$

with

$$\widetilde{\mathcal{W}}_{h,n+1}^{(2)}(z,z';\mathbf{z}) := \omega_{h-1,n+2}(z,z',\mathbf{z}) + \sum_{\substack{A \sqcup B = \mathbf{z}, s \in [[0,h]]\\(s,|A|) \notin \{(0,0),(h,n)\}}} \omega_{s,|A|+1}(z,A) \omega_{h-s,|B|+1}(z',B)$$

and

$$\begin{split} \omega_{h,0} &\coloneqq \frac{1}{2-2h} \sum_{a \in \mathcal{R}} \operatorname{Res}_{z \to a} \omega_{h,1}(z) \Phi(z), \ \forall \ h \geq 2 \\ \text{and} \ (\omega_{0,0}, \omega_{1,0}) \text{ defined by specific formulas (See [24])} \end{split}$$

Loop equations

- Some combinations of the TR differentials have interesting properties ⇒ "Loop equations"
- Following [9], for $(h, n, l) \in \mathbb{N}^3$:

$$\begin{split} Q^{(0)}_{h,n+1}(\lambda;\mathbf{z}) &= \hat{Q}^{(0)}_{h,n+1}(\lambda;\mathbf{z}) = \tilde{Q}^{(0)}_{h,n+1}(\lambda;\mathbf{z}) = \delta_{h,0}\delta_{n,0}, \\ Q^{(l)}_{h,n+1}(\lambda;\mathbf{z}) &= \sum_{\substack{\beta \subseteq x^{-1}(\lambda) \\ l}} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\substack{l(\mu) \\ |j| = z}} \sum_{\substack{i=1 \\ j=z}} \sum_{\substack{g_i = h + l(\mu) - l}} \left[\prod_{i=1}^{l(\mu)} \omega_{g_i, |\mu_i| + |J_i|}(\mu_i, J_i) \right] \\ \tilde{Q}^{(l)}_{h,n+1}(\mathbf{z};\mathbf{z}) &= \sum_{\substack{\beta \subseteq (x^{-1}(x(\mathbf{z})) \setminus \{\mathbf{z}\} \\ j}} \sum_{\substack{\mu \in \mathcal{S}(\beta) \\ |j| \\ \mu \in \mathcal{S}(\beta)}} \sum_{\substack{f = z \\ i=1 \\ j=z}} \sum_{\substack{g_i = h + l(\mu) - l}} \sum_{\substack{f = 1 \\ i=1}} \prod_{\substack{g_i = h + l(\mu) - l}} \left[\prod_{i=1}^{l(\mu)} \omega_{g_i, |\mu_i| + |J_i|}(\mu_i, J_i) \right] \\ \tilde{Q}^{(l)}_{h,n+1}(\lambda;\mathbf{z}) &= \frac{Q^{(l)}_{h,n+1}(\lambda;\mathbf{z})}{(d\lambda)^l} - \sum_{j=1}^n d_{z_j} \left(\frac{1}{\lambda - x(z_j)} \frac{Q^{(l-1)}_{h,n}(z_j;\mathbf{z} \setminus \{z_j\})}{(dx(z_j))^{l-1}} \right) \end{split}$$

Loop equations

For any $(h, n, l) \in \mathbb{N}^3$ and any $\mathbf{z} \in (\Sigma \setminus \mathcal{R})^n$, the function $\lambda \mapsto \frac{Q_{b,n+1}^{(l)}(\lambda;\mathbf{z})}{(d\lambda)^l}$ has no poles at critical values.

Perturbative wave functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Generic perturbative wave functions

Perturbative wave functions

$$\begin{split} & ((\Sigma, x), (\mathcal{A}_i, \mathcal{B}_i)_{i=1}^g) \text{ admissible initial data, } D = \sum_{i=1}^s \alpha_i [p_i] \text{ generic divisor} \\ & \text{ on } \Sigma. \text{ Perturbative wave functions associated to } D \text{ are} \\ & \psi(D, \hbar) \coloneqq \exp\left(\sum_{h,n\geq 0} \frac{\hbar^{2h-2+n}}{n!} \int_D \cdots \int_D \omega_{h,n}(\mathbf{z}) - \delta_{h,0}\delta_{n,2} \frac{dx(z_1)dx(z_2)}{(x(z_1) - x(z_2))^2}\right) \\ & \forall i \in [\![1,s]\!] : \psi_{0,i}(D, \hbar) \cong \psi(D, \hbar), \\ & \forall i \in [\![1,s]\!], l \geq 1 : \psi_{l,i}(D, \hbar) \coloneqq \left[\sum_{h\geq 0} \sum_{n\geq 0} \frac{\hbar^{2h+n}}{n!} \int_D \cdots \int_D \frac{\hat{Q}_{h,n+1}^{(l)}(p_i; \cdot)}{(dx(p_i))^l}\right] \psi(D, \hbar). \end{split}$$

considerations Classical spectral curve. TR Perturbative wave functions Non-perturbative wave functions Lax pairs

000000000

Remark

Definition as a formal power series in \hbar times exponential terms in finite negative powers of \hbar (formal WKB series):

$$e^{-\hbar^{-2}\omega_{0,0}}e^{-\hbar^{-1}\int_D\omega_{0,1}}\psi(D,\hbar)\in\mathbb{C}[[\hbar]].$$

Lax systems and isomonodro

KZ equations

• Loop equations translate into Knizhnik–Zamolodchikov (KZ) equations [9]

Generic KZ equations

For
$$i \in \llbracket 1, s \rrbracket$$
 and $l \in \llbracket 0, d-1 \rrbracket$, we have

$$\begin{split} &\frac{\hbar}{\alpha_i} \frac{d\psi_{l,i}(D,\hbar)}{dx(p_i)} = -\psi_{l+1,i}(D,\hbar) - \hbar \sum_{j \in \llbracket 1,s \rrbracket \setminus \{i\}} \alpha_j \frac{\psi_{l,i}(D,\hbar) - \psi_{l,j}(D,\hbar)}{x(p_i) - x(p_j)} \\ &+ \sum_{h \ge 0} \sum_{n \ge 0} \frac{\hbar^{2h+n}}{n!} \int_{z_1 \in D} \cdots \int_{z_n \in D} \widetilde{Q}_{h,n+1}^{(l+1)}(x(p_i);\mathbf{z}) \ \psi(D,\hbar) \\ &+ \left(\frac{1}{\alpha_i} - \alpha_i\right) \left[\sum_{(h,n) \in \mathbb{N}^2} \frac{\hbar^{2h+n+1}}{n!} \underbrace{\int_D \cdots \int_D \frac{d}{dx(p_i)} \left(\frac{\widehat{Q}_{h,n+1}^{(l)}(p_i;\cdot)}{(dx(p_i))^l} \right) \right] \psi(D,\hbar). \end{split}$$

- Valid for generic divisors (*p_i* not a pole or a ramification point).
- Simplification for two points divisors with $(\alpha_1, \alpha_2) \in \{-1, +1\}^2$.

