Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
00000	0000	000000	0000000000000	

Perturbative expansion of the Painlevé Lax systems and topological recursion

Marchal Olivier

Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France

January 13th 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lax pairs and integrable systems 0000000 Painlevé equations

Results and outlooks

Introduction

- Historical approach in random matrices
- Perturbative approach

2 Topological Recursion

- Topological recursion
- 3 Lax pairs and integrable systems
 - Lax pairs
 - Determinantal formulas
 - Connection with the topological recursion

Painlevé equations

- Formal parameter
- Parity in \hbar
- Spectral curves
- Pole structure
- Leading order of the correlation functions

5 Results and outlooks

- Main result
- Outlooks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figenv	Figenvalues correlation functions						
••••	0000	000000	0000000000000	00			
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks			

- Let $Z_N = \int_{\mathcal{H}_N} dM_N e^{-N \operatorname{Tr} V(M_N)}$ with V(z) monic polynomial potential of even degree.
- Eigenvalues correlation functions (Stieltjes transforms):

$$W_{1}(x) = \left\langle \sum_{i=1}^{N} \frac{1}{x - \lambda_{i}} \right\rangle_{N}$$
$$W_{2}(x_{1}, x_{2}) = \left\langle \sum_{i,j=1}^{N} \frac{1}{(x_{1} - \lambda_{i})(x_{2} - \lambda_{j})} \right\rangle_{N} - W_{1}(x_{1})W_{1}(x_{2})$$
$$W_{p}(x_{1}, \dots, x_{p}) = \left\langle \sum_{i_{1},\dots,i_{p}}^{N} \frac{1}{x_{1} - \lambda_{i_{1}}} \cdots \frac{1}{x_{p} - \lambda_{i_{p}}} \right\rangle_{N, \text{cumulant}}$$

- Generating series of joint moments $\left\langle \sum_{i=1}^{N} \lambda_i^k \right\rangle_N$, $\left\langle \sum_{i,j=1}^{N} \lambda_i^r \lambda_j^s \right\rangle_N$
- Hermitian case: Correlation functions satisfy algebraic relations known as loop equations, Schwinger-Dyson equations, Virasoro constraints, etc.

Loop equ	uations			
Introduction OOOOO	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

• Let:

$$P_p(x_1; x_2, \dots, x_p) = \left\langle \sum_{i_1, \dots, i_p} \frac{V'(x_1) - V'(\lambda_{i_1})}{x_1 - \lambda_{i_1}} \frac{1}{x_2 - \lambda_{i_2}} \cdots \frac{1}{x_p - \lambda_{i_p}} \right\rangle_{N, \text{cumulant}}$$

• Loop equations (notation $L_p = \{x_2, \ldots, x_p\}$):

$$\begin{aligned} -P_1(x) &= W_1^2(x) - V'(x)W_1(x) + \frac{1}{N^2}W_2(x,x) \\ P_p(x_1; L_p) &= (2W_1(x_1) - V'(x_1))W_p(L_p) + \frac{1}{N^2}W_{p+1}(x_1, x_1, L_p) \\ &+ \sum_{I \subset L_p} W_{|I|+1}(x_1, L_I)W_{p-|I|}(x_1, L_{J \setminus I}) \\ &- \sum_{j=2}^p \frac{\partial}{\partial x_j} \frac{W_{p-1}(L_p) - W_{p-1}(x_1, L_p \setminus x_j)}{x_1 - x_j} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Property: $x \mapsto P_p(x; L_p)$ is a polynomial. Is it enough to solve the equations and find W_p ?

Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
00000	0000	0000000	0000000000000	00

Perturbative solutions

• $Z_N = \int_{\mathcal{H}_N} dM_N e^{-N \operatorname{Tr} V(M_N)}$. Series expansion at large N: We assume:

$$F_N \stackrel{\text{def}}{=} \ln Z_N = \sum_{g=0}^{\infty} F^{(g)} \left(\frac{1}{N}\right)^{2g-2}$$
$$W_p(x_1, \dots, x_p) = \sum_{g=0}^{\infty} \omega_p^{(g)}(x_1, \dots, x_p) \left(\frac{1}{N}\right)^{N+2g-2}$$

• May also work for other parameters:

$$Z_N[t_4] = \int_{\mathcal{H}_N} dM_N e^{-\frac{N}{2} \operatorname{Tr} (M_N^2) - \frac{t_4}{4} N \operatorname{Tr} (M_N^4)}$$

we may assume:

$$\ln Z_N[t_4] = \sum_{g=0}^{\infty} \sum_{\nu=0}^{\infty} F^{(g,\nu)}(t_4)^{\nu} \left(\frac{1}{N}\right)^{2g-2} + \text{similar dev. for } W_p$$

● Allow to solve recursively the loop equations.

