Perturbative expansion of the Painlevé Lax systems and topological recursion

Marchal Olivier

Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France

$$
\text { January } 13^{\text {th }} 2016
$$

(1) Introduction

- Historical approach in random matrices
- Perturbative approach
(2) Topological Recursion
- Topological recursion
(3) Lax pairs and integrable systems
- Lax pairs
- Determinantal formulas
- Connection with the topological recursion

4 Painlevé equations

- Formal parameter
- Parity in \hbar
- Spectral curves
- Pole structure
- Leading order of the correlation functions
(5) Results and outlooks
- Main result
- Outlooks

General picture

Eigenvalues correlation functions

- Let $Z_{N}=\int_{\mathcal{H}_{N}} d M_{N} e^{-N} \operatorname{Tr} V\left(M_{N}\right)$ with $V(z)$ monic polynomial potential of even degree.
- Eigenvalues correlation functions (Stieltjes transforms):

$$
\begin{aligned}
W_{1}(x) & =\left\langle\sum_{i=1}^{N} \frac{1}{x-\lambda_{i}}\right\rangle_{N} \\
W_{2}\left(x_{1}, x_{2}\right) & =\left\langle\sum_{i, j=1}^{N} \frac{1}{\left(x_{1}-\lambda_{i}\right)\left(x_{2}-\lambda_{j}\right)}\right\rangle_{N}-W_{1}\left(x_{1}\right) W_{1}\left(x_{2}\right) \\
W_{p}\left(x_{1}, \ldots, x_{p}\right) & =\left\langle\sum_{i_{1}, \ldots, i_{p}}^{N} \frac{1}{x_{1}-\lambda_{i_{1}}} \cdots \frac{1}{x_{p}-\lambda_{i_{p}}}\right\rangle_{N, \text { cumulant }}
\end{aligned}
$$

- Generating series of joint moments $\left\langle\sum_{i=1}^{N} \lambda_{i}^{k}\right\rangle_{N},\left\langle\sum_{i, j=1}^{N} \lambda_{i}^{r} \lambda_{j}^{s}\right\rangle_{N}$
- Hermitian case: Correlation functions satisfy algebraic relations known as loop equations, Schwinger-Dyson equations, Virasoro constraints, etc.

Loop equations

- Let:

$$
P_{p}\left(x_{1} ; x_{2}, \ldots, x_{p}\right)=\left\langle\sum_{i_{1}, \ldots i_{p}} \frac{V^{\prime}\left(x_{1}\right)-V^{\prime}\left(\lambda_{i_{1}}\right)}{x_{1}-\lambda_{i_{1}}} \frac{1}{x_{2}-\lambda_{i_{2}}} \cdots \frac{1}{x_{p}-\lambda_{i_{p}}}\right\rangle_{N, \text { cumulant }}
$$

- Loop equations (notation $L_{p}=\left\{x_{2}, \ldots, x_{p}\right\}$):

$$
\begin{aligned}
& -P_{1}(x)=W_{1}^{2}(x)-V^{\prime}(x) W_{1}(x)+\frac{1}{N^{2}} W_{2}(x, x) \\
& P_{p}\left(x_{1} ; L_{p}\right)=\left(2 W_{1}\left(x_{1}\right)-V^{\prime}\left(x_{1}\right)\right) W_{p}\left(L_{p}\right)+\frac{1}{N^{2}} W_{p+1}\left(x_{1}, x_{1}, L_{p}\right) \\
& +\sum_{\mid \subset L_{p}} W_{|| |+1}\left(x_{1}, L_{l}\right) W_{p-|I| \mid}\left(x_{1}, L_{\backslash \backslash \mid}\right) \\
& -\sum_{j=2}^{p} \frac{\partial}{\partial x_{j}} \frac{W_{p-1}\left(L_{p}\right)-W_{p-1}\left(x_{1}, L_{p} \backslash x_{j}\right)}{x_{1}-x_{j}}
\end{aligned}
$$

- Property: $x \mapsto P_{p}\left(x ; L_{p}\right)$ is a polynomial. Is it enough to solve the equations and find W_{p} ?

Perturbative solutions

- $Z_{N}=\int_{\mathcal{H}_{N}} d M_{N} e^{-N \operatorname{Tr} V\left(M_{N}\right)}$. Series expansion at large N : We assume:

$$
\begin{aligned}
F_{N} & \stackrel{\text { def }}{=} \ln Z_{N}=\sum_{g=0}^{\infty} F^{(g)}\left(\frac{1}{N}\right)^{2 g-2} \\
W_{p}\left(x_{1}, \ldots, x_{p}\right) & =\sum_{g=0}^{\infty} \omega_{p}^{(g)}\left(x_{1}, \ldots, x_{p}\right)\left(\frac{1}{N}\right)^{N+2 g-2}
\end{aligned}
$$

- May also work for other parameters:

$$
Z_{N}\left[t_{4}\right]=\int_{\mathcal{H}_{N}} d M_{N} e^{-\frac{N}{2} \operatorname{Tr}\left(M_{N}^{2}\right)-\frac{t_{4}}{4} N \operatorname{Tr}\left(M_{N}^{4}\right)}
$$

we may assume:

$$
\ln Z_{N}\left[t_{4}\right]=\sum_{g=0}^{\infty} \sum_{v=0}^{\infty} F^{(g, v)}\left(t_{4}\right)^{\vee}\left(\frac{1}{N}\right)^{2 g-2}+\text { similar dev. for } W_{p}
$$

- Allow to solve recursively the loop equations.