	Classical spectral curve, TR	Perturbative wave functions	Non-perturbative wave functions	Lax pairs Lax systems and isomonodror
0000	00000000000	000000000	0000	000000 00000

Remarks

- KZ equations allow to obtain PDEs for $\psi(D,\hbar)$.
- Generic divisors provide PDEs with derivatives $\frac{\partial}{\partial x(z)}$ up to order d^2 generically.
- Quantum curve is expected to be of order d and not d^2 .
- At least two specific choices of divisors allow for order d:
 D = [z] [∞^(α)] or D = [z] [σ(z)].
- Open question: are there other choices that provide PDEs of order *d*?

Regularization of perturbative wave functions for $D = [z] - [\infty^{(\alpha)}]$

General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs

00000000000

Infinity is a pole of the classical spectral curve $\Rightarrow D = [z] - [\infty^{(\alpha)}]$ is **not** a generic divisor \Rightarrow Some quantities ($\omega_{0,1}$ and $\omega_{0,2}$) require regularization obtained from $\lim_{p \to \infty^{(\alpha)}} ([z] - [p])$

Definition of regularized wave function

$$\begin{split} \psi^{\mathrm{reg}}(D &= [z] - [\infty^{(\alpha)}], \hbar) := \exp\left(\hbar^{-1}\left(V_{\infty^{(\alpha)}}(z) + \int_{\infty^{(\alpha)}}^{z} (ydx - dV_{\infty^{(\alpha)}})\right)\right) \\ &\frac{1}{E(z, \infty^{(\alpha)})\sqrt{dx(z)d\zeta_{\infty^{(\alpha)}}(\infty^{(\alpha)})}} \exp\left(\sum_{n \geq 3\delta_{h,0}} \frac{\hbar^{2h-2+n}}{n!} \int_{\infty^{(\alpha)}}^{z} \cdots \int_{\infty^{(\alpha)}}^{z} \omega_{h,n}\right) \\ \psi^{\mathrm{reg}}_{l}(D &= [z] - [\infty^{(\alpha)}], \hbar) := \\ &\left(\sum_{n \geq 3\delta_{h,0}} \frac{\hbar^{2h+n}}{n!} \int_{\infty^{(\alpha)}}^{z} \cdots \int_{\infty^{(\alpha)}}^{z} \frac{\hat{Q}_{h,n+1}^{(l)}(z; z_{1}, \dots, z_{n})}{dx(z)^{l}}\right) \psi^{\mathrm{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar) \end{split}$$

Lax systems and isomonodro

KZ equations for regularized wave functions

General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs

0000000000

KZ equations for regularized wave functions

$$\begin{split} &\hbar \frac{d}{dx(z)} \psi_l^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar) + \psi_{l+1}^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar) \\ &= \left[\sum_{h \ge 0} \sum_{n \ge 0} \frac{\hbar^{2h+n}}{n!} \sum_{P \in \mathcal{P}} \sum_{k \in S_P^{(l+1)}} \xi_P(x(z))^{-k} \underset{\lambda \to P}{\text{Res}} d\xi_P(\lambda) \xi_P(\lambda)^{k-1} \right. \\ &\int_{z_1 = \infty}^{z_1 = z} \cdots \int_{z_n = \infty}^{z_n = z} \frac{Q_{h, n+1}^{(l+1)}(\lambda; \mathbf{z})}{(d\lambda)^{l+1}} \right] \psi^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar) \end{split}$$

Lax systems and isomonodro

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Comments and technical issue

- RHS of KZ equations uses residues, i.e. integrals.
- RHS may be rewritten using generalized integrals, i.e. linear operators *I*<sub>C_{p,k}.
 </sub>
- $\mathcal{I}_{\mathcal{C}_{p,k}}$ is expected to correspond to $\partial_{t_{p,k}}$. Valid for d = 2 and examples.
- Action of these operators is defined only on a sub-algebra generated by $\int_{C_1} \cdots \int_{C_n} \omega_{h,n}$. \Leftrightarrow Algebra of symbols
- One need to check that these operators never act on something else.

PDE form of KZ equations

PDE form of KZ equations

$$\begin{split} \hbar \frac{d}{dx(z)} \psi_l^{\text{reg}}([z] - [\infty^{(\alpha)}]) + \psi_{l+1}^{\text{reg}}([z] - [\infty^{(\alpha)}]) &= \text{ev.} \ \widetilde{\mathcal{L}}_l(x(z)) \left[\psi^{\text{reg symb}}([z] - [\infty^{(\alpha)}]) \right] \\ \text{with} \\ \widetilde{\mathcal{L}}_l(x(z)) &= \sum_{P \in \mathcal{P}} \sum_{k \in S_P^{(l+1)}} \xi_P(x(z))^{-k} \widetilde{\mathcal{L}}_{P,k,l} \end{split}$$

Definition of the operators

Definition of the operators $\widetilde{\mathcal{L}}_{P,k,I}$

$$\begin{split} \tilde{\mathcal{L}}_{P,k,l} &= \epsilon_{P}^{l+1} \bigg[\xi_{P}(x(z))^{-(l+1)} \epsilon_{P} \sum_{\ell'=0}^{l+1} \sum_{\nu' \subset \ell'} \prod_{[1,d]} \prod_{j \in \nu'} \left(\sum_{m=0}^{r} \frac{t_{P}(j)}{d_{P}(j)} \xi_{P}^{-d} \frac{d_{P}(j)}{d_{P}(j)} \right) \\ &= \sum_{0 \leq \ell'' \leq \frac{l+1-\ell'}{2}} \sum_{\nu'' \in S^{(2)}([1,d] \setminus \nu')} \prod_{i=1}^{\ell''} \frac{h^{2}R(P)_{\nu'_{i}}}{d_{P}(\nu'_{i},+)^{d} \rho(\nu'_{i,-})} \\ &= \sum_{l+1-\ell'-2\ell''} [1,d] \setminus (\nu' \cup \nu'') \prod_{j \in \nu} \left(h^{2} \sum_{m=1}^{\infty} \frac{\xi_{P}^{d}}{d_{P}(j)} \mathcal{I}_{C}_{P}(j)_{,k} \right) \bigg]_{-k} \\ &+ h\delta_{P,\infty} \frac{\epsilon_{i+1}^{l+1}}{d_{\infty}(\alpha)} \bigg[\xi_{\infty}(x(z))^{-(l+1)\epsilon_{\infty}} \sum_{\ell'=0}^{l+1} \sum_{\nu' \subset \ell'} \sum_{\nu' \in I} \prod_{i=1}^{r} \frac{h^{2}R(\infty)_{\nu''}}{d_{\infty}(\nu'_{i,+})^{d} \sigma(\nu''_{i,-})} \\ &= \sum_{0 \leq \ell'' \leq \frac{l+1-\ell'}{2}} \nu'' \in S^{(2)}([1,d] \setminus (\nu' \cup \alpha_{i})) \prod_{j \in \nu} \left(h^{2} \sum_{m=1}^{\infty} \frac{\xi_{m}^{d}}{d_{\infty}(j)} \mathcal{I}_{C}_{\infty}(j)_{,m} \right) \bigg]_{-k} \end{split}$$

Monodromies

- Perturbative wave functions have bad monodromies on B-cycles.
- Monodromies are directly connected to a shift of the filling fractions $\epsilon_i = \oint_{\mathcal{A}_i} \omega_{0,1}$ by \hbar .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Monodromies issues only arise for genus g > 0 classical spectral curves.
- Solution is to "sum over filling fractions" ⇒ Formal Fourier transform ⇒ non-perturbative corrections.