Applica	Applications in combinatorics						
00000	0000	000000	00000000000000	00			
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks			

• Interesting in combinatorics:

$$Z_N[t_4] = \int_{\mathcal{H}_N} dM_N e^{-\frac{N}{2} \operatorname{Tr} (M_N^2) - \frac{t_4}{4} N \operatorname{Tr} (M_N^4)}$$

Perturbative series expansion in $t_4 \Rightarrow$ enumeration of **fat ribbon** graph (similar to Feynman expansion):

$$\sum_{ijk} \langle i \downarrow_{i}^{jk} i \rangle = 0 + 0 + 0$$

 $F^{(g,v)}$ count the number of such connex graphs with v vertices (4 legs) and of genus g:

$$F[t_4] = \ln Z_N[t_4] = \sum_{\mathcal{G} = 4 - \text{ribbon graph}} \frac{1}{|\text{Aut } \mathcal{G}|} t_4^{\#_V(\mathcal{G})} \left(\frac{1}{N}\right)^{-\chi(\mathcal{G})}$$

~ (C)

00000	0000	000000	00000000000000	00	
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks	

Applications in geometry

• Kontsevich integral: Intersection theory of Riemann surfaces moduli spaces:

$$\langle \tau_{d_1} \dots \tau_{d_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{d_1} \dots \psi_n^{d_n}$$

may be computed through the **formal expansion** of the Kontsevich integral of $F = \ln Z$ with:

$$Z[t_0, t_1, \ldots] = (\det \Lambda)^Q \int dM \exp\left(-\frac{1}{2} \operatorname{Tr} (M \Lambda M) + \frac{1}{3!} \operatorname{Tr} (M^3)\right)$$

where $t_i = -(2i - 1)!!$ Tr $(\Lambda^{-(2i-1)})$

• <u>Remark</u>: $F[t_0, t_1, ...]$ in connection with the KdV equation: $u \stackrel{\text{def}}{=} \frac{\partial^2 F}{\partial t_1^2}$ satisfies: $\frac{\partial u}{\partial t_3} = u \frac{\partial u}{\partial t_1} + \frac{1}{12} \frac{\partial^3 u}{\partial t_1^3}$ Generalization: Kontsevitch-Penner model (Safnuk, Alekandrov: open intersection numbers):

$$Z[Q, t_i] = (\det \Lambda)^Q \int dM \exp\left(-\frac{1}{2}\operatorname{Tr}(M\Lambda M) + \frac{1}{3}\operatorname{Tr}(M^3) - Q \ln M\right)$$

Sportr				
00000	0000	000000	00000000000000	00
	Topological Recursion	Lax pairs and integrable systems		Results and outlooks

• Formal solution of the loop equations with the assumption that:

$$F_N = \ln Z_N = \sum_{g=0}^{\infty} F^{(g)} \left(\frac{1}{N}\right)^{2g-2}$$
$$W_p(x_1, \dots, x_p) = \sum_{g=0}^{\infty} \omega_p^{(g)}(x_1, \dots, x_p) \left(\frac{1}{N}\right)^{2g+N-2}$$

• <u>Central element</u> = Spectral curve:

$$Y(x) = \omega_1^{(0)}(x) - \frac{V'(x)}{2} = \int \frac{\rho_{\text{lim}}(\lambda)d\lambda}{x - \lambda} - \frac{V'(x)}{2}$$

satisfies $Y^2(x) = \frac{V'(x)^2}{4} - P_1^{(0)}(x)$

 \Leftrightarrow **Riemann surface** (hyperelliptic) of genus g.

• Undetermined coefficients of $P_1^{(0)}(x)$ are equivalent to fixing filling fractions:

$$\epsilon_i = \frac{1}{2\pi i} \oint_{\mathcal{A}_i} Y(x) dx$$

Summation of filling fractions \leftrightarrow Oscillating terms to get convergence?

- Combinatorics: Usually fixed at "natural" values.
- Never a problem when the spectral curve is of genus 0.

Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
	0000			

Topological recursion

Theorem (Eynard-Orantin-Chekhov)

The spectral curve allow to recursively compute all orders $\omega_n^{(g)}(x_1, \ldots, x_n)$ and $F^{(g)}$ through a recursive procedure known as the topological recursion.

Ingredients: Normalized bi-differential $\omega_2^{(0)}(z_1, z_2)$, recursion kernel and integration kernel:

$$\begin{aligned}
\mathcal{K}(z_0, z) &= \frac{\frac{1}{2} \int_{z}^{\overline{z}} \omega_2^{(0)}(s, z_0) ds}{(Y(z) - Y(\overline{z})) dx(z)} \text{ and } \Phi(z) = \int^{z} Y dx \\
\text{then (notation } I_n = \{z_1, \dots, z_n\}): \\
\omega_{n+1}^{(g)}(z_1, \dots, z_n) &= \sum_{i} \underset{z \to a_i}{\operatorname{Res}} \underset{K(z_1, z)}{\operatorname{Res}} \left(\omega_{n+2}^{(g-1)}(z, \overline{z}, p_{I_n}) \right. \\
&+ \sum_{m=0}^{g} \sum_{I_1 \sqcup I_2 = I}^{\prime} \omega_{I_1 \amalg I_1 = I}^{(m)}(z, z_{I_1}) \omega_{I_2 \amalg I_1}^{(g-m)}(\overline{z}, z_{I_2}) \right) \\
\text{Conversely (with } F^{(g)} = \omega_0^{(g)}): \\
& \omega_n^{(g)}(I_n) = \frac{1}{2 - 2g - n} \sum_{i} \underset{z \to a_i}{\operatorname{Res}} \Phi(z) \omega_{n+1}^{(g)}(z, I_n) \\
\end{aligned}$$

Main	features of the	e topological rec	ursion	
00000	0000	000000	00000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

- Formal of the loop equation under the assumption of existence of series expansions ⇒ Natural question of series convergence is open (Borel sumability, non zero radius of convergence, etc.).
- Fixed filling fractions: hard to determine in practice (static or dynamical determination).
- Genus 0 spectral curves are easier to handle: global parametrization + explicit expression of the normalized bi-differential $\omega_2^{(0)}(z_1, z_2)$.

