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proposed by Olivier Marchal and Nicolas Orantin

1 Introduction: the Airy curve
Let us consider the Airy curve y2 = x which defines a genus zero spectral curve with a rational
parameterization {

x(z) = z2

y(z) = z
. (1-1)

This curve has a local involution z ↔ −z such that x(z) = x(−z) and y(−z) = −y(z).
Let us consider as initial condition for the topological recursion{

ω0,1(z) := y(z)dx(z) = 2z2dz
ω0,2(z1, z2) := dz1 dz2

(z1−z2)2
. (1-2)

Remark that the spectral curve having vanishing genus, one does not have any freedom for
choosing ω0,2.

The topological recursion then defines differential forms ωh,n by induction

ωh,n+1(z0, z1, . . . , zn) := Res
z→0

∫ z
−z ω0,2(z0, ·)

2(y(z)− y(−z))dx(z)

[
ωh−1,n+2(z,−z, z1, . . . , zn) +

∑
ωh1,|A|+1(z, A)ωh1,|B|+1(−z, B)

]
.

(1-3)
Let us now define the primitives (there is a choice of sheets for the function z(x) to be made)

S±−1(x) := ±1

2

∫ z(x)

−z(x)

ω0,1, (1-4)

S±0 (x) :=
1

4

[
1

2

∫ z2

z1

∫ z2

z1

ω0,2 − ln(x(z1)− x(z2))

]
z1 = −z(x)
z2 = z(x)

(1-5)

and

∀m ≥ 1 , S±m(x) :=
∑

h ≥ 0, n ≥ 1
2h− 2 + n = m

(±1)n

n! 2n

∫ z(x)

−z(x)

. . .

∫ z(x)

−z(x)

ωh,n. (1-6)

With these functions, one can define the perturbative wave functions

ψ±(x, ~) := exp

[ ∑
m≥−1

~mS±m(x)

]
. (1-7)

Theorem 1.1. One has the quantum curve equation[
ŷ2 − x̂

]
ψ±(x, ~) = 0 (1-8)

where
x̂ := x , ŷ := ~

d

dx
(1-9)

satisfy
[ŷ, x̂] = ~. (1-10)
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Proof. Move the integration contour in the TR formule to get contributions from the poles of ydx
and the coinciding points from ω0,2. After evaluation integration and specialization, this gives the
loop equations which imply the quantum curve formula.

This is a very simple case where the spectral curve has genus 0. Bouchard and Eynard proved
that such a quantization procedure is possible for any genus 0 spectral curve. However, the higher
genus case is much more intricate because of other contributions to the loop equations when moving
the integration contours and non-trivial monodromies for the wave functions.

We shall consider such higher genera curves in the present context.
Remark that the Airy equation can be linearized into

~
d

dx

(
ψ1(x)
ψ2(x)

)
= L(x)

(
ψ1(x)
ψ2(x)

)
(1-11)

with
L(x) :=

(
0 1
x 0

)
. (1-12)

(ψ1, ψ2) = (ψ±, ~dxψ±) are solutions to these equations (independent away from the branch points).
The associated spectral curve (locus of the eigenvalues) reads

det(y − L(x)) = y2 − x = 0 (1-13)

and is independent of ~. This is a feature of the quantization of genus 0 curves.
One can interpret this as defining a connection ~d− L(x)dx on the base curve P1.

2 Space of spectral curves and TR

2.1 Space of spectral curves

We shall consider curves Σ defined by an equation of the form

y2 = φ(x) (2-1)

where φ(x) is a rational function. Choosing such a curve is equivalent to choosing a quadratic
differential φ(x)(dx)2 on the base curve P1. In the following, we fix the poles and degree at poles
of φ(x) so that it reads

φ(x) =

2(r∞−2)−n∞∑
k=0

H∞,kx
k +

n∑
ν=1

2rν∑
k=1

Hν,k

(x−Xν)k
(2-2)

where n∞ ∈ {0, 1}. In the following, unless stated explicitly, we consider curves which are not
ramified above infinity meaning that n∞ = 0. The notations H refer to Hamiltonians when
equipping the space fo quadratic differentials with a Poisson structure.

For such a curve, there exist two points (α+
ν , α

−
ν ) (resp. ∞±) above Xν (resp. ∞) where one

has an expansion of the one form ydx of the form

ydx = ±
rν∑
k=1

Tν,k
dx

(x−Xν)k
+O(dx) (2-3)
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around α±ν and

ydx = ∓
r∞∑
k=1

T∞,kx
k−2dx+O(x−2dx) (2-4)

where the coefficients of the singular part are the KP times discussed in Bertrand’s lecture. Let
us denote the set of poles of ydx by P := {∞±, α±ν }.

If the spectral curve does not have genus 0, fixing the KP times does not fix ydx completely as
a one form. One way to fix it is obtained by choosing a Torelli marking by fixing a set of cycles
(Ai,Bi)gi=1 so that it forms a basis of H1(Σ \ P ,Z) when completed by small circles around the
poles in P and such that

Ai
⋂
Bj = δi,j. (2-5)

With such a choice, one can fix

∀i = 1, . . . g , εi =

∮
Ai
ydx (2-6)

called the filling fractions.
ydx is uniquely defined by the values of the KP times and the filling fractions. However, it

does not depend on the choice of Torelli marking.

Exercise Show that H∞,k does not depend on the filling fractions for k ≥ r∞ − 3. Obtain a
similar result for the poles Xν for k ≥ rν + 1. Prove that the genus of the spectral curve is equal
to

g = r∞ +
n∑
ν=1

rν − 3 (2-7)

which is the number of coefficients depending on the filling fractions.
From the integrable system perspective, KP-times fix a set of Casimirs and thus a symplectic

leaf in a Poisson manifold while the filling fractions provide local coordinates in the corresponding
symplectic space.

