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Eigenvalues correlation functions

o Let Zy = [,, dMye N V(M) with V(z) monic polynomial
potential of even degree.
e Eigenvalues correlation functions (Stieltjes transforms):

Noog
Wl(X) = <Z X — )\,>
N

i=1

Weba) = <,J.ZI(X1—A,->I(X2—AJ->> - baibe)

N

Z 1 1
Xy =N Xp— A,

n,..slp

Wo(x1, ..., Xp)

N,cumulant

L cepies of iof ¢ k> SV
o Generating series of joint moments <i_z:1/\, X <i,jz_:1>\l)\J >N
@ Hermitian case: Correlation functions satisfy algebraic relations
known as loop equations, Schwinger-Dyson equations, Virasoro
constraints, etc.
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Loop equations

o Let
V/(x1) — V(N 1 1
Po(x1;x2, ..., %p) = Z (1) (M)
S~ X1 — A\j x2 = A Xp — /\,-p
15---1p N ,cumulant
@ Loop equations (notation L, = {x2,...,%,}):

Pu(x) = WR() = V/(OWAGR) + 75 Walix, x)
ol Lp) = (2W(x1) = V() Wa(Lp) + gz Wora (1,51, Lp)

> Wy s L)W g (s L)
IcL,
_i 0 Wp—1(Lp) = Wo—1(x1, Lp \ X))

axj X1 — Xj

@ Property: x — P,(x;L,) is a polynomial. Is it enough to solve the
equations and find W,?
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Perturbative solutions

o Zy = [, dMye™"TV(MN) Series expansion at large N: We

assume:
e’} 2g—2
1
Fv & inzy=> F© (/v>
g=0
o0 1\ M+2e—2
Wo(xi,....xp) = E wgg)(xl, cey Xp) <N>

@ May also work for other parameters:
Zn|[ta] :/ dMpye— % Tr (My)— 4N Tr (M)
Hn

we may assume:
oo o0 1 2g—2
InZy[ta] =Y > FlEv)(1)" (N) + similar dev. for W,
g=0v=0

@ Allow to solve recursively the loop equations.
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Applications in combinatorics

@ Interesting in combinatorics:

Zn[ts] = / dMye~ % Tr (Mi)— ¢ N T (MR)
Hy

Perturbative series expansion in t; = enumeration of fat ribbon
graph (similar to Feynman expansion):

Ly @QL , Y, D
KON M

i

|

( i

_II_

F(&:Y) count the number of such connex graphs with v vertices (4
legs) and of genus g:

1 #v(0) 1 -x(9)

G =4—ribbon graph
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Applications in geometry

o Kontsevich integral: Intersection theory of Riemann surfaces
moduli spaces:

<7—d1~-~7—d,,>: ~ ’(/}flt/}g"
Meg.n

may be computed through the formal expansion of the Kontsevich
integral of F = In Z with:

Z[to, ty,...] = (det/\)Q/dMexp <—;Tr(M/\l\/l) + ;!Tr(/\/ﬁ))

where t; = —(2i — 1)l Tr (A~(2=1))
e Remark: F[to, t1,...] in connection with the KdV equation:

def 52F s Ou . Ou 1 d%u TS

= 98 satisfies: ot = Ugy + 208 Generalization:
Kontsevitch-Penner model (Safnuk, Alekandrov: open intersection
numbers):

Z[Q, t] = (det/\)Q/dMexp <—;Tr (MAM) + %T‘I‘(Ma) —Qln M)
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Spectral curve

@ Formal solution of the loop equations with the assumption that:

o] 1 2g—2
Fv = InZy=> F& <N)
g=0

[e'S) 1 2g+N—-2
Wo(xt, ... Xp) = Zwég)(xh cey Xp) (N>

g=0
o Central element = Spectral curve:

Y (x) = w0l (x) — V’2(X) _ / pn:(j\)/\dk B V’2(X)

V/(x)2
satisfies Y2(x) = % _ P{O)(x)

< Riemann surface (hyperelliptic) of genus g.

e Undetermined coefficients of P{O)(X) are equivalent to fixing filling

fractions:
1

- ¢ v
omi Y ()

i

€i
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Filling fractions and wéo)

@ Random matrix theory:

13 [EE}

-

0+

0z

ol

o
-2 -1 L} 1 3 -2 -1 o 1 2 -L5 -1 -B§ Q

Summation of filling fractions <> Oscillating terms to get
convergence?