Applications in combinatorics

- Interesting in combinatorics:

$$
Z_{N}\left[t_{4}\right]=\int_{\mathcal{H}_{N}} d M_{N} e^{-\frac{N}{2} \operatorname{Tr}\left(M_{N}^{2}\right)-\frac{t_{4}}{4} N \operatorname{Tr}\left(M_{N}^{4}\right)}
$$

Perturbative series expansion in $t_{4} \Rightarrow$ enumeration of fat ribbon graph (similar to Feynman expansion):
$F^{(g, v)}$ count the number of such connex graphs with v vertices (4 legs) and of genus g :

$$
F\left[t_{4}\right]=\ln Z_{N}\left[t_{4}\right]=\sum_{\mathcal{G}=4-\text { ribbon graph }} \frac{1}{\mid \text { Aut } \mathcal{G} \mid} t_{4}^{\# v(\mathcal{G})}\left(\frac{1}{N}\right)^{-\chi(\mathcal{G})}
$$

Applications in geometry

- Kontsevich integral: Intersection theory of Riemann surfaces moduli spaces:

$$
\left\langle\tau_{d_{1}} \ldots \tau_{d_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{d_{1}} \ldots \psi_{n}^{d_{n}}
$$

may be computed through the formal expansion of the Kontsevich integral of $F=\ln Z$ with:

$$
Z\left[t_{0}, t_{1}, \ldots\right]=(\operatorname{det} \Lambda)^{Q} \int d M \exp \left(-\frac{1}{2} \operatorname{Tr}(M \wedge M)+\frac{1}{3!} \operatorname{Tr}\left(M^{3}\right)\right)
$$

where $t_{i}=-(2 i-1)!!\operatorname{Tr}\left(\Lambda^{-(2 i-1)}\right)$

- Remark: $F\left[t_{0}, t_{1}, \ldots\right]$ in connection with the $K d V$ equation:
$u \stackrel{\text { def }}{=} \frac{\partial^{2} F}{\partial t_{1}^{2}}$ satisfies: $\frac{\partial u}{\partial t_{3}}=u \frac{\partial u}{\partial t_{1}}+\frac{1}{12} \frac{\partial^{3} u}{\partial t_{1}^{3}}$ Generalization:
Kontsevitch-Penner model (Safnuk, Alekandrov: open intersection numbers):
$Z\left[Q, t_{i}\right]=(\operatorname{det} \Lambda)^{Q} \int d M \exp \left(-\frac{1}{2} \operatorname{Tr}(M \wedge M)+\frac{1}{3} \operatorname{Tr}\left(M^{3}\right)-Q \ln M\right)$

Spectral curve

- Formal solution of the loop equations with the assumption that:

$$
\begin{aligned}
F_{N} & =\ln Z_{N}=\sum_{g=0}^{\infty} F^{(g)}\left(\frac{1}{N}\right)^{2 g-2} \\
W_{p}\left(x_{1}, \ldots, x_{p}\right) & =\sum_{g=0}^{\infty} \omega_{p}^{(g)}\left(x_{1}, \ldots, x_{p}\right)\left(\frac{1}{N}\right)^{2 g+N-2}
\end{aligned}
$$

- Central element $=$ Spectral curve:

$$
\begin{aligned}
& Y(x)= \omega_{1}^{(0)}(x)-\frac{V^{\prime}(x)}{2}=\int \frac{\rho_{\lim }(\lambda) d \lambda}{x-\lambda}-\frac{V^{\prime}(x)}{2} \\
& \text { satisfies } Y^{2}(x)=\frac{V^{\prime}(x)^{2}}{4}-P_{1}^{(0)}(x)
\end{aligned}
$$

\Leftrightarrow Riemann surface (hyperelliptic) of genus g.

- Undetermined coefficients of $P_{1}^{(0)}(x)$ are equivalent to fixing filling fractions:

$$
\epsilon_{i}=\frac{1}{2 \pi i} \oint_{\mathcal{A}_{i}} Y(x) d x
$$

Filling fractions and $\omega_{2}^{(0)}$

- Random matrix theory:

Summation of filling fractions \leftrightarrow Oscillating terms to get convergence?

- Combinatorics: Usually fixed at "natural" values.
- Never a problem when the spectral curve is of genus 0 .

Topological recursion

Theorem (Eynard-Orantin-Chekhov)

The spectral curve allow to recursively compute all orders $\omega_{n}^{(g)}\left(x_{1}, \ldots, x_{n}\right)$ and $F^{(g)}$ through a recursive procedure known as the topological recursion.
Ingredients: Normalized bi-differential $\omega_{2}^{(0)}\left(z_{1}, z_{2}\right)$, recursion kernel and integration kernel:

$$
K\left(z_{0}, z\right)=\frac{\frac{1}{2} \int_{z}^{\bar{z}} \omega_{2}^{(0)}\left(s, z_{0}\right) d s}{(Y(z)-Y(\bar{z})) d x(z)} \text { and } \Phi(z)=\int^{z} Y d x
$$

then (notation $I_{n}=\left\{z_{1}, \ldots, z_{n}\right\}$):

$$
\begin{aligned}
\omega_{n+1}^{(g)}\left(z_{1}, \ldots, z_{n}\right)= & \sum_{i} \operatorname{Res}_{z \rightarrow a_{i}} K\left(z_{1}, z\right)\left(\omega_{n+2}^{(g-1)}\left(z, \bar{z}, p_{l_{n}}\right)\right. \\
& \left.+\sum_{m=0}^{g} \sum_{l_{1} \sqcup l_{2}=1}^{\prime} \omega_{\left|l_{1}\right|+1}^{(m)}\left(z, z_{l_{1}}\right) \omega_{\left|l_{2}\right|+1}^{(g-m)}\left(\bar{z}, z_{l_{2}}\right)\right)
\end{aligned}
$$

