Loop equations in differential systems

Marchal Olivier
Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France

June $10^{\text {th }} 2016$
(1) Preliminaries

- Notation and setting
(2) Correlators
- Bundle morphism M
- Correlators
- Alternative expression
(3) Loop equations
- Casimirs
- Loop equations

4 TT property

- Definition
- Sufficient conditions
(5) Painlevé 4 example
- Painlevé Lax pair
(6) Conclusion
- Conclusion

Position of the talk

Plan of the talk

- Differential system $\mathrm{d} \Psi=\Phi \Psi$ on a Lie group: define a good set of correlators W_{n}
- Show that the correlators W_{n} satisfy a set of "loop equations" identical to the ones of matrix models and topological recursion
- Define the \hbar-deformation of the differential system and the "Topological Type property"
- Sufficient condition for "Topological Type property" and connection with reconstruction by the topological recursion
- Example for Painlevé 4 Lax pair and open questions

Remark: Joint work with B. Eynard and R. Belliard. Paper available at http://arxiv.org/abs/1602.01715

General setting

- Let \mathfrak{g} be a reductive Lie algebra and $G=e^{\mathfrak{g}}$ its connected Lie group. (Think $G=G I_{n}(\mathbb{C})$ and $\mathfrak{g}=\mathfrak{g} I_{n}(\mathbb{C})$)
- Take a linear differential equation: $\nabla \Psi=0$ where
- \mathcal{P} : a principal G-bundle over a complex curve Σ with connection ∇
- $\Psi \in G$: flat section in \mathcal{P}
- Locally equivalent to $\mathrm{d} \Psi=\Phi \Psi$ with Φ a \mathfrak{g}-valued holomorphic 1-form
- Faithful r-dimensional matrix representation ρ of \mathfrak{g} with invariant form:

$$
<a, b>=\operatorname{Tr}(\rho(a) \rho(b)) \stackrel{\text { def }}{=} \operatorname{Tr}_{\rho}(a b)
$$

General prime form

- Invariant form may depend on ρ but unique (up to a trivial global multiplication) if \mathfrak{g} is semi-simple (Killing form)
- Σ is a Riemann surface possibly non-compact, with punctures, high genus, etc.
- Let \mathcal{E} be any "prime form" on $\Sigma \times \Sigma$, i.e. a ($-\frac{1}{2},-\frac{1}{2}$) form behaving on the diagonal like:

$$
\mathcal{E}\left(x, x^{\prime}\right) \underset{x \rightarrow x^{\prime}}{\sim} \frac{x-x^{\prime}}{\sqrt{d x d x^{\prime}}}
$$

with no other zeros

- Connection ∇ is locally $\mathrm{d} \Psi=\Phi \Psi$ with Ψ in the universal cover $\tilde{\Sigma}$ of Σ
- $\Phi(x)$ is called the "Higgs field"

General picture

- \mathcal{P}_{0} is the trivialized \mathfrak{g} bundle with constant fiber $\tilde{\Sigma} \times \mathfrak{g} \stackrel{\pi g}{\hookrightarrow} \tilde{\Sigma}$ and trivial flat sections (i.e. constant sections \Leftrightarrow trivial connection d)

\[

\]

- Notation:
$X=\tilde{x} . E$ will define a point in \mathcal{P}_{0} with $\pi_{0}(X)=\tilde{x} \in \tilde{\Sigma}$ and $E \in \mathfrak{g}$ and $\pi(X)=x=\operatorname{pr}(\tilde{x}) \in \Sigma$

Bundle morphism M

Definition

Let $M: \mathcal{P}_{0} \mapsto \operatorname{Adj} \mathcal{P}$ (i.e. we need both $\tilde{x} \in \tilde{\Sigma}$ and an element $E \in \mathfrak{g}$ to define M) be defined by:

$$
M(\tilde{x} . E)=\operatorname{Ad}_{\Psi(\tilde{x})}(E)=" \Psi(\tilde{x}) E \Psi(\tilde{x})^{-1 "}
$$

Transforms flat sections of \mathcal{P}_{0} (i.e. constant E) into flat sections of $\mathrm{d}-\operatorname{adj}_{\Phi}$:

$$
\mathrm{d} M(X)=[\Phi(\pi(X)), M(X)]
$$

Remark

Action of $\underline{\pi}_{1}(\Sigma)$: Turning around a non-trivial loop on Σ implies:

- Monodromy for $\Psi: \Psi(\tilde{x}+\gamma)=\Psi(\tilde{x}) S_{\gamma}$
- Action on $M: M((\tilde{x}+\gamma) \cdot E)=M\left(\tilde{x} .\left(S_{\gamma} E S_{\gamma}^{-1}\right)\right)$