Non-perturbative wave functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Non perturbative wave functions

Integrals of TR differentials

For any divisor D, let us define $G^{(0)}_{(i_1,...,i_k)}(D) = \delta_{k,0}$ and for $r \ge 1$:

$$G_{(i_1,i_2,\ldots,i_k)}^{(r)}(D) = \sum_{\ell=1}^r \frac{1}{\ell!} \sum_{(h_1,n_1),\ldots,(h_\ell,n_\ell)} \delta\left(r = k + \sum_{j=1}^\ell 2h_j - 2 + n_j\right)$$
$$\left(\mathcal{I}_{\mathcal{B}_{i_1}} \ldots \mathcal{I}_{\mathcal{B}_{i_k}} \prod_{j=1}^\ell \left(\frac{1}{n_j!} \int_D^{n_j} \cdots \int_D^{n_j} \omega_{h_j,n_j}\right)\right)_{\text{stable}}$$

$$G_{\emptyset}^{(1)}(D) = \int_{D} \omega_{1,1} + \frac{1}{6} \int_{D} \int_{D} \int_{D} \omega_{0,3}, \ G_{(i_{1})}^{(1)}(D) = \int_{\mathcal{B}_{i_{1}}} \omega_{1,1} + \frac{1}{2} \int_{D} \int_{D} \int_{\mathcal{B}_{i_{1}}} \omega_{0,3} \\
 G_{(i_{1},i_{2})}^{(2)}(D) = \frac{1}{2} \int_{\mathcal{B}_{i_{1}}} \omega_{1,1} \int_{\mathcal{B}_{i_{2}}} \omega_{1,1} + \frac{1}{2} \int_{D} \int_{D} \int_{\mathcal{B}_{i_{2}}} \int_{\mathcal{B}_{i_{2}}} \omega_{0,4} \\
 + \frac{1}{2} \int_{\mathcal{B}_{i_{1}}} \omega_{1,1} \int_{D} \int_{D} \int_{\mathcal{B}_{i_{2}}} \omega_{0,3} + \frac{1}{2} \int_{\mathcal{B}_{i_{2}}} \omega_{1,1} \int_{D} \int_{D} \int_{\mathcal{B}_{i_{1}}} \omega_{0,3} \\
 + \frac{1}{8} \int_{D} \int_{D} \int_{\mathcal{B}_{i_{1}}} \omega_{0,3} \int_{D} \int_{D} \int_{\mathcal{B}_{i_{2}}} \omega_{0,3}$$

Non perturbative wave functions

Non perturbative wave functions

$$\psi_{\rm NP}(D;\hbar,\rho) := e^{\hbar^{-2}\omega_{0,0} + \omega_{1,0}} e^{\hbar^{-1}\int_D \omega_{0,1}} \frac{1}{E(D)} - \sum_{r=0}^{\infty} \hbar^r G^{(r)}(D;\rho)$$

where E prime form on Σ and

$$G^{(r)}(D;\rho) := \sum_{k=0}^{3r} \sum_{(i_1,\ldots,i_k) \in [\![1,g]\!]^k} \Theta^{(i_1,\ldots,i_k)}(\mathbf{v},\tau) \frac{G^{(r)}_{(i_1,\ldots,i_k)}(D)}{G^{(r)}_{(i_1,\ldots,i_k)}(D)}$$

with

$$\mathbf{v}_j \coloneqq rac{
ho_j + \phi_j}{\hbar} + \mu_j^{(lpha)}(\mathbf{z}), \; \phi_j \coloneqq rac{1}{2\pi\mathrm{i}} \oint_{\mathcal{B}_j} \omega_{0,1}, \; \mu_j^{(lpha)}(\mathbf{z}) \coloneqq rac{1}{2\pi\mathrm{i}} \int_D \oint_{\mathcal{B}_j} \omega_{0,2}.$$

Moreover

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho}) \coloneqq \sum_{\beta \subseteq \left(x^{-1}(x(z)) \setminus \{z\}\right)} \frac{1}{l!} \operatorname{ev.} \left(\prod_{j=1}^{l} \mathcal{I}_{\mathcal{C}_{\beta_{j},1}}\right) \psi_{\mathrm{NP}}^{\mathrm{symbol}}([z] - [\infty^{(\alpha)}];\hbar,\boldsymbol{\rho})$$

and $d \times d$ wave functions matrix

$$\widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar,oldsymbol{
ho})\coloneqq \left[\psi_{l-1,\mathrm{NP}}^{\infty(lpha)}(z^{(lpha)}(\lambda),\hbar,oldsymbol{
ho})
ight]_{1\leq l,lpha\leq d},$$

 $\bullet\,$ Non-perturbative quantities are formal trans-series in \hbar of the form

$$\sum_{r=0}^{\infty}\sum_{\mathbf{n}\in\mathbb{Z}^{g}}\hbar^{r}e^{\frac{1}{\hbar}\sum_{j=1}^{g}n_{j}\phi_{j}}F_{r,\mathbf{n}},$$

- Equalities should only be considered coefficients by coefficients in the trans-monomials.
- Non-perturbative wave functions satisfy same KZ equations as the perturbative wave functions.

• Non-perturbative wave functions have good monodromies. \Rightarrow rational functions of λ .

Lax pairs

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Lax systems

Lax systems

We have the Lax systems

$$\begin{split} \hbar \frac{d \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)}{d \lambda} &= \widehat{L}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar) \\ \hbar^{-1} \mathrm{ev.} \mathcal{L}_{P,k,l} \widehat{\Psi}_{\mathrm{NP}}^{\mathrm{symbol}}(\lambda, \hbar) &= \widehat{A}_{P,k,l}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar) \end{split}$$

with

$$\widehat{L}(\lambda,\hbar) = \left[-\widehat{P}(\lambda) + \hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_P^{-k}(\lambda) \widehat{\Delta}_{P,k}(\lambda,\hbar)\right]_{2,j} = \left[\widehat{A}_{P,k,l}(\lambda,\hbar)\right]_{1,j}, \forall j \in \llbracket 1,d \rrbracket,$$

and

$$\widehat{P}(\lambda) \coloneqq \begin{bmatrix} -P_1(\lambda) & 1 & 0 & \dots & 0 \\ -P_2(\lambda) & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -P_{d-1}(\lambda) & 0 & 0 & \dots & 1 \\ -P_d(\lambda) & 0 & 0 & \dots & 0 \end{bmatrix}$$

