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Position of the talk
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Plan of the talk

Differential system dΨ = ΦΨ on a Lie group: define a good set of
correlators Wn

Show that the correlators Wn satisfy a set of “loop equations”
identical to the ones of matrix models and topological recursion

Define the ~-deformation of the differential system and the
“Topological Type property”

Sufficient condition for “Topological Type property” and connection
with reconstruction by the topological recursion

Example for Painlevé 4 Lax pair and open questions

Remark: Joint work with B. Eynard and R. Belliard. Paper available at
http://arxiv.org/abs/1602.01715

http://arxiv.org/abs/1602.01715
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General setting

Let g be a reductive Lie algebra and G = eg its connected Lie
group. (Think G = Gln(C) and g = gln(C))

Take a linear differential equation: ∇Ψ = 0 where

P: a principal G -bundle over a complex curve Σ with connection ∇
Ψ ∈ G : flat section in P
Locally equivalent to dΨ = ΦΨ with Φ a g-valued holomorphic
1-form

Faithful r-dimensional matrix representation ρ of g with
invariant form:

< a, b >= Tr(ρ(a)ρ(b))
def
= Trρ(ab)
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General prime form

Invariant form may depend on ρ but unique (up to a trivial global
multiplication) if g is semi-simple (Killing form)

Σ is a Riemann surface possibly non-compact, with punctures,
high genus, etc.

Let E be any “prime form” on Σ× Σ, i.e. a
(
− 1

2 ,−
1
2

)
form

behaving on the diagonal like:

E(x , x ′) ∼
x→x′

x − x ′√
dxdx ′

with no other zeros

Connection ∇ is locally dΨ = ΦΨ with Ψ in the universal cover Σ̃ of
Σ

Φ(x) is called the “Higgs field”
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General picture

P0 is the trivialized g bundle with constant fiber Σ̃× g
π07→ Σ̃ and

trivial flat sections (i.e. constant sections ⇔ trivial connection d)

P P0 = pr∗P = Σ̃× g

p ↓
π

↙ ↓ π0

Σ ←−
pr

Σ̃

Notation:
X = x̃ .E will define a point in P0 with π0(X ) = x̃ ∈ Σ̃ and E ∈ g
and π(X ) = x = pr(x̃) ∈ Σ
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Bundle morphism M

Definition

Let M: P0 7→ AdjP (i.e. we need both x̃ ∈ Σ̃ and an element E ∈ g to
define M) be defined by:

M(x̃ .E ) = AdΨ(x̃)(E ) = ”Ψ(x̃)E Ψ(x̃)−1”

Transforms flat sections of P0 (i.e. constant E ) into flat sections of
d− adjΦ:

dM(X ) = [Φ(π(X )),M(X )]

Remark

Action of π1(Σ): Turning around a non-trivial loop on Σ implies:

Monodromy for Ψ: Ψ(x̃ + γ) = Ψ(x̃)Sγ

Action on M: M((x̃ + γ).E ) = M(x̃ .(Sγ E S−1
γ ))
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Definition of Σ̂

Definition

We can define the quotient:

Σ̂ = P0�π1(Σ)

by identifying x̃ .E ≡ (x̃ + γ).(S−1
γ E Sγ))

Notation: X = [x̃ .E ] points of Σ̂

Remark

Changing Ψ→ ΨC, the choice of the universal cover Σ̃ or the
fundamental group π1(Σ) is equivalent to conjugate the element E by a
constant group element. Up to these isomorphisms, the upcoming Wn

will only depend on Φ but not directly on local flat section Ψ
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Connected correlators Ŵn

Definition (Connected correlators)

Let X = [x̃ .E ], and Xi = [x̃i .Ei ] be some points of Σ̂, with distinct
projections xi = π(Xi ) on Σ, we define the connected correlators:

Ŵ1(X ) =< M(X ),Φ(π(X ))) >= Trρ (M(X )Φ(π(X ))) ,

Ŵ2(X1,X2) = − < M(X1),M(X2) >

E(x1, x2)E(x2, x1)
= − TrρM(X1)M(X2)

E(x1, x2)E(x2, x1)
,

and for n ≥ 3,

Ŵn(X1, . . . ,Xn) =∑
σ∈Σ1−cycle

n

(−1)σ
TrρM(X1)M(Xσ(1))M(Xσ2(1)) . . .M(Xσn−1(1))

E(x1, xσ(1))E(xσ(1), xσ2(1)) . . . E(xσn−1(1), x1)

Ŵ1 is a 1-form on Σ̂ while Ŵn is a symmetric n-form on Σ̂n
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Correlators Wn

Definition (Correlators)

We define the (non-connected) correlators by:

Wn(X1, . . . ,Xn) =
∑

µ`{X1,...,Xn}

`(µ)∏
i=1

Ŵ|µi |(µi )

where we sum over all partitions of the set {X1, . . . ,Xn} of n points.