• Topological recursion generalized outside any underlying random hermitian matrix model. Only a spectral curve is required.

Formal	approach			
00000	0000	• 0 00000	00000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

- <u>General idea</u>: Find corresponding definitions of quantities arising in the topological recursion directly into integrable systems formalism.
- Interesting quantities: formal expansion parameter \hbar equivalent to $\frac{1}{N}$, spectral curve, quantities similar to correlation functions, etc.
- Recent solution proposed by Bergère, Borot and Eynard starting from a given Lax pair.
- Prove that the topological recursion is satisfied: **Topological Type property** (sufficient (and necessary?) condition)

	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
		000000		
l av nair	•			

- Definition for 2 × 2 system by Bergère and Eynard, generalized for *n* × *n* systems by Bergère, Borot and Eynard.
- Lax pair:

$$\partial_x \Psi(x,t) = \mathcal{D}(x,t)\Psi(x,t) , \ \partial_t \Psi(x,t) = \mathcal{R}(x,t)\Psi(x,t)$$

• Example for Painlevé 4:

$$\begin{aligned} \mathcal{D}(x,t) &= \begin{pmatrix} x+t+\frac{pq+\theta_0}{x} & 1-\frac{q}{x} \\ -2(pq+\theta_0+\theta_\infty)+\frac{p(pq+2\theta_0)}{x} & -\left(x+t+\frac{pq+\theta_0}{x}\right) \end{pmatrix} \\ \mathcal{R}(x,t) &= \begin{pmatrix} x+q+t & 1 \\ -2(pq+\theta_0+\theta_\infty) & -(x+q+t) \end{pmatrix} \end{aligned}$$

• Compatibility equation (zero-curvature equation):

$$\partial_t \mathcal{D}(x,t) - \partial_x \mathcal{R}(x,t) + [\mathcal{D}(x,t), \mathcal{R}(x,t)] = 0$$

• Equivalent Hamiltonian formalism:

$$H_4(p,q,t) = qp^2 + 2(q^2 + tq + \theta_0)p + 2(\theta_0 + \theta_\infty)q$$

• Jimbo-Miwa τ -function at infinity equals the Hamiltonian

Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
00000	0000	○○●○○○○	000000000000000	00
Determi	nantal form	ulas: version 1		

Let:

$$\Psi(x,t) = egin{pmatrix} \psi(x,t) & \phi(x,t) \ ilde{\psi}(x,t) & ilde{\phi}(x,t) \end{pmatrix}$$

We define the Christoffel-Darboux kernel:

$$K(x_1, x_2) = \frac{\psi(x_1)\tilde{\phi}(x_2) - \tilde{\psi}(x_1)\phi(x_2)}{x_1 - x_2}$$

and then the correlation functions:

$$W_1(x) = \frac{\partial \psi}{\partial x}(x)\tilde{\phi}(x) - \frac{\partial \tilde{\psi}}{\partial x}(x)\phi(x)$$
$$W_n(x_1,\ldots,x_n) = -\frac{\delta_{n,2}}{(x_1-x_2)^2} + (-1)^{n+1}\sum_{\sigma:n\text{-cycles}}\prod_{i=1}^n K(x_i,x_{\sigma(i)})$$

Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
00000	0000	0000000	000000000000000	00
Determi	nantal formu	las: version 2		

"Alternative" definition in terms of the resolvent matrix M(x, t)

$$M(x) = \Psi(x) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Psi^{-1}(x) = \begin{pmatrix} \psi \tilde{\phi} & -\psi \phi \\ \tilde{\psi} \tilde{\phi} & -\phi \tilde{\psi} \end{pmatrix}$$

then we can rewrite the correlation functions:

$$\begin{split} W_1(x) &= -\frac{1}{\hbar} \operatorname{Tr} \left(\mathcal{D}(x) \mathcal{M}(x) \right) \\ W_2(x_1, x_2) &= \frac{\operatorname{Tr} \left(\mathcal{M}(x_1) \mathcal{M}(x_2) \right) - 1}{(x_1 - x_2)^2} \\ W_n(x_1, \dots, x_n) &= (-1)^{n+1} \operatorname{Tr} \sum_{\sigma: n-\text{cycles}} \prod_{i=1}^n \frac{\mathcal{M}(x_{\sigma(i)})}{x_{\sigma(i)} - x_{\sigma(i+1)}} \\ &= \frac{(-1)^{n+1}}{n} \sum_{\sigma \in S_n} \frac{\operatorname{Tr} \mathcal{M}(x_{\sigma(1)}) \dots \mathcal{M}(x_{\sigma(n)})}{(x_{\sigma(1)} - x_{\sigma(2)}) \dots (x_{\sigma(n-1)} - x_{\sigma(n)})(x_{\sigma(n)} - x_{\sigma(1)})} \end{split}$$

- Valid for any linear differential system: ∂_xΨ(x) = L(x)Ψ(x) and not only for Lax pairs
- $W_n(x_1,...,x_n)$ are invariant under "admissible" gauge transformations: $\tilde{\Psi}(x,t) = U(x,t)\Psi(x,t)$ with:
 - U(x, t) = U(t) independent of x
 - U(x, t) proportional to I_2 (special case for $W_1(x)$). $U(x, t) = \frac{f'(x,t)}{f(x,t)}I_2$ gives:

$$\tilde{W}_1(x) = W_1(x) + \frac{f'(x,t)}{f(x,t)}$$

• These gauge transformations allow to get "good" Lax pairs from Jimbo-Miwa's (See Lax pair for Painlevé 4).