Example
Consider n = 0, i.e. a single pole at infinity and r∞ = 4. This leads to an expansion of the

form
ydx = T∞,4x

2dx+ T∞,3xdx+ T∞,2dx+ T∞,1x
−1dx+O(x−2dx) (2-8)

and the spectral curve equation

y2 = T 2
∞,4x

4 + 2T∞,3T∞,4x
3 +

(
2T∞,4T∞,2 + T 2

∞,3
)
x2 + (2T∞,4T∞,1 + 2T∞,3T∞,2)x+H0. (2-9)

Using Newton’s polytope (or the picture of a cover), one can see that one has a genus 1 spectral
curve. Let us denote

ε =

∮
A
ydx. (2-10)

2.2 Topological recursion and variational formulae

In order to define TR, one needs a set of two initial data. On the one hand,

ω0,1 = ydx (2-11)
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is provided by the spectral curve. We shall now choose ω0,2 by imposing that

∀i = 1, . . . , g ,

∮
Ai
ω0,2(z1, ·) = 0. (2-12)

With such initial data, we define by induction

ωh,n(z1, . . . , zn) :=
∑
p∈R

Res
z→p

∫ z
σ(z)

ω0,2(z1, ·)
2 (ω0,1(z)− ω0,1(σ(z)))

[
ωh−1,n+1(z, σ(z), z2, . . . , zn)

+
∑

h1 + h2 = h
A tB = {z2, . . . , zn}

(h1, |A|) /∈ {(0, 0), (h, n− 1)}

ωh1,|A|+1(z, A)ωh2,|B|+1(z, B)

]

where σ : Σ→ Σ is the hyper-elliptic involution, namely, it is defined by

∀ z ∈ Σ \ R , x(z) = x(σ(z)) and σ(z) 6= z. (2-13)

R denotes the set of branch points of the spectral curve.
For h ≥ 2, we define the free energies by

ωh,0 :=
1

2− 2h

∑
p∈R

Res
z→p

ωh,1(z)

∫ z

o

ω0,1

where o ∈ Σ is an arbitrary base point of which ωh,0 is independent.

Lemma 2.1. From the general theory of TR, one has

∀ k ≥ 2 ,
∂ωh,n(z)

∂T∞,k
= Res

p→∞+
ωh,n+1(p, z)

x(p)k−1

k − 1
− Res

p→∞−
ωh,n+1(p, z)

x(p)k−1

k − 1
, (2-14)

∀ k ≥ 2 ,
∂ωh,n(z)

∂Tν,k
= Res

p→α+
ν

ωh,n+1(p, z)
(x(p)−Xν)

−k+1

k − 1
− Res
p→α−ν

ωh,n+1(p, z)
(x(p)−Xν)

−k+1

k − 1
(2-15)

and
∂ωh,n(z)

∂Tν,1
=

∫ p

α+
ν

ωh,n+1(·, z)−
∫ p

α−ν

ωh,n+1(·, z). (2-16)

For the filling fractions, one has

∀ j ∈ J1, gK :
∂ωh,n(z)

∂εj
=

1

2πi

∮
Bj
ωh,n+1(·, z). (2-17)

Exercise
Show that The expansion of ω0,1 in local coordinates around its poles reads

• around α±ν ,

ω0,1 = ±
rν∑
k=1

Tν,k
dx

(x−Xν)k
±

rν∑
k=2

k − 1

2

∂ω0,0

∂Tν,k
(x−Xν)

k−2dx+O((x−Xν)
rν−1dx)
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• around ∞±,

ω0,1 = ∓
r∞∑
k=1

T∞,kx
k−2dx∓

r∞∑
k=2

k − 1

2

∂ω0,0

∂T∞,k
x−kdx+O(x−r∞−1dx).

Show that it implies that

y2 =

( r∞∑
k=1

T∞,kx
k−2

)2

∞,+

+
n∑
ν=1

( rν∑
k=1

Tν,k
dx

(x−Xν)k

)2

Xν ,−

+
∑
k∈K∞

U∞,k(x)
∂ω0,0

∂T∞,k
+

n∑
ν=1

∑
k∈Kν

Uν,k(x)
∂ω0,0

∂Tν,k
(2-18)

Here, [f(x)]∞,+ (resp. [f(x)]Xν ,−) refers to the positive part of the expansion in x of a function
f(x) around ∞, including the constant term, (resp. the strictly negative part of the expansion in
(x−Xν) around Xν) and we have defined

• K∞ = J2, r∞ − 2K and ∀ k ∈ K∞:

U∞,k(x) := (k − 1)
r∞∑

l=k+2

T∞,l x
l−k−2. (2-19)

• Kν = J2, rν + 1K and ∀ k ∈ Kν :

Uν,k(x) := (k − 1)
rν∑

l=k−1

Tν,l (x−Xν)
−l+k−2. (2-20)

Example
In the case above this gives

H0 = 2T∞,1T∞,3 + T 2
∞,2 + T∞,4

∂ω0,0

∂T∞,2
. (2-21)

We shall now prove that this formula is the leading order in ~ of a PDE.

2.3 Symmetries (Exercise)

In addition to the variational formulas, the output of the topological recursion is skew-symmetric
under the hyper-elliptic involution σ, i.e.

∀h ≥ 0 , ∀n ≥ 1 : ωh,n(z1, . . . , zn) + ωh,n(σ(z1), z2, . . . , zn) = δh,0δn,2
dx(z1) dx(z2)

(x(z1)− x(z2))2
. (2-22)

One also has
∀ (z1, z2) ∈ (Σ)2 \∆ , ω0,2(z1, z2) = ω0,2(σ(z1), σ(z2)) (2-23)

where ∆ := {(z, z) ∈ Σ2, z ∈ Σ}.
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One can use these symmetry properties to easily obtain a few equalities that we shall use
repetitively in the following:

∀ (z1, z2) ∈ Σ2 \∆ ,

∫ z1

σ(z1)

ω0,2(z2, ·) = −
∫ z1

σ(z1)

ω0,2(σ(z2), ·) (2-24)

which implies, for any ramification point a (thus satisfying σ(a) = a),

∀ (z1, z2) ∈ Σ2 \∆ ,

∫ z1

a

∫ z2

σ(z2)

ω0,2 = −
∫ σ(z1)

a

∫ z2

σ(z2)

ω0,2. (2-25)

3 PDE from TR

3.1 Definitions

Definition 3.1 (Perturbative partition function). Given an admissible initial data, one defines
the perturbative partition function as a function of a formal parameter ~ and the initial data by

Zpert(~,T, ε) := exp

(
∞∑
h=0

~2h−2ωh,0(T, ε)

)
. (3-1)

Definition 3.2 (Definition of (Fh,n)h≥0,n≥1 by integration of the correlators). For n ≥ 1 and h ≥ 0
such that 2h− 2 + n ≥ 1, let us define

Fh,n(z1, . . . , zn) =
1

2n

∫ z1

σ(z1)

. . .

∫ zn

σ(zn)

ωh,n

where one integrates each of the n variables along paths linking two Gallois conjugate points inside
a fundamental domain cut out by the chosen symplectic basis (Aj,Bj)1≤j≤g(Σ).
For (h, n) = (0, 1), we define similarly

F0,1(z) :=
1

2

∫ z

σ(z)

ω0,1.