Definition of $\hat{\Sigma}$

Definition

We can define the quotient:

$$
\hat{\Sigma}=\mathcal{P}_{0} / \underline{\pi}_{1}(\Sigma)
$$

by identifying $\left.\tilde{x} . E \equiv(\tilde{x}+\gamma) \cdot\left(S_{\gamma}^{-1} E S_{\gamma}\right)\right)$
Notation: $X=[\tilde{x} . E]$ points of $\hat{\Sigma}$

Remark

Changing $\Psi \rightarrow \Psi C$, the choice of the universal cover $\tilde{\Sigma}$ or the fundamental group $\underline{\pi}_{1}(\Sigma)$ is equivalent to conjugate the element E by a constant group element. Up to these isomorphisms, the upcoming W_{n} will only depend on Φ but not directly on local flat section ψ

Connected correlators \hat{W}_{n}

Definition (Connected correlators)

Let $X=[\tilde{x} . E]$, and $X_{i}=\left[\tilde{x}_{i} . E_{i}\right]$ be some points of $\hat{\Sigma}$, with distinct projections $x_{i}=\pi\left(X_{i}\right)$ on Σ, we define the connected correlators:

$$
\begin{gathered}
\left.\hat{W}_{1}(X)=<M(X), \Phi(\pi(X))\right)>=\operatorname{Tr}_{\rho}(M(X) \Phi(\pi(X))) \\
\hat{W}_{2}\left(X_{1}, X_{2}\right)=-\frac{<M\left(X_{1}\right), M\left(X_{2}\right)>}{\mathcal{E}\left(x_{1}, x_{2}\right) \mathcal{E}\left(x_{2}, x_{1}\right)}=-\frac{\operatorname{Tr}_{\rho} M\left(X_{1}\right) M\left(X_{2}\right)}{\mathcal{E}\left(x_{1}, x_{2}\right) \mathcal{E}\left(x_{2}, x_{1}\right)}
\end{gathered}
$$

and for $n \geq 3$,

$$
\begin{aligned}
& \hat{W}_{n}\left(X_{1}, \ldots, X_{n}\right)= \\
& \sum_{\sigma \in \Sigma_{n}^{1-\text { cycle }}}(-1)^{\sigma} \frac{\operatorname{Tr}_{\rho} M\left(X_{1}\right) M\left(X_{\sigma(1)}\right) M\left(X_{\sigma^{2}(1)}\right) \ldots M\left(X_{\sigma^{n-1}(1)}\right)}{\mathcal{E}\left(x_{1}, x_{\sigma(1)}\right) \mathcal{E}\left(x_{\sigma(1)}, x_{\sigma^{2}(1)}\right) \ldots \mathcal{E}\left(x_{\sigma^{n-1}(1)}, x_{1}\right)}
\end{aligned}
$$

\hat{W}_{1} is a 1 -form on $\hat{\Sigma}$ while \hat{W}_{n} is a symmetric n-form on $\hat{\Sigma}^{n}$

Correlators W_{n}

Definition (Correlators)

We define the (non-connected) correlators by:

$$
W_{n}\left(X_{1}, \ldots, X_{n}\right)=\sum_{\mu \vdash\left\{X_{1}, \ldots, X_{n}\right\}} \prod_{i=1}^{\ell(\mu)} \hat{W}_{\left|\mu_{i}\right|}\left(\mu_{i}\right)
$$

where we sum over all partitions of the set $\left\{X_{1}, \ldots, X_{n}\right\}$ of n points.

$$
\begin{gathered}
W_{1}\left(X_{1}\right)=\hat{W}_{1}\left(X_{1}\right), \\
W_{2}\left(X_{1}, X_{2}\right)=\hat{W}_{1}\left(X_{1}\right) \hat{W}_{1}\left(X_{2}\right)+\hat{W}_{2}\left(X_{1}, X_{2}\right) \\
W_{3}\left(X_{1}, X_{2}, X_{3}\right)=\begin{array}{l}
\hat{W}_{1}\left(X_{1}\right) \hat{W}_{1}\left(X_{2}\right) \hat{W}_{1}\left(X_{3}\right)+\hat{W}_{1}\left(X_{1}\right) \hat{W}_{2}\left(X_{2}, X_{3}\right) \\
+\hat{W}_{1}\left(X_{2}\right) \hat{W}_{2}\left(X_{1}, X_{3}\right)+\hat{W}_{1}\left(X_{3}\right) \hat{W}_{2}\left(X_{1}, X_{2}\right) \\
+\hat{W}_{3}\left(X_{1}, X_{2}, X_{3}\right)
\end{array}
\end{gathered}
$$

and so on. W_{n} is also a symmetric n-form on $\hat{\Sigma}^{n}$

Kernel $K\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$

Definition (Fundamental kernel K)