W1(X1) = Ŵ1(X1),

W2(X1,X2) = Ŵ1(X1)Ŵ1(X2) + Ŵ2(X1,X2)

W3(X1,X2,X3) = Ŵ1(X1)Ŵ1(X2)Ŵ1(X3) + Ŵ1(X1)Ŵ2(X2,X3)
+Ŵ1(X2)Ŵ2(X1,X3) + Ŵ1(X3)Ŵ2(X1,X2)
+Ŵ3(X1,X2,X3)

and so on. Wn is also a symmetric n-form on Σ̂n
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Kernel K (x̃1, x̃2)

Definition (Fundamental kernel K )

Let (x̃1, x̃2) ∈ Σ̂× Σ̂ and denote (x1, x2) = (pr(x̃1), pr(x̃2)) ∈ Σ× Σ. We
define the kernel K (x̃1, x̃2) by:

K (x̃1, x̃2) =


Ψ(x̃1)−1Ψ(x̃2)
E(x1,x2) ∈ Gx1 × Gx2 if x1 6= x2

AdΨ(x̃1)(Φ(x1)) = ”Ψ(x̃1)−1Φ(x1)Ψ(x̃1)” ∈ g if x1 = x2

It is a
(

1
2 ,

1
2

)
form on Σ̂× Σ̂ with a simple pole at x1 = x2 (regularized

by subtracting the pole at coinciding points)
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Determinantal formulas

Theorem (Alternative expression for correlators)

Let (x̃1, . . . , x̃n) ∈ Σ̂n with distinct projections xi = pr(x̃i ). Let
(E1, . . .En) ∈ gn. We have:

Wn(x̃1.E1, . . . , x̃n.En) = Tr
∑
σ∈Sn

(−1)|σ|
n∏

i=1

ρ(Ei )ρ(K (x̃i , x̃σ(i)))

Equivalent to:

Wn(x̃1.E1, . . . , x̃n.En) = Tr
(

det [ρ(Ei )ρ(K (x̃i , x̃j))]1≤i,j≤n

)
sometimes called “determinantal formulas”

Remark

“Determinant” must be understood as sum over permutations and not
taking determinant of the matrix representation
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Reminder on Casimirs

Definition

Let (e1, . . . , edimg) be a basis of the Lie algebra g. ρ faithful and
< a, b >= Tr(ρ(a), ρ(b)) implies invariant form < , > is
non-degenerate on g. Thus we can define the dual basis (e1, . . . , edimg)
satisfying:

∀ i , j ∈ J1, gK :
〈
ei , e

j
〉

= δi,j

For any v =
dimg∑
i=1

v iei we expand the characteristic polynomial:

det(y Idr − ρ(v)) =
r∑

k=0

(−1)ky r−k
∑

1≤i1,...,ik≤dim g

Ck(i1, . . . , ik)v i1 . . . v ik

The Casimirs (Ck)1≤k≤r of the Lie algebra are defined by:

Ck =
∑

1≤i1,...,ik≤dim g

Ck(i1, . . . , ik)e i1 ⊗ · · · ⊗ e ik
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Reminder on Casimirs 2

Example: First non-trivial Casimir:

C2 = − 1

2

dim g∑
i=1

ei ⊗ e i

The previous construction may not lead to independent Casimirs Ck

The same construction can be performed with a Cartan subalgebra h
of g.
Reduces all sums up to dim(h) instead of dim(g)
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W generators

Definition (W generators)

Given X1, . . . ,Xn points of Σ̂ with distinct projections on Σ, and x̃ ∈ Σ̃,
with x = pr(x̃) distinct from the π(Xi ), we define:

Wk;n(Ck(x),X1, . . . ,Xn)
def
=∑

1≤i1,...,ik≤dim g

Ck(i1, . . . , ik)Wk+n(x̃ .e i1 , . . . , x̃ .e ik ,X1, . . . ,Xn)

In case of identical projections, the previous regularization for K is used
in the definition of Wk+n.