Conversely (with $F^{(g)}=\omega_{0}^{(g)}$):

$$
\omega_{n}^{(g)}\left(I_{n}\right)=\frac{1}{2-2 g-n} \sum_{i} \operatorname{Res}_{z \rightarrow a_{i}} \Phi(z) \omega_{n+1}^{(g)}\left(z, I_{n}\right)
$$

Main features of the topological recursion

- Formal of the loop equation under the assumption of existence of series expansions \Rightarrow Natural question of series convergence is open (Borel sumability, non zero radius of convergence, etc.).
- Fixed filling fractions: hard to determine in practice (static or dynamical determination).
- Genus 0 spectral curves are easier to handle: global parametrization + explicit expression of the normalized bi-differential $\omega_{2}^{(0)}\left(z_{1}, z_{2}\right)$.
- Topological recursion generalized outside any underlying random hermitian matrix model. Only a spectral curve is required.

Formal approach

- General idea: Find corresponding definitions of quantities arising in the topological recursion directly into integrable systems formalism.
- Interesting quantities: formal expansion parameter \hbar equivalent to $\frac{1}{N}$, spectral curve, quantities similar to correlation functions, etc.
- Recent solution proposed by Bergère, Borot and Eynard starting from a given Lax pair.
- Prove that the topological recursion is satisfied: Topological Type property (sufficient (and necessary?) condition)

Lax pair

- Definition for 2×2 system by Bergère and Eynard, generalized for $n \times n$ systems by Bergère, Borot and Eynard.
- Lax pair:

$$
\partial_{x} \Psi(x, t)=\mathcal{D}(x, t) \Psi(x, t), \partial_{t} \Psi(x, t)=\mathcal{R}(x, t) \Psi(x, t)
$$

- Example for Painlevé 4:

$$
\begin{aligned}
\mathcal{D}(x, t) & =\left(\begin{array}{cc}
x+t+\frac{p q+\theta_{0}}{x} & 1-\frac{q}{x} \\
-2\left(p q+\theta_{0}+\theta_{\infty}\right)+\frac{p\left(p q+2 \theta_{0}\right)}{x} & -\left(x+t+\frac{p q+\theta_{0}}{x}\right)
\end{array}\right) \\
\mathcal{R}(x, t) & =\left(\begin{array}{cc}
x+q+t & 1 \\
-2\left(p q+\theta_{0}+\theta_{\infty}\right) & -(x+q+t)
\end{array}\right)
\end{aligned}
$$

- Compatibility equation (zero-curvature equation):

$$
\partial_{t} \mathcal{D}(x, t)-\partial_{x} \mathcal{R}(x, t)+[\mathcal{D}(x, t), \mathcal{R}(x, t)]=0
$$

- Equivalent Hamiltonian formalism:

$$
H_{4}(p, q, t)=q p^{2}+2\left(q^{2}+t q+\theta_{0}\right) p+2\left(\theta_{0}+\theta_{\infty}\right) q
$$

- Jimbo-Miwa τ-function at infinity equals the Hamiltonian

Determinantal formulas: version 1

Let:

$$
\Psi(x, t)=\left(\begin{array}{ll}
\psi(x, t) & \phi(x, t) \\
\tilde{\psi}(x, t) & \tilde{\phi}(x, t)
\end{array}\right)
$$

We define the Christoffel-Darboux kernel:

$$
K\left(x_{1}, x_{2}\right)=\frac{\psi\left(x_{1}\right) \tilde{\phi}\left(x_{2}\right)-\tilde{\psi}\left(x_{1}\right) \phi\left(x_{2}\right)}{x_{1}-x_{2}}
$$

and then the correlation functions:

$$
\begin{aligned}
W_{1}(x) & =\frac{\partial \psi}{\partial x}(x) \tilde{\phi}(x)-\frac{\partial \tilde{\psi}}{\partial x}(x) \phi(x) \\
W_{n}\left(x_{1}, \ldots, x_{n}\right) & =-\frac{\delta_{n, 2}}{\left(x_{1}-x_{2}\right)^{2}}+(-1)^{n+1} \sum_{\sigma: n-\text { cycles }} \prod_{i=1}^{n} K\left(x_{i}, x_{\sigma(i)}\right)
\end{aligned}
$$