Gauge transformation to recover companion-like matrix when $\hbar \rightarrow 0$

General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs

Define

$$G(\lambda) \coloneqq \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ P_1(\lambda) & -1 & 0 & \dots & 0 & 0 \\ P_2(\lambda) & -P_1(\lambda) & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ P_{d-2}(\lambda) & -P_{d-3}(\lambda) & P_{d-4}(\lambda) & \dots & (-1)^{d-2} & 0 \\ P_{d-1}(\lambda) & -P_{d-2}(\lambda) & P_{d-3}(\lambda) & \dots & (-1)^{d-2}P_1(\lambda) & (-1)^{d-1} \end{bmatrix}$$

and

$$\begin{split} \widetilde{\Psi}(\lambda,\hbar) &:= (G(\lambda))^{-1} \,\widehat{\Psi}_{\rm NP}(\lambda,\hbar) \\ \hbar \frac{d\widetilde{\Psi}(\lambda,\hbar)}{d\lambda} &= \widetilde{L}(\lambda,\hbar)\widetilde{\Psi}(\lambda,\hbar) \\ \hbar^{-1} {\rm ev}.\mathcal{L}_{P,k,l}\widetilde{\Psi}(\lambda,\hbar) &= \widetilde{A}_{P,k,l}(\lambda,\hbar)\widetilde{\Psi}(\lambda) \end{split}$$

with

$$\widetilde{L}(\lambda,\hbar) = \left[\widetilde{P}(\lambda) + \hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_P^{-k}(\lambda) \widetilde{\Delta}_{P,k}(\lambda,\hbar)\right]$$

 $\mathbf{P}(\lambda)$ companion-like matrix associated to the classical spectral curve.

Main result: pole structure of the Lax system

Pole structure of the Lax system

Matrices $\widetilde{A}_{P,k,l}(\lambda,\hbar)$ are rational functions of λ with no pole at critical values $u \in x(\mathcal{R})$. Matrices $\widetilde{L}(\lambda,\hbar)$ and $\widehat{L}(\lambda,\hbar)$ are rational functions of λ with possible poles only at $\lambda \in \mathcal{P}$ and at zeros of the Wronskian det $\widehat{\Psi}_{NP}(\lambda,\hbar)$ (i.e. apparent singularities).

- Long and technical proof by induction relatively to the order in the trans-series.
- Proof uses some of admissibility conditions (distinct critical values, smooth and simple ramification points).
- Proof should adapt without the admissibility conditions but involving more technical computations.

Quantum curve

Quantum curve

 $orall j \in \llbracket 1, d
rbracket, \psi_{0,\mathrm{NP}}^{\infty^{(lpha)}}(z^{(j)}(\lambda), \hbar)$ is solution to a degree d ODE of the form

$$\forall j \in \llbracket 1, d \rrbracket : \sum_{k=0}^{d} b_{d-k}(\lambda, \hbar) \left(\hbar \frac{\partial}{\partial \lambda} \right)^{k} \psi_{0, \mathrm{NP}}^{\infty^{(\alpha)}}(z^{(j)}(\lambda), \hbar) = 0$$

Coefficients $(b_l(\lambda, \hbar))_{l \in [\![0,d]\!]}$ with $b_0(\lambda, \hbar) = 1$ are rational functions of λ with poles only at $\lambda \in \mathcal{P}$ and zeros of the Wronskian.

 $\Leftrightarrow \text{Matrix form: } \Psi(\lambda,\hbar) \coloneqq \left[\left(\hbar \frac{\partial}{\partial \lambda} \right)^{i-1} \psi_{0,\text{NP}}^{\infty^{(\alpha)}}(z^{(j)}(\lambda),\hbar) \right]_{1 \le i,j \le d} \text{ satisfies:}$

$$\begin{split} \hbar \frac{\partial}{\partial \lambda} \Psi(\lambda,\hbar) &= \begin{bmatrix} 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & 1 \\ -b_d(\lambda,\hbar) & -b_{d-1}(\lambda,\hbar) & \dots & -b_1(\lambda,\hbar) \end{bmatrix} \Psi(\lambda,\hbar) \\ &\coloneqq & L(\lambda,\hbar) \Psi(\lambda,\hbar) \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Gauge transformation to remove apparent singularities

considerations Classical spectral curve. TR Perturbative wave functions Non-perturbative wave functions Lax pairs

• Apparent singularities \Leftrightarrow zeros of Wronskian:

$$W(\lambda,\hbar) := \det \Psi(\lambda,\hbar) = \kappa rac{\prod\limits_{i=1}^{G} (\lambda - q_i(\hbar))}{\prod\limits_{i=1}^{N} (\lambda - \Lambda_i)^{G_{\Lambda_i}}} \exp \left(\hbar^{-1} \int_0^\lambda P_1(\lambda) d\lambda
ight),$$

• Explicit gauge transformation $J(\lambda, \hbar)$ to **remove apparent** singularities

$$\check{\Psi}(\lambda,\hbar) := \left[egin{array}{ccccccccc} 1 & \dots & 0 & 0 \\ \ddots & \ddots & & \vdots \\ 0 & \dots & 1 & 0 \\ rac{Q_d(\lambda,\hbar)}{\prod\limits_{l=1}^G (\lambda-q_i(\hbar))} & \dots & rac{Q_2(\lambda,\hbar)}{\prod\limits_{l=1}^G (\lambda-q_i(\hbar))} & rac{Q_1(\lambda,\hbar)}{\prod\limits_{l=1}^G (\lambda-q_i(\hbar))} \end{array}
ight] \Psi(\lambda,\hbar)$$

- Q_i : polynomial of degree G-1 at most defined by interpolation.
- Gauge transformation does not introduce new poles because

$$\det J(\lambda,\hbar) = \left(\prod_{k=1}^{N} (\lambda - \Lambda_k)^{G_{\Lambda_k}}\right) \left(\prod_{i=1}^{G} (\lambda - q_i(\hbar))\right)^{-1}$$

stems and isomonodro

Remarks

4 equivalent gauges:

- Gauge Ψ(λ, ħ): Natural gauge from KZ equations and provides compatible auxiliary systems. But leading order in ħ of L(λ, ħ) is not companion-like ⇒ Classical spectral curve is not easily recovered. Contains apparent singularities.
- Gauge Ψ(λ, ħ): Same properties as the previous gauge (ħ⁰ gauge transformation) except leading order in ħ is companion-like and recovers the classical spectral curve.
- Gauge Ψ(λ, ħ): L(λ, ħ) is companion-like ⇒ Quantum curve is directly read in the last line of L(λ, ħ). Classical spectral curve directly obtained as ħ → 0 limit of L(λ, ħ). But contains apparent singularities. Natural framework for Darboux coordinates and isomonodromic deformations.
- Gauge Ψ: Ľ(λ, ħ) has no apparent singularity. But no longer companion like so less adapted to read the classical and quantum curves.

