Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	00000000	000000000000000000000000000000000000000	00

Quantization of spectral curves via integrable systems and topological recursion

Marchal Olivier

Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France

November 19th 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook

Presentation of the problem

- 2 Topological Recursion
 - Definition

3 Method 1

Determinantal formulas and classical spectral curves associated to a diff. system

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Topological type property

4 Method 2

- General setting
- Perturbative quantities
- Non-perturbative quantities
- Results for $\phi \in \mathcal{Q}(\mathbb{P}^1, D, \mathbf{T})$

5 Outlook

Future works

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
•••••				

Presentation of the problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	00000000	000000000000000000000000000000000000000	00
Position of the	e talk			

General problem

How to quantize a "classical spectral curve"

$$P(x, y) = 0$$
, P polynomial

into a differential equation:

$$\hat{P}\left(x,\hbar\frac{d}{dx}\right)\Psi(x)=0?$$

Key ingredients

Key ingredient 1: Integrable systems and Lax pairs

$$rac{\partial}{\partial x}\Psi(x,t) = L(x,t)\Psi(x,t) \;,\; rac{\partial}{\partial t}\Psi(x,t) = R(x,t)\Psi(x,t)$$

Key ingredient 2: Topological recursion introduced by Chekhov Eynard Orantin.

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
First method				

- Start from a given \hbar -differential system $\hbar \frac{d}{dx} \Psi(x) = L(x) \Psi(x)$
- Define the classical spectral curve associated to it
- Show that interesting quantities (partition function, correlation functions, etc.) may be reconstructed from topological recursion applied on the classical spectral curve.
- Proof done by showing that the differential system $\partial_x \Psi = L(x)\Psi$ satisfy the Topological Type property (introduced by Bergère, Eynard, Borot).
- Showing the Topological Type property is hard without additional material... (Airy case).
- Method applied for Painlevé 2 (O.M. and K. Iwaki, 2014) generalized toall 6 Painlevé equations (O.M, K. Iwaki, A. Saenz, 2016) and recently (O.M, N. Orantin, 2019) for $\mathfrak{sl}_2(\mathbb{C})$ valued rational functions L(x).
- <u>Drawback</u>: \hbar introduced by rescaling of parameters corresponding to very specific time deformations.
- Classical spectral curves obtained this way are always of genus 0.

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
000●0000	000	000000000	000000000000000000000000000000000000	00
General view of	of method 1			

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Presentation of the problem	Topological Recursion	Method 1 000000000	Method 2 000000000000000000000000000000000000	Outlook 00
Second metho	d for hyper-	elliptic cur	ves	

- Start with the space of quadratic differentials with prescribed poles (divisor) and partially prescribed coefficients.
- A given quadratic differential φ is represented by y² = Q(x) with Q a rational function ⇒ "Classical spectral curve"
- Define Eynard Orantin differentials and free energies associated to the classical spectral curve
- Assemble them into a formal series $\psi(x, \hbar)$ with formal parameter \hbar . \Rightarrow "Perturbative wave function" (WKB expansion)
- Introduce an additional Fourier transform over filling fractions to obtain a non-perturbative wave function Ψ(x, ħ) (trans-series in ħ)

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
00000000	000	00000000	000000000000000000000000000000000000000	00
Second metho	d for hyper-	elliptic cur	ves 2	

- Obtain a linear second order differential equation with rational coefficients satisfied by Ψ(x, ħ) using properties of Eynard-Orantin differentials: "Quantum curve"
- Use some time variations to rewrite the coefficients of the PDE in a "better" way using Darboux coordinates of the corresponding Hamiltonian system.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
00000000	000	000000000	0000000000000000000000	00
Aspects of the	e second me	thod		

- Allows to quantize a classical spectral curve with arbitrary genus.
- Isomonodromic deformations are essential to obtain a proper rewriting of the PDE.
- Method used by Iwaki for Painlevé 1 equation.
- Makes the connection with trans-series, Borel summability, exact WKB.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000				
Connecting b	oth settings			

- \bullet Second method provides a \hbar deformed Lax pair that may be seen as the starting point of method 1
- It should satisfy the Topological Type Property (with a classical spectral curve of positive genus) since reconstruction by the topological recursion is automatic by definition. (if you believe that Topological Type property is equivalent to reconstruction by TR).
- Open question: Is Topological Type Property equivalent to existence of some underlying isomonodromic deformations?
- All known cases of proof of TT property comes from isomonodromic deformations.