Let $\left(\tilde{x}_{1}, \tilde{x}_{2}\right) \in \hat{\Sigma} \times \hat{\Sigma}$ and denote $\left(x_{1}, x_{2}\right)=\left(\operatorname{pr}\left(\tilde{x}_{1}\right), \operatorname{pr}\left(\tilde{x}_{2}\right)\right) \in \Sigma \times \Sigma$. We define the kernel $K\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$ by:
$K\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\left\{\begin{array}{l}\frac{\Psi\left(\tilde{x}_{1}\right)^{-1} \Psi\left(\tilde{x}_{2}\right)}{\mathcal{E}\left(x_{1}, x_{2}\right)} \in G_{x_{1}} \times G_{x_{2}} \quad \text { if } x_{1} \neq x_{2} \\ \operatorname{Ad}_{\Psi\left(\tilde{x}_{1}\right)}\left(\Phi\left(x_{1}\right)\right)=" \Psi\left(\tilde{x}_{1}\right)^{-1} \Phi\left(x_{1}\right) \Psi\left(\tilde{x}_{1}\right) " \in \mathfrak{g} \quad \text { if } x_{1}=x_{2}\end{array}\right.$
It is a $\left(\frac{1}{2}, \frac{1}{2}\right)$ form on $\hat{\Sigma} \times \hat{\Sigma}$ with a simple pole at $x_{1}=x_{2}$ (regularized by subtracting the pole at coinciding points)

Determinantal formulas

Theorem (Alternative expression for correlators)

Let $\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right) \in \hat{\Sigma}^{n}$ with distinct projections $x_{i}=\operatorname{pr}\left(\tilde{x}_{i}\right)$. Let $\left(E_{1}, \ldots E_{n}\right) \in \mathfrak{g}^{n}$. We have:

$$
W_{n}\left(\tilde{x}_{1} \cdot E_{1}, \ldots, \tilde{x}_{n} \cdot E_{n}\right)=\operatorname{Tr} \sum_{\sigma \in S_{n}}(-1)^{|\sigma|} \prod_{i=1}^{n} \rho\left(E_{i}\right) \rho\left(K\left(\tilde{x}_{i}, \tilde{x}_{\sigma(i)}\right)\right)
$$

Equivalent to:

$$
W_{n}\left(\tilde{x}_{1} \cdot E_{1}, \ldots, \tilde{x}_{n} \cdot E_{n}\right)=\operatorname{Tr}\left(\operatorname{det}\left[\rho\left(E_{i}\right) \rho\left(K\left(\tilde{x}_{i}, \tilde{x}_{j}\right)\right)\right]_{1 \leq i, j \leq n}\right)
$$

sometimes called "determinantal formulas"

Remark

"Determinant" must be understood as sum over permutations and not taking determinant of the matrix representation

Reminder on Casimirs

Definition

Let $\left(e_{1}, \ldots, e_{\text {dimg }}\right)$ be a basis of the Lie algebra $\mathfrak{g} . \rho$ faithful and $\langle a, b\rangle=\operatorname{Tr}(\rho(a), \rho(b))$ implies invariant form $<,>$ is non-degenerate on \mathfrak{g}. Thus we can define the dual basis $\left(e^{1}, \ldots, e^{\text {dimg }}\right)$ satisfying:

$$
\forall i, j \in \llbracket 1, \mathfrak{g} \rrbracket:\left\langle e_{i}, e^{j}\right\rangle=\delta_{i, j}
$$

For any $v=\sum_{i=1}^{\text {dimg }} v^{i} e_{i}$ we expand the characteristic polynomial:

$$
\operatorname{det}\left(y \operatorname{Id}_{r}-\rho(v)\right)=\sum_{k=0}^{r}(-1)^{k} y^{r-k} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq \operatorname{dim} \mathfrak{g}} C_{k}\left(i_{1}, \ldots, i_{k}\right) v^{i_{1}} \ldots v^{i_{k}}
$$

The Casimirs $\left(C_{k}\right)_{1 \leq k \leq r}$ of the Lie algebra are defined by:

$$
C_{k}=\sum_{1 \leq i_{1}, \ldots, i_{k} \leq \operatorname{dim} \mathfrak{g}} C_{k}\left(i_{1}, \ldots, i_{k}\right) e^{i_{1}} \otimes \cdots \otimes e^{i_{k}}
$$