Finally, for (h, n) = (0, 2), one cannot define F0,2 in the exact same way since ω0,2 has poles on
the diagonal ∆. One thus needs to regularize it by removing the polar part. Hence, we define

F0,2(z1, z2) :=
1

4

∫ z1

σ(z1)

∫ z2

σ(z2)

ω0,2 −
1

2
ln (x(z1)− x(z2)) .

Exercice
The definition above seems to depend heavily on an integration path. However, it does only

through the first few orders. To see that, prove that, for any p ∈ R,

Res
z→p

ωh,n+1(z, z1, . . . , zn) = 0. (3-2)

Definition 3.3 (Definition of the perturbative wave functions). We define:

S± pert
−1 (x) := ±F0,1(z(x))
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S± pert
0 (x) :=

1

2
F0,2(z(x), z(x))

∀ k ≥ 1 , S± pert
k (x) :=

∑
h≥0,n≥1

2h−2+n=k

(±1)n

n!
Fh,n(z(x), . . . , z(x))

where, for any x ∈ P1, we define z(x) ∈ Σ as the unique point such that x(z(λ)) = λ and
ω0,1(z(λ)) =

√
φ(λ)dλ. Remark that the ± sign refers to the choice of sheet for choosing a point

in the pre-image of λ.
Eventually, we define the perturbative wave functions ψ± by:

ψ±(x, ~,T, ε) := exp

(∑
k≥−1

~kS± pert
k (x)

)

3.2 Equation for the wave function

Let us now obtain a PDE for the wave function. For this purpose, let us move the integration
contour for the TR formula. First, let us integrate the recursion formula along the path chosen
above for z2, . . . , zn and then move the integration contour for z getting contributions from the
boundary of a chosen fundamental domain D. One gets

1

2πi

∮
z∈δD

K(z1, z)Rh,n(z, z2, . . . , zn) =
∑
a∈R

Res
z→a

K(z1, z)Rh,n(z, z2, . . . , zn)

+
n∑
i=1

Res
z→zi,σ(zi)

K(z1, z)Rh,n(z, . . . , zn) (3-3)

where, for 2h− 2 + n ≥ 1

Rh,n(z1, . . . , zn) := du1du2 [Fh−1,n+1(u1, u2, z2, . . . , zn)

+
stable∑

h1 + h2 = h
A tB = {z2, . . . , zn}

Fh1,|A|+1(u1, A)Fh2,|B|+1(u2, B)



∣∣∣∣∣∣∣∣∣∣∣
u1=z1 , u2=σ(z1)

+
n∑
j=2

1

2

∫ zj

σ(zj)

ω0,2(z1, ·) dσ(z1)Fh,n−1(σ(z1), z{2,...,n}\{j})

+
n∑
j=2

1

2

∫ zj

σ(zj)

ω0,2(σ(z1), ·) dz1Fh,n−1(z1, z{2,...,n}\{j})

(3-4)

where du refers to the exterior derivative with respect to the variable u (which has nothing to do
with a local coordinate),

K(z1, z) :=

∫ z
σ(z)

ω0,2(z1, ·)
2(ω0,1(z)− ω0,1(σ(z)))

(3-5)

and dudvF0,2(u, v) := ω0,2(u, v). In order to derive this expression, one has used that for (h, n) 6=
(0, 2)

dz1Fh,n(z1, . . . , zn) =
1

2n−1

∫ z2

σ(z2)

. . .

∫ zn

σ(zn)

ωh,n(z1, ·, . . . , ·). (3-6)
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The first term of the right hand side is the recursive definition of dz1Fh,n(z1, . . . , zn).
The other terms get only contributions from the poles of ω0,2. First of all, one can observe that

K(z, z1)Rh,n(z, z2, . . . , zn) = K(σ(z), z1)Rh,n(σ(z), z2, . . . , zn) (3-7)

meaning that, for i ∈ J1, nK,

Res
z→zi,σ(zi)

K(z1, z)Rg,n(z, . . . , zn) = 2 Res
z→zi

K(z1, z)Rg,n(z, . . . , zn). (3-8)

The same properties imply that

Rh,n(z1, . . . , zn) := −du1du2

[
Fh−1,n+1(u1, u2, z2, . . . , zn)+

+
stable∑

h1 + h2 = h
A tB = {z2, . . . , zn}

Fh1,|A|+1(u1, A)Fh2,|B|+1(u2, B)



∣∣∣∣∣∣∣∣∣∣∣
u1=u2=z1

−
n∑
j=2

∫ zj

σ(zj)

ω0,2(z1, ·) dz1Fh,n−1(z1, z{2,...,n}\{j})

(3-9)

One has a simple pole as z → z1 which gives

Res
z→z1,σ(z1)

K(z1, z)Rg,n(z, . . . , zn) =
1

2ω0,1(z1)
du1du2

[
Fh−1,n+1(u1, u2, z2, . . . , zn)+

+
stable∑

h1 + h2 = h
A tB = {z2, . . . , zn}

Fh1,|A|+1(u1, A)Fh2,|B|+1(u2, B)



∣∣∣∣∣∣∣∣∣∣∣
u1=u2=z1

+
n∑
j=2

∫ zj
σ(zj)

ω0,2(z1, ·)
2ω0,1(z1)

dz1Fh,n−1(z1, z{2,...,n}\{j}) (3-10)

where z{2,...,n}\{j} = {z2, . . . , zn} \ {zj}.
One can further compute

Res
z→zj ,σ(zj)

K(z1, z)Rh,n(z, . . . , zn) = 2 Res
z→zj

K(z1, z)Rh,n(z, . . . , zn)

= −

∫ zj
σ(zj)

ω0,2(z1, ·)
2ω0,1(zj)

dzjFh,n−1(zj, z{2,...,n}\{j}) (3-11)
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Combining all this, one gets
1

2πi

∮
z∈δDK(z1, z)Rh,n(z, . . . , zn) = dz1Fh,n(z1, . . . , zn)

+
n∑
j=2

∫ zj
σ(zj)

ω0,2(z1, ·)
[
dz1Fh,n−1(z1,z{2,...,n}\{j})

2ω0,1(z1)
− dzjFh,n−1(zj ,z{2,...,n}\{j})

2ω0,1(zj)

]
+ 1

2ω0,1(z1)
du1du2

[
Fh−1,n+1(u1, u2, z2, . . . , zn)

+
stable∑

h1 + h2 = h
A tB = {z2, . . . , zn}

Fh1,|A|+1(u1, zA)Fh2,|B|+1(u2, zB)

]
u1=u2=z1

.

