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Université Jean Monnet St-Etienne, France
Institut Camille Jordan, Lyon, France

January 13th 2016



Introduction Topological Recursion Lax pairs and integrable systems Painlevé equations Results and outlooks
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General picture
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Eigenvalues correlation functions

Let ZN =
∫
HN

dMNe
−N Tr V (MN ) with V (z) monic polynomial

potential of even degree.

Eigenvalues correlation functions (Stieltjes transforms):

W1(x) =

〈
N∑
i=1

1

x − λi

〉
N

W2(x1, x2) =

〈
N∑

i,j=1

1

(x1 − λi )(x2 − λj)

〉
N

−W1(x1)W1(x2)

Wp(x1, . . . , xp) =

〈
N∑

i1,...,ip

1

x1 − λi1
. . .

1

xp − λip

〉
N,cumulant

Generating series of joint moments

〈
N∑
i=1

λki

〉
N

,

〈
N∑

i,j=1

λri λ
s
j

〉
N

Hermitian case: Correlation functions satisfy algebraic relations
known as loop equations, Schwinger-Dyson equations, Virasoro
constraints, etc.
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Loop equations

Let:

Pp(x1; x2, . . . , xp) =

〈 ∑
i1,...ip

V ′(x1)− V ′(λi1 )

x1 − λi1

1

x2 − λi2
. . .

1

xp − λip

〉
N,cumulant

Loop equations (notation Lp = {x2, . . . , xp}):

−P1(x) = W 2
1 (x)− V ′(x)W1(x) +

1

N2
W2(x , x)

Pp(x1; Lp) = (2W1(x1)− V ′(x1))Wp(Lp) +
1

N2
Wp+1(x1, x1, Lp)

+
∑
I⊂Lp

W|I |+1(x1, LI )Wp−|I |(x1, LJ\I )

−
p∑

j=2

∂

∂xj

Wp−1(Lp)−Wp−1(x1, Lp \ xj )
x1 − xj

Property: x 7→ Pp(x ; Lp) is a polynomial. Is it enough to solve the
equations and find Wp?
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Perturbative solutions

ZN =
∫
HN

dMNe
−N Tr V (MN ). Series expansion at large N: We

assume:

FN
def
= lnZN =

∞∑
g=0

F (g)

(
1

N

)2g−2

Wp(x1, . . . , xp) =
∞∑
g=0

ω(g)
p (x1, . . . , xp)

(
1

N

)N+2g−2

May also work for other parameters:

ZN [t4] =

∫
HN

dMNe
− N

2 Tr (M2
N )− t4

4 N Tr (M4
N )

we may assume:

lnZN [t4] =
∞∑
g=0

∞∑
v=0

F (g ,v)(t4) v

(
1

N

)2g−2

+ similar dev. for Wp

Allow to solve recursively the loop equations.
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Applications in combinatorics

Interesting in combinatorics:

ZN [t4] =

∫
HN

dMNe
− N

2 Tr (M2
N )− t4

4 N Tr (M4
N )

Perturbative series expansion in t4 ⇒ enumeration of fat ribbon
graph (similar to Feynman expansion):

F (g ,v) count the number of such connex graphs with v vertices (4
legs) and of genus g :

F [t4] = lnZN [t4] =
∑

G = 4−ribbon graph

1

|Aut G|
t

#v(G)
4

(
1

N

)−χ(G)
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Applications in geometry

Kontsevich integral: Intersection theory of Riemann surfaces
moduli spaces:

〈τd1 . . . τdn〉 =

∫
M̄g,n

ψd1
1 . . . ψdn

n

may be computed through the formal expansion of the Kontsevich
integral of F = lnZ with:

Z [t0, t1, . . . ] = (det Λ)Q
∫

dM exp

(
−1

2
Tr (MΛM) +

1

3!
Tr (M3)

)
where ti = −(2i − 1)!! Tr (Λ−(2i−1))