Reminder on Casimirs 2

- Example: First non-trivial Casimir:

$$
C_{2}=-\frac{1}{2} \sum_{i=1}^{\operatorname{dimg}} e_{i} \otimes e^{i}
$$

- The previous construction may not lead to independent Casimirs C_{k}
- The same construction can be performed with a Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Reduces all sums up to $\operatorname{dim}(\mathfrak{h})$ instead of $\operatorname{dim}(\mathfrak{g})$

W generators

Definition (W generators)

Given X_{1}, \ldots, X_{n} points of $\hat{\Sigma}$ with distinct projections on Σ, and $\tilde{x} \in \tilde{\Sigma}$, with $x=\operatorname{pr}(\tilde{x})$ distinct from the $\pi\left(X_{i}\right)$, we define:

$$
\sum_{1 \leq i_{1}, \ldots, i_{k} \leq \operatorname{dim} \mathfrak{g}}^{W_{k ; n}\left(C_{k}(x), X_{1}, \ldots, X_{n}\right) \stackrel{\text { def }}{=}} C_{k}\left(i_{1}, \ldots, i_{k}\right) W_{k+n}\left(\tilde{x} . e^{i_{1}}, \ldots, \tilde{x} . e^{i_{k}}, X_{1}, \ldots, X_{n}\right)
$$

In case of identical projections, the previous regularization for K is used in the definition of W_{k+n}.

Remark

- Definition depends only on $x \in \Sigma$ but not on $\tilde{x} \in \hat{\Sigma}$
- Definition is identical when using only a Cartan subalgebra \mathfrak{h} instead of \mathfrak{g}
- Definition does not depend on the choice of the basis of \mathfrak{g} (resp. h)

Loop equations

Theorem (Loop equations)

For any $n \geq 0$, and X_{1}, \ldots, X_{n} points of $\hat{\Sigma}$ with distinct projections $x_{i}=\pi\left(X_{i}\right)$, and $\tilde{x} \in \tilde{\Sigma}$ also with distinct projection $x=\operatorname{pr}(\tilde{x})$:

$$
\begin{aligned}
& \sum_{k=0}^{r}(-1)^{k} y^{r-k} W_{k ; n}\left(C_{k}(\mathrm{x}) ; X_{1}, \ldots, X_{n}\right)= \\
& {\left[\epsilon_{1} \ldots \epsilon_{n}\right] \operatorname{det}_{\rho}\left(y-\left(\Phi(x)+\mathcal{M}_{\epsilon}\left(x ; X_{1}, \ldots, X_{n}\right)\right)\right)}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathcal{M}_{\epsilon}\left(x ; X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} \epsilon_{i} \frac{M\left(X_{i}\right)}{\mathcal{E}\left(x, x_{i}\right) \mathcal{E}\left(x_{i}, x\right)} \\
& +\sum_{1 \leq i \neq j \leq n} \epsilon_{i} \epsilon_{j} \frac{M\left(X_{i}\right) M\left(X_{j}\right)}{\mathcal{E}\left(x, x_{i}\right) \mathcal{E}\left(x_{i}, x_{j}\right) \mathcal{E}\left(x_{j}, x\right)} \\
& +\sum_{k=3}^{n} \sum_{1 \leq i_{1} \neq \cdots \neq i_{k} \leq n} \epsilon_{i_{1}} \ldots \epsilon_{i_{k}} \frac{M\left(X_{i_{1}}\right) \ldots M\left(X_{i_{k}}\right)}{\mathcal{E}\left(x, x_{i_{1}}\right) \mathcal{E}\left(x_{i_{1}}, x_{i_{2}}\right) \ldots \mathcal{E}\left(x_{i_{k}}, x\right)}
\end{aligned}
$$

Loop equations

- $\left[\epsilon_{1} \ldots \epsilon_{n}\right]$ indicates the $\epsilon_{1} \ldots \epsilon_{n}$ coefficient of the Taylor expansion at $\vec{\epsilon} \rightarrow \overrightarrow{0}$.
- $\operatorname{det}_{\rho}\left(y-\left(\Phi(x)+\mathcal{M}_{\epsilon}\left(x ; X_{1}, \ldots, X_{n}\right)\right)\right)$ only makes sense in the representation ρ
- R.h.s. is independent of the choice of basis in \mathfrak{g} (or \mathfrak{h})
- R.h.s is an analytic function of $x \in \Sigma$
- Loop equations proved \Rightarrow previous properties apply to the I.h.s. $W_{k ; n}\left(C_{k}(x) ; X_{1}, \ldots, X_{n}\right)$
- If $G=\mathrm{GI}_{n}(\mathbb{C})$ and $\Sigma=\overline{\mathbb{C}}$ and $\mathcal{E}\left(x, x^{\prime}\right)=\frac{x-x^{\prime}}{\sqrt{d x d x^{\prime}}}$ then we recover matrix models loop equations.