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	00000000	000000000000000000000000000000000000000	00

Topological Recursion

(ロ)、(型)、(E)、(E)、 E) の(()

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Initial data				

- Original modern version of B. Eynard et N. Orantin, 2007. Many generalizations since (blubbed, refined, etc.).
- Initial data: "classical spectral curve":
 - Σ Riemann surface of genus g.
 - **2** Symplectic basis of non-contractibles cycles $(\mathcal{A}_i, \mathcal{B}_i)_{i \leq g}$ on Σ .
 - **(a)** Two meromorphic functions x(z) et y(z), $z \in \Sigma$ such that: $\Rightarrow P(x, y) = 0$, with P polynomial.
 - A symmetric bi-differential form $\omega_{0,2}$ on $\Sigma \times \Sigma$ such that $\omega_{0,2}(z_1, z_2) \sim \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{reg with vanishing } \mathcal{A}\text{-cycles integrals.}$
- Regularity condition: Ramification points $(dx(a_i) = 0)$ are simple zeros of dx. \Rightarrow existence of a local involution σ such that $x(z) = x(\sigma(z))$ around any ramification points.
- Topological Recursion gives by recursion *n*-forms (ω_{h,n})_{n≥1,h≥0} (known as "Eynard Orantin differentials") and numbers (ω_{h,0})_{h≥0} (known as "free energies" or "symplectic invariants").

Presentation of the problem	Topological Recursion	Method 1 000000000	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Topological r	ecursion 2			

• Recursion formula:

$$\begin{split} \omega_{h,n+1}(z,\mathbf{z}_{\mathbf{n}}) &= \sum_{i=1}^{r} \operatorname{Res}_{q \to a_{i}} \frac{dE_{q}(z)}{(y(q) - y(\bar{q}))dx(q)} \Big[\omega_{h-1,n+2}(q,q,\mathbf{z}_{\mathbf{n}}) \\ &+ \sum_{m=0}^{h} \sum_{I \subset \mathbf{z}_{\mathbf{n}}} \omega_{m,|I|+1}(q,I) \, \omega_{g-m,|\mathbf{z}_{\mathbf{n}} \setminus I|+1}(q,\mathbf{z}_{\mathbf{n}} \setminus I) \Big] \end{split}$$

where
$$dE_q(z) = \frac{1}{2} \int_q^{\overline{q}} \omega_{0,2}(q, z)$$
.
• "Free energies" $(\omega_{h,0})_{h\geq 2}$ given by:

$$\omega_{h,0} = \frac{1}{2-2h} \sum_{i=1}^{r} \operatorname{Res}_{q \to a_i} \Phi(q) \, \omega_{h,1}(q) \text{ où } \Phi(q) = \int^{q} y dx$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Specific formula for $\omega_{0,0}$ and $\omega_{1,0}$

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
		00000000		

Method 1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- Let ħ∂_xΨ(x, ħ) = L(x, ħ)Ψ(x, ħ) a differential system of dimension d. We assume:
 - $L(x,\hbar) = \sum_{k=0}^{\infty} L^{(k)}(x)\hbar^k$ with $x \mapsto L^{(k)}(x)$ rational functions • We look for formal WKB solutions:

$$\begin{split} \Psi(x,t,\hbar) &= \Psi_0(x,t) \left(\mathsf{Id} + \sum_{k=1}^{\infty} \Psi^{(k)}(x,t)\hbar^k \right) e^{\frac{1}{\hbar}\Psi^{(-1)}(x,t)} \\ &= \exp\left(\frac{1}{\hbar}\Psi^{(-1)}(x,t) + \sum_{k=0}^{\infty} \tilde{\Psi}^{(k)}(x,t)\hbar^k\right) \end{split}$$

with $\Psi^{(-1)}(x,t)$ diagonal (trivial gauge choice).

Determinantal	formulas			
Presentation of the problem	Topological Recursion	Method 1 ○○●○○○○○○	Method 2 000000000000000000000000000000000000	Outlook 00

Definition (Correlation functions associated to a diff. system)

Let $\hbar \partial_x \Psi(x, \hbar) = L(x, \hbar) \Psi(x, \hbar)$ a diff. system. Then we define correlation functions by "determinantal formulas":

$$W_n(x_1.E_{j_1},...,x_n.E_{j_n}) = \begin{cases} \hbar^{-1} \operatorname{Tr} \left(L(x_1) M(x_1.E_{j_1}) \right) dx_1 & n = 1 \\ \frac{1}{n} \sum_{\sigma \text{ n-cycles}} \frac{\operatorname{Tr} \prod_{i=1}^n M(x_{\sigma(i)}.E_{j_{\sigma(i)}})}{\prod_{i=1}^n (x_{\sigma(i)} - x_{\sigma(i+1)})} \prod_{i=1}^n dx_i & n \ge 2 \end{cases}$$

where $M(x.E_i) = \Psi(x)E_i\Psi(x)^{-1}$ with $E_i = \text{diag}(0, ..., 0, 1, 0, ..., 0)$

Properties

Correlation functions satisfied the set of equations known as "loop equations" also satisfied by Eynard Orantin differentials in the Topological Recursion.

Associated spect	tral curve		
		 Method 2 000000000000000000000000000000000000	Outlook OO

Definition (Classical spectral curve associated to diff. system)

We define the classical spectral curve by:

$$P(x, y) = \lim_{\hbar \to 0} \det \left(y \operatorname{Id} - L(x, \hbar) \right) = 0$$

giving a polynomial equation, i.e. a Riemann surface Σ . For non-zero genus curve, this must be completed with a choice of basis of symplectic cycles and a bi-differential form $\omega_2^{(0)}$.