@ Combinatorics: Usually fixed at “natural” values.

@ Never a problem when the spectral curve is of genus 0.
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Topological recursion

Theorem (Eynard-Orantin-Chekhov)

The spectral curve allow to recursively compute all orders

wf,g)(xl, ..., xn) and F'8) through a recursive procedure known as the
topological recursion.

Ingredients: Normalized bi-differential Wgo)(z:[,ZQ), recursion kernel and
integration kernel:

lffw(o)(s 70)ds 'z
K(z0,2) = 22227 and &(z) = / Y
(Y(z) = Y(2))dx(z) '
then (notation I, = {z,..., z,}):
ez = 3 Res K@) (W@ 20
+Z Z w\hHl z, 2z )w |’2\+1 (z z,2))
m=0ljUh=

Conversely (with Flg) — w(()g)).

w® (1) = Zﬁjﬁ, O(2)w,E, (2, 1n)
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Main features of the topological recursion

@ Formal of the loop equation under the assumption of existence of
series expansions = Natural question of series convergence is open
(Borel sumability, non zero radius of convergence, etc.).

e Fixed filling fractions: hard to determine in practice (static or
dynamical determination).

@ Genus 0 spectral curves are easier to handle: global parametrization

+ explicit expression of the normalized bi-differential wgo)(zl, ).

o Topological recursion generalized outside any underlying
random hermitian matrix model. Only a spectral curve is
required.
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Formal approach

@ General idea: Find corresponding definitions of quantities
arising in the topological recursion directly into integrable
systems formalism.

@ Interesting quantities: formal expansion parameter F equivalent to

%, spectral curve, quantities similar to correlation functions, etc.

@ Recent solution proposed by Bergere, Borot and Eynard starting
from a given Lax pair.

@ Prove that the topological recursion is satisfied: Topological Type
property (sufficient (and necessary?) condition)
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Lax pair

@ Definition for 2 x 2 system by Bergere and Eynard, generalized for
n x n systems by Bergere, Borot and Eynard.
@ Lax pair:

K V(x,t) =D(x, t)V(x,t), 0:V(x,t) = R(x,t)¥(x,t)

@ Example for Painlevé 4:
X+t + Petho 1-49
D(x,t) = (_z(pqﬂ,wew)iwtww _ (Xﬂjmi%))
RO = (Lapehinton —trarn)
o Compatibility equation (zero-curvature equation):
0:D(x,t) — OxR(x, t) + [D(x, t), R(x,t)] =0
e Equivalent Hamiltonian formalism:
Ha(p, q,t) = qp? +2(q* + tq + 00)p + 2(6o + 00)q
@ Jimbo-Miwa 7-function at infinity equals the Hamiltonian
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Determinantal formulas: version 1

Let:

C(Uxt) o(x.t)
W“”‘@mn¢wn)

We define the Christoffel-Darboux kernel:

P(x1)d(x2) — P(x1)(x2)

K(x1,x) = P
and then the correlation functions:
_ 0 0D
W) = SC(030) — S (6(x)
_ On,2 _ 1+l - ) .
Walx, ..., xn) = PR +(-1) > TG %0

o:n-cycles i=1
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Determinantal formulas: version 2

“Alternative” definition in terms of the resolvent matrix M(x, t)

w9 =0 (5 ) v (4 9)

then we can rewrite the correlation functions:

Wi(x) = f% Tr (D(x)M(x))
Wa(x1,x2) = Ir (M(E;l)—,v),(i);)) -1
Wh(x1,...,xn) = 1)"+1 Tr Z ﬁ[ M(Xcr(
o:n-cycles i= 1 Xo(i+1)
(—1)"*1 Tr M(x,(1y) - - - M(Xo(n))

o (o) = Xo(2)) -+ (Xo(n—1) = Xo ()Xo (n) = Xo(1))
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Properties of the determinantal formulas

e Valid for any linear differential system: 0,V(x) = L(x)¥(x) and
not only for Lax pairs

® W,(x1,...,x,) are invariant under “admissible” gauge
transformatlons. WU(x, t) = U(x, t)¥(

X, t) with:
e U(x,t) = U(t) independent of x
o U(x,t) proportional to  (special case for Wi(x)). U(x,t) = f(::) h
gives:

~ B f'(x,t)
W1(X) - Wl(X) + f(X, t)
@ These gauge transformations allow to get “good” Lax pairs from
Jimbo-Miwa's (See Lax pair for Painlevé 4).
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Connection with the topological recursion