	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
00000	0000	0000000	0000000000000	00
<u> </u>	1.1 Sec. 1.1	and the second		

Connection with the topological recursion

Theorem (Bergère-Borot-Eynard)

If the determinantal formulas $W_n(x_1, \ldots, x_n)$ have a series expansion in a parameter \hbar of the form:

$$W_n(x_1,\ldots,x_n) = \sum_{g=0}^{\infty} \hbar^{n-2+2g} W_n^{(g)}(x_1,\ldots,x_n) \quad \text{for } n \geq 1$$

then we can obtain the $W_n^{(g)}$ through the topological recursion applied to the spectral curve attached to the Lax pair:

$$E(x, Y) = \det(Y - \mathcal{D}(x, t))|_{\hbar \to 0} = 0$$

Moreover, the τ -function admits a series expansion of the form:

$$\frac{1}{\hbar^2}\ln\tau = \sum_{g=0}^{\infty} \tau^{(2g)} \hbar^{2g-2}$$

with $\tau^{(g)}(t) = F^{(g)}(t) + C^{(g)}$ computed from the topological recursion.

Topolo	rical Type n	roportu		
		000000		
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

Theorem (Bergère-Borot-Eynard)

Is the spectral curve is of genus 0, the following conditions (known as Topological Type property) are sufficient conditions to prove that the determinantal formulas satisfy the previous theorem:

(1) Existence of a formal \hbar series expansion: The determinantal formulas admit a series expansion in \hbar :

$$W_n(x_1,\ldots,x_n)=\sum_{g=0}^{\infty}W_n^{(g)}(x_1,\ldots,x_n)\hbar^g$$

- (2) <u>Parity</u>: $W_n|_{\hbar\mapsto -\hbar} = (-1)^n W_n$ for $n \ge 1$
- (3) <u>Pole structure</u>: The functions $W_n^{(g)}(x_1, \ldots, x_n)$ are regular at the even zeros of the spectral curve.
- (4) Leading order: The \hbar series expansion of W_n is at least of order $\overline{\hbar^{n-2}}$.

00000	0000	0000000	000000000000000000000000000000000000000	00
Plan of t	the proof for	Painlevé equation	ons	

- Presentation of the Lax pair and introduction of a formal parameter ħ
- Computation of the spectral curve (genus 0)
- Proof of the topological type property

- Existence of formal series expansion in \hbar for $W_n \Leftrightarrow$ Gauge choice
- Study of the $\hbar \leftrightarrow -\hbar$ operator
- Control of the pole structure of W_n
- Leading order of series expansion of W_n using pole structure and loop equations.

1	··			
00000	0000	000000	000000000000000000000000000000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

Introduction of \hbar

• Introduction through a rescaling of the parameters:

$$P4: \qquad (t, x, q, p, \theta_0, \theta_\infty) \to \left(\hbar^{\frac{1}{2}}t, \hbar^{\frac{1}{2}}x, \hbar^{\frac{1}{2}}q, \hbar^{\frac{1}{2}}p, \hbar\theta_0, \hbar\theta_\infty\right)$$
$$\Psi(x, t) \to \begin{pmatrix} \hbar^{-\frac{1}{4}} & 0\\ 0 & \hbar^{\frac{1}{4}} \end{pmatrix} \Psi(x, t)$$

• Equivalent to the new differential system:

$$\hbar \partial_x \Psi(x,t) = \mathcal{D}(x,t) \Psi(x,t)$$
 with $\hbar \partial_t \Psi(x,t) = \mathcal{R}(x,t) \Psi(x,t)$

- Similar transformations are available for the other Painlevé equations.
- Specific regime. $\hbar = 1 \Leftrightarrow$ usual formulation
- Deformation of the Painlevé equation:

$$\hbar^2 \ddot{q} = \frac{\hbar^2}{2q} \dot{q}^2 + 2\left(3q^3 + 4tq^2 + \left(t^2 - 2\theta_\infty + \hbar\right)q - \frac{\theta_0^2}{q}\right)$$

• Deformation of the Hamiltonian formalism:

$$H_4(p,q,t) = qp^2 + 2(q^2 + tq + \theta_0)p + 2(\theta_0 + \theta_\infty)q$$

$$\hbar \dot{q} = \frac{\partial H_4}{\partial p}(p,q) \text{ with } \hbar \dot{p} = -\frac{\partial H_4}{\partial q}(p,q)$$

Modific	Madified Daiplové equations						
00000	0000	000000	000000000000000000000000000000000000000	00			
	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks			