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Topological t	vne propertv			

Definition (Topological type property)

A diff. system $\hbar \partial_x \Psi(x, \hbar) = L(x, \hbar) \Psi(x, \hbar)$ is of "topological type" if:

Its correlation functions W_n(x₁.E_{j1},...,x_n.E_{jn}) admit a formal expansion in ħ of the form:

$$W_n(x_1.E_{j_1},\ldots,x_n.E_{j_n}) = \sum_{k=0}^{\infty} W_n^{(k)}(x_1.E_{j_1},\ldots,x_n.E_{j_n})\hbar^{n-2+2k}$$

- Differentials W_n^(k)(x₁.E_{j1},...,x_n.E_{jn}) may only have pole singularities at branchpoints of the classical spectral curve.
- Differentials W_n^(k)(x₁.E_{j1},...,x_n.E_{jn}) have null integrals over A-cycles associated to the classical spectral curve.
- The differential $W_2^{(0)}(x_1, x_2)$ identifies with $\omega_{0,2}$ of the classical spectral curve.

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
		000000000		
Topological t	vpe property	2		

- <u>Main interest</u>: Sufficient condition for reconstruction by TR: Topological Type property \Rightarrow Correlation functions $W_n^{(h)}$ identify with corresponding $\omega_{h,n}$ computed by TR applied to the classical spectral curve (Bergère, Borot, Eynard (2013)).
- <u>General idea</u>: Previous conditions ⇒ uniqueness of the solutions of the loop equations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• How to prove Topological Type property?

Simplification	of genus 0 s	spectral cu	rves	
00000000	000	000000000	000000000000000000000000000000000000000	00
Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook

- Simplification of the Topological Type property in genus 0:
 - Formal ħ-expansion for W_n ⇒ Always true because we look for WKB solutions.
 - **2** {Singularities of $W_n^{(k)}$ } \subset {Branchpoints}.
 - **Output** Parity of \hbar powers in the expansion of W_n .
 - Solution \mathbb{C} Leading order of the expansion of W_n is \hbar^{n-2} .
- General method showing 4 from 1 and 2 via loop equation. (work with K. Iwaki)
- Conditions 2 and 3 are proved only in cases where the differential system comes from some Lax pair $\hbar \partial_t \Psi(x, t) = A(x, t)\Psi(x, t)$ with A(x, t) rational in x with specific properties.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theory of isomonodromic deformations allows for a system

 $L(x) = \sum_{i=0}^{r_0} L_{0,i} x^i + \sum_{\nu=1}^n \sum_{i=1}^{r_\nu} \frac{L_{\nu,i}}{(x-a_\nu)^i}$ to introduce a primary time deformation:

Theorem

The integrable system defined on the coadjoint orbit through any $\mathfrak{sl}_2(\mathbb{C})$ valued rational function L(x) can be deformed into an isomonodromic system

$$\begin{cases} \frac{\partial}{\partial x}\Psi(x,t) = L(x,t)\Psi(x,t) \\ \frac{\partial}{\partial t}\Psi(x,t) = A(x,t)\Psi(x,t) \end{cases}$$

where $A(x,t) = \frac{M(t)x+B(t)}{p(x)}$ with $p \in \mathbb{C}[X]$ and $(M,B) \in (\mathfrak{sl}_2(\mathbb{C}))^2$ and L(x,t=0) = L(x).

うせん 川田 ふぼや 小田 そうそう

Some general	results for \mathfrak{s}	$\mathfrak{l}_2(\mathbb{C})$		
0000000	000	00000000	0000000000000000000000	00
Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook

General results for $\mathfrak{sl}_2(\mathbb{C})$ (O.M., N. Orantin, (2019))

Introduction of \hbar by rescaling of x, t, Hamiltonians, Ψ , etc in order to transform the system into:

$$\begin{cases} \hbar \frac{\partial}{\partial x} \Psi(x, t, \hbar) = L(x, t, \hbar) \Psi(x, t, \hbar) \\ \hbar \frac{\partial}{\partial t} \Psi(x, t, \hbar) = A(x, t, \hbar) \Psi(x, t, \hbar) \end{cases}$$

with $L(x, t, \hbar)$ defining a classical spectral curve of genus 0 satisfying the Topological Type property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

00000000 000	00000000	000000000000000000000000000000000000000	00

Method 2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Quadratic diffe	erentials with	prescribed	pole structure	
Presentation of the problem	Topological Recursion	Method 1 000000000	Method 2	Outlook 00

Definition

Let $n \ge 0$ and let $(X_{\nu})_{\nu=1}^{n}$ be a set of distinct points on $\Sigma_{0} = \mathbb{P}^{1}$ with $X_{\nu} \ne \infty$, for $\nu = 1, \dots, n$. We define the divisor

$$D = \sum_{\nu=1}^{n} r_{\nu}(X_{\nu}) + r_{\infty}(\infty)$$

Let $\mathcal{Q}(\mathbb{P}^1, D)$ be the space of quadratic differentials on \mathbb{P}^1 such that any $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$ has a pole of order $2r_{\nu}$ at the finite pole $X_{\nu} \in \mathcal{P}^{\text{finite}}$ and a pole of order $2r_{\infty}$ or $2r_{\infty} - 1$ at infinity.