Theorem (Bergere-Borot-Eynard)
If the determinantal formulas Wy,(x1, ..., x,) have a series expansion in a
parameter h of the form:

oo
Wi(x1,...,xn) = Z pn—2t2e W,Sg)(xl7 ...yXp) forn>1
g=0

then we can obtain the W,Sg) through the topological recursion applied

to the spectral curve attached to the Lax pair:
E(x,Y) =det(Y — D(x, t))m%o =0
Moreover, the T-function admits a series expansion of the form:

1 o0
= InT = 2%7_(2g)52g—2
=

with 7@)(t) = F&)(t) 4+ C®8) computed from the topological recursion.

V.
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Topological Type property

Theorem (Bergere-Borot-Eynard)

Is the spectral curve is of genus 0, the following conditions (known as

Topological Type property) are sufficient conditions to prove that the

determinantal formulas satisfy the previous theorem:

(1) Existence of a formal h series expansion: The determinantal
formulas admit a series expansion in h:

o0
Wi(xi, ..., %n) = Z W,Sg)()q7 oy xn)RE
&=0

(2) Parity: Wylpes—n = (=1)"W, forn>1
(3) Pole structure: The functions W,Sg)(xl7 ..., Xn) are regular at the
even zeros of the spectral curve.

(4) Leading order: The h series expansion of W, is at least of order
h"=2,




Painlevé equations

Plan of the proof for Painlevé equations

© Presentation of the Lax pair and introduction of a formal parameter
h

@ Computation of the spectral curve (genus 0)
© Proof of the topological type property
o Existence of formal series expansion in h for W, < Gauge choice
o Study of the h <> —h operator
o Control of the pole structure of W,
o Leading order of series expansion of W, using pole structure and
loop equations.
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Introduction of A

@ Introduction through a rescaling of the parameters:

1 1 1 1
P4 - (t,%, 4, p, 00, Ooc) — (hzt,hzx,hzq,th, n@o,heoo)
1
i 0
V(x,t) — V(x,t
o) (0 ﬁi> (1)

Equivalent to the new differential system:
hoxW(x, t) = D(x, t)W(x, t) with W0, V(x, t) = R(x, t)V¥(x, t)

@ Similar transformations are available for the other Painlevé
equations.

Specific regime. i =1 < usual formulation
Deformation of the Painlevé equation:

YR g 3 2 2 03
hg=—q +2|3q°+4tq +(t —29°o+h)q——
2q q
@ Deformation of the Hamiltonian formalism:
Hi(p,q,t) = aqp®+2(q*+tq+00)p+2(60 + o0 )q

ng = a—p“(p, q) with /ip = —a—q“(p, q)
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Modified Painlevé equations

o (Pr): n?§=16¢>+1t
o (Pu): W*g=2¢>+tq+%—0
o (Pu): hzq = %2572 - Tq+ % (90q2 — O + h) +4q3 — %

o (Pv): h2G=L 507 +2 (3q3 +4tq% + (12 — 2000 + 1) g — %3>

o (Py):
h2g = (i""ﬁ) (ha)? hzq q 1) (aq+ )_|_’Y¢7_|_5q(§‘ﬁ;1)
where , .
azw75:*%,7:00+91—h,5:7%

o (Pvi): hzq—:(%-&-%—l— )q—h2< +tfll+ﬁ>¢+
it [o+ 55+ i + 0
20

7T
% h?—6?
Oé:%(eoo ) B— 27 :7’5:T

} where
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Modified Hamiltonians

o Hi(p,q.t) =3p* —2¢° — tq
o Hy(p,q,t) = 3p° + (¢ + §)p + 0q
° H3(P» q,t, h) =
%[2q2p2+2(*tq2+9mq+t)p*(9o+9oo)tq*t2*%(%*%)*ﬁpq}
o Hy(p,q,t) = gp*> +2(q*> + tq + 6o)p + 2(6o + 0 )q
o Hs(p,q,t) = %[q(q —1)%p* +
(=040 (q = 1) + (6 + 61)a(q — 1) — tq) p+360(do+61-+0 )]
® He(p,q,t,h) = ﬁ [q(q —1)(g—t)p* -
p(6o(a—1)(q — t) + 01q(q — t) + (6: — 1)a(q — 1)) + 5 (6o + 61 +
O — 0o0) (B0 + 01+ Or + 0o — h)(q — t) + 3((t — 1)00 + t61)(0: — h)}

Remark: In all cases we observe the property:

InT; = Hy(p(t), q(t), t,h=0) for1<J<6
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Formal series expansion

Assumption (Assumption of a formal % series expansion)

We assume that the solution q(t) of the deformed Painlevé equation
admits a series expansion in h:

o) = 3 gt

k=0

Formal series expansion? Equivalent to specific initial conditions?