(3-12)

By Riemann bilinear identity, the left hand side is a holomorphic form in z1, concluding the
proof.

Exercise Show that
∮
z∈δDK(z1, z)Rh,n(z, . . . , zn) is indeed holomorphic in z1.

Exercise Show that

1

2πi

∮
z∈δD

K(z1, z)R0,3(z, z2, z3) = dz1F0,3(z1, z2, z3) +

∫ z2
σ(z2)

ω0,2(z1, ·)
∫ z3
σ(z3)

ω0,2(z1, ·)
4ω0,1(z1)

−

∫ z2
σ(z2)

ω0,2(z1, ·)
∫ z3
σ(z3)

ω0,2(z2, ·)
4ω0,1(z2)

−

∫ z3
σ(z3)

ω0,2(z1, ·)
∫ z2
σ(z2)

ω0,2(z3, ·)
4ω0,1(z3)

.

(3-13)

and
1

2πi

∮
z∈δD

K(z1, z)R1,1(z) = dz1F1,1(z1)− ω0,2(z1, σ(z1))

2ω0,1(z1)
. (3-14)

An interesting property of holomorphic forms on a hyper-elliptic curve is that they can be
expressed in terms of residue at the poles of ydx.

Exercise Show that, for any holomorphic differential ω on Σφ, one has

−2
y(z1)

dx(z1)
ω(z1) =

∑
p∈P

Res
z2→p

ω(z2) y(z2)

x(z2)− x(z1)

where P = {α±i ,∞±}.
With this property, one can express the holomorphic functions in terms of residues at the poles

of ydx and then express it in terms of variations with respect to the KP times. After evaluating
at z1 = z and some simple computations, summing over h and n leads to

∂2S+ pert
m−1 (x)

∂x2
+

∑
m1+m2=m−1

∂S+ pert
m1

(x)

∂x

∂S+ pert
m2

(x)

∂x
= −

∑
2h−2+n=m

∑
p∈P

Res
z′→p

y(z′)

x(z′)− x(z)

dz′Fh,n(z′, z, . . . , z)

(n− 1)!
.

(3-15)
Let us now interpret the right hand side in terms of the variational formulas.

Exercise. Prove that 3-15 can be recast into, for m ≥ 2,

0 =
∂2S+ pert

m (x)

∂x2
+

∑
m1+m2=m−1

∂S+ pert
m1

(x)

∂x

∂S+ pert
m2

(x)

∂x
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−
r∞−2∑
K=2

U∞,K(x(z))
∂S+ pert

m−1 (x)

∂T∞,K
−
∑
ν

rbν+1∑
K=2

Ubν ,K(x(z))
∂S+ pert

m−1 (x)

∂Tbν ,K

−
∞∑
k=0

δm+1,2k

[
r∞−2∑
K=2

U∞,K(x(z))
∂ωk,0
∂T∞,K

∑
ν

rbν+1∑
K=2

Ubν ,K(x(z))
∂ωk,0
∂Tbν ,K

]
.

(3-16)

One can obtain similar results for m ∈ {−1, 0, 1} so that summing over m gives the following
result.

Theorem 3.1. The perturbative wave functions are solutions of the PDE~2 ∂
2

∂x2
− ~2

∑
k∈K∞

U∞,k(x)
∂

∂T∞,k
− ~2

n∑
ν=1

∑
k∈KXν

Uν,k(x)
∂

∂Tν,k
−H(x)

ψ±(x, ~) = 0 (3-17)

where

H(x) =

~2
∑
k∈K∞

U∞,k(x)
∂

∂T∞,k
+ ~2

n∑
ν=1

∑
k∈KXν

Uν,k(x)
∂

∂Tν,k

 [logZpert(~)− ~−2ω0,0

]
+ y(x)2.

(3-18)

Example
In the preceding example, one gets[

~2 ∂
2

∂x2
− ~2T∞,4

∂

∂T∞,2
−H(x)

]
ψ±(x, ~) = 0 (3-19)

where
H(x) = ~2T∞,4

∂

∂T∞,2

[
logZpert(~)− ~−2ω0,0

]
+ y(x)2. (3-20)

3.3 Monodromies

The perturbative wave functions ψ± satisfy the following properties.

• For i ∈ J1, gK, the function ψ±(x, ~,T, ε) has a formal monodromy along Ai given by

ψ±(x, ~,T, ε) 7→ e±2πi
εi
~ ψ±(x, ~,T, ε). (3-21)

• For i ∈ J1, gK, the function ψ±(x, ~,T, ε) has a formal monodromy along Bi given by

ψ±(x, ~,T, ε) 7→ Zpert(~,T, ε± ~ ei)
Zpert(~,T, ε)

ψ±(x, ~,T, ε± ~ ei) (3-22)

where ei ∈ Cg is the vector with the ith component equal to 1 and all others vanishing.

Proof. Reminding that the A-periods of the ωh,n are vanishing unless for (h, n) = (0, 1) where

∀ j ∈ J1, gK : εj =

∮
Aj
ω0,1, (3-23)
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one immediately gets the first claim.
The second claim follows a simple computation similar to the one for Painlevé 1 written in [?].
The analytic continuation of the perturbative wave function along the cycle Bj reads

exp

∑
h≥0

∑
n≥1

~2h−2(±~)n

n! 2n

∑
n1+n2=n

(
n
n1

)
2n1

n1︷ ︸︸ ︷∮
Bj
. . .

∮
Bj

n2︷ ︸︸ ︷∫ z

σ(z)

. . .

∫ z

σ(z)

ωh,n


= exp

∑
h≥0

∑
n≥1

~2h−2(±~)n
∑

n1+n2=n

1

2n2n1!n2!

∂n1

∂εn1
j

n2︷ ︸︸ ︷∫ z

σ(z)

. . .

∫ z

σ(z)

ωh,n2

 . (3-24)

Factoring out the terms with n2 = 0 gives

exp

[∑
h≥0

∑
n≥1

~2h−2(±~)n

n!

∂n

∂εnj
ωh,0

]
exp

∑
n1≥0

(±~)n1

n1!

∂n1

∂εn1
j

∑
h≥0

∑
n2≥1

~2h−2(±~)n2
1

2n2 n2!

n2︷ ︸︸ ︷∫ z

σ(z)

. . .

∫ z

σ(z)

ωh,n2


(3-25)

leading to the result.

4 Non-perturbative quantities
At this stage we have perturbative wave functions ψ±(x, ~,T, ε) defined as

ψ±(x, ~,T, ε) = exp

(
∞∑

k=−1

~kS±k (x,T, ε)

)
(4-1)

where S±k are directly defined from TR

S±k (x,T, ε) =
∑

h,n≥0 , 2h−2+n=k

(±1)n

2nn!