Remark

Up to reparametrization, ∞ is always part of the divisor. Infinity may be a pole of odd degree (i.e. a ramification point in what to follow) but all other finite poles are even degree.

Presentation of the problem 00000000	Topological Recursion	Method 1 000000000	Method 2	Outlook 00
Quadratic diff	erentials with	prescribed	nole structure 2	

$\mathcal{Q}(\mathbb{P}^1, D)$

Let x be a coordinate on $\mathbb{C} \subset \mathbb{P}^1$. Any quadratic differential $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$ defines a compact Riemann surface Σ_{ϕ} by

$$\Sigma_{\phi} := \left\{ (x,y) \in \overline{\mathbb{C}} imes \overline{\mathbb{C}} / y^2 = rac{\phi(x)}{(dx)^2}
ight\}$$

 $\frac{\phi(x)}{(dx)^2}$ is a meromorphic function on \mathbb{P}^1 , i.e. a rational function of x.

Classical spectral curve associated to ϕ

For any $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$, we shall call "**classical spectral curve**" associated to ϕ the Riemann surface Σ_{ϕ} defined as a two-sheeted cover $x : \Sigma_{\phi} \to \mathbb{P}^1$. Generically, it has genus $g(\Sigma_{\phi}) = r - 3$ where

$$r = \sum_{\nu=1}^{n} r_{\nu} + r_{\infty}$$

Quadratic d	lifferentials wit	h prescribe	ed note structure ?	2
0000000	000	000000000	000000000000000000000000000000000000000	00
Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook

Branchpoints

 Σ_ϕ is branched over the odd zeros of ϕ and ∞ if ∞ is a pole of odd degree. We define:

$$\begin{array}{lll} \left\{ b_{\nu}^{+}, b_{\nu}^{-} \right\} &:= & x^{-1} \left(X_{\nu} \right) \text{ for } \nu = 1, \dots, n \\ \left\{ b_{\infty}^{+}, b_{\infty}^{-} \right\} &:= & x^{-1} \left(\infty \right) \text{ if } \infty \text{ pole of even degree} \\ \text{ or } \left\{ b_{\infty} \right\} &:= & x^{-1} \left(\infty \right) \text{ if } \infty \text{ pole of odd degree} \end{array}$$

Filling fractions

Let $\eta = \phi^{\frac{1}{2}}$. We define the vector of filling fractions ϵ :

$$orall \, i \in \llbracket 1, g
rbracket \, : \, \epsilon_i = \oint_{\mathcal{A}_i} \eta.$$

and its dual ϵ^* by:

$$orall i \in \llbracket 1, g
rbracket : \epsilon^*_i = \oint_{\mathcal{B}_i} \eta.$$

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
			000000000000000000000000000000000000000	
Spectral Tim	es			

Definition (Spectral Times)

Given a divisor D, a singular type **T** is the data of

- a formal residue T_p at each finite pole and at $p = b_{\nu}^{\pm}$ satisfying $T_{b_{\nu}^{+}} = -T_{b_{\nu}^{-}}$;
- an *irregular type* given by a vector $(T_{p,k})_{k=1}^{r_p-1}$ at each pole $p \in \mathcal{P}$ satisfying $T_{b_{\nu}^+,k} = -T_{b_{\nu}^-,k}$.

For such a singular type **T**, let $\mathcal{Q}(\mathbb{P}^1, D, \mathbf{T}) \subset \mathcal{Q}(\mathbb{P}^1, D)$ be the space of quadratic differentials $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$ such that $\eta = \phi^{\frac{1}{2}}$ satisfies

$$\forall b_{\nu}^{\pm}, \ \eta = \sum_{k=1}^{r_{b\nu}} T_{b_{\nu}^{\pm},k} \frac{dx}{(x - X_{\nu})^{k}} + O(dx)$$

$$\eta = \sum_{k=1}^{r_{\infty}} T_{b_{\infty}^{\pm},k} (x^{-1})^{-k} d(x^{-1}) + O(d(x^{-1})) = -\sum_{k=1}^{r_{\infty}} T_{b_{\infty}^{\pm},k} x^{k-2} dx + O(x^{-2} dx)$$

$$if \infty \text{ pole of even degree or}$$

$$\eta = \sum_{k=1}^{r_{\infty}} T_{b_{\infty},k} x^{k-1} d(x^{-\frac{1}{2}}) = -\sum_{k=1}^{r_{\infty}} \frac{T_{b_{\infty},k}}{2} x^{k-\frac{5}{2}} dx$$

$$if \infty \text{ pole of odd degree}$$

0000000	000	000000000	0 000000 00000000000000000000000000000	00
Symplectic st	tructure			

Theorem (Symplectic structure (T. Bridgeland (2018)))