If radius of convergence R > 1, we can reconstruct the initial
Painlevé solution.

Leading order may only be A° because of the Painlevé equation.

Inserting back into P4we can express q(¥) for k > 1 as a rational
function of ¢g(®. Same holds for %q(o)
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Gauge choice

Proposition (Good gauge choice)

There exists an admissible gauge choice for which the previous
assumption implies that D(x, t,h) and R(x, t, h) admit a h series
expansion of the form:

D(x,t,h) = ZD(k)(X t)h* with R(x,t,h) = Z’R(k x, t)h
k=0

Our Lax pairs are chosen in this gauge.

Gauge is a little different from Jimbo-Miwa's but explicit
connections are available.

Main results are independent of the admissible gauge choice.
Consequence: M(x,t,h) and W, (xq,...,x,) have a h series
expansion: 15t condition of the Topological Type property is
satisfied.
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Parity property A <+ —h

Proposition (Sufficient condition for parity (Bergére-Borot-Eynard))

Let 1 be the operator changing h into —h. If there exists an invertible
matrix ['(t) (independent of x) such that:

FH(8)D*(x, ) (t) = D' (x, t)

then the determinantal formulas W, satisfy W = (—1)"W,, (Parity
condition of the Topological Type property)

Theorem (Existence of () matrices)

We can find explicit T'(t) matrices in our six Painlevé cases and InT (as
well as Okamoto’s o functions) are always even functions of h.
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Operator T

° Plig'=q,pl=—p

o P2 gt =—q-%, pl=p

o P3: ¢ = —2qp2+2(tqzzpﬁjot))f;+t(90+0w) pt=p
e P4:
i p(pq +26o) + 2q(pq + 6o + )
T 2pat00+0) P T pq + 26y

e P5:

ot = p(2pq + 6o — 61 + 0) ot = q(pg + 60)(2pq + 0o + 61 + 00)

(pg + 60)(2pg + 6o + 61 + Oc0) 2pq + 6 — 61 + 0o

o P6:

g = t2z0(z0 + 60)(q — 1) t_Z0tbo zn+01 z+0:

2z0(z0 + 60)(q — 1) — (t — 1)2z1(z1 + 61)q NPT gt —1 gt -t
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[(t) matrices

o Painlevé 5:

pq+90 )

tZo(Zo+9o + (t=1)’z(z1461) 0)
g—1
1

Painlevé 6:

o Painlevé 1: ( )
. , _ 2p O
o Painlevé 2: = ( 0 1)
p=t
@ Painlevé 3: = ( O >
o Painlevé 4: - ( 2 pq+9°+9°°) (1))
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Spectral curves

Theorem (Spectral curves)

The six deformed Painlevé Lax pairs have genus O spectral curves:

(P1) @ Y2=4(x+2q)(x— q0)°
(Pu) : Y2=(x—q) (X2 +2qox + 43 + %)
(PIII) : Y2 = t(qox+1)2((‘9w—9oq§)X2—2xqo(Gooq§—90)+q§(6)oo—eoqg))

4X"2(q3—1)€m
(x—q0)? (X2+2(qo+t)x+%g>
o

(PIV) o Y2 = 5 ) X2
(Py) : y?=Cleayfoaca)
(Pv1) : Y2=gmp=mlnl)

) 1 6 62(t—1)2 02t?
where P2(X) =X+ ( 1 ezooqg = 02_(qo—1)2 X+ 02 qg

co

v
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Pole structure

@ The six spectral curves have a double zero = We need to prove that
the W, do not have singularities at these points (3™ condition of the
Topological Type property).

@ Crucial use of the time differential equation.