∫ z

σ(z)

. . .

∫ z

σ(z)

ωh,n (4-2)

with some regularizations for S±−1 and S±0 satisfy some KZ equations:[
~2 ∂

2

∂x2
−~2

r∞−2∑
k=2

U∞,k(x)
∂

∂T∞,k
− ~2

n∑
ν=1

rν+1∑
k=2

Uν,k(x)
∂

∂Tν,k
−H(x)

]
ψ± = 0 (4-3)

where

H(x) = y2 +

[
~2

r∞−2∑
k=2

U∞,k(x)
∂

∂T∞,k
+ ~2

n∑
ν=1

rν+1∑
k=2

Uν,k(x)
∂

∂Tν,k

] (
logZpert − h−2ω0,0

)
(4-4)

We recall that

Uν,k(x) = (k − 1)
rν∑

l=k−1

Tν,l(x−Xν)
k−l−2 , ∀ ν ∈ J1, nK , , k ∈ J2, rν + 1K

11



U∞,k(x) = (k − 1)
r∞∑

l=k+2

T∞,lx
l−k−2 , ∀ k ∈ J2, r∞ − 2K and n∞ = 0

U∞,k(x) =

(
k − 3

2

) r∞∑
l=k+2

T∞,lx
l−k−2 , ∀ k ∈ J2, r∞ − 2K and n∞ = 1

(4-5)

and Kν = J2, rν + 1K for ν ∈ J1, nK and K∞ = J2, r∞ − 2K.
Terms in green would correspond to the naive quantization (i.e. replacing y by ~∂x). Terms in

blue are non-trivial ~-corrections having only pole singularities at poles P = {X1, . . . , Xn} ∪ {∞}
of the initial classical spectral curve . Terms in red are differential terms relatively to KP (spectral)
times, making KZ equations a set of PDEs rather than ODEs.

The second important feature is that the perturbative wave functions do not have good mon-
odromies around (Ai,Bi)gi=1 cycles:

ψ±(x, ~,T, ε)
Ai→ e

±2iπεi
~ ψ±(x, ~,T, ε)

ψ±(x, ~,T, ε)
Bi→ Zpert(~,T, ε + ~ei)

Zpert(~,T, ε)
ψ±(x, ~,T, ε + ~ei) (4-6)

In order to obtain better monodromies, we need to “sum over filling fractions”, i.e. take formal
discrete Fourier transform in order to absorb the shift appearing in the B-cycles.

Definition 4.1 (Non-perturbative wave functions). We define the non-perturbative partition func-
tion and wave functions by

Z(~,T, ε,ρ) =
∑
k∈Zg

e
2iπ
~

g∑
j=1

kjρj
Zpert(~,T, ε + ~k)

Ψ±(x, ~,T, ε,ρ) =
1

Z(~,T, ε,ρ)

∑
k∈Zg

e
2iπ
~

g∑
j=1

kjρj
Zpert(~,T, ε + ~k)ψ±(x, ~,T, ε + ~k)

(4-7)

ρ is a given vector. After exchanging the order of the summations
∑
k∈Zg

∞∑
k=−1

→
∞∑

k=−1

∑
k∈Zg

, we

no longer have formal WKB series but rather trans-series in ~ of the following form.

Z(~,T, ε,ρ) = Zpert(~,T, ε)
∞∑
m=0

~mΘm(~,T, ε,ρ) (4-8)

where Θm are finite linear combination of derivatives of Riemann θ-functions:

Θm(~,T, ε,ρ) =
∂mθ(v, τ)

∂vi1 . . . ∂vim |v=φ+ρ
~

(4-9)

with φj = ∂εjω0,0 and τi,j = ∂2ω0,0

∂εi∂εj
. All future equalities are do be understood as formal identifica-

tions of the coefficients regarding the trans-monomial expansion.

The main advantage of this formal Fourier transform is that it cures the monodromy issue.
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Theorem 4.1. The non-perturbative wave functions have good monodromies:

Ψ±(x, ~,T, ε,ρ)
Ai→ e

±2iπεi
~ ψ±(x, ~,T, ε,ρ)

Ψ±(x, ~,T, ε,ρ)
Bi→ e

−±2iπρi
~ ψ±(x, ~,T, ε,ρ) (4-10)

The proof is straightforward using the monodromies of the perturbative wave functions (Easy
exercise for those interested).

The main advantage to deal with wave functions having good monodromy properties is that
it will allow to have rational functions of x as soon as we will have quantities with no essential
singularities at ∞ later on. Another advantage of the discrete Fourier transform is that it be-
haves well with the KZ equations that are linear equations. Therefore, former KZ equations may
immediately be adapted for non-perturbative wave functions:

Theorem 4.2 (KZ equation for non-perturbative wave functions). The non-perturbative wave
functions satisfies[

~2 ∂
2

∂x2
− ~2

r∞−2∑
k=2

U∞,k(x)
∂

∂T∞,k
− ~2

n∑
ν=1

rν+1∑
k=2

Uν,k(x)
∂

∂Tν,k
−H(x)

]
Ψ± = 0 (4-11)

with

H(x) = y2 +

[
~2

r∞−2∑
k=2

U∞,k(x)
∂

∂T∞,k
+ ~2

n∑
ν=1

rν+1∑
k=2

Uν,k(x)
∂

∂Tν,k

] (
logZ − h−2ω0,0

)
(4-12)

In other words, we only replaced perturbative wave functions and partition function by their
non-perturbative counterpart.