Sketch of the proof of the Loop equations for $n=0$

- Start from I.h.s. $\sum_{k=0}^{r}(-1)^{k} y^{r-k} W_{k ; 0}\left(C_{k}(x)\right)$ and use definitions at coinciding points for $C_{k}(x)$
- Obtain $W_{k ; 0}\left(C_{k}(x)\right)$ replaced by a sum over permutations σ of $\operatorname{Tr}_{\rho} e^{\sigma(j)} \Psi(\tilde{x})^{-1} \Phi(x) \Psi(\tilde{x})$
- Use cyclic property of trace to get $\operatorname{Tr}_{\rho} \Psi(\tilde{x}) e^{\sigma(j)} \Psi(\tilde{x})^{-1} \Phi(x)$
- Use invariance of Casimirs under change of basis to change $e_{j} \rightarrow \Psi(x) e_{j} \Psi(x)^{-1}$ to get $\operatorname{Tr}_{\rho} e^{\sigma(j)} \Phi(x)$
- Observe that the initial sum is:

$$
\begin{aligned}
& \sum_{k=0}^{r}(-1)^{k} y^{r-k} W_{k ; 0}\left(C_{k}(x)\right) \\
= & \sum_{k=0}^{r}(-1)^{k} y^{r-k} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq \operatorname{dimg}} C_{k}\left(i_{1}, \ldots, i_{k}\right) \sum_{\sigma \in \mathfrak{S}_{k}}(-1)^{\sigma} \operatorname{Tr}_{\rho} \prod_{j=1}^{k}\left(e^{\sigma(j)} \Phi(x)\right) \\
= & \left.\operatorname{det}_{\rho}(y-\Phi(x))\right)
\end{aligned}
$$

- Same method used to get $W_{k ; n}\left(C_{k}(x) ; X_{1}, \ldots, X_{n}\right)$

\hbar deformation

- Introduce a 1-parameter family of deformations of the connection:

$$
\hbar \nabla=\hbar \mathrm{d}-\Phi \Leftrightarrow \hbar \mathrm{d} \Psi(\tilde{x}, \hbar)=\Phi(x, \hbar) \Psi(\tilde{x}, \hbar)
$$

- Assume that $\Phi(x, \hbar)$ admits a formal expansion in \hbar :

$$
\Phi(x, \hbar)=\sum_{k=0}^{\infty} \Phi^{(k)}(x) \hbar^{k}
$$

- Questions:
- \hbar-Expansion of the correlators W_{n} ?
- Definition of a spectral curve and reconstruction of correlators by topological recursion?

TT property

Definition

The \hbar-deformed system is said to be of Topological Type if the 4 following conditions are met

Condition 1: Asymptotic expansion

There exists some simply connected open domains of Σ and an Abelian subalgebra \mathfrak{h} of \mathfrak{g}, in which the connected correlators $\hat{W}_{n}\left(X_{1}, \ldots, X_{n}\right)$ s with each $X_{i} \in \Sigma \times \mathfrak{h}$, have a Poincaré asymptotic \hbar expansion

$$
\begin{equation*}
\hat{W}_{n}\left(X_{1}, \ldots, X_{n}\right)=\frac{\delta_{n, 1}}{\hbar} \hat{W}_{1}^{(0)}\left(X_{1}\right)+\sum_{k=0}^{\infty} \hbar^{k} \hat{W}_{n}^{(k)}\left(X_{1}, \ldots, X_{n}\right) \tag{4.1}
\end{equation*}
$$

such that each $\hat{W}_{n}^{(k)}\left(\left[x_{1}, E_{1}\right], \ldots,\left[x_{n}, E_{n}\right]\right)$ is, at fixed $E_{i} \in \mathfrak{h}$, an algebraic symmetric n-form of x_{1}, \ldots, x_{n}. In other words, there must exist a (possibly nodal) Riemann surface \mathcal{S} independent of k and n, which is a ramified cover of Σ, such that the pullbacks, at fixed $E_{i} \in \mathfrak{h}$, of $\hat{W}_{n}^{(k)}\left(\left[x_{1}, E_{1}\right], \ldots,\left[x_{n}, E_{n}\right]\right)$ to \mathcal{S}^{n} are meromorphic symmetric n-forms