Remark: F [t0, t1, . . . ] in connection with the KdV equation:

u
def
= ∂2F

∂t2
1

satisfies: ∂u
∂t3

= u ∂u∂t1
+ 1

12
∂3u
∂t3

1
Generalization:

Kontsevitch-Penner model (Safnuk, Alekandrov: open intersection
numbers):

Z [Q, ti ] = (det Λ)Q
∫

dM exp

(
−1

2
Tr (MΛM) +

1

3
Tr (M3)− Q lnM

)
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Spectral curve

Formal solution of the loop equations with the assumption that:

FN = lnZN =
∞∑
g=0

F (g)

(
1

N

)2g−2

Wp(x1, . . . , xp) =
∞∑
g=0

ω(g)
p (x1, . . . , xp)

(
1

N

)2g+N−2

Central element = Spectral curve:

Y (x) = ω
(0)
1 (x)− V ′(x)

2
=

∫
ρlim(λ)dλ

x − λ
− V ′(x)

2

satisfies Y 2(x) =
V ′(x)2

4
− P

(0)
1 (x)

⇔ Riemann surface (hyperelliptic) of genus g .

Undetermined coefficients of P
(0)
1 (x) are equivalent to fixing filling

fractions:

εi =
1

2πi

∮
Ai

Y (x)dx
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Filling fractions and ω
(0)
2

Random matrix theory:

Summation of filling fractions ↔ Oscillating terms to get
convergence?

Combinatorics: Usually fixed at “natural” values.

Never a problem when the spectral curve is of genus 0.
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Topological recursion

Theorem (Eynard-Orantin-Chekhov)

The spectral curve allow to recursively compute all orders

ω
(g)
n (x1, . . . , xn) and F (g) through a recursive procedure known as the

topological recursion.

Ingredients: Normalized bi-differential ω
(0)
2 (z1, z2), recursion kernel and

integration kernel:

K (z0, z) =
1
2

∫ z̄

z
ω

(0)
2 (s, z0)ds

(Y (z)− Y (z̄))dx(z)
and Φ(z) =

∫ z

Ydx

then (notation In = {z1, . . . , zn}):

ω
(g)
n+1(z1, . . . , zn) =

∑
i

Res
z→ai

K(z1, z)
(
ω

(g−1)
n+2 (z, z̄, pIn )

+

g∑
m=0

′∑
I1tI2=I

ω
(m)
|I1|+1

(z, zI1 )ω
(g−m)
|I2|+1

(z̄, zI2 )
)

Conversely (with F (g) = ω
(g)
0 ):

ω
(g)
n (In) =

1

2− 2g − n

∑
i

Res
z→ai

Φ(z)ω
(g)
n+1(z, In)



Introduction Topological Recursion Lax pairs and integrable systems Painlevé equations Results and outlooks

Main features of the topological recursion

Formal of the loop equation under the assumption of existence of
series expansions ⇒ Natural question of series convergence is open
(Borel sumability, non zero radius of convergence, etc.).

Fixed filling fractions: hard to determine in practice (static or
dynamical determination).

Genus 0 spectral curves are easier to handle: global parametrization

+ explicit expression of the normalized bi-differential ω
(0)
2 (z1, z2).

Topological recursion generalized outside any underlying
random hermitian matrix model. Only a spectral curve is
required.
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Formal approach

General idea: Find corresponding definitions of quantities
arising in the topological recursion directly into integrable
systems formalism.

Interesting quantities: formal expansion parameter ~ equivalent to
1
N , spectral curve, quantities similar to correlation functions, etc.

Recent solution proposed by Bergère, Borot and Eynard starting
from a given Lax pair.

Prove that the topological recursion is satisfied: Topological Type
property (sufficient (and necessary?) condition)
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Lax pair

Definition for 2× 2 system by Bergère and Eynard, generalized for
n × n systems by Bergère, Borot and Eynard.