Determinantal formulas: version 2

"Alternative" definition in terms of the resolvent matrix $M(x, t)$

$$
M(x)=\Psi(x)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \Psi^{-1}(x)=\left(\begin{array}{ll}
\psi \tilde{\phi} & -\psi \phi \\
\tilde{\psi} \tilde{\phi} & -\phi \tilde{\psi}
\end{array}\right)
$$

then we can rewrite the correlation functions:

$$
\begin{aligned}
W_{1}(x) & =-\frac{1}{\hbar} \operatorname{Tr}(\mathcal{D}(x) M(x)) \\
W_{2}\left(x_{1}, x_{2}\right) & =\frac{\operatorname{Tr}\left(M\left(x_{1}\right) M\left(x_{2}\right)\right)-1}{\left(x_{1}-x_{2}\right)^{2}} \\
W_{n}\left(x_{1}, \ldots, x_{n}\right) & =(-1)^{n+1} \operatorname{Tr} \sum_{\sigma: n \text {-cycles }} \prod_{i=1}^{n} \frac{M\left(x_{\sigma(i)}\right)}{x_{\sigma(i)}-x_{\sigma(i+1)}} \\
& =\frac{(-1)^{n+1}}{n} \sum_{\sigma \in S_{n}} \frac{\operatorname{Tr} M\left(x_{\sigma(1)}\right) \ldots M\left(x_{\sigma(n)}\right)}{\left(x_{\sigma(1)}-x_{\sigma(2)}\right) \ldots\left(x_{\sigma(n-1)}-x_{\sigma(n)}\right)\left(x_{\sigma(n)}-x_{\sigma(1)}\right)}
\end{aligned}
$$

Properties of the determinantal formulas

- Valid for any linear differential system: $\partial_{x} \Psi(x)=L(x) \Psi(x)$ and not only for Lax pairs
- $W_{n}\left(x_{1}, \ldots, x_{n}\right)$ are invariant under "admissible" gauge transformations: $\tilde{\Psi}(x, t)=U(x, t) \Psi(x, t)$ with:
- $U(x, t)=U(t)$ independent of x
- $U(x, t)$ proportional to I_{2} (special case for $\left.W_{1}(x)\right) . U(x, t)=\frac{f^{\prime}(x, t)}{f(x, t)} I_{2}$ gives:

$$
\tilde{W}_{1}(x)=W_{1}(x)+\frac{f^{\prime}(x, t)}{f(x, t)}
$$

- These gauge transformations allow to get "good" Lax pairs from Jimbo-Miwa's (See Lax pair for Painlevé 4).

Connection with the topological recursion

Theorem (Bergère-Borot-Eynard)

If the determinantal formulas $W_{n}\left(x_{1}, \ldots, x_{n}\right)$ have a series expansion in a parameter \hbar of the form:

$$
W_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{g=0}^{\infty} \hbar^{n-2+2 g} W_{n}^{(g)}\left(x_{1}, \ldots, x_{n}\right) \quad \text { for } n \geq 1
$$

then we can obtain the $W_{n}^{(g)}$ through the topological recursion applied to the spectral curve attached to the Lax pair:

$$
E(x, Y)=\operatorname{det}(Y-\mathcal{D}(x, t))_{\mid \hbar \rightarrow 0}=0
$$

Moreover, the τ-function admits a series expansion of the form:

$$
\frac{1}{\hbar^{2}} \ln \tau=\sum_{g=0}^{\infty} \tau^{(2 g)} \hbar^{2 g-2}
$$

with $\tau^{(g)}(t)=F^{(g)}(t)+C^{(g)}$ computed from the topological recursion.

Topological Type property

Theorem (Bergère-Borot-Eynard)

Is the spectral curve is of genus 0 , the following conditions (known as Topological Type property) are sufficient conditions to prove that the determinantal formulas satisfy the previous theorem:
(1) Existence of a formal \hbar series expansion: The determinantal formulas admit a series expansion in \hbar :

$$
W_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{g=0}^{\infty} W_{n}^{(g)}\left(x_{1}, \ldots, x_{n}\right) \hbar^{g}
$$

(2) Parity: $\left.W_{n}\right|_{\hbar \mapsto-\hbar}=(-1)^{n} W_{n}$ for $n \geq 1$
(3) Pole structure: The functions $W_{n}^{(g)}\left(x_{1}, \ldots, x_{n}\right)$ are regular at the even zeros of the spectral curve.
(4) Leading order: The \hbar series expansion of W_{n} is at least of order \hbar^{n-2}.

Plan of the proof for Painlevé equations

(1) Presentation of the Lax pair and introduction of a formal parameter \hbar
(2) Computation of the spectral curve (genus 0)
(Proof of the topological type property

- Existence of formal series expansion in \hbar for $W_{n} \Leftrightarrow$ Gauge choice
- Study of the $\hbar \leftrightarrow-\hbar$ operator
- Control of the pole structure of W_{n}
- Leading order of series expansion of W_{n} using pole structure and loop equations.

Introduction of \hbar

- Introduction through a rescaling of the parameters:

$$
\begin{aligned}
P 4: & \left(t, x, q, p, \theta_{0}, \theta_{\infty}\right) \rightarrow\left(\hbar^{\frac{1}{2}} t, \hbar^{\frac{1}{2}} x, \hbar^{\frac{1}{2}} q, \hbar^{\frac{1}{2}} p, \hbar \theta_{0}, \hbar \theta_{\infty}\right) \\
& \Psi(x, t) \rightarrow\left(\begin{array}{cc}
\hbar^{-\frac{1}{4}} & 0 \\
0 & \hbar^{\frac{1}{4}}
\end{array}\right) \Psi(x, t)
\end{aligned}
$$

- Equivalent to the new differential system:

$$
\hbar \partial_{x} \Psi(x, t)=\mathcal{D}(x, t) \Psi(x, t) \text { with } \hbar \partial_{t} \Psi(x, t)=\mathcal{R}(x, t) \Psi(x, t)
$$