Modified Painlevé equations

$$\begin{array}{l} \bullet \ (P_{\rm I}): \ \hbar^{2}\ddot{q} = 6q^{2} + t \\ \bullet \ (P_{\rm II}): \ \hbar^{2}\ddot{q} = 2q^{3} + tq + \frac{\hbar}{2} - \theta \\ \bullet \ (P_{\rm III}): \ \hbar^{2}\ddot{q} = \frac{\hbar^{2}}{q}\dot{q}^{2} - \frac{\hbar^{2}}{t}\dot{q} + \frac{4}{t}\left(\theta_{0}q^{2} - \theta_{\infty} + \hbar\right) + 4q^{3} - \frac{4}{q} \\ \bullet \ (P_{\rm III}): \ \hbar^{2}\ddot{q} = \frac{\hbar^{2}}{2q}\dot{q}^{2} + 2\left(3q^{3} + 4tq^{2} + \left(t^{2} - 2\theta_{\infty} + \hbar\right)q - \frac{\theta_{0}^{2}}{q}\right) \\ \bullet \ (P_{\rm V}): \\ \hbar^{2}\ddot{q} = \left(\frac{1}{2q} + \frac{1}{q-1}\right)\left(\hbar\dot{q}\right)^{2} - \hbar^{2}\frac{\dot{q}}{t} + \frac{(q-1)^{2}}{t^{2}}\left(\alpha q + \frac{\beta}{q}\right) + \frac{\gamma q}{t} + \frac{\delta q(q+1)}{q-1} \\ \text{where} \\ \alpha = \frac{(\theta_{0} - \theta_{1} - \theta_{\infty})^{2}}{8}, \ \beta = -\frac{(\theta_{0} - \theta_{1} + \theta_{\infty})^{2}}{8}, \ \gamma = \theta_{0} + \theta_{1} - \hbar, \ \delta = -\frac{1}{2} \\ \bullet \ (P_{\rm VI}): \ \hbar^{2}\ddot{q} = \frac{\hbar^{2}}{2}\left(\frac{1}{q} + \frac{1}{q-1} + \frac{1}{q-t}\right)\dot{q}^{2} - \hbar^{2}\left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{q-t}\right)\dot{q} + \\ \frac{q(q-1)(q-t)}{t^{2}(t-1)^{2}}\left[\alpha + \beta\frac{t}{q^{2}} + \gamma\frac{t-1}{(q-1)^{2}} + \delta\frac{t(t-1)}{(q-t)^{2}}\right] \text{ where} \\ \alpha = \frac{1}{2}(\theta_{\infty} - \hbar)^{2}, \ \beta = -\frac{\theta_{0}^{2}}{2}, \ \gamma = \frac{\theta_{1}^{2}}{2}, \ \delta = \frac{\hbar^{2}-\theta_{1}^{2}}{2} \end{array}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
00000	0000	0000000	000000000000000000000000000000000000000	00

Modified Hamiltonians

•
$$H_1(p,q,t) = \frac{1}{2}p^2 - 2q^3 - tq$$

• $H_2(p,q,t) = \frac{1}{2}p^2 + (q^2 + \frac{t}{2})p + \theta q$
• $H_3(p,q,t,\hbar) = \frac{1}{t} \Big[2q^2p^2 + 2(-tq^2 + \theta_{\infty}q + t)p - (\theta_0 + \theta_{\infty})tq - t^2 - \frac{1}{4}(\theta_0^2 - \theta_{\infty}^2) - \hbar pq \Big]$
• $H_4(p,q,t) = qp^2 + 2(q^2 + tq + \theta_0)p + 2(\theta_0 + \theta_{\infty})q$
• $H_5(p,q,t) = \frac{1}{t} \Big[q(q-1)^2p^2 + (\frac{\theta_0 - \theta_1 + \theta_{\infty}}{2}(q-1)^2 + (\theta_0 + \theta_1)q(q-1) - tq) p + \frac{1}{2}\theta_0(\theta_0 + \theta_1 + \theta_{\infty})q \Big]$
• $H_6(p,q,t,\hbar) = \frac{1}{t(t-1)} \Big[q(q-1)(q-t)p^2 - p(\theta_0(q-1)(q-t) + \theta_1q(q-t) + (\theta_t - \hbar)q(q-1)) + \frac{1}{4}(\theta_0 + \theta_1 + \theta_t - \theta_{\infty})(\theta_0 + \theta_1 + \theta_t + \theta_{\infty} - \hbar)(q-t) + \frac{1}{2}((t-1)\theta_0 + t\theta_1)(\theta_t - \hbar) \Big]$

Remark: In all cases we observe the property:

$$\ln \tau_J = H_J(p(t), q(t), t, \hbar = 0)$$
 for $1 \le J \le 6$

Formal	series expor	sion		
00000	0000	000000	000000000000000000000000000000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

Assumption (Assumption of a formal \hbar series expansion)

We assume that the solution q(t) of the deformed Painlevé equation admits a series expansion in \hbar :

$$q(t)=\sum_{k=0}^{\infty}q^{(k)}(t)\hbar^k$$

- Formal series expansion? Equivalent to specific initial conditions?
- If radius of convergence $R \ge 1$, we can reconstruct the initial Painlevé solution.
- Leading order may only be \hbar^0 because of the Painlevé equation.
- Inserting back into P4we can express q^(k) for k ≥ 1 as a rational function of q⁽⁰⁾. Same holds for d^k/dt^k q⁽⁰⁾