Lax pair:

∂xΨ(x , t) = D(x , t)Ψ(x , t) , ∂tΨ(x , t) = R(x , t)Ψ(x , t)

Example for Painlevé 4:

D(x , t) =

(
x + t + pq+θ0

x
1− q

x

−2(pq + θ0 + θ∞) + p(pq+2θ0)
x

−
(
x + t + pq+θ0

x

))
R(x , t) =

(
x + q + t 1

−2(pq + θ0 + θ∞) −(x + q + t)

)
Compatibility equation (zero-curvature equation):

∂tD(x , t)− ∂xR(x , t) + [D(x , t),R(x , t)] = 0

Equivalent Hamiltonian formalism:

H4(p, q, t) = qp2 + 2(q2 + tq + θ0)p + 2(θ0 + θ∞)q

Jimbo-Miwa τ -function at infinity equals the Hamiltonian
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Determinantal formulas: version 1

Let:

Ψ(x , t) =

(
ψ(x , t) φ(x , t)

ψ̃(x , t) φ̃(x , t)

)
We define the Christoffel-Darboux kernel:

K (x1, x2) =
ψ(x1)φ̃(x2)− ψ̃(x1)φ(x2)

x1 − x2

and then the correlation functions:

W1(x) =
∂ψ

∂x
(x)φ̃(x)− ∂ψ̃

∂x
(x)φ(x)

Wn(x1, . . . , xn) = − δn,2
(x1 − x2)2

+ (−1)n+1
∑

σ:n-cycles

n∏
i=1

K (xi , xσ(i))
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Determinantal formulas: version 2

“Alternative” definition in terms of the resolvent matrix M(x , t)

M(x) = Ψ(x)

(
1 0
0 0

)
Ψ−1(x) =

(
ψφ̃ −ψφ
ψ̃φ̃ −φψ̃

)

then we can rewrite the correlation functions:

W1(x) = −
1

~
Tr (D(x)M(x))

W2(x1, x2) =
Tr (M(x1)M(x2))− 1

(x1 − x2)2

Wn(x1, . . . , xn) = (−1)n+1 Tr
∑

σ:n-cycles

n∏
i=1

M(xσ(i))

xσ(i) − xσ(i+1)

=
(−1)n+1

n

∑
σ∈Sn

TrM(xσ(1)) . . .M(xσ(n))

(xσ(1) − xσ(2)) . . . (xσ(n−1) − xσ(n))(xσ(n) − xσ(1))
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Properties of the determinantal formulas

Valid for any linear differential system: ∂xΨ(x) = L(x)Ψ(x) and
not only for Lax pairs

Wn(x1, . . . , xn) are invariant under “admissible” gauge
transformations: Ψ̃(x , t) = U(x , t)Ψ(x , t) with:

U(x , t) = U(t) independent of x

U(x , t) proportional to I2 (special case for W1(x)). U(x , t) = f ′(x,t)
f (x,t)

I2
gives:

W̃1(x) = W1(x) +
f ′(x , t)

f (x , t)

These gauge transformations allow to get “good” Lax pairs from
Jimbo-Miwa’s (See Lax pair for Painlevé 4).
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Connection with the topological recursion

Theorem (Bergère-Borot-Eynard)

If the determinantal formulas Wn(x1, . . . , xn) have a series expansion in a
parameter ~ of the form:

Wn(x1, . . . , xn) =
∞∑
g=0

~n−2+2gW
(g)
n (x1, . . . , xn) for n ≥ 1

then we can obtain the W
(g)
n through the topological recursion applied

to the spectral curve attached to the Lax pair:

E (x ,Y ) = det(Y −D(x , t))|~→0 = 0

Moreover, the τ -function admits a series expansion of the form:

1

~2
ln τ =

∞∑
g=0

τ (2g)~2g−2

with τ (g)(t) = F (g)(t) + C (g) computed from the topological recursion.