 $\mathcal{Q}(\mathbb{P}^1, D, \mathsf{T})$ is a symplectic vector space of dimension 2g. A basis of Darboux coordinates is given by the real part of periods of η along any symplectic basis $(\mathcal{A}_j, \mathcal{B}_j)_{i=1}^g$ of $H_1(\Sigma_{\phi}, \mathbb{Z})$. The associated coordinates are

$$\forall i \in \llbracket 1, g
rbracket : \epsilon_i = \oint_{\mathcal{A}_i} \eta$$

The dual coordinates are

$$orall i \in \llbracket 1,g
rbracket : \epsilon_i^* = \oint_{\mathcal{B}_i} \eta.$$

- We denote $[f(x)]_{\infty,+}$ (resp. $[f(x)]_{X_{\nu},-}$) the positive part of the expansion in x of a function f(x) around ∞ , including the constant term, (resp. the strictly negative part of the expansion in $x X_{\nu}$ around X_{ν}).
- We define $K_{\infty} = \llbracket 2, r_{\infty} 2 \rrbracket$ and for all $k \in K_{\infty}$:

$$U_{\infty,k}(x) := (k-1) \sum_{l=k+2}^{r_{\infty}} T_{\infty,l} x^{l-k-2}$$

if ∞ pole of even degree and

$$U_{\infty,k}(x) := \left(k - \frac{3}{2}\right) \sum_{l=k+2}^{r_{\infty}} T_{\infty,l} x^{l-k-2}$$

if ∞ pole of odd degree.

•
$$K_{\nu} = \llbracket 2, r_{\nu} + 1 \rrbracket$$
 and for all $k \in K_{\nu}$:

$$U_{\nu,k}(x) := (k-1) \sum_{l=k-1}^{r_{\nu}} T_{\nu,l} (x - X_{\nu})^{-l+k-2}$$

Lemma (Variational formulas)

A quadratic differential $\phi \in \mathcal{Q}(\mathbb{P}^1, D, \mathsf{T})$ reads $\phi = f_{\phi}(x)(dx)^2$ with

$$\begin{split} f_{\phi} &= \left[\left(\sum_{k=1}^{r_{\infty}} T_{\infty,k} x^{k-2} \right)^2 \right]_{\infty,+} + \sum_{\nu=1}^n \left[\left(\sum_{k=1}^{r_{\nu}} T_{\nu,k} \frac{dx}{(x-X_{\nu})^k} \right)^2 \right]_{X_{\nu,-}} \\ &+ \sum_{k \in K_{\infty}} U_{\infty,k}(x) \frac{\partial \omega_{0,0}}{\partial T_{\infty,k}} + \sum_{\nu=1}^n \sum_{k \in K_{\nu}} U_{\nu,k}(x) \frac{\partial \omega_{0,0}}{\partial T_{\nu,k}} \end{split}$$

if ∞ pole of even degree and

$$f_{\phi} = \left[\left(\sum_{k=2}^{r_{\infty}} \frac{T_{\infty,k}}{2} x^{k-\frac{5}{2}} \right)^2 \right]_{\infty,+} + \sum_{\nu=1}^n \left[\left(\sum_{k=1}^{r_{\nu}} T_{\nu,k} \frac{dx}{(x-X_{\nu})^k} \right)^2 \right]_{X_{\nu},-} + \sum_{k\in K_{\infty}} U_{\infty,k}(x) \frac{\partial \omega_{0,0}}{\partial T_{\infty,k}} + \sum_{\nu=1}^n \sum_{k\in K_{\nu}} U_{\nu,k}(x) \frac{\partial \omega_{0,0}}{\partial T_{\nu,k}}$$

if ∞ pole of odd degree

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Perturbative	partition fun	ction		

Definition (Perturbative partition function)

Given a classical spectral curve Σ , one defines the **perturbative** partition function as a function of a formal parameter \hbar as

$$Z^{\mathsf{pert}}(\hbar,\Sigma) := \exp\left(\sum_{h=0}^\infty \hbar^{2h-2} \omega_{h,0}(\Sigma)
ight).$$

where $\omega_{h,0}$ are the Eynard-Orantin free energies associated to Σ .

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	00000000	000000000000000000000000000000000000000	00
Perturbative				

Definition $((F_{h,n})_{h\geq 0,n\geq 1}$ by integration of the correlators)

For $n \ge 1$ and $h \ge 0$ such that $2h - 2 + n \ge 1$, let us define

$$F_{h,n}(z_1,\ldots,z_n)=\frac{1}{2^n}\int_{\sigma(z_1)}^{z_1}\ldots\int_{\sigma(z_n)}^{z_n}\omega_{h,n}$$

where one integrates each of the *n* variables along paths linking two Gallois conjugate points inside a fundamental domain cut out by the chosen symplectic basis $(A_j, B_j)_{1 \le j \le g}$. For (h, n) = (0, 1) we define:

$$F_{0,1}(z) := \frac{1}{2} \int_{\sigma(z)}^{z} \eta$$

For (h, n) = (0, 2) regularization is required:

$$F_{0,2}(z_1, z_2) := \frac{1}{4} \int_{\sigma(z_1)}^{z_1} \int_{\sigma(z_2)}^{z_2} \omega_{0,2} - \frac{1}{2} \ln \left(x(z_1) - x(z_2) \right)$$