Lax systems and isomonodromic deformations

Meromorphic connections in $\mathfrak{gl}_d(\mathbb{C})$

Classical spectral curve TR

• Start from a differential system $\hbar \partial_{\lambda} \tilde{\Psi} = \tilde{L}(\lambda) \tilde{\Psi}$ with $\tilde{L}(\lambda)$ rational in λ with poles in $\mathcal{P} = \{\infty, \Lambda_1, \dots, \Lambda_N\}$

Perturbative wave functions Non-perturbative wave functions Lax pairs

Lax systems and isomonodro

- Classical spectral curve is defined by $\lim_{h\to 0} \det(yI_d \tilde{L}(\lambda)) = 0$
- Choose orders of poles $(r_{\infty}, r_1, \dots, r_N)$ to get same type of classical spectral curve and define

$$F_{\mathcal{R},\mathbf{r}} := \left\{ \hat{L}(\lambda) = \sum_{k=1}^{r_{\infty}-1} \hat{L}^{[\infty,k]} \lambda^{k-1} + \sum_{s=1}^{n} \sum_{k=0}^{r_{s}-1} \frac{\hat{L}^{[X_{s},k]}}{(\lambda - X_{s})^{k+1}} \right\} / \mathsf{GL}_{\mathsf{d}}(\mathbb{C})$$

- $F_{\mathcal{R},r}$ has a Poisson structure (loop algebra [27, 1]). Representative normalized at infinity \tilde{L} ($\tilde{L}^{[\infty,r_{\infty}-1]}$ diagonal and $[\tilde{L}^{[\infty,r_{\infty}-2]}]_{1,j} = 1$ for $j \geq 2$).
- Irregular times t = (t_{p,k})_{p∈P,1≤k≤rp-1} and monodromies t₀ = (t_{p,0})_{p∈P} are given as singular part of the local diagonalization of L̃ at each pole.
- Symplectic manifold of dimension 2g (g genus of the spectral curve):

$$\hat{\mathcal{M}}_{\mathcal{R},\mathbf{r},\mathbf{t},\mathbf{t}_{0}} := \left\{ \hat{L}(\lambda) \in \hat{F}_{\mathcal{R},\mathbf{r}} \ / \ \hat{L}(\lambda) \text{ has irregular times } \mathbf{t} \text{ and monodromies } \mathbf{t}_{0} \right\}$$

Isomonodromic deformations

• Existence of g isomonodromic deformations

$$\hbar\partial_{ au_i} ilde{\Psi}={\sf A}_{ au_i}(\lambda) ilde{\Psi}$$

 A_{τ_i} rational in λ with dominated pole structure [4].

• Existence of a Hamiltonian system and 2g Darboux coordinates $(x_i, y_i)_{1 \le i \le g}$ parametrizing the Lax pairs.

$$\hbar \partial_{\tau_i} x_j = \frac{\partial H_i}{\partial y_j}, \ \hbar \partial_{\tau_i} y_j = -\frac{\partial H_i}{\partial x_j}$$

- Explicit expression of the Lax pairs, Hamiltonians in gl₂ in terms of the apparent singularities q_i and dual coordinates p_i in [34, 31].
- Lax matrices are the same as the one produced by the quantization procedure in $\mathfrak{g}l_2$.
- Monodromies and Stokes matrices are independent of the isomonodromic times. Help for analytic understanding?

Determinantal formulas

For any differential system $\hbar \partial_{\lambda} \Psi = L(\lambda, \hbar) \Psi$ with *L* rational in λ and formal Taylor series in \hbar , one may associate determinantal formulas.

Definition

Define $(\Sigma, x(z))$ the classical spectral curve: $\lim_{h \to 0} \det(yI_d - L(\lambda)) = 0$. Let $E_i = \operatorname{diag}(\mathbf{0}_{i-1}, 1, \mathbf{0}_{d-1-i})$ for $i \in [\![1, d]\!]$ and

$$M(z; E_i) := \Psi(z) E_i \Psi(z)^{-1}$$

Set of correlators W_n ("determinantal formulas") for $n \ge 1$:

$$\begin{split} &W_1(z_1 \otimes E_{i_1}) = \operatorname{Tr}\left[L(x(z_1))M(z_1; E_{i_1})\right] \, dx(z_1) \\ &W_n(z_1 \otimes E_{i_1}, \dots, z_n \otimes E_{i_n}) \\ &= \frac{(-1)^n}{n} \sum_{\sigma \in \mathcal{S}_n} \frac{\operatorname{Tr}\left[M(z_{\sigma(1)}; E_{i_{\sigma(1)}}) \dots M(z_{\sigma(n)}; E_{i_{\sigma(n)}})\right]}{\prod_{i=1}^n (x(z_{\sigma(i)}) - x(z_{\sigma(i+1)}))} \prod_{i=1}^n dx(z_i) \end{split}$$

Properties of determinantal formulas

General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs

- Correlators W_n satisfy loop equations.
- Correlators (W_n)_{n≥1} can be defined for any linear differential systems (no need for Lax pairs)
- If correlators W_n satisfy "Topological Type Property" then they are reconstructed by $(\omega_{h,n})_{h,n\geq 0}$ TR differentials:

Lax systems and isomonodro

$$W_n(\lambda_1,\ldots,\lambda_n;\hbar) = \sum_{k=0}^{\infty} \omega_{k,n}(\lambda_1,\ldots,\lambda_n)\hbar^{n-2+2k}$$

• Topological Type Property requires genus 0 and some additional pole structure. Can it be generalized to higher genus? Ψ (and W_n) are expected to be transseries in \hbar , how is the reconstruction formula adapted?

Several types of solutions

- Hamiltonian system, Lax pairs, spectral curves are independent of the type of solution Ψ (formal WKB, formal trans-series, etc.)
- Formal WKB solutions of the Lax system ⇔ 0-instanton solutions of the Hamiltonian system (i.e. formal power series in ħ) ⇔ Classical spectral curve genus drops to 0 ⇔ Degenerate classical spectral curve: ramification points coincide by pairs
- Auxiliary matrices are crucial to prove "topological type property" (no pole at double zeros) in the formal WKB solutions case.
- General solutions are expected to be ħ-transseries (k-instanton solutions, etc.). How auxiliary matrices could help in this case?

Example

Classical spectral curve

Classical spectral curve

We take d = 2, N = 0, $r_{\infty}^{(1)} = 2$ and $r_{\infty}^{(2)} = 4$. Two points above infinity denoted by $\infty^{(1)}$ and $\infty^{(2)}$ non-ramified.

 $y^2 - P_1(\lambda)y + P_2(\lambda) = 0,$

with

$$\begin{array}{lll} P_1(\lambda) &=& P_{\infty,2}^{(1)}\lambda^2 + P_{\infty,1}^{(1)}\lambda + P_{\infty,0}^{(1)} \\ P_2(\lambda) &=& P_{\infty,4}^{(2)}\lambda^4 + P_{\infty,3}^{(2)}\lambda^3 + P_{\infty,2}^{(2)}\lambda^2 + P_{\infty,1}^{(2)}\lambda + P_{\infty,0}^{(2)} \end{array}$$

Six spectral times $(t_{i,j})_{1 \le i \le 2, 0 \le j \le 3}$ are defined by $\forall i \in \{1,2\}$:

$$y(z) = -t_{i,3}x(z)^2 - t_{i,2}x(z) - t_{i,1} - t_{i,0}x(z)^{-1} + O\left(x(z)^{-2}
ight), \text{ as } z o \infty^{(i)}$$

Associated isomonodromic system is the Painlevé 2 Lax pair.