Introduction Topological Recursion Lax pairs and integrable systems Painlevé equations Results and outlooks

Topological Type property

Theorem (Bergère-Borot-Eynard)

Is the spectral curve is of genus 0, the following conditions (known as
Topological Type property) are sufficient conditions to prove that the
determinantal formulas satisfy the previous theorem:
(1) Existence of a formal ~ series expansion: The determinantal

formulas admit a series expansion in ~:

Wn(x1, . . . , xn) =
∞∑
g=0

W
(g)
n (x1, . . . , xn)~g

(2) Parity: Wn|~ 7→−~ = (−1)nWn for n ≥ 1

(3) Pole structure: The functions W
(g)
n (x1, . . . , xn) are regular at the

even zeros of the spectral curve.

(4) Leading order: The ~ series expansion of Wn is at least of order

~n−2.
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Plan of the proof for Painlevé equations

1 Presentation of the Lax pair and introduction of a formal parameter
~

2 Computation of the spectral curve (genus 0)
3 Proof of the topological type property

Existence of formal series expansion in ~ for Wn ⇔ Gauge choice
Study of the ~↔ −~ operator
Control of the pole structure of Wn

Leading order of series expansion of Wn using pole structure and
loop equations.
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Introduction of ~
Introduction through a rescaling of the parameters:

P4 : (t, x , q, p, θ0, θ∞)→
(
~

1
2 t, ~

1
2 x , ~

1
2 q, ~

1
2 p, ~θ0, ~θ∞

)
Ψ(x , t)→

(
~−

1
4 0

0 ~
1
4

)
Ψ(x , t)

Equivalent to the new differential system:

~∂xΨ(x , t) = D(x , t)Ψ(x , t) with ~∂tΨ(x , t) = R(x , t)Ψ(x , t)

Similar transformations are available for the other Painlevé
equations.

Specific regime. ~ = 1 ⇔ usual formulation
Deformation of the Painlevé equation:

~2q̈ =
~2

2q
q̇2 + 2

(
3q3 + 4tq2 +

(
t2 − 2θ∞ + ~

)
q −

θ2
0

q

)
Deformation of the Hamiltonian formalism:

H4(p, q, t) = qp2 + 2(q2 + tq + θ0)p + 2(θ0 + θ∞)q

~q̇ =
∂H4

∂p
(p, q) with ~ṗ = −

∂H4

∂q
(p, q)
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Modified Painlevé equations

(PI): ~2q̈ = 6q2 + t

(PII): ~2q̈ = 2q3 + tq + ~
2 − θ

(PIII): ~2q̈ = ~2

q q̇
2 − ~2

t q̇ + 4
t

(
θ0q

2 − θ∞ + ~
)

+ 4q3 − 4
q

(PIV): ~2q̈ = ~2

2q q̇
2 + 2

(
3q3 + 4tq2 +

(
t2 − 2θ∞ + ~

)
q − θ2

0

q

)
(PV):

~2q̈ =
(

1
2q + 1

q−1

)
(~q̇)2 − ~2 q̇

t + (q−1)2

t2

(
αq + β

q

)
+ γq

t + δq(q+1)
q−1

where
α = (θ0−θ1−θ∞)2

8 , β = − (θ0−θ1+θ∞)2

8 , γ = θ0 + θ1 − ~ , δ = − 1
2

(PVI): ~2q̈ = ~2

2

(
1
q + 1

q−1 + 1
q−t

)
q̇2 − ~2

(
1
t + 1

t−1 + 1
q−t

)
q̇ +

q(q−1)(q−t)
t2(t−1)2

[
α + β t

q2 + γ t−1
(q−1)2 + δ t(t−1)

(q−t)2

]
where

α = 1
2 (θ∞ − ~)2 , β = − θ

2
0

2 , γ =
θ2

1

2 , δ =
~2−θ2

t

2
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Modified Hamiltonians

H1(p, q, t) = 1
2p

2 − 2q3 − tq

H2(p, q, t) = 1
2p

2 + (q2 + t
2 )p + θq

H3(p, q, t, ~) =
1
t

[
2q2p2 +2(−tq2 +θ∞q+t)p−(θ0 +θ∞)tq−t2− 1

4 (θ2
0−θ2

∞)−~pq
]