5 Quantum curve

5.1 Expression of the quantum curve

So far (4-11) is still a PDE rather than an ODE. We need to find a way to turn it into some
ODEs with controlled rational functions. In order to do it, we look at the Wronskians and some
associated quantities:

Definition 5.1 (Wronskian and associated quantities). We define for all p ∈ J1, nK ∪ {∞} and
k ∈ Kp:

W (x) = ~ (Ψ−∂xΨ+ −Ψ+∂xΨ−)
WTp,k(x) = ~

(
Ψ−∂Tp,kΨ+ −Ψ+∂Tp,kΨ−

)
Rp,k(x) =

WTp,k(x)

W (x)

Qp,k(x) =
~2

W (x)

(
(∂xΨ+)(∂Tp,kΨ−)− (∂xΨ−)(∂Tp,kΨ+)

)
(5-1)

and

R(x) =
∑
p∈P

∑
p∈Kp

Up,k(x)Rp,k(x)

Q(x) =
∑
p∈P

∑
p∈Kp

Up,k(x)Qp,k(x) (5-2)
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Rp,k and Qp,k are defined so that they transform a derivative relatively to Tp,k into a derivative
relatively to x: (

Ψ+ Ψ−
~∂Tp,kΨ+ ~∂Tp,kΨ−

)
=

(
1 0

Qp,k(x) Rp,k(x)

)(
Ψ+ Ψ−

~∂xΨ+ ~∂xΨ−

)
(5-3)

For example, it is trivial to check that

Qp,kΨ± +Rp,k~∂xΨ± = ~∂Tp,kΨ± (5-4)

Using these quantities, the KZ equations turns into an ODE:

Theorem 5.1 (Quantum curve). We have[
~2 ∂

2

∂x2
− ~2R(x)

∂

∂x
− ~Q(x)−H(x)

]
Ψ± = 0 (5-5)

The proof is trivial because the PDE part of the KZ equation reads:[
~2

r∞−2∑
k=2

U∞,k(x)
∂

∂T∞,k
− ~2

n∑
ν=1

rν+1∑
k=2

Uν,k(x)
∂

∂Tν,k

]
Ψ± = Q(x)Ψ± +R(x)~∂xΨ± (5-6)

If the quantum curve looks interesting, it does not contain any interesting information if one can-
not control the singularity structure of the coefficients involved. This requires to study the singu-
larity structure of R(x) and Q(x) (since H(x) has a x-dependence given by (Up,k(x))p∈J1,nK∪{∞},k∈Kp
that only have poles in P). We first get that they are rational functions of x because

• Wronskians W (x) and WTp,k(x) are rational functions of x since they have no monodromies
and no essential singularities at ∞.

• Consequently Rp,k(x) are rational functions of x

• Alternative expression (left in exercise) for Qp,k given by

Qp,k(x) =
~
2

∑
p∈P

∑
k∈Kp

Up,k(x)
(
∂W (x)
∂Tp,k

−
∂WTp,k

(x)

∂x

)
W (x)

(5-7)

implies that Qp,k is also a rational function of x.

• Since Up,k(x) are rational functions, R(x) and Q(x) are finally rational functions.

5.2 Location of the poles

By definition, Ψ± are constructed by TR so that they may be singular at critical values and at
x ∈ P . This implies that the Wronkians and all associated quantities have a priori the same
singularity structure. What we need is to exclude singularities at the critical values. This can be
achieved using the following results
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1. Rp,k and Qp,k have no pole at the ramification points and thus R(x) and Q(x) have no pole
at ramification points
This result is very technical and no proof will be given here. Let us quickly say that it
follows from the identification of ∂2

x∂Tp,kΨ± = ∂Tp,k∂
2
xΨ± and identification of the coefficients

in the trans-series. The main tool is to observe that derivation relatively to x preserve the
~-grading while derivation relatively to Tp,k decreases the ~-grading by 1. The proof follows
by contradiction at leading order in ~ and then from a technical induction for higher orders
in the ~-trans-series.

2. We have R(x) = 1
W (x)

∂
∂x
W (x). This is a classical result of second order linear ODE. It

also follows directly from ∂xW (x) = ~ ((∂2
xΨ+)Ψ− −Ψ+(∂2

xΨ−)) and using the ODE (5-5) to
replace the second derivative.

3. W (x) and WTp,k(x) may only have poles at x ∈ P . Indeed, we know that the only possible
poles are x ∈ P and critical values. However a pole at a critical value would imply that
R(x) = 1

W (x)
∂
∂x
W (x) would be singular at that point which contradicts the previous result.

Identity WTp,k(x) = Rp,k(x)W (x) provides the result for WTp,k(x).

5.3 Control of the order of the poles

We know that R(x) and Q(x) are rational functions with only poles in P so that the locations
of the poles in the coefficients of the quantum curve are indeed the same as the initial classical
spectral curve. However in order to have a better understanding of the quantum curve, we need to
control the order of the poles and hopefully prove that they remain similar to the initial classical
spectral curve. This can be achieved by the study of the asymptotics of the wave functions (which
follows from the TR correlators). Indeed, we know that S±(x) = log Ψ±:

S±(x) = ∓~−1

rν∑
k=2

Tν,k
k − 1

(x−Xν)
−(k−1) ± ~−1Tν,1 log(x−Xν) +

∞∑
k=0

A±ν,k(x−Xν)
k

S±(x) = ∓~−1

rν∑
k=2

Tν,k
k − 1

xk−1 ∓ ~−1Tν,1 log x− 1

2
log x+

∞∑
k=0

A±∞,kx
−k , (n∞ = 0)

S±(x) = ∓~−1

rν∑
k=2

Tν,k
2k − 3

x
2k−3

2 ∓ ~−1Tν,1 log x− 1

4
log x+

∞∑
k=0

A±∞,kx
− k

2 , (n∞ = 1) (5-8)

Inserting this into the Wronskians gives:
At x = Xν :

W (x)
x→Xν∼ 2Tν,rν

(x−Xν)rν
cν

WTν,k(x)
x→Xν∼ − 2cν

(k − 1)(x−Xν)k−1

WTν′,k
(x)

x→Xν∼ O(1) (5-9)

At x =∞ when n∞ = 0:

W (x)
x→∞∼ −2T∞,r∞c∞x

r∞−3 (nν = 0)
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WTν,k(x) = O
(
x−1
)

WT∞,k(x) = − 2

k − 1
c∞x

k−2 (5-10)

At x =∞ when n∞ = 1:

W (x)
x→∞∼ −T∞,r∞c∞xr∞−3 (nν = 0)

WTν,k(x) = O
(
x−

1
2

)
WT∞,k(x) = − 2

2k − 3
c∞x

k−2 (5-11)

Using g = r∞ +
n∑
ν=1

rν − 3, we finally obtain some formal expression for W (x), R(x) and Q(x):

Theorem 5.2 (Pole structure of the quantum curve). We have

W (x) = w

g∏
j=1

(x− qj)

n∏
ν=1

(x−Xν)rν
(5-12)

so that

R(x) =

g∑
j=1

1

x− qj
−

n∑
ν=1

rν
x−Xν

Q(x) =

g∑
i=1

pi
x− qi

+
r∞−4∑
k=0

Q∞,kx
k +

n∑
ν=1

rν+1∑
k=1

Qν,k

(x−Xν)k
(5-13)

with pi = −~∂ log Ψ±
∂x |x=qi

.