TT property 2

Condition 2: Pole structure

For $(k, n) \notin\{(0,1),(0,2)\}$ and any $\left(E_{1}, \ldots, E_{n}\right) \in \mathfrak{h}^{n}$, the connected correlators $\hat{W}_{n}^{(k)}\left(\left[x_{1} . E_{1}\right], \ldots,\left[x_{n} . E_{n}\right]\right)$ pulled back to \mathcal{S}, may only have poles at the ramification points of \mathcal{S}

Remark: Correlators cannot have singularities at nodal points of \mathcal{S} or at punctures (pullbacks of singularities of Φ)

Moreover $\hat{W}_{2}^{(0)}\left(\left[x_{1}, E_{1}\right],\left[x_{2}, E_{2}\right]\right)$ may only have a double pole along the diagonal of $\mathcal{S} \times \mathcal{S}$ of the form $\frac{\left.d x_{1} d x_{2}<E_{1}, E_{2}\right\rangle}{\left(x_{1}-x_{2}\right)^{2}}$ but no other singularities.

TT property 3

Condition 3: Parity

Under the involution $\hbar \rightarrow-\hbar$:

$$
\left.\hat{W}_{n}\right|_{\hbar \mapsto-\hbar}\left(\left[x_{1} \cdot E_{1}\right], \ldots,\left[x_{n} \cdot E_{n}\right]\right)=(-1)^{n} \hat{W}_{n}\left(\left[x_{1} \cdot E_{1}\right], \ldots,\left[x_{n} \cdot E_{n}\right]\right)
$$

Condition 4: Leading order
For all $n \geq 1$, the leading order of the series expansion in \hbar of the correlation function \hat{W}_{n} is at least of order \hbar^{n-2}

Theorem (Reconstruction by topological recursion)

If the system is of Topological Type then connected correlators $\hat{W}_{n}^{(k)}$ can be reconstructed by the topological recursion applied to the spectral curve $\left(\mathcal{S}, \hat{W}_{2}^{(0)}\right)$

Sufficient conditions for TT

- Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} (Ex: diagonal matrices in $\mathfrak{g} /_{r}(\mathbb{C})$). $\Phi^{(0)}(x)$ can be generically "diagonalized" into:

$$
\Phi^{(0)}(x)=\operatorname{Adj}_{V(x)}\left(T^{\prime}(x)\right)=" V(x) T^{\prime}(x) V(x)^{-1 "}
$$

with $V(x) \in G_{x}$ and $T^{\prime}(x)$ a \mathfrak{h}-valued 1-form.

- $V(x)$ and $T^{\prime}(x)$ defined up to Weyl group action (permutation of eigenvalues) and torus action (right multiplication of $V(x)$ by constant)
- Spectral curve satisfied by $y=T^{\prime}(x)$:

$$
P(x, y)=\operatorname{det}_{\rho}\left(y-\Phi^{(0)}(x)\right) \Rightarrow \text { Riemann surface } \mathcal{S}
$$

- \mathcal{S} comes with the projection $\mathrm{x}: \mathcal{S} \rightarrow \Sigma$ with some ramification points
- $T(x)$ can be taken as any anti-derivative of $T^{\prime}(x)$ on the universal cover $\tilde{\Sigma}$ of Σ (base point will have no effect)

Sufficient condition for \hbar expansion

Proposition (Formal WKB solution)

Under the previous conditions, one can construct recursively a formal solution

$$
\begin{aligned}
\Psi(x, \hbar) & =V(x)\left(I d+\sum_{k=0}^{\infty} \Psi^{(k)}(x) \hbar^{k}\right) e^{\frac{1}{\hbar} T(x)} \\
& \xlongequal{\text { def }} V(x) \hat{\Psi}(x, \hbar) e^{\frac{1}{\hbar} T(x)}
\end{aligned}
$$

of the linear differential system. $\hat{\Psi}(x, \hbar)$ satisfies:

$$
\hbar d \hat{\Psi}=\left(V^{-1} \Phi V-\hbar V^{-1} d V\right) \hat{\Psi}-\hat{\Psi} T^{\prime}
$$

Consequence: $M(x . E)=\operatorname{Ad}_{\Psi(x)}(E)$ admits a \hbar expansion and finally correlators \hat{W}_{n} also admit a \hbar expansion

Sufficient condition for pole structure

- Spectral curve:

$$
P(x, y)=\operatorname{det}_{\rho}\left(y-\Phi^{(0)}(x)\right)
$$

defines an algebraic plane curve \mathcal{S} immersed in the total space of the cotangent bundle $T^{*} \Sigma$

- Immersion may not be an embedding \Rightarrow nodal points.
- Condition 2 requires that correlators \hat{W}_{n} do not have singularities at the nodal points
- Non trivial condition \Rightarrow Specific choice of $\Phi^{(0)}(x)$
- If Lax pair: $\hbar \partial_{t} \Psi(x, t)=\mathcal{R}(x, t, \hbar) \Psi(x, t)$ the Auxiliary curve $\operatorname{det}_{\rho}\left(z-\mathcal{R}^{(0)}(x, t)\right)$ is usually an embedding \Rightarrow Condition 2 satisfied.