Connection with spectral times

Relations between spectral times and coefficients of the classical spectral curve:

$$\begin{array}{rcl} P_{\infty,2}^{(1)} &=& -t_{1,3} - t_{2,3} \\ P_{\infty,1}^{(1)} &=& -t_{1,2} - t_{2,2} \\ P_{\infty,0}^{(1)} &=& -t_{1,1} - t_{2,1} \\ P_{\infty,4}^{(2)} &=& t_{1,3}t_{2,3} \\ P_{\infty,3}^{(2)} &=& t_{1,2}t_{2,3} + t_{1,3}t_{2,2} \\ P_{\infty,2}^{(2)} &=& t_{1,2}t_{2,2} + t_{1,3}t_{2,1} + t_{1,1}t_{2,3} \\ P_{\infty,1}^{(2)} &=& t_{1,3}t_{2,0} + t_{1,0}t_{2,3} + t_{1,2}t_{2,1} + t_{1,1}t_{2,2} \\ 0 &=& -t_{1,0} - t_{2,0} \end{array}$$

Only $P_{\infty,0}^{(2)}$ remains undetermined (genus 1).

KZ equations

Using the general theory, we get:

KZ equations

$$\begin{cases} \hbar \frac{\partial \psi_{0,NP}^{\infty(1)}(z,\hbar)}{\partial x(z)} + \psi_{1,NP}^{\infty(1)}(z,\hbar) = P_1(x(z))\psi_{0,NP}^{\infty(1)}(z,\hbar), \\ \hbar \frac{\partial \psi_{1,NP}^{\infty(1)}(z,\hbar)}{\partial x(z)} = P_2(x(z))\psi_{0,NP}^{\infty(1)}(z,\hbar) + \hbar \operatorname{ev} \mathcal{L}_{\mathsf{KZ}}(x(z)) \left[\psi_{0,NP}^{\infty^{(1)},\,\mathrm{symbol}}(z,\hbar)\right] \end{cases}$$

where

$$\mathcal{L}_{\mathsf{KZ}}(\lambda) \coloneqq \hbar \mathbf{t}_{1,3} \mathcal{I}_{\mathcal{C}_{\infty^{(2)},1}} + \hbar \mathbf{t}_{2,3} \mathcal{I}_{\mathcal{C}_{\infty^{(1)},1}} - \mathbf{t}_{2,3} \lambda - \mathbf{t}_{2,2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lax pair from KZ equations

Define
$$\Psi(\lambda, \hbar) = \begin{pmatrix} \psi_{0,\mathrm{NP}}^{\infty^{(\alpha)}}(z^{(1)}(\lambda), \hbar) & \psi_{0,\mathrm{NP}}^{\infty^{(\alpha)}}(z^{(2)}(\lambda), \hbar) \\ \hbar \partial_{\lambda} \psi_{0,\mathrm{NP}}^{\infty^{(\alpha)}}(z^{(1)}(\lambda), \hbar) & \hbar \partial_{\lambda} \psi_{0,\mathrm{NP}}^{\infty^{(\alpha)}}(z^{(2)}(\lambda), \hbar) \end{pmatrix}$$

KZ equations are equivalent to

$$\begin{split} &\hbar\partial_{\lambda}\Psi(\lambda,\hbar) = \begin{pmatrix} 0 & 1\\ -P_{2}(\lambda) + \hbar P_{1}'(\lambda) + H - \frac{p}{\lambda-q} + \hbar\alpha\lambda & P_{1}(\lambda) + \frac{\hbar}{\lambda-q} \end{pmatrix} \Psi(\lambda,\hbar) \\ &\text{ev}.\mathcal{L}_{KZ}(\lambda)[\Psi^{\text{symbol}}(\lambda,\hbar)] = \begin{pmatrix} -\alpha\lambda - \frac{H}{\hbar} + \frac{p}{\hbar(\lambda-q)} & -\frac{1}{\lambda-q} \\ [A_{KZ}]_{2,1}(\lambda,\hbar) & [A_{KZ}]_{2,2}(\lambda,\hbar) \end{pmatrix} \Psi(\lambda,\hbar) \end{split}$$

for $\alpha = t_{1,3} + 2t_{2,3}$ and some unknown *H*. Equivalently defining

$$\mathcal{L} \coloneqq \mathcal{L}_{\mathsf{KZ}}(\lambda) + \mathbf{t}_{2,3}\lambda + \mathbf{t}_{2,2} = \hbar \mathbf{t}_{1,3} \mathcal{I}_{\infty^{(2)},1} + \hbar \mathbf{t}_{2,3} \mathcal{I}_{\infty^{(1)},1}$$

we have

$$ev.\mathcal{L}[\Psi^{\text{symbol}}(\lambda,\hbar)] = \begin{pmatrix} P_{\infty,2}^{(1)}\lambda + t_{2,2} - \frac{H}{\hbar} + \frac{p}{\hbar(\lambda-q)} & -\frac{1}{\lambda-q} \\ A_{2,1}(\lambda,\hbar) & A_{2,2}(\lambda,\hbar) \end{pmatrix} \Psi(\lambda,\hbar) \\ \coloneqq A(\lambda,\hbar)\Psi(\lambda,\hbar)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Evolution equations

Compatibility equations L[L(λ, ħ)] = ħ∂_λA(λ, ħ) + [A(λ, ħ), L(λ, ħ)]:

$$\begin{split} \mathcal{L}[P_{\infty,4}^{(2)}] &= \mathcal{L}[P_{\infty,3}^{(2)}] = 0 \\ \mathcal{L}[P_{\infty,2}^{(2)}] &= -2\hbar P_{\infty,4}^{(2)} + \hbar \left[P_{\infty,2}^{(1)}\right]^2 \\ \mathcal{L}[P_{\infty,1}^{(2)}] &= -\hbar P_{\infty,3}^{(2)} + \hbar P_{\infty,1}^{(1)} P_{\infty,2}^{(1)} \\ \mathcal{L}[P_{\infty,0}^{(2)}] - \mathcal{L}[H] &= 2\hbar P_{\infty,4}^{(2)} q^2 + \hbar P_{\infty,3}^{(2)} q - P_{\infty,2}^{(1)} p + \hbar P_{\infty,0}^{(1)} P_{\infty,2}^{(1)} \\ H &= \frac{p^2}{\hbar^2} - P_1(q) \frac{p}{\hbar} + P_2(q) - \hbar P_1'(q) + \hbar (P_{\infty,2}^{(1)} - t_{2,3}) q \\ \mathcal{L}[q] &= P_1(q) - 2\frac{p}{\hbar} \\ \mathcal{L}[p] &= -P_1'(q) p + \hbar P_2'(q) + \hbar^2 t_{2,3} \end{split}$$

Equivalent to

 $\mathcal{L}[t_{1,3}] = \mathcal{L}[t_{2,3}] = \mathcal{L}[t_{1,2}] = \mathcal{L}[t_{1,0}] = \mathcal{L}[t_{2,0}] = 0, \ \mathcal{L}[t_{1,1}] = \hbar t_{2,3}, \ \mathcal{L}[t_{2,1}] = \hbar t_{1,3}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Equivalent to $\mathcal{L} = \hbar t_{2,3} \partial_{t_{1,1}} + \hbar t_{1,3} \partial_{t_{2,1}}$