At this stage, the x-structure of the quantum curve is fully determined and is the same as
the initial classical spectral curve (even the order of the poles). Pairs (qi, pi)

g
i=1 appearing in the

expressions shall be used as Darboux coordinates in relation with integrable systems. Moreover,
inserting the definition pi = −~∂ log Ψ±

∂x |x=qi
into the quantum curve (5-5) gives:

p2
i = H(qi)−~pi

[∑
j 6=i

1

qi − qj
−

n∑
ν=1

rν
qi −Xν

]
+~

(∑
j 6=i

pj
qi − qj

+
r∞−4∑
k=0

Q∞,kq
k
i +

n∑
ν=1

rν+1∑
k=1

Qν,k

(qi −Xν)k

)
(5-14)

which provides g relations between all the coefficients.

6 Sl2 connection with no apparent singularities
As for any linear differential equations of degree d = 2, the quantum curve is equivalent to a
companion-like matrix (size d× d) differential system of degree 1:

~
∂

∂x

(
Ψ+ Ψ−

~ ∂
∂x

Ψ+ ~ ∂
∂x

Ψ−

)
=

(
0 1

H(x) + ~Q(x) R(x)

)(
Ψ+ Ψ−

~ ∂
∂x

Ψ+ ~ ∂
∂x

Ψ−

)
16



def
= L̂(x)

(
Ψ+ Ψ−

~ ∂
∂x

Ψ+ ~ ∂
∂x

Ψ−

)
(6-1)

However, there are two issues with the companion-like matrix form. First, L̂ does not belong
to Sl2 while we would expect a quantization procedure that should preserve this initial symmetry.
Moreover, the Lax matrix L̂ exhibits some apparent singularities at x ∈ {qi}gi=1, i.e. some
entries have singularities that are not singularities of the wave functions. This happens because the
choice (Ψ+, ~∂xΨ+) is not a good choice of basis. Indeed, one may choose any linear combinations
(possibly depending on x) of Ψ+ and ~∂xΨ+ as a possible second line, and such a choice would
modify the Lax matrix L̂ without changing the quantum curve itself. In order to remove these
apparent singularities, we perform a change of basis:(

Ψ±
~∂xΨ±

)
→
( 1
W (x)

(P (x)Ψ± + ~∂xΨ±)

Ψ±

)
(6-2)

for some (at this time) unknown rational function P (x). This corresponds to a gauge change:

Ψ(x) =

( 1
W (x)

(P (x)Ψ+ + ~∂xΨ+) 1
W (x)

(P (x)Ψ− + ~∂xΨ−)

Ψ+ Ψ−

)
=

(
P (x)
W (x)

~
W (x)

1 0

)(
Ψ±

~∂xΨ±

)
def
= G(x)Ψ̂(x)

(6-3)
In this gauge, the differential system turns into

~∂xΨ(x) =

(
P (x) M(x)
W (x) −P (x)

)
Ψ(x)

def
= L(x)Ψ(x) (6-4)

with
M(x) =

1

W (x)

[
H(x)− P 2(x) + ~Q(x) + ~P ′(x)− P (x)

W ′(x)

W (x)

]
(6-5)

Equation (5-14) implies that M is regular at x = qi if and only if P (qi) = pi. However, we need
to be careful because we need that the pole of M(x) remains as low as possible. And this is not
obvious because of the P 2(x) term. Even with this condition, some degree of freedom to choose
P (x) remain. In order to fix them it is conventional to ask for the leading order at infinity of L(x)

to be of standard form
(
α 0
0 −α

)
for n∞ = 0 or

(
0 1
0 0

)
for n∞ = 1 (plus an additional condition

for the subleading term that should be of the form
(

0 β
1 0

)
in this degenerate case). This can be

achieved by setting:
For n∞ = 0:

P (x) =

T∞,r∞x
g+1 +

(
T∞,r∞−1 + ~

2

)
xg +

g−1∑
l=0

αlx
l

n∏
ν=1

(x−Xν)rbν
(6-6)

with the g coefficients (αl)
g
l=1 determined by interpolation using P (qi) = pi for all i ∈ J1, gK.

For n∞ = 1:

P (x) =

g−1∑
l=0

αlx
l

n∏
ν=1

(x−Xν)rbν
(6-7)
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with the g coefficients (αl)
g
l=1 determined by interpolation using P (qi) = pi for all i ∈ J1, gK.

The proof is straightforward by direct computation of L(x) and in particular computing the
orders of the poles of each entry.

The existence of a Sl2 connection allows to define a ~-deformed spectral curve by taking the
characteristic polynomial of L(x). It reads:

0 = det (ydxI2 − L(x)dx) = y2(dx)2 − φ~ (6-8)

with
φ~ =

(
~P ′(x)− ~

W ′(x)

W (x)
P (x) + ~Q(x) +H(x)

)
(dx)2 (6-9)

Note that the y2 coefficients in H(x) is the only surviving in the limit ~ → 0, thus recovering
the initial spectral curve. All other terms are ~-corrections that are not obvious from the naive
quantization perspective.

7 Lax pairs
In addition to the Lax matrix L(x), we may also look at spectral times derivatives of the wave
functions. However spectral times are not well-suited for the study, and it is better to trade them
to isomonodromic times (tν,l)

rν−1
l=1 , (t∞,l)

r∞−3
l=1 . These are obtained by the conditions:

∀ l ∈ J1, rν − 1K :
∂

∂tν,l
=

rν−l+1∑
k=2

Tν,k+l−1
∂

∂Tν,k

∀ l ∈ J1, r∞ − 3K :
∂

∂t∞,l
=

rν−l+1∑
k=2

(k − 1)T∞,k+l+1
∂

∂T∞,k
, if n∞ = 0

∀ l ∈ J1, r∞ − 3K :
∂

∂t∞,l
=

rν−l+1∑
k=2

2k − 3

2
T∞,k+l+1

∂

∂T∞,k
, if n∞ = 1 (7-1)

This provides a one-to-one map between spectral times and isomonodromic times. Moreover, they
are defined in such a way that the time differential terms in the KZ equations read:

∑
k∈Kp

U∞,k(x)
∂

∂T∞,k
=

r∞−3∑
l=1

xl−1 ∂

∂t∞,l∑
k∈Kp

Uν,k(x)
∂

∂Tν,k
=

rν−1∑
l=1

(x−Xν)
−(l+1) ∂

∂tν,l
(7-2)

These isomonodromic times allow to construct Lax pairs (one of the main building blocks of
integrable systems) for all p ∈ {∞} ∪ J1, nK and k ∈ Kν :

~
∂Ψ

∂x
= L(x)Ψ

~
∂Ψ

∂tp,k
= Atp,k(x)Ψ (7-3)
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for which the compatibility equations read

~∂tp,kL− ~
∂Atp,k
∂x

+
[
L,Atp,k

]
= 0 (7-4)

In order to determine these matrices Atp,k , there are two options:

• Analyze the asymptotics of the Wronskian Wtp,k at x = Xν′ and x = ∞ and obtain the
general dependence in x of the matrix Atp,k . The remaining unknown coefficients are then
given by solving the compatibility equations (7-4).