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Perturbative	wave function			

Definition (Definition of the perturbative wave functions)

We define first:

$$\begin{array}{rcl} S^{\pm}_{-1}(x) & := & \pm F_{0,1}(z(x)) \\ S^{\pm}_{0}(x) & := & \frac{1}{2}F_{0,2}(z(x),z(x)) \\ \forall \, k \geq 1 \,, \; S^{\pm}_{k}(\lambda) & := & \sum_{\substack{h \geq 0, n \geq 1 \\ 2h-2+n=k}} \frac{(\pm 1)^{n}}{n!} F_{h,n}(z(x),\ldots,z(x)) \end{array}$$

where for $\lambda \in \mathbb{P}^1$, we define $z(\lambda) \in \Sigma_{\phi}$ as the unique point such that $x(z(\lambda)) = \lambda$ and $y(z(\lambda))dx(z(\lambda)) = \sqrt{\phi(\lambda)}$. The perturbative wave functions ψ_{\pm} by:

$$\psi_{\pm}(\lambda,\hbar,\Sigma):=\exp\left(\sum_{k\geq -1}\hbar^k S_k^{\pm}(\lambda)
ight)$$

Presentation of the problem	Topological Recursion	Method 1 000000000	Method 2	Outlook 00
Remarks				

- Standard definitions used by K. Iwaki for Painlevé 1.
- Formulas do not require restriction to Q(P¹, D, T) but are well-defined for any classical spectral curve.
- $S^{\pm} = \ln(\psi_{\pm})$ are somehow more natural than ψ_{\pm} .
- ψ_{\pm} do not have nice monodromy properties
 - For i ∈ [[1,g]], the function ψ_±(x, ħ, ϵ) has a formal monodromy along A_i given by

$$\psi_{\pm}(x,\hbar,\epsilon)\mapsto e^{\pm 2\pi i \frac{\epsilon_i}{\hbar}}\psi_{\pm}(x,\hbar,\epsilon).$$

Sor i ∈ [[1,g]], the function ψ_±(x, ħ, ϵ) has a formal monodromy along B_i given by

$$\psi_{\pm}(x,\hbar,\epsilon)\mapsto \frac{Z^{\text{pert}}(\hbar,\epsilon\pm\hbar\,\mathbf{e}_i)}{Z^{\text{pert}}(\hbar,\epsilon)}\psi_{\pm}(x,\hbar,\epsilon\pm\hbar\,\mathbf{e}_i)$$

• Necessity of non-perturbative corrections (already known in the exact WKB literature).

Non-perturba	ative quantitie	es		
			000000000000000000000000000000000000000	
Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook

Definition

We define the non-perturbative partition function:

$$Z(\hbar, \Sigma, oldsymbol{
ho}) := \sum_{\mathbf{k} \in \mathbb{Z}^{\mathcal{S}}} e^{rac{2\pi i}{\hbar} \sum_{j=1}^{\mathcal{g}} k_j
ho_j} Z^{pert}(\hbar, oldsymbol{\epsilon} + \hbar \mathbf{k})$$

and the non-perturbative wave function:

$$\Psi_{\pm}(x,\hbar,\Sigma,\boldsymbol{\rho}) := \frac{\sum_{\mathbf{k}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum_{j=1}^g k_j \rho_j} Z^{pert}(\hbar,\boldsymbol{\epsilon}+\hbar\mathbf{k}) \ \psi_{\pm}(x,\hbar,\boldsymbol{\epsilon}+\hbar\mathbf{k})}{Z(\hbar,\Sigma,\boldsymbol{\rho})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Remarks				

- Definitions similar to those of K. Iwaki for Painlevé 1 (genus 1)
- Discrete Fourier transforms of perturbative quantities
- Provide good monodromy properties (see next slide)
- Dependence in \hbar are no longer a WKB expansions: trans-series:

$$Z(\hbar, \Sigma, \rho) = Z^{pert}(\hbar, \Sigma) \sum_{m=0}^{\infty} \hbar^m \Theta_m(\hbar, \Sigma, \rho)$$

$$\Psi_{\pm}(x, \hbar, \Sigma, \rho) = \psi_{\pm}(x, \hbar, \Sigma) \frac{\sum_{m=0}^{\infty} \hbar^m \Xi_m(x, \hbar, \Sigma, \rho)}{\sum_{m=0}^{\infty} \hbar^m \Theta_m(\hbar, \Sigma, \rho)}$$

Coefficients $\Theta_m(\hbar, \Sigma, \rho)$, $\Xi_m(x, \hbar, \Sigma, \rho)$ finite linear combinations of derivatives of theta functions.