- Similar transformations are available for the other Painlevé equations.
- Specific regime. $\hbar=1 \Leftrightarrow$ usual formulation
- Deformation of the Painlevé equation:

$$
\hbar^{2} \ddot{q}=\frac{\hbar^{2}}{2 q} \dot{q}^{2}+2\left(3 q^{3}+4 t q^{2}+\left(t^{2}-2 \theta_{\infty}+\hbar\right) q-\frac{\theta_{0}^{2}}{q}\right)
$$

- Deformation of the Hamiltonian formalism:

$$
\begin{aligned}
H_{4}(p, q, t) & =q p^{2}+2\left(q^{2}+t q+\theta_{0}\right) p+2\left(\theta_{0}+\theta_{\infty}\right) q \\
\hbar \dot{\boldsymbol{q}} & =\frac{\partial H_{4}}{\partial p}(p, q) \text { with } \hbar \dot{\boldsymbol{p}}=-\frac{\partial H_{4}}{\partial q}(p, q)
\end{aligned}
$$

Modified Painlevé equations

- $\left(P_{\mathrm{I}}\right): \hbar^{2} \ddot{q}=6 q^{2}+t$
- $\left(P_{\text {II }}\right): \hbar^{2} \ddot{q}=2 q^{3}+t q+\frac{\hbar}{2}-\theta$
- $\left(P_{\mathrm{III}}\right): \hbar^{2} \ddot{q}=\frac{\hbar^{2}}{q} \dot{q}^{2}-\frac{\hbar^{2}}{t} \dot{q}+\frac{4}{t}\left(\theta_{0} q^{2}-\theta_{\infty}+\hbar\right)+4 q^{3}-\frac{4}{q}$
- $\left(P_{\mathrm{IV}}\right): \hbar^{2} \ddot{q}=\frac{\hbar^{2}}{2 q} \dot{q}^{2}+2\left(3 q^{3}+4 t q^{2}+\left(t^{2}-2 \theta_{\infty}+\hbar\right) q-\frac{\theta_{0}^{2}}{q}\right)$
- $\left(P_{\mathrm{V}}\right)$:
$\hbar^{2} \ddot{q}=\left(\frac{1}{2 q}+\frac{1}{q-1}\right)(\hbar \dot{q})^{2}-\hbar^{2} \frac{\dot{q}}{t}+\frac{(q-1)^{2}}{t^{2}}\left(\alpha q+\frac{\beta}{q}\right)+\frac{\gamma q}{t}+\frac{\delta q(q+1)}{q-1}$
where

$$
\alpha=\frac{\left(\theta_{0}-\theta_{1}-\theta_{\infty}\right)^{2}}{8}, \beta=-\frac{\left(\theta_{0}-\theta_{1}+\theta_{\infty}\right)^{2}}{8}, \gamma=\theta_{0}+\theta_{1}-\hbar, \delta=-\frac{1}{2}
$$

- $\left(P_{\mathrm{VI}}\right): \hbar^{2} \ddot{q}=\frac{\hbar^{2}}{2}\left(\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-t}\right) \dot{q}^{2}-\hbar^{2}\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{q-t}\right) \dot{q}+$ $\frac{q(q-1)(q-t)}{t^{2}(t-1)^{2}}\left[\alpha+\beta \frac{t}{q^{2}}+\gamma \frac{t-1}{(q-1)^{2}}+\delta \frac{t(t-1)}{(q-t)^{2}}\right]$ where $\alpha=\frac{1}{2}\left(\theta_{\infty}-\hbar\right)^{2}, \beta=-\frac{\theta_{0}^{2}}{2}, \gamma=\frac{\theta_{1}^{2}}{2}, \delta=\frac{\hbar^{2}-\theta_{t}^{2}}{2}$

Modified Hamiltonians

- $H_{1}(p, q, t)=\frac{1}{2} p^{2}-2 q^{3}-t q$
- $H_{2}(p, q, t)=\frac{1}{2} p^{2}+\left(q^{2}+\frac{t}{2}\right) p+\theta q$
- $H_{3}(p, q, t, \hbar)=$

$$
\frac{1}{t}\left[2 q^{2} p^{2}+2\left(-t q^{2}+\theta_{\infty} q+t\right) p-\left(\theta_{0}+\theta_{\infty}\right) t q-t^{2}-\frac{1}{4}\left(\theta_{0}^{2}-\theta_{\infty}^{2}\right)-\hbar p q\right]
$$

- $H_{4}(p, q, t)=q p^{2}+2\left(q^{2}+t q+\theta_{0}\right) p+2\left(\theta_{0}+\theta_{\infty}\right) q$
- $H_{5}(p, q, t)=\frac{1}{t}\left[q(q-1)^{2} p^{2}+\right.$

$$
\left.\left(\frac{\theta_{0}-\theta_{1}+\theta_{\infty}}{2}(q-1)^{2}+\left(\theta_{0}+\theta_{1}\right) q(q-1)-t q\right) p+\frac{1}{2} \theta_{0}\left(\theta_{0}+\theta_{1}+\theta_{\infty}\right) q\right]
$$