H4(p, q, t) = qp2 + 2(q2 + tq + θ0)p + 2(θ0 + θ∞)q

H5(p, q, t) = 1
t

[
q(q − 1)2p2 +(

θ0−θ1+θ∞
2 (q − 1)2 + (θ0 + θ1)q(q − 1)− tq

)
p+ 1

2θ0(θ0+θ1+θ∞)q
]

H6(p, q, t, ~) = 1
t(t−1)

[
q(q − 1)(q − t)p2 −

p (θ0(q − 1)(q − t) + θ1q(q − t) + (θt − ~)q(q − 1)) + 1
4 (θ0 + θ1 +

θt − θ∞)(θ0 + θ1 + θt + θ∞− ~)(q− t) + 1
2 ((t − 1)θ0 + tθ1)(θt − ~)

]
Remark: In all cases we observe the property:

ln τJ = HJ(p(t), q(t), t, ~ = 0) for 1 ≤ J ≤ 6
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Formal series expansion

Assumption (Assumption of a formal ~ series expansion)

We assume that the solution q(t) of the deformed Painlevé equation
admits a series expansion in ~:

q(t) =
∞∑
k=0

q(k)(t)~k

Formal series expansion? Equivalent to specific initial conditions?

If radius of convergence R ≥ 1, we can reconstruct the initial
Painlevé solution.

Leading order may only be ~0 because of the Painlevé equation.

Inserting back into P4we can express q(k) for k ≥ 1 as a rational

function of q(0). Same holds for dk

dtk
q(0)
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Gauge choice

Proposition (Good gauge choice)

There exists an admissible gauge choice for which the previous
assumption implies that D(x , t, ~) and R(x , t, ~) admit a ~ series
expansion of the form:

D(x , t, ~) =
∞∑
k=0

D(k)(x , t)~k with R(x , t, ~) =
∞∑
k=0

R(k)(x , t)~k

Our Lax pairs are chosen in this gauge.

Gauge is a little different from Jimbo-Miwa’s but explicit
connections are available.

Main results are independent of the admissible gauge choice.

Consequence: M(x , t, ~) and Wn(x1, . . . , xn) have a ~ series
expansion: 1st condition of the Topological Type property is
satisfied.
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Parity property ~↔ −~

Proposition (Sufficient condition for parity (Bergère-Borot-Eynard))

Let † be the operator changing ~ into −~. If there exists an invertible
matrix Γ(t) (independent of x) such that:

Γ−1(t)Dt(x , t)Γ(t) = D†(x , t)

then the determinantal formulas Wn satisfy W †n = (−1)nWn (Parity
condition of the Topological Type property)

Theorem (Existence of Γ(t) matrices)

We can find explicit Γ(t) matrices in our six Painlevé cases and ln τ (as
well as Okamoto’s σ functions) are always even functions of ~.
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Operator †

P1: q† = q , p† = −p
P2: q† = −q − θ

p , p
† = p

P3: q† = −2qp2+2(tq−θ∞)p+t(θ0+θ∞)
2(p−t)p , p† = p

P4:

q† =
p(pq + 2θ0)

2(pq + θ0 + θ∞)
, p† =

2q(pq + θ0 + θ∞)

pq + 2θ0

P5:

q† =
p(2pq + θ0 − θ1 + θ∞)

(pq + θ0)(2pq + θ0 + θ1 + θ∞)
, p† =

q(pq + θ0)(2pq + θ0 + θ1 + θ∞)