@ Two steps proof dependent of the gauge choice:
@ Explicit computation of M(o)(x, t) and direct verification that it is
regular at the double zero.
© Recursive system giving M X, t) in terms of lower orders.
Verification that the recursion does not introduce singularity at the
double zero.

k+1)(
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Step 1: Example for Painlevé 4

@ In the good gauge (Tr D(x,t) = 0 and Tr R(x, t) = 0):
1, Rk R (1)
(0) |2 2y/— det RO(x,1) 2y/— det RO (x,t)
MPCD =1 "Reen 4 R
24/ = det RO)(x,t) 2 2/~ det RO(x,t)
@ For Painlevé 4: x — R(9(x, t) is singular at x = 0 and x = oo only
and:
(0) 2 (2 03
detR,” = qp | x* +2(qo + t)x + e
0
(x—q0)® <X2+2(qo+t)x+:—§)
@ Reminder of the spectral curve: Y? = poe .

o Previous formula is valid if we change R()(x, t) <> DO)(x, t) but
conclusion at the double zero is no longer possible.
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Step 2: Example for Painlevé 4

@ In the good gauge M(¥)(x, t) is characterized by Tr M(K) =0,
(det M)W =0 and [R, M]*¥) =

0 *Rgo)l R(l(,))z MK (x, 1)1 1
72715?) 272(1031 0 (M(k)(x, z)1:2)
R gl el W]
OeMk=1)(x, )7 § — kil[ *=D e, 1), MO, )]
i=0

BeM =1 (x, )1 5 — = [RE=Dx, 0, MD(x, 0]
i .

—aet RO % (M(")(x, 91,1ME D (e, )1 1 + MO (e, )y oMK D (x, 0)y 1)
i=1

o Recursive system requires to invert a 3 x 3 matrix (same for all
orders):

0
0 -RY RY)
det | 2R 27250) 0
0 0 0
RO IRY AR

= _2R1 2(x t)det RO (x, t)

@ No singularity is introduced at the double zero x = qq
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Recursion for the leading order (4" condition of the

Topological Type property)

@ New proof only based on loop equations:
0 = Pori(xLn) + Whio(x, x, Ln) + 2Wi(x) Wit (x, Ln)+

> Wi (6 DWWy (%, La \ J)
JCLp,JE{0,Ln}
U d Wi(x, Ln \ x5) — Wia(Ln)

+ N

@ Analysis of the singularities of P,1(x; L,) (x € {0,1,t,00})
ﬁn-}—l(’—n)
X

X =

P4 : x +— Ppyi(x, Ln) =
o If leading order: W, < h"~2. Recursion leads to:
n—2
0=P I (xi L )+2Y(X)VVI.§”1 )(x, L)
3)
P,(O"+1 (Liy)

02
2 - QO)\/X2 +2q0+x+ D
0

For P4 W7 (x, L) =

.. . n—2
@ Contradiction with the pole structure of Vl/,-((J+1 )(x, L)
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Recursion for the leading order 2

@ Proof can be directly adapted for all six Painlevé cases.

@ It is always by counting the orders of all poles that we get the
contradiction.

@ Contradiction is always the presence of a pole at the double zero of
the spectral curve = Importance of the presence of a double zero in
the spectral curve.

@ Proof depends on the gauge choice (existence of M(¥)(x, t)) but the
final result is independent of the gauge choice (W, are invariant
under admissible gauge transformations)

@ Possibility to rewrite the proof with an “insertion operator”?
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Main result

Theorem (O.M., K. Iwaki, A. Saenz)

The six (1 < J < 6) deformed Painlevé Lax pairs (with i and arbitrary
monodromies) satisfy the Topological Type property under the
existence of a formal series expansion in h of the solution g(t) of the
Painlevé equations. Consequently the determinantal formulas can be
reconstructed from the topological recursion applied to the spectral
curve of the Lax pair:

o

1 _
() = Y RO (0R?
g=0

Wo(x(21), ..., x(zn))dx(z1) - - dx(zn) = wa,g)(zl7 ooy Zp)hPETN
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Open questions

@ Existence of a general proof for 2 x 2 systems?

o If we fix D(x, t) with poles at x € {0,1, t,00} and satisfying the
Topological Type property, do we always recover a Painlevé system?

@ Systematic property satisfied by all 2 x 2 integrable systems?

@ Generalization to n x n systems (Schlesinger, (p, q) models, cluster
algebra (M. Shapiro talk), Lie Algebra (B. Dubrovin talk)?

@ Assumptions are equivalent to a WKB series expansion for
W(x, t,h). Existence of convergent solutions? (Borel summability at
h =0 but & =0 at border of the convergence domain?)

@ Is W(x,t) an interesting quantity? M(x,t) has much better property
under gauge transformations.

e Is the symplectic invariance property for F(&) obvious on the
integrable system side?
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