- $H_{6}(p, q, t, \hbar)=\frac{1}{t(t-1)}\left[q(q-1)(q-t) p^{2}-\right.$

$$
\begin{aligned}
& p\left(\theta_{0}(q-1)(q-t)+\theta_{1} q(q-t)+\left(\theta_{t}-\hbar\right) q(q-1)\right)+\frac{1}{4}\left(\theta_{0}+\theta_{1}+\right. \\
& \left.\left.\theta_{t}-\theta_{\infty}\right)\left(\theta_{0}+\theta_{1}+\theta_{t}+\theta_{\infty}-\hbar\right)(q-t)+\frac{1}{2}\left((t-1) \theta_{0}+t \theta_{1}\right)\left(\theta_{t}-\hbar\right)\right]
\end{aligned}
$$

Remark: In all cases we observe the property:

$$
\ln \tau_{J}=H_{J}(p(t), q(t), t, \hbar=0) \quad \text { for } 1 \leq J \leq 6
$$

Formal series expansion

Assumption (Assumption of a formal \hbar series expansion)

We assume that the solution $q(t)$ of the deformed Painlevé equation admits a series expansion in \hbar :

$$
q(t)=\sum_{k=0}^{\infty} q^{(k)}(t) \hbar^{k}
$$

- Formal series expansion? Equivalent to specific initial conditions?
- If radius of convergence $R \geq 1$, we can reconstruct the initial Painlevé solution.
- Leading order may only be \hbar^{0} because of the Painlevé equation.
- Inserting back into $P 4$ we can express $q^{(k)}$ for $k \geq 1$ as a rational function of $q^{(0)}$. Same holds for $\frac{d^{k}}{d t^{k}} q^{(0)}$

Gauge choice

Proposition (Good gauge choice)

There exists an admissible gauge choice for which the previous assumption implies that $\mathcal{D}(x, t, \hbar)$ and $\mathcal{R}(x, t, \hbar)$ admit a \hbar series expansion of the form:

$$
\mathcal{D}(x, t, \hbar)=\sum_{k=0}^{\infty} \mathcal{D}^{(k)}(x, t) \hbar^{k} \text { with } \mathcal{R}(x, t, \hbar)=\sum_{k=0}^{\infty} \mathcal{R}^{(k)}(x, t) \hbar^{k}
$$

- Our Lax pairs are chosen in this gauge.
- Gauge is a little different from Jimbo-Miwa's but explicit connections are available.
- Main results are independent of the admissible gauge choice.
- Consequence: $M(x, t, \hbar)$ and $W_{n}\left(x_{1}, \ldots, x_{n}\right)$ have a \hbar series expansion: $1^{\text {st }}$ condition of the Topological Type property is satisfied.

Parity property $\hbar \leftrightarrow-\hbar$

Proposition (Sufficient condition for parity (Bergère-Borot-Eynard))

Let \dagger be the operator changing \hbar into $-\hbar$. If there exists an invertible matrix $\Gamma(t)$ (independent of x) such that:

$$
\Gamma^{-1}(t) \mathcal{D}^{t}(x, t) \Gamma(t)=\mathcal{D}^{\dagger}(x, t)
$$

then the determinantal formulas W_{n} satisfy $W_{n}^{\dagger}=(-1)^{n} W_{n}$ (Parity condition of the Topological Type property)

Theorem (Existence of $\Gamma(t)$ matrices)

We can find explicit $\Gamma(t)$ matrices in our six Painlevé cases and $\ln \tau$ (as well as Okamoto's σ functions) are always even functions of \hbar.

Operator

- P1: $q^{\dagger}=q, p^{\dagger}=-p$
- P2: $q^{\dagger}=-q-\frac{\theta}{p}, p^{\dagger}=p$
- P3: $q^{\dagger}=\frac{-2 q p^{2}+2\left(t q-\theta_{\infty}\right) p+t\left(\theta_{0}+\theta_{\infty}\right)}{2(p-t) p}, p^{\dagger}=p$
- P4:

$$
q^{\dagger}=\frac{p\left(p q+2 \theta_{0}\right)}{2\left(p q+\theta_{0}+\theta_{\infty}\right)}, p^{\dagger}=\frac{2 q\left(p q+\theta_{0}+\theta_{\infty}\right)}{p q+2 \theta_{0}}
$$

- P5:

$$
q^{\dagger}=\frac{p\left(2 p q+\theta_{0}-\theta_{1}+\theta_{\infty}\right)}{\left(p q+\theta_{0}\right)\left(2 p q+\theta_{0}+\theta_{1}+\theta_{\infty}\right)}, \quad p^{\dagger}=\frac{q\left(p q+\theta_{0}\right)\left(2 p q+\theta_{0}+\theta_{1}+\theta_{\infty}\right)}{2 p q+\theta_{0}-\theta_{1}+\theta_{\infty}}
$$

- P6:

$$
q^{\dagger}=\frac{t^{2} z_{0}\left(z_{0}+\theta_{0}\right)(q-1)}{t^{2} z_{0}\left(z_{0}+\theta_{0}\right)(q-1)-(t-1)^{2} z_{1}\left(z_{1}+\theta_{1}\right) q}, p^{\dagger}=\frac{z_{0}+\theta_{0}}{q^{\dagger}}+\frac{z_{1}+\theta_{1}}{q^{\dagger}-1}+\frac{z_{t}+\theta_{t}}{q^{\dagger}-t}
$$