Gauge	choice			
00000	0000	000000	000000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

Proposition (Good gauge choice)

There exists an admissible gauge choice for which the previous assumption implies that $\mathcal{D}(x, t, \hbar)$ and $\mathcal{R}(x, t, \hbar)$ admit a \hbar series expansion of the form:

$$\mathcal{D}(x,t,\hbar) = \sum_{k=0}^{\infty} \mathcal{D}^{(k)}(x,t)\hbar^k$$
 with $\mathcal{R}(x,t,\hbar) = \sum_{k=0}^{\infty} \mathcal{R}^{(k)}(x,t)\hbar^k$

- Our Lax pairs are chosen in this gauge.
- Gauge is a little different from Jimbo-Miwa's but explicit connections are available.
- Main results are independent of the admissible gauge choice.
- Consequence: $M(x, t, \hbar)$ and $W_n(x_1, ..., x_n)$ have a \hbar series expansion: 1^{st} condition of the Topological Type property is satisfied.

Parity p	roperty $\hbar \leftarrow$	$\rightarrow -\hbar$		
00000	0000	000000	00000 00 000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

Proposition (Sufficient condition for parity (Bergère-Borot-Eynard))

Let \dagger be the operator changing \hbar into $-\hbar$. If there exists an invertible matrix $\Gamma(t)$ (independent of x) such that:

 $\Gamma^{-1}(t)\mathcal{D}^t(x,t)\Gamma(t) = \mathcal{D}^{\dagger}(x,t)$

then the determinantal formulas W_n satisfy $W_n^{\dagger} = (-1)^n W_n$ (Parity condition of the Topological Type property)

Theorem (Existence of $\Gamma(t)$ matrices)

We can find explicit $\Gamma(t)$ matrices in our six Painlevé cases and $\ln \tau$ (as well as Okamoto's σ functions) are always even functions of \hbar .

	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks
00000	0000	0000000	000000000000000000000000000000000000000	00
Operate	or [†]			

• P1:
$$q^{\dagger} = q$$
, $p^{\dagger} = -p$
• P2: $q^{\dagger} = -q - \frac{\theta}{p}$, $p^{\dagger} = p$
• P3: $q^{\dagger} = \frac{-2qp^2 + 2(tq - \theta_{\infty})p + t(\theta_0 + \theta_{\infty})}{2(p - t)p}$, $p^{\dagger} = p$
• P4:
 $q^{\dagger} = \frac{p(pq + 2\theta_0)}{2(p - t)p}$, $p^{\dagger} = \frac{2q(pq + \theta_0 + \theta_{\infty})}{2(p - t)p}$

$$q^{\dagger}=rac{p(pq+2 heta_0)}{2(pq+ heta_0+ heta_\infty)}\,,\ p^{\dagger}=rac{2q(pq+ heta_0+ heta_\infty)}{pq+2 heta_0}$$

• *P*5:

$$q^{\dagger}=rac{p(2pq+ heta_0- heta_1+ heta_\infty)}{(pq+ heta_0)(2pq+ heta_0+ heta_1+ heta_\infty)}\,,\ p^{\dagger}=rac{q(pq+ heta_0)(2pq+ heta_0+ heta_1+ heta_\infty)}{2pq+ heta_0- heta_1+ heta_\infty}$$

• P6:

$$q^{\dagger} = rac{t^2 z_0(z_0+ heta_0)(q-1)}{t^2 z_0(z_0+ heta_0)(q-1)-(t-1)^2 z_1(z_1+ heta_1)q} \;,\; p^{\dagger} = rac{z_0+ heta_0}{q^{\dagger}} + rac{z_1+ heta_1}{q^{\dagger}-1} + rac{z_t+ heta_t}{q^{\dagger}-t}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction 00000	Topological Recursion	Lax pairs and integrable systems	Painlevé equations ○○○○○○○●○○○○○○	Results and outlooks
$\Gamma(t)$ ma	atrices			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

• Painlevé 1:
$$\Gamma_1(t) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• Painlevé 2: $\Gamma_2(t) = \begin{pmatrix} -2p & 0 \\ 0 & 1 \end{pmatrix}$
• Painlevé 3: $\Gamma_3(t) = \begin{pmatrix} -\frac{p-t}{t} & 0 \\ 0 & 1 \end{pmatrix}$
• Painlevé 4: $\Gamma_4(t) = \begin{pmatrix} -2(pq + \theta_0 + \theta_\infty) & 0 \\ 0 & 1 \end{pmatrix}$
• Painlevé 5: $\Gamma_5(t) = \begin{pmatrix} -\frac{pq}{pq + \theta_0} & 0 \\ 0 & 1 \end{pmatrix}$
• Painlevé 6: $\Gamma_6(t) = \begin{pmatrix} -\frac{t^2 z_0(z_0 + \theta_0)}{q} + \frac{(t-1)^2 z_1(z_1 + \theta_1)}{q-1} & 0 \\ 0 & 1 \end{pmatrix}$