Remark

Definition depends only on x ∈ Σ but not on x̃ ∈ Σ̂

Definition is identical when using only a Cartan subalgebra h instead
of g

Definition does not depend on the choice of the basis of g
(resp. h)
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Loop equations

Theorem (Loop equations)

For any n ≥ 0, and X1, . . . ,Xn points of Σ̂ with distinct projections
xi = π(Xi ), and x̃ ∈ Σ̃ also with distinct projection x = pr(x̃):

r∑
k=0

(−1)ky r−kWk;n(Ck(x);X1, . . . ,Xn) =

[ε1 . . . εn] detρ (y − (Φ(x) +Mε(x ;X1, . . . ,Xn)))

where:

Mε(x ;X1, . . . ,Xn) =
n∑

i=1

εi
M(Xi )

E(x , xi )E(xi , x)

+
∑

1≤i 6=j≤n

εiεj
M(Xi )M(Xj)

E(x , xi )E(xi , xj)E(xj , x)

+
n∑

k=3

∑
1≤i1 6=···6=ik≤n

εi1 . . . εik
M(Xi1 ) . . .M(Xik )

E(x , xi1 )E(xi1 , xi2 ) . . . E(xik , x)
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Loop equations

[ε1 . . . εn] indicates the ε1 . . . εn coefficient of the Taylor expansion at
~ε→ ~0.

detρ (y − (Φ(x) +Mε(x ;X1, . . . ,Xn))) only makes sense in the
representation ρ

R.h.s. is independent of the choice of basis in g (or h)

R.h.s is an analytic function of x ∈ Σ

Loop equations proved ⇒ previous properties apply to the l.h.s.
Wk;n(Ck(x);X1, . . . ,Xn)

If G = Gln(C) and Σ = C̄ and E(x , x ′) = x−x′√
dxdx′

then we recover

matrix models loop equations.
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Sketch of the proof of the Loop equations for n = 0

Start from l.h.s.
r∑

k=0

(−1)ky r−kWk;0(Ck(x)) and use definitions at

coinciding points for Ck(x)

Obtain Wk;0(Ck(x)) replaced by a sum over permutations σ of
Trρ e

σ(j)Ψ(x̃)−1Φ(x)Ψ(x̃)

Use cyclic property of trace to get Trρ Ψ(x̃)eσ(j)Ψ(x̃)−1Φ(x)

Use invariance of Casimirs under change of basis to change
ej → Ψ(x)ejΨ(x)−1 to get Trρ e

σ(j)Φ(x)

Observe that the initial sum is:

r∑
k=0

(−1)ky r−kWk;0(Ck(x))

=
r∑

k=0

(−1)ky r−k
∑

1≤i1,...,ik≤dim g

Ck(i1, . . . , ik)
∑
σ∈Sk

(−1)σ Trρ

k∏
j=1

(
eσ(j)Φ(x)

)
= detρ(y − Φ(x)))

Same method used to get Wk;n(Ck(x);X1, . . . ,Xn)



Preliminaries Correlators Loop equations TT property Painlevé 4 example Conclusion

~ deformation

Introduce a 1-parameter family of deformations of the
connection:

~∇ = ~d− Φ ⇔ ~dΨ(x̃ , ~) = Φ(x , ~)Ψ(x̃ , ~)

Assume that Φ(x , ~) admits a formal expansion in ~:

Φ(x , ~) =
∞∑
k=0

Φ(k)(x)~k

Questions:

~-Expansion of the correlators Wn?
Definition of a spectral curve and reconstruction of correlators by
topological recursion?
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TT property

Definition

The ~-deformed system is said to be of Topological Type if the 4
following conditions are met

Condition 1: Asymptotic expansion
There exists some simply connected open domains of Σ and an Abelian
subalgebra h of g, in which the connected correlators Ŵn(X1, . . . ,Xn)s
with each Xi ∈ Σ× h, have a Poincaré asymptotic ~ expansion

Ŵn(X1, . . . ,Xn) =
δn,1
~

Ŵ
(0)
1 (X1) +

∞∑
k=0

~kŴ (k)
n (X1, . . . ,Xn), (4.1)

such that each Ŵ
(k)
n ([x1.E1], . . . , [xn.En]) is, at fixed Ei ∈ h, an algebraic

symmetric n−form of x1, . . . , xn. In other words, there must exist a
(possibly nodal) Riemann surface S independent of k and n, which is a
ramified cover of Σ, such that the pullbacks, at fixed Ei ∈ h, of

Ŵ
(k)
n ([x1.E1], . . . , [xn.En]) to Sn are meromorphic symmetric n-forms
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TT property 2