Sufficient condition for parity

Proposition

If there exists $J \in G$ (independent of x) such that:

$$
\rho(J)^{-1} \rho(\Phi(x ; \hbar))^{t} \rho(J)=\rho(\Phi(x ;-\hbar))
$$

then the parity condition for the correlators is satisfied

Remark

(1) Necessary condition? No cases without existence of J but satisfying parity condition are known
(2) Interpretation of the condition?

Sufficient condition for leading order

- Property is trivial for \hat{W}_{1}, \hat{W}_{2} and \hat{W}_{3} (under parity condition).
- Possible proof with an insertion operator of order \hbar : $\delta_{X_{n+1}} \hat{W}_{n}=\hat{W}_{n+1}$
- Alternative proof for rank 2 systems using only loop equations (simpler in dimension 2)
- No general method for higher rank (insertion operator not well-defined so far)
- Known examples: Six Painlevé cases, $(p, 2)$ minimal models and incomplete proof with insertion operator for (p, q) models
- Proof for any integrable system with genus 0 compact spectral curve in progress

Painlevé 4 Lax pair

- $G=G l_{2}(\mathbb{C}), \mathfrak{g}=\mathfrak{g} l_{2}(\mathbb{C}), \rho=$ Trivial rep., $\langle a, b\rangle=\operatorname{Tr}(a b)$
- Natural abelian Cartan subalgebra generated by $E_{1}=\operatorname{diag}(1,0)$ and $E_{2}=\operatorname{diag}(0,1)$
- Painlevé 4 Lax pair: $\hbar \partial_{x} \Psi=\Phi \Psi$ and $\hbar \partial_{t} \Psi=\mathcal{R} \Psi$

$$
\begin{aligned}
& \Phi(x, t)=\left(\begin{array}{cc}
x+t+\frac{p q+\theta_{0}}{x} & 1-\frac{q}{x} \\
-2\left(p q+\theta_{0}+\theta_{\infty}\right)+\frac{p\left(p q+2 \theta_{0}\right)}{x} & -\left(x+t+\frac{p q+\theta_{0}}{x}\right)
\end{array}\right) \\
& \mathcal{R}(x, t)=\left(\begin{array}{cc}
x+q+t & 1 \\
-2\left(p q+\theta_{0}+\theta_{\infty}\right) & -(x+q+t)
\end{array}\right)
\end{aligned}
$$

- \hbar-deformed Painlevé 4 equation:

$$
\begin{aligned}
\hbar^{2} \ddot{q} & =\frac{\hbar^{2}}{2 q} \dot{q}^{2}+2\left(3 q^{3}+4 t q^{2}+\left(t^{2}-2 \theta_{\infty}+\hbar\right) q-\frac{\theta_{0}^{2}}{q}\right) \\
H_{4}(p, q, t) & =q p^{2}+2\left(q^{2}+t q+\theta_{0}\right) p+2\left(\theta_{0}+\theta_{\infty}\right) q
\end{aligned}
$$

Painlevé 4 spectral curve

- Spectral curve:

$$
P(x, y)=y^{2}-\frac{\left(x-q_{0}\right)^{2}\left(x^{2}+2\left(q_{0}+t\right) x+\frac{\theta_{0}^{2}}{q_{0}^{2}}\right)}{x^{2}}
$$

- \mathcal{S} : genus 0 Riemann surface with 2 ramification points, a double point $x=q_{0}$ and poles at $x \in\{0, \infty\}$.
- Parity matrix: (found using deformed Hamiltonian structure)

$$
J(t)=\left(\begin{array}{cc}
-2\left(p q+\theta_{0}+\theta_{\infty}\right) & 0 \\
0 & 1
\end{array}\right) \Rightarrow J(t) \Phi(x, t ; \hbar)^{t} J(t)^{-1}=\Phi(x, t ;-\hbar)
$$

- Auxiliary curve: $z^{2}=-\operatorname{det} \mathcal{R}_{4}^{(0)}=-q_{0}^{2}\left(x^{2}+2\left(q_{0}+t\right) x+\frac{\theta_{0}^{2}}{q_{0}^{2}}\right)$ is regular at $x=q_{0}$ and $x=0$.