Spectra				
00000	0000	000000	00000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

Theorem (Spectral curves)

The six deformed Painlevé Lax pairs have genus 0 spectral curves:

$$\begin{array}{lll} (P_{\rm I}) & : & Y^2 = 4(x+2q_0)(x-q_0)^2 \\ (P_{\rm II}) & : & Y^2 = (x-q_0)^2 \left(x^2+2q_0x+q_0^2+\frac{\theta}{q_0}\right) \\ (P_{\rm III}) & : & Y^2 = \frac{t(q_0x+1)^2 \left((\theta_\infty-\theta_0q_0^2)x^2-2xq_0(\theta_\infty q_0^2-\theta_0)+q_0^2(\theta_\infty-\theta_0q_0^2)\right)}{4x^4(q_0^4-1)q_0} \\ (P_{\rm IV}) & : & Y^2 = \frac{(x-q_0)^2 \left(x^2+2(q_0+1)x+\frac{\theta_0^2}{q_0^2}\right)}{x^2} \\ (P_{\rm V}) & : & Y^2 = \frac{t^2(x-Q_0)^2 \left(x^2+2(q_0+1)x+\frac{\theta_0^2}{q_0^2}\right)}{4x^2(x-1)^2} \\ (P_{\rm VI}) & : & Y^2 = \frac{\theta_\infty^2 \left(x-q_0\right)^2 P_2(x)}{4x^2(x-1)^2(x-t)^2} \\ (P_{\rm VI}) & : & Y^2 = \frac{\theta_\infty^2 \left(x-q_0\right)^2 P_2(x)}{4x^2(x-1)^2(x-t)^2} \\ & \text{where } P_2(x) = x^2 + \left(-1 - \frac{\theta_0^2 t^2}{\theta_\infty^2 q_0^2} + \frac{\theta_1^2(t-1)^2}{\theta_\infty^2 (q_0-1)^2}\right) x + \frac{\theta_0^2 t^2}{\theta_\infty^2 q_0^2} \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 めんの

Pole st	ructure			
			000000000000000000000000000000000000000	
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

- The six spectral curves have a double zero \Rightarrow We need to prove that the W_n do not have singularities at these points (3rd condition of the Topological Type property).
- Crucial use of the time differential equation.
- Two steps proof dependent of the gauge choice:
 - Explicit computation of M⁽⁰⁾(x, t) and direct verification that it is regular at the double zero.
 - Recursive system giving M^(k+1)(x, t) in terms of lower orders. Verification that the recursion does not introduce singularity at the double zero.

Step 1:	Example for	Painlevé 4		
00000	0000	0000000	000000000000000000000000000000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

• In the good gauge ($\operatorname{Tr} \mathcal{D}(x, t) = 0$ and $\operatorname{Tr} \mathcal{R}(x, t) = 0$):

$$M^{(0)}(x,t) = \begin{pmatrix} \frac{1}{2} + \frac{\mathcal{R}_{1,1}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} & \frac{\mathcal{R}_{1,2}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} \\ \frac{\mathcal{R}_{2,1}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} & \frac{1}{2} - \frac{\mathcal{R}_{1,1}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} \end{pmatrix}$$

For Painlevé 4: x → R⁽⁰⁾(x, t) is singular at x = 0 and x = ∞ only and:

$$\det \mathcal{R}_4^{(0)} = q_0^2 \left(x^2 + 2(q_0 + t)x + \frac{\theta_0^2}{q_0^2} \right)$$

• Reminder of the spectral curve: $Y^2 = \frac{(x-q_0)^2 \left(x^2 + 2(q_0+t)x + \frac{\theta_0^2}{q_0^2}\right)}{x^2}$

Previous formula is valid if we change R⁽⁰⁾(x, t) ↔ D⁽⁰⁾(x, t) but conclusion at the double zero is no longer possible.

Sten 2.	Example for	r Painlevé 4		
00000	0000	000000	000000000000000000000000000000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

 In the good gauge M^(k)(x, t) is characterized by Tr M^(k) = 0, (det M)^(k) = 0 and [R, M]^(k) = 0:

$$\begin{pmatrix} 0 & -\mathcal{R}_{2,1}^{(0)} & \mathcal{R}_{1,2}^{(0)} \\ -2\mathcal{R}_{1,2}^{(0)} & 2\mathcal{R}_{1,1}^{(0)} & 0 \\ \mathcal{R}_{1,1}^{(0)} & \frac{1}{2}\mathcal{R}_{2,1}^{(0)} & \frac{1}{2}\mathcal{R}_{1,2}^{(0)} \end{pmatrix} \begin{pmatrix} \mathcal{M}^{(k)}(x,t)_{1,1} \\ \mathcal{M}^{(k)}(x,t)_{1,2} \\ \mathcal{M}^{(k)}(x,t)_{2,1} \end{pmatrix} \\ = \begin{pmatrix} \partial_{t}\mathcal{M}^{(k-1)}(x,t)_{1,1} - \sum_{i=0}^{k-1} \left[\mathcal{R}^{(k-i)}(x,t), \mathcal{M}^{(i)}(x,t) \right]_{1,1} \\ \partial_{t}\mathcal{M}^{(k-1)}(x,t)_{1,2} - \sum_{i=0}^{k-1} \left[\mathcal{R}^{(k-i)}(x,t), \mathcal{M}^{(i)}(x,t) \right]_{1,2} \\ \sqrt{-\det \mathcal{R}^{(0)}} \sum_{i=1}^{k-1} \left(\mathcal{M}^{(i)}(x,t)_{1,1}\mathcal{M}^{(k-i)}(x,t)_{1,1} + \mathcal{M}^{(i)}(x,t)_{1,2}\mathcal{M}^{(k-i)}(x,t)_{2,1} \right) \end{pmatrix}$$