2pq + θ0 − θ1 + θ∞

P6:

q† =
t2z0(z0 + θ0)(q − 1)

t2z0(z0 + θ0)(q − 1)− (t − 1)2z1(z1 + θ1)q
, p† =

z0 + θ0

q†
+
z1 + θ1

q† − 1
+
zt + θt

q† − t
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Γ(t) matrices

Painlevé 1: Γ1(t) =

(
0 1
1 0

)
Painlevé 2: Γ2(t) =

(
−2p 0

0 1

)
Painlevé 3: Γ3(t) =

(
− p−t

t 0
0 1

)
Painlevé 4: Γ4(t) =

(
−2(pq + θ0 + θ∞) 0

0 1

)
Painlevé 5: Γ5(t) =

(
− pq

pq+θ0
0

0 1

)
Painlevé 6: Γ6(t) =

(
− t2z0(z0+θ0)

q + (t−1)2z1(z1+θ1)
q−1 0

0 1

)
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Spectral curves

Theorem (Spectral curves)

The six deformed Painlevé Lax pairs have genus 0 spectral curves:

(PI) : Y 2 = 4(x + 2q0)(x − q0)2

(PII) : Y 2 = (x − q0)2
(
x2 + 2q0x + q2

0 + θ
q0

)
(PIII) : Y 2 =

t(q0x+1)2((θ∞−θ0q
2
0 )x2−2xq0(θ∞q2

0−θ0)+q2
0 (θ∞−θ0q

2
0 ))

4x4(q4
0−1)q0

(PIV) : Y 2 =
(x−q0)2

(
x2+2(q0+t)x+

θ2
0

q2
0

)
x2

(PV) : Y 2 = t2(x−Q0)2(x−Q1)(x−Q2)
4x2(x−1)2

(PVI) : Y 2 =
θ2
∞(x−q0)2P2(x)

4x2(x−1)2(x−t)2

where P2(x) = x2 +
(
−1− θ2

0t
2

θ2
∞q2

0
+

θ2
1(t−1)2

θ2
∞(q0−1)2

)
x +

θ2
0t

2

θ2
∞q2

0



Introduction Topological Recursion Lax pairs and integrable systems Painlevé equations Results and outlooks

Pole structure

The six spectral curves have a double zero ⇒ We need to prove that
the Wn do not have singularities at these points (3rd condition of the
Topological Type property).

Crucial use of the time differential equation.

Two steps proof dependent of the gauge choice:
1 Explicit computation of M(0)(x , t) and direct verification that it is

regular at the double zero.
2 Recursive system giving M(k+1)(x , t) in terms of lower orders.

Verification that the recursion does not introduce singularity at the
double zero.
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Step 1: Example for Painlevé 4

In the good gauge (TrD(x , t) = 0 and TrR(x , t) = 0):

M(0)(x , t) =

 1
2 +

R(0)
1,1(x,t)

2
√
− detR(0)(x,t)

R(0)
1,2(x,t)

2
√
− detR(0)(x,t)

R(0)
2,1(x,t)

2
√
− detR(0)(x,t)

1
2 −

R(0)
1,1(x,t)

2
√
− detR(0)(x,t)


For Painlevé 4: x 7→ R(0)(x , t) is singular at x = 0 and x =∞ only
and:

detR(0)
4 = q2

0

(
x2 + 2(q0 + t)x +

θ2
0

q2
0

)

Reminder of the spectral curve: Y 2 =
(x−q0)2

(
x2+2(q0+t)x+

θ2
0

q2
0

)
x2

Previous formula is valid if we change R(0)(x , t)↔ D(0)(x , t) but
conclusion at the double zero is no longer possible.
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Step 2: Example for Painlevé 4

In the good gauge M(k)(x , t) is characterized by TrM(k) = 0,

(detM)(k) = 0 and [R,M](k) = 0:


0 −R(0)

2,1
R(0)

1,2

−2R(0)
1,2

2R(0)
1,1

0

R(0)
1,1

1
2
R(0)

2,1
1
2
R(0)

1,2




M(k)(x, t)1,1

M(k)(x, t)1,2

M(k)(x, t)2,1



=



∂tM
(k−1)(x, t)1,1 −

k−1∑
i=0

[
R(k−i)(x, t),M(i)(x, t)