Presentation of the problem	Topological Recursion	Method 1 000000000	Method 2 ○○○○○○○○○○○○○○○○○○○○	Outlook 00
Monodromy	properties			

For j = 1,..., g, Ψ_±(x, Σ, ρ) has a formal monodromy along A_j given by

$$\Psi_{\pm}(x,\mathbf{T},\boldsymbol{\epsilon},\boldsymbol{
ho})\mapsto e^{\pm 2\pi i rac{\epsilon_{j}}{\hbar}}\Psi_{\pm}(x,\Sigma,\boldsymbol{
ho}).$$

For j = 1,..., g, Ψ_±(x, Σ, ρ) has a formal monodromy along B_j given by

$$\Psi_{\pm}(x,\mathbf{T},\epsilon,\boldsymbol{
ho})\mapsto e^{\mp 2\pi i rac{
ho_{j}}{\hbar}}\Psi_{\pm}(x,\Sigma,\boldsymbol{
ho}).$$

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Wronskian				
VVIOIISMaii				

Wronskian

Let $\phi \in \mathcal{Q}(\mathbb{P}^1, D, \mathbf{T})$ defining a classical spectral curve Σ_{ϕ} . Then, the Wronskian $W(x; \hbar) = \hbar(\Psi_- \partial_x \Psi_+ - \Psi_+ \partial_x \Psi_-)$ is a rational function of the form:

$$W(x;\hbar) = w(\mathbf{T},\hbar) \frac{P_g(x)}{\prod_{\nu=1}^{n} (x - X_{\nu})^{r_{b_{\nu}}}} = w(\mathbf{T},\hbar) \frac{\prod_{i=1}^{g} (x - q_i)}{\prod_{\nu=1}^{n} (x - X_{\nu})^{r_{b_{\nu}}}}$$

with P_g a monic polynomial of degree g.

Remark

We denote $(q_i)_{i \leq g}$ the simple zeros of the Wronskian. Equivalent to

$$\forall i = 1, \dots, g, \left. \frac{\partial \log \Psi_+}{\partial x} \right|_{x=q_i} = \left. \frac{\partial \log \Psi_-}{\partial x} \right|_{x=q}$$

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	000000000	000000000000000000000000000000000000000	00
Quantum cur	rve			

Quantum Curve

The non-perturbative wave functions Ψ_\pm satisfy a linear second order PDE with rational coefficients:

$$\left[\hbar^2 \frac{\partial^2}{\partial x^2} - \hbar^2 R(x) \frac{\partial}{\partial x} - \hbar Q(x) - \mathcal{H}(x)\right] \Psi_{\pm} = 0$$

with
$$R(x) = \frac{\partial \log W(x)}{\partial x}$$
 and

$$\mathcal{H}(x) = \left[\hbar^2 \sum_{k \in K_{\infty}} U_{\infty,k}(x) \frac{\partial}{\partial T_{b_{\infty},k}} + \hbar^2 \sum_{\nu=1}^n \sum_{k \in K_{b_{\nu}}} U_{b_{\nu},k}(x) \frac{\partial}{\partial T_{b_{\nu},k}}\right]$$

$$\left[\log Z(\mathbf{T}, \boldsymbol{\epsilon}, \boldsymbol{\rho}) - \hbar^{-2} \omega_{0,0}\right] + \frac{\phi(x)}{(dx)^2}$$

$$Q(x) = \sum_{j=1}^g \frac{p_j}{x - q_j} + \frac{\hbar}{2} \left[\sum_{k \in K_{\infty}} U_{\infty,k}(x) \frac{\partial (S_+(x) - S_-(x))}{\partial T_{\infty,k}}\right]_{\infty,+}$$

$$+ \frac{\hbar}{2} \sum_{\nu=1}^n \left[\sum_{k \in K_{\nu}} U_{\nu,k}(x) \frac{\partial (S_+(x) - S_-(x))}{\partial T_{\nu,k}}\right]_{X_{\nu},-}$$

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	00000000	000000000000000000000000000000000000000	00
Quantum cur	rve 2			

Additional relations

The pairs
$$(q_i, p_i)$$
 satisfy $\forall i = 1, \dots, g$:

$$p_i^2 = \mathcal{H}(q_i) - \hbar p_i \left[\sum_{j \neq i} \frac{1}{q_i - q_j} - \sum_{\nu=1}^n \frac{r_\nu}{q_i - X_\nu} \right] \left. \frac{\partial \log \Psi_+(x)}{\partial x} \right|_{x=q_j} + \left[\frac{\partial \left(Q(x) - \frac{p_i}{x - q_i} \right)}{\partial x} \right]_{x=q_j}$$