Recursive system requires to invert a 3 × 3 matrix (same for all orders):

$$\det \begin{pmatrix} 0 & -\mathcal{R}_{2,1}^{(0)} & \mathcal{R}_{1,2}^{(0)} \\ -2\mathcal{R}_{1,2}^{(0)} & 2\mathcal{R}_{1,1}^{(0)} & 0 \\ \mathcal{R}_{1,1}^{(0)} & \frac{1}{2}\mathcal{R}_{2,1}^{(0)} & \frac{1}{2}\mathcal{R}_{1,2}^{(0)} \end{pmatrix} = -2\mathcal{R}_{1,2}^{(0)}(x,t) \det \mathcal{R}^{(0)}(x,t)$$

• No singularity is introduced at the double zero $x = q_0$.

• New proof only based on loop equations:

$$D = P_{n+1}(x; L_n) + W_{n+2}(x, x, L_n) + 2W_1(x)W_{n+1}(x, L_n) + \sum_{J \subset L_n, J \notin \{\emptyset, L_n\}} W_{1+|J|}(x, J)W_{1+n-|J|}(x, L_n \setminus J) + \sum_{j=1}^n \frac{d}{dx_j} \frac{W_n(x, L_n \setminus x_j) - W_n(L_n)}{x - x_j}$$

• Analysis of the singularities of $P_{n+1}(x; L_n)$ $(x \in \{0, 1, t, \infty\})$

$$P4: x \mapsto P_{n+1}(x, L_n) = \frac{\tilde{P}_{n+1}(L_n)}{x}$$

• If leading order: $W_n \leq \hbar^{n-2}$. Recursion leads to:

$$0 = P_{i_0+1}^{(n-3)}(x; L_{i_0}) + 2Y(x)W_{i_0+1}^{(n-2)}(x, L_{i_0})$$

For P4:
$$W_{i_0+1}^{(n-2)}(x, L_{i_0}) = rac{ ilde{P}_{i_0+1}^{(n-3)}(L_{i_0})}{2(x-q_0)\sqrt{x^2+2(q_0+t)x+rac{ heta_0^2}{q_0^2}}}$$

• Contradiction with the pole structure of $W_{i_0+1}^{(n-2)}(x, L_{i_0})$

Recursi	on for the le	ading order 2		
00000	0000	000000	0000000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

- Proof can be directly adapted for all six Painlevé cases.
- It is always by counting the orders of all poles that we get the contradiction.
- Contradiction is always the presence of a pole at the double zero of the spectral curve ⇒ Importance of the presence of a double zero in the spectral curve.
- Proof depends on the gauge choice (existence of $M^{(k)}(x, t)$) but the final result is independent of the gauge choice (W_n are invariant under admissible gauge transformations)

• Possibility to rewrite the proof with an "insertion operator"?

Main re	esult			
00000	0000	0000000	0000000000000	00
Introduction	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks

Theorem (O.M., K. Iwaki, A. Saenz)

The six $(1 \le J \le 6)$ deformed Painlevé Lax pairs (with \hbar and arbitrary monodromies) satisfy the Topological Type property under the existence of a formal series expansion in \hbar of the solution q(t) of the Painlevé equations. Consequently the determinantal formulas can be reconstructed from the topological recursion applied to the spectral curve of the Lax pair:

$$\frac{1}{\hbar^2} \ln \tau_{\rm J}(t) = \sum_{g=0}^{\infty} F_{\rm J}^{(g)}(t) \hbar^{2g-2}$$
$$W_n(x(z_1), \dots, x(z_n)) dx(z_1) \cdots dx(z_n) = \sum_{g=0}^{\infty} \omega_n^{(g)}(z_1, \dots, z_n) \hbar^{2g-2+n}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Introduction 00000	Topological Recursion	Lax pairs and integrable systems	Painlevé equations	Results and outlooks ○●
Open c	uestions			

- Existence of a general proof for 2×2 systems?
- If we fix D(x, t) with poles at x ∈ {0, 1, t, ∞} and satisfying the Topological Type property, do we always recover a Painlevé system?
- Systematic property satisfied by all 2×2 integrable systems?
- Generalization to $n \times n$ systems (Schlesinger, (p, q) models, cluster algebra (M. Shapiro talk), Lie Algebra (B. Dubrovin talk)?
- Assumptions are equivalent to a WKB series expansion for $\Psi(x, t, \hbar)$. Existence of convergent solutions? (Borel summability at $\hbar = 0$ but $\hbar = 0$ at border of the convergence domain?)
- Is $\Psi(x, t)$ an interesting quantity? M(x, t) has much better property under gauge transformations.

• Is the symplectic invariance property for $F^{(g)}$ obvious on the integrable system side?