]
1,1

∂tM
(k−1)(x, t)1,2 −

k−1∑
i=0

[
R(k−i)(x, t),M(i)(x, t)

]
1,2√

− detR(0)
k−1∑
i=1

(
M(i)(x, t)1,1M

(k−i)(x, t)1,1 + M(i)(x, t)1,2M
(k−i)(x, t)2,1

)



Recursive system requires to invert a 3× 3 matrix (same for all
orders):

det


0 −R(0)

2,1 R(0)
1,2

−2R(0)
1,2 2R(0)

1,1 0

R(0)
1,1

1
2
R(0)

2,1
1
2
R(0)

1,2

 = −2R(0)
1,2(x , t) detR(0)(x , t)

No singularity is introduced at the double zero x = q0.
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Recursion for the leading order (4th condition of the
Topological Type property)

New proof only based on loop equations:

0 = Pn+1(x ; Ln) + Wn+2(x , x , Ln) + 2W1(x)Wn+1(x , Ln)+∑
J⊂Ln,J /∈{∅,Ln}

W1+|J|(x , J)W1+n−|J|(x , Ln \ J)

+
n∑

j=1

d

dxj

Wn(x , Ln \ xj )−Wn(Ln)

x − xj

Analysis of the singularities of Pn+1(x ; Ln) (x ∈ {0, 1, t,∞})

P4 : x 7→ Pn+1(x , Ln) =
P̃n+1(Ln)

x

If leading order: Wn ≤ ~n−2. Recursion leads to:

0 = P
(n−3)
i0+1 (x ; Li0 ) + 2Y (x)W

(n−2)
i0+1 (x , Li0 )

For P4 : W
(n−2)
i0+1 (x , Li0 ) =

P̃
(n−3)
i0+1 (Li0 )

2(x − q0)

√
x2 + 2(q0 + t)x +

θ2
0

q2
0

Contradiction with the pole structure of W
(n−2)
i0+1 (x , Li0 )
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Recursion for the leading order 2

Proof can be directly adapted for all six Painlevé cases.

It is always by counting the orders of all poles that we get the
contradiction.

Contradiction is always the presence of a pole at the double zero of
the spectral curve ⇒ Importance of the presence of a double zero in
the spectral curve.

Proof depends on the gauge choice (existence of M(k)(x , t)) but the
final result is independent of the gauge choice (Wn are invariant
under admissible gauge transformations)

Possibility to rewrite the proof with an “insertion operator”?
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Main result

Theorem (O.M., K. Iwaki, A. Saenz)

The six (1 ≤ J ≤ 6) deformed Painlevé Lax pairs (with ~ and arbitrary
monodromies) satisfy the Topological Type property under the
existence of a formal series expansion in ~ of the solution q(t) of the
Painlevé equations. Consequently the determinantal formulas can be
reconstructed from the topological recursion applied to the spectral
curve of the Lax pair:

1

~2
ln τJ(t) =

∞∑
g=0

F
(g)
J (t)~2g−2

Wn

(
x(z1), . . . , x(zn)

)
dx(z1) · · · dx(zn) =

∞∑
g=0

ω(g)
n (z1, . . . , zn)~2g−2+n
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Open questions

Existence of a general proof for 2× 2 systems?

If we fix D(x , t) with poles at x ∈ {0, 1, t,∞} and satisfying the
Topological Type property, do we always recover a Painlevé system?

Systematic property satisfied by all 2× 2 integrable systems?

Generalization to n × n systems (Schlesinger, (p, q) models, cluster
algebra (M. Shapiro talk), Lie Algebra (B. Dubrovin talk)?

Assumptions are equivalent to a WKB series expansion for
Ψ(x , t, ~). Existence of convergent solutions? (Borel summability at
~ = 0 but ~ = 0 at border of the convergence domain?)

Is Ψ(x , t) an interesting quantity? M(x , t) has much better property
under gauge transformations.

Is the symplectic invariance property for F (g) obvious on the
integrable system side?
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