Asymptotics $S_{\pm}(x)$ are given by:

$$\begin{split} S_{\pm} &= \mp \hbar^{-1} \sum_{k=2}^{r_{b_{\nu}}} \frac{T_{b_{\nu},k}}{k-1} \frac{1}{(x-X_{\nu})^{k-1}} \pm \hbar^{-1} T_{b_{\nu},1} \log(x-X_{\nu}) + \sum_{k=0}^{\infty} A_{\nu,k}^{\pm} (x-X_{\nu})^{k} \\ S_{\pm} &= \mp \hbar^{-1} \sum_{k=2}^{r_{\infty}} \frac{T_{b_{\infty},k}}{k-1} x^{k-1} \mp \hbar^{-1} T_{b_{\infty},1} \log(x) - \frac{\log x}{2} + \sum_{k=0}^{\infty} A_{\infty,k}^{\pm} x^{-k} \\ \text{or} \\ S_{\pm} &= \mp \hbar^{-1} \sum_{k=2}^{r_{\infty}} \frac{T_{b_{\infty},k}}{2k-3} x^{\frac{2k-3}{2}} \mp \hbar^{-1} T_{b_{\infty},1} \log(x) - \frac{\log x}{4} + \sum_{k=0}^{\infty} A_{\infty,k}^{\pm} x^{-\frac{k}{2}} \end{split}$$

Thus,

$$Q(x) = \sum_{j=1}^{g} \frac{p_j}{x - q_j} + \sum_{k=0}^{r_{\infty} - 4} Q_{\infty,k} x^k + \sum_{\nu=1}^{n} \sum_{k=1}^{r_{\nu} + 1} \frac{Q_{\nu,k}}{(x - X_{\nu})^k}$$

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	00000000	000000000000000000000000000000000000000	00
Linearization	and \hbar_{-} deform	ned snectr		

• Linearize the quantum curve, i.e. choose

$$\vec{\Psi}_{\pm} = \begin{pmatrix} \Psi_{\pm} \\ \alpha(x)\Psi_{\pm} + \beta(x)\partial_x\Psi_{\pm} \end{pmatrix}$$
 to have a 2 × 2 system

$$\hbar \partial_x \vec{\Psi}_{\pm}(x) = L(x) \vec{\Psi}_{\pm}(x) = \begin{pmatrix} P(x) & M(x) \\ W(x) & -P(x) \end{pmatrix} \vec{\Psi}_{\pm}(x)$$

• Define the \hbar -deformed spectral curve: $det(ydx - L(x)dx) = 0 \Rightarrow y^2(dx)^2 = \phi_{\hbar}$:

$$\begin{aligned} \frac{\phi_{\hbar}}{(dx)^2} &= \mathcal{H}(x) + \hbar \sum_{j=1}^{g} \frac{p_j}{x - q_j} + \frac{\hbar^2}{2} \left[\sum_{k \in K_{\infty}} U_{\infty,k}(x) \frac{\partial (S_+(x) + S_-(x))}{\partial T_{\infty,k}} \right]_{\infty,+} \\ &+ \frac{\hbar^2}{2} \sum_{\nu=1}^{n} \left[\sum_{k \in K_{\nu}} U_{\nu,k}(x) \frac{\partial (S_+(x) + S_-(x))}{\partial T_{\nu,k}} \right]_{X_{\nu},-} + \hbar \frac{\partial P(x)}{\partial x} \\ &- \hbar \frac{\partial \log W(x)}{\partial x} P(x) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Presentation of the problem	Topological Recursion	Method 1 000000000	Method 2 ○○○○○○○○○○○○○○○○○○○	Outlook 00
Additional n	naterial 2			

• Write the time differential systems

$$\partial_{\mathcal{T}_{\nu,k}} \vec{\Psi}_{\pm} = \mathcal{R}_{\nu,k}(x) \vec{\Psi}_{\pm}$$

- Define isomonodromic times $t_{\nu,k}$ and the map $(T_{\nu,k})_{\nu,k} \rightarrow (t_{\nu,k})_{\nu,k}$ and the differential systems $\partial_{t_{\nu,k}} \vec{\Psi}_{\pm} = L_{\nu,k}(x) \vec{\Psi}_{\pm}$
- Connected to the problem isospectral \rightarrow isomonodromic: Existence of times t such that $\frac{\delta L(x)}{\delta t} = \frac{\partial L_t}{\partial x}$ where δ is the variation to explicit dependence on t only.
- Define g Hamiltonians $H_j(q_1, \ldots, q_g, p_1, \ldots, p_g, \hbar)$ so that \hbar -deformed Hamilton's equations are satisfied:

$$\hbar \partial_{t_j} q_j = \frac{\partial H_j}{\partial p_j}$$
 and $\hbar \partial_{t_j} p_j = -\frac{\partial H_j}{\partial q_j}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Apply to all Painlevé equations and their hierarchies.

Presentation of the problem Top	ological Recursion M	Vlethod 1	Method 2	Outlook
0000000 00	0 (00000000	000000000000000000000000000000000000000	•0

Outlook

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Presentation of the problem	Topological Recursion	Method 1	Method 2	Outlook
0000000	000	00000000	000000000000000000000000000000000000000	00
Future works				

- Check the topological type property (arbitrary genus case) of the previous Lax system.
- Extend results for non hyper-elliptic classical spectral curves: $\mathfrak{sl}_n(\mathbb{C})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- \bullet Extend results to other manifolds than $\Sigma_0 = \mathbb{P}^1$
- \bullet Extend results for arbitrary Lie algebra ${\mathfrak g}$
- Extend results for Lie group (difference equations instead of differential equations)
- Extend results for β deformations?