Condition 2: Pole structure

For (k, n) /∈ {(0, 1), (0, 2)} and any (E1, . . . ,En) ∈ hn, the connected

correlators Ŵ
(k)
n ([x1.E1], . . . , [xn.En]) pulled back to S, may only have

poles at the ramification points of S

Remark: Correlators cannot have singularities at nodal points of S or at
punctures (pullbacks of singularities of Φ)

Moreover Ŵ
(0)
2 ([x1.E1], [x2.E2]) may only have a double pole along the

diagonal of S × S of the form dx1dx2<E1,E2>
(x1−x2)2 but no other singularities.
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TT property 3

Condition 3: Parity
Under the involution ~→ −~:

Ŵn|~ 7→−~([x1.E1], . . . , [xn.En]) = (−1)nŴn([x1.E1], . . . , [xn.En])

Condition 4: Leading order
For all n ≥ 1, the leading order of the series expansion in ~ of the
correlation function Ŵn is at least of order ~n−2

Theorem (Reconstruction by topological recursion)

If the system is of Topological Type then connected correlators Ŵ
(k)
n

can be reconstructed by the topological recursion applied to the

spectral curve
(
S, Ŵ (0)

2

)
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Sufficient conditions for TT

Let h be a Cartan subalgebra of g (Ex: diagonal matrices in glr (C)).
Φ(0)(x) can be generically “diagonalized” into:

Φ(0)(x) = AdjV (x)(T
′(x)) = ”V (x)T ′(x)V (x)−1”

with V (x) ∈ Gx and T ′(x) a h-valued 1-form.

V (x) and T ′(x) defined up to Weyl group action (permutation of
eigenvalues) and torus action (right multiplication of V (x) by
constant)

Spectral curve satisfied by y = T ′(x):

P(x , y) = detρ (y − Φ(0)(x)) ⇒ Riemann surface S

S comes with the projection x : S → Σ with some ramification
points

T (x) can be taken as any anti-derivative of T ′(x) on the universal
cover Σ̃ of Σ (base point will have no effect)
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Sufficient condition for ~ expansion

Proposition (Formal WKB solution)

Under the previous conditions, one can construct recursively a formal
solution

Ψ(x , ~) = V (x)

(
Id +

∞∑
k=0

Ψ(k)(x)~k
)
e

1
~T (x)

def
= V (x)Ψ̂(x , ~)e

1
~T (x)

of the linear differential system. Ψ̂(x , ~) satisfies:

~ dΨ̂ = (V−1ΦV − ~V−1dV )Ψ̂− Ψ̂T ′

Consequence: M(x .E ) = AdΨ(x)(E ) admits a ~ expansion and finally

correlators Ŵn also admit a ~ expansion
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Sufficient condition for pole structure

Spectral curve:

P(x , y) = detρ(y − Φ(0)(x))

defines an algebraic plane curve S immersed in the total space of
the cotangent bundle T ∗Σ

Immersion may not be an embedding ⇒ nodal points.

Condition 2 requires that correlators Ŵn do not have singularities at
the nodal points

Non trivial condition ⇒ Specific choice of Φ(0)(x)

If Lax pair: ~∂tΨ(x , t) = R(x , t, ~)Ψ(x , t) the Auxiliary curve
detρ(z −R(0)(x , t)) is usually an embedding⇒ Condition 2 satisfied.
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Sufficient condition for parity

Proposition

If there exists J ∈ G (independent of x) such that:

ρ(J)−1ρ(Φ(x ; ~))tρ(J) = ρ(Φ(x ;−~))

then the parity condition for the correlators is satisfied

Remark

1 Necessary condition? No cases without existence of J but satisfying
parity condition are known

2 Interpretation of the condition?
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Sufficient condition for leading order

Property is trivial for Ŵ1, Ŵ2 and Ŵ3 (under parity condition).