Hamiltonian evolution

Hamiltonian evolution

"Time" (\mathcal{L})-evolution is Hamiltonian \Leftrightarrow (p,q) are Darboux coordinates

$$\mathcal{L}[q] = -\hbar \frac{\partial H_0}{\partial p}, \ \ \mathcal{L}[p] = \hbar \frac{\partial H_0}{\partial q}$$

for Hamiltonian $H_0(p, q, \hbar)$:

gi

$$H_0(p,q,\hbar) = \frac{p^2}{\hbar^2} - P_1(q)\frac{p}{\hbar} + P_2(q) - \hbar P_1'(q) + \hbar q(2P_{\infty,2}^{(1)} - t_{2,3})$$

ving $H = H_0(p,q,\hbar) + \hbar(t_{1,3} + t_{2,3})q$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Connection with the Painlevé 2 equation

• q satisfies the evolution equation:

$$\begin{aligned} \mathcal{L}^2[q] &= 2(t_{1,3}-t_{2,3})^2 q^3 + 3(t_{1,3}-t_{2,3})(t_{1,2}-t_{2,2}) q^2 \\ &+ \left((t_{1,2}-t_{2,2})^2 + 2(t_{1,3}-t_{2,3})(t_{1,1}-t_{2,1})\right) q \\ &+ (t_{1,2}-t_{2,2})(t_{1,1}-t_{2,1}) + (2t_{1,0}-\hbar)(t_{1,3}-t_{2,3}) \end{aligned}$$

• Change of variables $(t_{1,1}, t_{2,1}) \leftrightarrow (\tau, \tilde{\tau})$ and affine rescaling:

$$\begin{aligned} \tau &= \frac{1}{t_{1,3} - t_{2,3}} \left(t_{2,1} - t_{1,1} \right), \quad \tilde{\tau} = \frac{1}{t_{1,3} - t_{2,3}} \left(t_{1,3} t_{1,1} - t_{2,3} t_{2,1} \right) \\ t &= \left(-2(t_{1,3} - t_{2,3})^2 \right)^{\frac{1}{3}} \left(\tau + \frac{(t_{1,2} - t_{2,2})^2}{4(t_{1,3} - t_{2,3})^2} \right) \\ \tilde{q} &= \left(\frac{-(t_{1,3} - t_{2,3})}{2} \right)^{\frac{1}{3}} \left(q + \frac{t_{1,2} - t_{2,2}}{2(t_{1,3} - t_{2,3})} \right) \end{aligned}$$

Then $\tilde{q}(t,\hbar)$ satisfies the Painlevé 2 equation

$$\hbar^2 \partial_{t^2}^2 \tilde{q} = 2 \tilde{q}^3 + t \tilde{q} - \left(t_{1,0} - \frac{\hbar}{2}\right)$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Gauge without apparent singularities

• Gauge transformation to remove apparent singularity:

General considerations Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs

$$\check{\Psi}(\lambda,\hbar) = egin{pmatrix} 1 & 0 \ -rac{p}{\hbar(\lambda-q)} & rac{1}{\lambda-q} \end{pmatrix} \Psi(\lambda,\hbar) \coloneqq J(\lambda,\hbar) \Psi(\lambda,\hbar)$$

• Provides another Lax pair (Jimbo-Miwa type) without apparent singularity:

$$\begin{split} \check{L}(\lambda,\hbar) &= \begin{pmatrix} \frac{p}{\hbar} & \lambda - q \\ -((\lambda+q)(t_{1,3}+t_{2,3}) + t_{2,2} + t_{1,2})\frac{p}{\hbar} + Q_3(\lambda,\hbar) & -\frac{p}{\hbar} + P_1(\lambda) \end{pmatrix} \\ \check{A}(\lambda,\hbar) &= \begin{pmatrix} -(t_{1,3}+t_{2,3})\lambda - \frac{H}{\hbar} + t_{2,2} & -1 \\ (t_{1,3}+t_{2,3})\frac{p}{\hbar} + Q_2(\lambda,\hbar) & (t_{1,3}+t_{2,3})q + t_{1,2} + 2t_{2,2} - \frac{H}{\hbar} \end{pmatrix} \end{split}$$

where

$$\begin{array}{lll} Q_{3}(\lambda,\hbar) & = & -P^{(2)}_{\infty,4}\lambda^{3} - (P^{(2)}_{\infty,4}q + P^{(2)}_{\infty,3})\lambda^{2} - (P^{(2)}_{\infty,4}q^{2} + P^{(2)}_{\infty,3}q + P^{(2)}_{\infty,2})\lambda \\ & & +P^{(2)}_{\infty,4}q^{3} + P^{(2)}_{\infty,3}q^{2} + P^{(2)}_{\infty,2}q + P^{(2)}_{\infty,1} + \hbar t_{1,3}) \\ Q_{2}(\lambda,\hbar) & = & P^{(2)}_{\infty,4}\lambda^{2} + 2P^{(2)}_{\infty,4}q\lambda + P^{(2)}_{\infty,3}\lambda + (3P^{(2)}_{\infty,4}q^{2} + 2P^{(2)}_{\infty,3}q + P^{(2)}_{\infty,2}) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lax systems and isomonodro

Connection with isomonodromic deformations

Classical spectral curve. TR Perturbative wave functions Non-perturbative wave functions

 Classical spectral curve corresponds to isomonodromic deformations of

$$\tilde{L}(\lambda) = L^{[\infty,3]}\lambda^2 + L^{[\infty,2]}\lambda^1 + L^{[\infty,1]}$$

- Results of [34] immediately recovers the previous Lax matrices and the Hamiltonian system.
- Hamiltonian system is proved invariant under the choice of trivial times. A canonical choice is equivalent to $t_{i,2} = -t_{i,1}$ for all $0 \le i \le 3$ ($\mathfrak{gl}_2 \to \mathfrak{sl}_2$) and $t_{3,1} = 1$, $t_{2,1} = 0$ (Mobius transformations). Equivalent to the invariance of TR under rational reparametrization and $y \to y + f(\lambda)$.
- Results of [34] provide explicit formulas for the quantum curve, Lax pairs and Hamiltonians in terms of the apparent singularities $(q_i)_{1 \le i \le g}$ and dual coordinates $(p_i)_{1 \le i \le g}$. Results only available for $\mathfrak{g}/_2$ connections so far.

Open questions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Open questions

- Can we give some analytic meaning to the formal WKB solutions or formal ħ-transseries? Compute Stokes matrices? Write a Riemann-Hilbert-Problem for Ψ?
- What about the underlying Hamiltonian structure coming from isomonodromic deformations? How is it helpful?
- How can the auxiliary matrices be useful to describe analytic solutions of the quantum curve?
- Are determinantal formulas (reverse approach) easier to use than the wave matrix?

• Can we obtain explicit expressions for the isomonodromic deformations for \mathfrak{gl}_d ?