$\Gamma(t)$ matrices

- Painlevé 1: $\Gamma_{1}(t)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Painlevé 2: $\Gamma_{2}(t)=\left(\begin{array}{cc}-2 p & 0 \\ 0 & 1\end{array}\right)$
- Painlevé 3: $\Gamma_{3}(t)=\left(\begin{array}{cc}-\frac{p-t}{t} & 0 \\ 0 & 1\end{array}\right)$
- Painlevé 4: $\Gamma_{4}(t)=\left(\begin{array}{cc}-2\left(p q+\theta_{0}+\theta_{\infty}\right) & 0 \\ 0 & 1\end{array}\right)$
- Painlevé 5: $\Gamma_{5}(t)=\left(\begin{array}{cc}-\frac{p q}{p q+\theta_{0}} & 0 \\ 0 & 1\end{array}\right)$
- Painlevé 6: $\Gamma_{6}(t)=\left(\begin{array}{cc}-\frac{t^{2} z_{0}\left(z_{0}+\theta_{0}\right)}{q}+\frac{(t-1)^{2} z_{1}\left(z_{1}+\theta_{1}\right)}{q-1} & 0 \\ 0 & 1\end{array}\right)$

Spectral curves

Theorem (Spectral curves)

The six deformed Painlevé Lax pairs have genus 0 spectral curves:

$$
\begin{aligned}
&\left(P_{\mathrm{I}}\right): \\
&\left(P_{\mathrm{II}}\right) Y^{2}=4\left(x+2 q_{0}\right)\left(x-q_{0}\right)^{2} \\
&\left(Y^{2}=\left(x-q_{0}\right)^{2}\left(x^{2}+2 q_{0} x+q_{0}^{2}+\frac{\theta}{q_{0}}\right)\right. \\
&\left(P_{\mathrm{III}}\right): \\
&\left(Y^{2}=\frac{t\left(q_{0} x+1\right)^{2}\left(\left(\theta_{\infty}-\theta_{0} q_{0}^{2}\right) x^{2}-2 x q_{0}\left(\theta_{\infty} q_{0}^{2}-\theta_{0}\right)+q_{0}^{2}\left(\theta_{\infty}-\theta_{0} q_{0}^{2}\right)\right)}{4 x^{4}\left(q_{0}^{4}-1\right) q_{0}}\right. \\
&\left(P_{\mathrm{IV}}\right): \\
&\left(P_{\mathrm{V}}\right) Y^{2}=\frac{\left(x-q_{0}\right)^{2}\left(x^{2}+2\left(q_{0}+t\right) \times+\frac{\theta_{0}^{2}}{q_{0}^{2}}\right)}{Y^{2}=\frac{t^{2}\left(x-Q_{0}\right)^{2}\left(x-Q^{2}\right)\left(x-Q_{2}\right)}{4 x^{2}(x-1)^{2}}} \\
&\left(P_{\mathrm{VI}}\right): Y^{2}=\frac{\theta_{\infty}^{2}\left(x-q_{0}\right)^{2} P_{2}(x)}{4 x^{2}(x-1)^{2}(x-t)^{2}} \\
& \text { where } P_{2}(x)=x^{2}+\left(-1-\frac{\theta_{0}^{2} t^{2}}{\theta_{\infty}^{2} q_{0}^{2}}+\frac{\theta_{1}^{2}(t-1)^{2}}{\theta_{\infty}^{2}\left(q_{0}-1\right)^{2}}\right) x+\frac{\theta_{0}^{2} t^{2}}{\theta_{\infty}^{2} q_{0}^{2}}
\end{aligned}
$$

Pole structure

- The six spectral curves have a double zero \Rightarrow We need to prove that the W_{n} do not have singularities at these points ($3^{\text {rd }}$ condition of the Topological Type property).
- Crucial use of the time differential equation.
- Two steps proof dependent of the gauge choice:
(1) Explicit computation of $M^{(0)}(x, t)$ and direct verification that it is regular at the double zero.
(2) Recursive system giving $M^{(k+1)}(x, t)$ in terms of lower orders. Verification that the recursion does not introduce singularity at the double zero.

Step 1: Example for Painlevé 4

- In the good gauge $(\operatorname{Tr} \mathcal{D}(x, t)=0$ and $\operatorname{Tr} \mathcal{R}(x, t)=0)$:

$$
M^{(0)}(x, t)=\left(\begin{array}{cc}
\frac{1}{2}+\frac{\mathcal{R}_{1,1}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}} & \frac{\mathcal{R}_{1,2}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}} \\
\frac{\mathcal{R}_{2,1}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}} & \frac{1}{2}-\frac{\mathcal{R}_{1,1}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}}
\end{array}\right)
$$

- For Painlevé 4: $x \mapsto \mathcal{R}^{(0)}(x, t)$ is singular at $x=0$ and $x=\infty$ only and:

$$
\operatorname{det} \mathcal{R}_{4}^{(0)}=q_{0}^{2}\left(x^{2}+2\left(q_{0}+t\right) x+\frac{\theta_{0}^{2}}{q_{0}^{2}}\right)
$$

- Reminder of the spectral curve: $Y^{2}=\frac{\left(x-q_{0}\right)^{2}\left(x^{2}+2\left(q_{0}+t\right) x+\frac{\theta_{0}^{2}}{q_{0}^{2}}\right)}{x^{2}}$
- Previous formula is valid if we change $\mathcal{R}^{(0)}(x, t) \leftrightarrow \mathcal{D}^{(0)}(x, t)$ but conclusion at the double zero is no longer possible.