Pole structure for Painlevé 4

- $M\left(x . E_{1}\right)=I_{2}-M\left(x . E_{2}\right)$ in dimension 2.

$$
M^{(0)}\left(x . E_{1}, t\right)=\left(\begin{array}{cc}
\frac{1}{2}+\frac{\mathcal{R}_{1,1}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}} & \frac{\mathcal{R}_{1,2}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}} \\
\frac{\mathcal{R}_{2,1}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}} & \frac{1}{2}-\frac{\mathcal{R}_{1,1}^{(0)}(x, t)}{2 \sqrt{-\operatorname{det} \mathcal{R}^{(0)}(x, t)}}
\end{array}\right)
$$

- Recursive system for $M^{(k)}\left(x . E_{1}, t\right)$ requires to invert a 3×3 matrix (same for all orders):

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & -\mathcal{R}_{2,1}^{(0)} & \mathcal{R}_{1,2}^{(0)} \\
-2 \mathcal{R}_{1,2}^{(0)} & 2 \mathcal{R}_{1,1}^{(0)} & 0 \\
\mathcal{R}_{1,1}^{(0)} & \frac{1}{2} \mathcal{R}_{2,1}^{(0)} & \frac{1}{2} \mathcal{R}_{1,2}^{(0)}
\end{array}\right)=-2 \mathcal{R}_{1,2}^{(0)}(x, t) \operatorname{det} \mathcal{R}^{(0)}(x, t)
$$

- No singularity is introduced at the double zero $x=q_{0}$
- Direct computation for $\hat{W}_{2}^{(0)}\left(x_{1} \cdot E_{i}, x_{2} \cdot E_{j}\right)=\frac{\delta_{i, j} d x_{1} d x_{2}}{\left(x_{1}-x_{2}\right)^{2}}$

Leading order condition for Painlevé 4

- Simpler form of loop equations $\left(X=x . E_{1}\right.$ and $X_{j}=x_{j} . E_{1}$, $\left.L_{n}=\left\{X_{1}, \ldots, X_{n}\right\}\right)$:

$$
\begin{aligned}
0= & \mathcal{P}_{1 ; n}\left(x ; L_{n}\right)+\hat{W}_{n+2}\left(X, X, L_{n}\right)+2 \hat{W}_{1}(X) \hat{W}_{n+1}\left(X, L_{n}\right)+ \\
& \sum_{J \subset L_{n}, J \notin\left\{0, L_{n}\right\}}^{\hat{W}_{1+|J|}(X, J) \hat{W}_{1+n-|J|}\left(X, L_{n} \backslash J\right)} \\
& +\sum_{j=1}^{n} \frac{d}{d x_{j}} \frac{\hat{W}_{n}\left(X, L_{n} \backslash X_{j}\right)-\hat{W}_{n}\left(L_{n}\right)}{x-x_{j}}
\end{aligned}
$$

- Analysis of the singularities of $\mathcal{P}_{1 ; n}\left(x ; L_{n}\right)(x \in\{0, \infty\})$

$$
x \mapsto \mathcal{P}_{1 ; n}\left(x, L_{n}\right)=\frac{C_{1 ; n}\left(L_{n}\right)}{x}
$$

- If leading order $\hat{W}_{n}<\hbar^{n-2}$. Recursion leads to:

$$
\begin{gathered}
0=\mathcal{P}_{1 ; i_{0}}^{(n-3)}\left(x ; L_{i_{0}}\right)+2 y(x) \hat{W}_{i_{0}+1}^{(n-2)}\left(X, L_{i_{0}}\right) \\
\Rightarrow \hat{W}_{i_{0}+1}^{(n-2)}\left(X, L_{i_{0}}\right)=\frac{C_{1 ; i_{0}}^{(n-3)}\left(L_{i_{0}}\right)}{2\left(x-q_{0}\right) \sqrt{x^{2}+2\left(q_{0}+t\right) x+\frac{\theta_{0}^{2}}{q_{0}^{2}}}}
\end{gathered}
$$

- Contradiction with the pole structure of $\hat{W}_{i_{0}+1}^{(n-2)}\left(X, L_{i 0}\right)$

Conclusion

- General derivation of loop equations in a Lie algebra setting
- Generalization of Topological Type property and corresponding sufficient conditions
- Valid for any reductive Lie algebra, any Riemann surface Σ and any choice of prime form \mathcal{E}
- Recover known results in simple cases (Painlevé, minimal models)
- May be useful for the inverse problem: (Spectral curve $\mathcal{S}+$ Top. Rec.) \Rightarrow Correlators $W_{n}^{(g)} \stackrel{?}{\Rightarrow}$ Differential system $\hbar \mathrm{d} \psi=\phi \Psi$ (i.e. a quantum curve)
- Application to usual Lie groups?