References I

- M. Adams, J. Harnad, and J. Hurtubise. Dual moment maps into loop algebras. *Lett. Math. Phys.*, 20:299–308, 1990.
- [2] J. Andersen, G. Borot, and N. Orantin. Geometric recursion. 2017. math.GT/1711.04729.
- [3] M. Bergère, G. Borot, and B. Eynard. Rational differential systems, loop equations, and application to the *q*th reductions of KP. Ann. Henri Poincaré, 16(12):2713–2782, 2015. math-ph/1312.4237.
- [4] M. Bertola, J. Harnad, and J. Hurtubise. Hamiltonian structure of rational isomonodromic deformation systems, 2022. arXiv:2212.06880.
- [5] G. Borot, B. Eynard, M. Mulase, and B. Safnuk. A matrix model for simple Hurwitz numbers, and topological recursion. J. Geom. Phys., 61(2):522–540, 2011. math-ph/0906.1206.
- [6] G. Borot and E. Garcia-Failde. Simple maps, Hurwitz numbers, and Topological Recursion. 2017. math-ph/1710.07851.
- [7] G. Borot, A. Guionnet, and K. Kozlowski. Large-n asymptotic expansion for mean field models with coulomb gas interaction. *Int. Math. Res. Not.*, 2015(20), 2015.

References II

- [8] V. Bouchard and B. Eynard. Think globally, compute locally. J. High Energy Phys., 2013(2):143, front matter + 34, 2013. math-ph/1211.2302.
- [9] V. Bouchard and B. Eynard. Reconstructing WKB from topological recursion. J. Éc. polytech. Math., 4:845–908, 2017. math-ph/1606.04498.
- [10] V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti. Remodeling the B-model. *Commun. Math. Phys.*, 287(1):117–178, 2009. hep-th/0709.1453.
- [11] N. Do, A. Dyer, and D. Mathews. Topological recursion and a quantum curve for monotone Hurwitz numbers. J. Geom. Phys., 120:19–36, 2017. arXiv:1408.3992.
- [12] N. Do and D. Manescu. Quantum curves for the enumeration of ribbon graphs and hypermaps. *Commun. Number Theory Phys.*, 8(4):677–701, 2014. arXiv:1312.6869.
- [13] N. Do and P. Norbury. Topological recursion for irregular spectral curves. J. Lond. Math. Soc. (2), 97(3):398–426, 2018. arXiv:1412.8334.
- [14] O. Dumitrescu and M. Mulase. Quantum curves for Hitchin fibrations and the Eynard-Orantin theory. *Lett. Math. Phys.*, 104(6):635–671, 2014. arXiv:1310.6022.

References III

- [15] O. Dumitrescu and M. Mulase. Quantization of spectral curves for meromorphic Higgs bundles through topological recursion. In *Topological recursion and its influence in analysis, geometry, and topology*, volume 100 of *Proc. Sympos. Pure Math.*, pages 179–229. Amer. Math. Soc., Providence, RI, 2018. arXiv:1411.1023.
- [16] P. Dunin-Barkowski, M. Mulase, P. Norbury, A. Popolitov, and S. Shadrin. Quantum spectral curve for the Gromov-Witten theory of the complex projective line. J. Reine Angew. Math., 726:267–289, 2017.
- [17] P. Dunin-Barkowski, N. Orantin, A. Popolitov, and S. Shadrin. Combinatorics of loop equations for branched covers. *Int. Math. Res. Not.*, 2017. math-ph/1412.1698.
- [18] B. Eynard. Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence. J. High Energy Phys., 2009(3):003, 20, 2009. math-ph/0802.1788.
- [19] B. Eynard. Counting Surfaces, Progress in Mathematical Physics Volume 70. 2016.

References IV

- [20] B. Eynard. The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition. 2018. math-ph/1706.04938.
- [21] B. Eynard and E. Garcia-Failde. From topological recursion to wave functions and PDEs quantizing hyperelliptic curves. 2019. arXiv:1911.07795.
- [22] B. Eynard, E. Garcia-Failde, O. Marchal, and N. Orantin. Quantization of classical spectral curves via topological recursion. 2021. arXiv:21xxxxx.
- [23] B. Eynard and M. Mariño. A holomorphic and background independent partition function for matrix models and topological strings. J. Geom. Phys., 61(7):1181–1202, 2011. hep-th/0810.4273.
- [24] B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. *Commun. Number Theory and Physics*, 1(2), 2007. math-ph/0702045.
- [25] B. Eynard and N. Orantin. Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models. 2007. math-ph/0705.3600.

References V

- [26] B. Eynard and N. Orantin. Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture. *Commun. Math. Phys.*, 337(2):483–567, 2015. math-ph/1205.1103.
- [27] J. P. Harnad. Dual isomonodromic deformations and moment maps to loop algebras. *Commun. Math. Phys.*, 166:337–366, 1994.
- [28] K. Iwaki. 2-parameter τ -function for the first Painlevé equation: topological recursion and direct monodromy problem via exact WKB analysis. *Comm. Math. Phys.*, 377(2):1047–1098, 2020. arXiv:1902.06439.
- [29] K. Iwaki, O. Marchal, and A. Saenz. Painlevé equations, topological type property and reconstruction by the topological recursion. J. Geom. Phys., 124:16–54, 2018. math-ph/1601.02517.
- [30] K. Iwaki and A. Saenz. Quantum curve and the first Painlevé equation. SIGMA Symmetry Integrability Geom. Methods Appl., 12:Paper No. 011, 24, 2016. math-ph/1507.06557.
- [31] O. Marchal and M. Alameddine. Hamiltonian representation of isomonodromic deformations of twisted rational connections: The Painlevé 1 hierarchy, 2023. arXiv:2302.13905.

References VI

- [32] O. Marchal and N. Orantin. Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion. 2019. arXiv:1911.07739.
- [33] O. Marchal and N. Orantin. Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the sl₂ case. J. Math. Phys., 61(6):061506, 33, 2020.
- [34] O. Marchal, N. Orantin, and M. Alameddine. Hamiltonian representation of isomonodromic deformations of general rational connections on $\mathfrak{gl}_2(\mathbb{C})$, 2022. arXiv:2212.04833.
- [35] M. Mulase and P. S. kowski. Spectral curves and the Schrödinger equations for the Eynard-Orantin recursion. Adv. Theor. Math. Phys., 19(5):955–1015, 2015. arXiv:1210.3006.
- [36] P. Norbury. Quantum curves and topological recursion. In *String-Math 2014*, volume 93 of *Proc. Sympos. Pure Math.*, pages 41–65. Amer. Math. Soc., Providence, RI, 2016. arXiv:1502.04394.
- [37] P. Norbury and N. Scott. Gromov-Witten invariants of P¹ and Eynard-Orantin invariants. *Geom. Topol.*, 18(4):1865–1910, 2014. math.AG/1106.1337.

References VII

- [38] B. Safnuk. Topological recursion for open intersection numbers. Commun. Number Theory Phys., 10(4):833–857, 2016. arXiv:1601.04049.
- [39] N. C. V. Bouchard and T. Dauphinee. Quantizing Weierstrass. Commun. Number Theory Phys., 12(2):253–303, 2018. math-ph/1610.00225.
- [40] J. Zhou. Intersection numbers on Deligne–Mumford moduli spaces and quantum Airy curve. 2012. arXiv:1206.5896.