Step 2: Example for Painlevé 4

- In the good gauge $M^{(k)}(x, t)$ is characterized by $\operatorname{Tr} M^{(k)}=0$, $(\operatorname{det} M)^{(k)}=0$ and $[\mathcal{R}, M]^{(k)}=0$:
- Recursive system requires to invert a 3×3 matrix (same for all orders):

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & -\mathcal{R}_{2,1}^{(0)} & \mathcal{R}_{1,2}^{(0)} \\
-2 \mathcal{R}_{1,2}^{(0)} & 2 \mathcal{R}_{1,1}^{(0)} & 0 \\
\mathcal{R}_{1,1}^{(0)} & \frac{1}{2} \mathcal{R}_{2,1}^{(0)} & \frac{1}{2} \mathcal{R}_{1,2}^{(0)}
\end{array}\right)=-2 \mathcal{R}_{1,2}^{(0)}(x, t) \operatorname{det} \mathcal{R}^{(0)}(x, t)
$$

- No singularity is introduced at the double zero $x=q_{0}$.

Recursion for the leading order ($4^{\text {th }}$ condition of the Topological Type property)

- New proof only based on loop equations:

$$
\begin{aligned}
0= & P_{n+1}\left(x ; L_{n}\right)+W_{n+2}\left(x, x, L_{n}\right)+2 W_{1}(x) W_{n+1}\left(x, L_{n}\right)+ \\
& \sum_{J \subset L_{n}, J \notin\left\{\emptyset, L_{n}\right\}} W_{1+|J|}(x, J) W_{1+n-|J|}\left(x, L_{n} \backslash J\right) \\
& +\sum_{j=1}^{n} \frac{d}{d x_{j}} \frac{W_{n}\left(x, L_{n} \backslash x_{j}\right)-W_{n}\left(L_{n}\right)}{x-x_{j}}
\end{aligned}
$$

- Analysis of the singularities of $P_{n+1}\left(x ; L_{n}\right)(x \in\{0,1, t, \infty\})$

$$
P 4: x \mapsto P_{n+1}\left(x, L_{n}\right)=\frac{\tilde{P}_{n+1}\left(L_{n}\right)}{x}
$$

- If leading order: $W_{n} \leq \hbar^{n-2}$. Recursion leads to:

$$
\begin{gathered}
0=P_{i_{0}+1}^{(n-3)}\left(x ; L_{i_{0}}\right)+2 Y(x) W_{i_{0}+1}^{(n-2)}\left(x, L_{i_{0}}\right) \\
\text { For P4: } W_{i_{0}+1}^{(n-2)}\left(x, L_{i_{0}}\right)=\frac{\tilde{P}_{i_{0}+1}^{(n-3)}\left(L_{i_{0}}\right)}{2\left(x-q_{0}\right) \sqrt{x^{2}+2\left(q_{0}+t\right) x+\frac{\theta_{0}^{2}}{q_{0}^{2}}}}
\end{gathered}
$$

- Contradiction with the pole structure of $W_{i_{0}+1}^{(n-2)}\left(x, L_{i_{0}}\right)$

Recursion for the leading order 2

- Proof can be directly adapted for all six Painlevé cases.
- It is always by counting the orders of all poles that we get the contradiction.
- Contradiction is always the presence of a pole at the double zero of the spectral curve \Rightarrow Importance of the presence of a double zero in the spectral curve.
- Proof depends on the gauge choice (existence of $\left.M^{(k)}(x, t)\right)$ but the final result is independent of the gauge choice (W_{n} are invariant under admissible gauge transformations)
- Possibility to rewrite the proof with an "insertion operator"?

Main result

Theorem (O.M., K. Iwaki, A. Saenz)

The six $(1 \leq J \leq 6)$ deformed Painlevé Lax pairs (with \hbar and arbitrary monodromies) satisfy the Topological Type property under the existence of a formal series expansion in \hbar of the solution $q(t)$ of the Painlevé equations. Consequently the determinantal formulas can be reconstructed from the topological recursion applied to the spectral curve of the Lax pair:

$$
\begin{aligned}
\frac{1}{\hbar^{2}} \ln \tau_{\mathrm{J}}(t) & =\sum_{g=0}^{\infty} F_{\mathrm{J}}^{(g)}(t) \hbar^{2 g-2} \\
W_{n}\left(x\left(z_{1}\right), \ldots, x\left(z_{n}\right)\right) d x\left(z_{1}\right) \cdots d x\left(z_{n}\right) & =\sum_{g=0}^{\infty} \omega_{n}^{(g)}\left(z_{1}, \ldots, z_{n}\right) \hbar^{2 g-2+n}
\end{aligned}
$$

Open questions

- Existence of a general proof for 2×2 systems?
- If we fix $\mathcal{D}(x, t)$ with poles at $x \in\{0,1, t, \infty\}$ and satisfying the Topological Type property, do we always recover a Painlevé system?
- Systematic property satisfied by all 2×2 integrable systems?
- Generalization to $n \times n$ systems (Schlesinger, (p, q) models, cluster algebra (M. Shapiro talk), Lie Algebra (B. Dubrovin talk)?
- Assumptions are equivalent to a WKB series expansion for $\Psi(x, t, \hbar)$. Existence of convergent solutions? (Borel summability at $\hbar=0$ but $\hbar=0$ at border of the convergence domain?)
- Is $\Psi(x, t)$ an interesting quantity? $M(x, t)$ has much better property under gauge transformations.
- Is the symplectic invariance property for $F^{(g)}$ obvious on the integrable system side?