• Define Lt∞,k =
[
x−kL(x)

]
∞,+ and Ltν,k =

[
(x−Xν)

kL(x)
]
Xν ,−

. If ∂xLtp,k = δtp,kL (explicit
derivation relatively to tp,k only) then Atp,k(x) = Ltp,k .

Compatibility equations (7-4) provides all ∂Tp′,k′

∂tp,k
as well as all ∂qi

∂tp,k
and ∂pi

∂tp,k
. In general,

the evolution (qi, pi) relatively to isomonodromic times is Hamiltonian, i.e. there exists some
Hamiltonians Hamp,k such that for all i ∈ J1, gK:

~
∂qi
∂tp,k

= −∂Hamp,k

∂pi

~
∂pi
∂tp,k

=
∂Hamp,k

∂qi
(7-5)

8 Application to Painlevé 2

The Painlevé 2 system corresponds to the case n = 0, r∞ = 4 and n∞ = 0, i.e.

y2 = H∞,4x
4 +H∞,3x

3 +H∞,2x
2 +H∞,1x+H∞,0 (8-1)

with (infinity is not ramified)

ydx = ±
(
T∞,4x

2 + T∞,3x+ T∞,2 +
T∞,1
x

)
dx+O

(
dx

x2

)
(8-2)

The coefficients (H∞,k)
4
k=1 are Casimirs and are expressed in terms of the spectral times:

H∞,4 = T 2
∞,4, H∞,3 = 2T∞,4T∞,3, H∞,1 = 2(T∞,1T∞,4 + T∞,2T∞,3) (8-3)

We have:
U∞,2(x) = T∞,4 (8-4)

The genus of the curve is 1 so that we may write (p, q) instead of (p1, q1) to lighten notations. The
coefficients of the quantum curve reads:

W (x) = w(x− q)
R(x) =

1

x− q
Q(x) =

p

x− q
+Q∞,0

H(x) = S4(x) +H∞,0 + ~2T∞,4α (8-5)
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where

S4(x) = T 2
∞,4x

4 + 2T∞,4T∞,3x
3 + (T 2

∞,3 + 2T∞,2T∞,4)x2 + 2(T∞,1T∞,4 + T∞,2T∞,3)x (8-6)

and
α =

∂

∂T∞,4
(logZ − ~−2ω0,0) (8-7)

Conditions (5-14) is equivalent to p2 = H(q) + ~Q∞,0 which provides

H∞,0 + ~2T∞,4α + ~Q∞,0 = p2 − S4(q) (8-8)

Therefore the quantum curve reads[
~2 ∂

2

∂x2
− ~2

x− q
∂

∂x
− ~p
x− q

+ (S4(q)− S4(x)− p2)

]
Ψ± = 0 (8-9)

In particular it only depends on (T∞,4, T∞,3, T∞,2, T∞,1, p, q) but no longer on α, Q∞,0 or H∞,0.

The construction of the Sl2 connection implies the gauge transformation G(x) =

(
P (x)
W (x)

~
W (x)

1 0

)
and provides a Lax matrix:

L(x) =

(
P (x) M(x)
W (x) −P (x)

)
(8-10)

with

W (x) = w(x− q)
P (x) = T∞,4x

2 + T∞,3x+ p− T∞,4q2 − T∞,3q
M(x) =

1

w

[
2T∞,4(T∞,4q

2 + T∞,3q + T∞,2 − p)x
+2T 2

∞,4q
3 + 4T∞,4T∞,3q

2 + 2(T 2
∞,3 + T∞,2T∞,4 − T∞,4p)q

+2T∞,1T∞,4 + 2T∞,2T∞,3 − 2T∞,3p+ ~T∞,4
]

(8-11)

The associated ~-deformed spectral curve is

φ~ = (S4(x)− S4(q) + p2)(dx)2 (8-12)

We define

Lt =
[
x−1L

]
∞,+ =

(
T∞,4x+ T∞,3

2T∞,4
w

[T∞,4q
2 + T∞,3q + T∞,2 − p]

w −(T∞,4x+ T∞,3)

)
(8-13)

Compatibility of the equations:

~
∂

∂x
Ψ = LΨ

~
∂

∂t
Ψ = LtΨ (8-14)
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i.e. ~∂tL− ~∂xLt + [L,Lt] = 0, provides:

∂T∞,4
∂t

=
∂T∞,3
∂t

=
∂T∞,1
∂t

= 0 ,
∂T∞,2
∂t

= T∞,4 (8-15)

and

~
∂w

∂t
= 2wqT∞,4

~
∂q

∂t
= −2p

~
∂p

∂t
= −4T 2

∞,4q
3 − 6T∞,4T∞,3q

2 − 2(T 2
∞,3 + T∞,2T∞,4)q − 2(T∞,1T∞,4 + T∞,2T∞,3)− ~T∞,4

(8-16)

Thus, we may choose T∞,2 = T∞,4 t so that

Lt(x) =

(
T∞,4x+ T∞,3

2T∞,4
w

(−p+ T∞,4q
2 + T∞,3q + T∞,4t− p)

w −(T∞,4x+ T∞,3)

)
(8-17)

The evolution of (p, q) is Hamiltonian:

~
∂q

∂t
= −∂Ham

∂p
, ~
∂p

∂t
=
∂Ham
∂q

(8-18)

with

Ham(p, q, t) = p2 − T 2
∞,4q

4 − 2T∞,4T∞,3q
3 − (T 2

∞,3 + 2T 2
∞,4t)q

2 − 2(T∞,1T∞,4 + T∞,4T∞,3t)q (8-19)

It provides a Painlevé 2 like equation for q:

~2 ∂
2

∂t2
q = 8T 2

∞,4q
3 + 12T∞,4T∞,3q

2 + 4(T 2
∞,3 + 2T 2

∞,4t)q + 4T∞,4(T∞,1 + tT∞,3)q (8-20)

Quantities may be rescaled to obtain a standard Painlevé 2 equation:

~2 ∂
2

∂s2
u = 2u3 + tu− θ (8-21)
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