Possible proof with an insertion operator of order ~:
δxn+1Ŵn = Ŵn+1

Alternative proof for rank 2 systems using only loop equations
(simpler in dimension 2)

No general method for higher rank (insertion operator not
well-defined so far)

Known examples: Six Painlevé cases, (p, 2) minimal models and
incomplete proof with insertion operator for (p, q) models

Proof for any integrable system with genus 0 compact spectral curve
in progress
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Painlevé 4 Lax pair

G = Gl2(C), g = gl2(C), ρ=Trivial rep., < a, b >= Tr(ab)

Natural abelian Cartan subalgebra generated by E1 = diag(1, 0) and
E2 = diag(0, 1)
Painlevé 4 Lax pair: ~∂xΨ = ΦΨ and ~∂tΨ = RΨ

Φ(x , t) =

(
x + t + pq+θ0

x
1− q

x

−2(pq + θ0 + θ∞) + p(pq+2θ0)
x

−
(
x + t + pq+θ0

x

))
R(x , t) =

(
x + q + t 1

−2(pq + θ0 + θ∞) −(x + q + t)

)
~-deformed Painlevé 4 equation:

~2q̈ =
~2

2q
q̇2 + 2

(
3q3 + 4tq2 +

(
t2 − 2θ∞ + ~

)
q − θ2

0

q

)
H4(p, q, t) = qp2 + 2(q2 + tq + θ0)p + 2(θ0 + θ∞)q
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Painlevé 4 spectral curve

Spectral curve:

P(x , y) = y2 −
(x − q0)2

(
x2 + 2(q0 + t)x +

θ2
0

q2
0

)
x2

S: genus 0 Riemann surface with 2 ramification points, a double
point x = q0 and poles at x ∈ {0,∞}.
Parity matrix: (found using deformed Hamiltonian structure)

J(t) =

(
−2(pq + θ0 + θ∞) 0

0 1

)
⇒ J(t)Φ(x , t; ~)tJ(t)−1 = Φ(x , t;−~)

Auxiliary curve: z2 = − detR(0)
4 = −q2

0

(
x2 + 2(q0 + t)x +

θ2
0

q2
0

)
is

regular at x = q0 and x = 0.
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Pole structure for Painlevé 4

M(x .E1) = I2 −M(x .E2) in dimension 2.

M(0)(x .E1, t) =

 1
2 +

R(0)
1,1(x,t)

2
√
− detR(0)(x,t)

R(0)
1,2(x,t)

2
√
− detR(0)(x,t)

R(0)
2,1(x,t)

2
√
− detR(0)(x,t)

1
2 −

R(0)
1,1(x,t)

2
√
− detR(0)(x,t)


Recursive system for M(k)(x .E1, t) requires to invert a 3× 3 matrix
(same for all orders):

det


0 −R(0)

2,1 R(0)
1,2

−2R(0)
1,2 2R(0)

1,1 0

R(0)
1,1

1
2
R(0)

2,1
1
2
R(0)

1,2

 = −2R(0)
1,2(x , t) detR(0)(x , t)

No singularity is introduced at the double zero x = q0

Direct computation for Ŵ
(0)
2 (x1.Ei , x2.Ej) =

δi,jdx1dx2

(x1−x2)2
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Leading order condition for Painlevé 4

Simpler form of loop equations (X = x .E1 and Xj = xj .E1,
Ln = {X1, . . . ,Xn}):

0 = P1;n(x ; Ln) + Ŵn+2(X ,X , Ln) + 2Ŵ1(X )Ŵn+1(X , Ln)+∑
J⊂Ln,J /∈{∅,Ln}

Ŵ1+|J|(X , J)Ŵ1+n−|J|(X , Ln \ J)

+
n∑

j=1

d

dxj

Ŵn(X , Ln \ Xj )− Ŵn(Ln)

x − xj

Analysis of the singularities of P1;n(x ; Ln) (x ∈ {0,∞})

x 7→ P1;n(x , Ln) =
C1;n(Ln)

x

If leading order Ŵn < ~n−2. Recursion leads to:

0 = P(n−3)
1;i0

(x ; Li0 ) + 2y(x)Ŵ
(n−2)
i0+1 (X , Li0 )

⇒ Ŵ
(n−2)
i0+1 (X , Li0 ) =

C
(n−3)
1;i0

(Li0 )

2(x − q0)

√
x2 + 2(q0 + t)x +

θ2
0

q2
0

Contradiction with the pole structure of Ŵ
(n−2)
i0+1 (X , Li0 )
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Conclusion

General derivation of loop equations in a Lie algebra setting

Generalization of Topological Type property and corresponding
sufficient conditions

Valid for any reductive Lie algebra, any Riemann surface Σ and
any choice of prime form E
Recover known results in simple cases (Painlevé, minimal models)

May be useful for the inverse problem: (Spectral curve S + Top.

Rec.) ⇒ Correlators W
(g)
n

?⇒ Differential system ~dΨ = ΦΨ (i.e. a
quantum curve)

Application to usual Lie groups?
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