Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000	000000	00000000	0000	

Loop equations in differential systems

Marchal Olivier

Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France

June 10th 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000	000000	00000000	0000	0

- Preliminaries
 - Notation and setting

2 Correlators

- Bundle morphism M
- Correlators
- Alternative expression
- 3 Loop equations
 - Casimirs
 - Loop equations
- 4 TT property
 - Definition
 - Sufficient conditions

5 Painlevé 4 example

Painlevé Lax pair

6 Conclusion

Conclusion

Preliminaries	Correlators		TT property	Painlevé 4 example	Conclusion
00000	000000	000000	000000000	0000	
Position	of the tal	k			

(ロ)、(型)、(E)、(E)、 E) のQ()

Preliminaries	Correlators		TT property		Conclusion
0000	000000	000000	00000000	0000	
Plan of th	ne talk				

- Differential system $d\Psi = \Phi \Psi$ on a Lie group: define a good set of correlators W_n
- Show that the correlators W_n satisfy a set of "loop equations" identical to the ones of matrix models and topological recursion
- Define the $\hbar\text{-deformation}$ of the differential system and the "Topological Type property"
- Sufficient condition for "Topological Type property" and connection with reconstruction by the topological recursion
- Example for Painlevé 4 Lax pair and open questions

<u>Remark</u>: Joint work with **B. Eynard** and **R. Belliard**. Paper available at http://arxiv.org/abs/1602.01715

Preliminaries	Correlators		TT property	Painlevé 4 example	Conclusion
00000	000000	000000	00000000	0000	
General s	etting				

- Let g be a reductive Lie algebra and G = e^g its connected Lie group. (Think G = Gl_n(ℂ) and g = gl_n(ℂ))
- Take a linear differential equation: $\nabla \Psi = 0$ where
 - \mathcal{P} : a principal *G*-bundle over a complex curve Σ with connection ∇
 - $\Psi \in G$: flat section in \mathcal{P}
 - Locally equivalent to $d\Psi=\Phi\Psi$ with Φ a g-valued holomorphic 1-form
- Faithful *r*-dimensional matrix representation ρ of \mathfrak{g} with invariant form:

$$< a, b >= Tr(
ho(a)
ho(b)) \stackrel{def}{=} \operatorname{Tr}_{
ho}(ab)$$

Preliminaries	Correlators		TT property	Painlevé 4 example	Conclusion
00000	000000	000000	00000000	0000	
General p	rime form				

- Invariant form may depend on ρ but unique (up to a trivial global multiplication) if g is semi-simple (Killing form)
- Σ is a **Riemann surface** possibly **non-compact**, with **punctures**, high genus, etc.
- Let \mathcal{E} be any "prime form" on $\Sigma \times \Sigma$, i.e. a $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ form behaving on the diagonal like:

$$\mathcal{E}(x,x') \underset{x o x'}{\sim} rac{x-x'}{\sqrt{dxdx'}}$$

with no other zeros

• Connection ∇ is locally $d\Psi=\Phi\Psi$ with Ψ in the universal cover $\tilde{\Sigma}$ of Σ

Φ(x) is called the "Higgs field"

Preliminaries	Correlators		TT property		Conclusion
00000	000000	000000	000000000	0000	0
General p	icture				

• \mathcal{P}_0 is the trivialized \mathfrak{g} bundle with constant fiber $\tilde{\Sigma} \times \mathfrak{g} \stackrel{\pi_0}{\mapsto} \tilde{\Sigma}$ and trivial flat sections (i.e. constant sections \Leftrightarrow trivial connection d)

$$\begin{array}{ccc} \mathcal{P} & \mathcal{P}_{0} = \rho r^{*} \mathcal{P} = \tilde{\Sigma} \times \mathfrak{g} \\ p \downarrow & \swarrow & \downarrow \pi_{0} \\ \Sigma & \longleftarrow & \tilde{\Sigma} \end{array}$$

Notation:

 $X = \tilde{x}.E$ will define a point in \mathcal{P}_0 with $\pi_0(X) = \tilde{x} \in \tilde{\Sigma}$ and $E \in \mathfrak{g}$ and $\pi(X) = x = \operatorname{pr}(\tilde{x}) \in \Sigma$

Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	00000	000000	00000000	0000	0
Bundle m	orphism <i>N</i>	Л			

Definition

Let $M: \mathcal{P}_0 \mapsto \operatorname{Adj} \mathcal{P}$ (i.e. we need both $\tilde{x} \in \tilde{\Sigma}$ and an element $E \in \mathfrak{g}$ to define M) be defined by:

$$M(\widetilde{x}.E) = \operatorname{Ad}_{\Psi(\widetilde{x})}(E) = "\Psi(\widetilde{x}) \, E \, \Psi(\widetilde{x})^{-1}$$

Transforms flat sections of \mathcal{P}_0 (i.e. constant E) into flat sections of $d-adj_\Phi$:

$$\mathsf{d} M(X) = [\Phi(\pi(X)), M(X)]$$

Remark

Action of $\underline{\pi}_1(\Sigma)$: Turning around a non-trivial loop on Σ implies:

- Monodromy for $\Psi: \Psi(\tilde{x} + \gamma) = \Psi(\tilde{x})S_{\gamma}$
- Action on M: $M((\tilde{x} + \gamma).E) = M(\tilde{x}.(S_{\gamma} E S_{\gamma}^{-1}))$

	Correlators	TT property	Painlevé 4 example	Conclusion
	00000			
Definition	of $\hat{\Sigma}$			

Definition

We can define the quotient:

$$\hat{\Sigma} = \mathcal{P}_0 \diagup \underline{\pi}_1(\Sigma)$$

by identifying $\tilde{x}.E \equiv (\tilde{x} + \gamma).(S_{\gamma}^{-1} E S_{\gamma}))$ <u>Notation</u>: $X = [\tilde{x}.E]$ points of $\hat{\Sigma}$

Remark

Changing $\Psi \to \Psi C$, the choice of the universal cover $\tilde{\Sigma}$ or the fundamental group $\underline{\pi}_1(\Sigma)$ is equivalent to conjugate the element E by a constant group element. Up to these isomorphisms, the upcoming W_n will only depend on Φ but not directly on local flat section Ψ

	Correlators		TT property	Painlevé 4 example	Conclusion
00000	000000	000000	00000000	0000	
Connected	d correlato	ors \hat{W}_n			

Definition (Connected correlators)

Let $X = [\tilde{x}.E]$, and $X_i = [\tilde{x}_i.E_i]$ be some points of $\hat{\Sigma}$, with distinct projections $x_i = \pi(X_i)$ on Σ , we define the **connected correlators**:

$$\hat{W}_1(X) = < M(X), \Phi(\pi(X))) > = \operatorname{Tr}_
ho \left(M(X) \Phi(\pi(X))
ight),$$

$$\hat{W}_{2}(X_{1}, X_{2}) = -\frac{\langle M(X_{1}), M(X_{2}) \rangle}{\mathcal{E}(x_{1}, x_{2})\mathcal{E}(x_{2}, x_{1})} = -\frac{\operatorname{Tr}_{\rho} M(X_{1}) M(X_{2})}{\mathcal{E}(x_{1}, x_{2})\mathcal{E}(x_{2}, x_{1})},$$

and for $n \geq 3$,

$$\hat{W}_{n}(X_{1},...,X_{n}) = \\ \sum_{\sigma \in \Sigma_{n}^{1-\text{cycle}}} (-1)^{\sigma} \frac{\text{Tr}_{\rho} \mathcal{M}(X_{1}) \mathcal{M}(X_{\sigma(1)}) \mathcal{M}(X_{\sigma^{2}(1)}) \dots \mathcal{M}(X_{\sigma^{n-1}(1)})}{\mathcal{E}(x_{1},x_{\sigma(1)}) \mathcal{E}(x_{\sigma(1)},x_{\sigma^{2}(1)}) \dots \mathcal{E}(x_{\sigma^{n-1}(1)},x_{1})}$$

 \hat{W}_1 is a 1-form on $\hat{\Sigma}$ while \hat{W}_n is a symmetric *n*-form on $\hat{\Sigma}^n$

	Correlators		TT property	Painlevé 4 example	Conclusion
00000	000000	000000	000000000	0000	
Correlate	ors W_n				

Definition (Correlators)

We define the (non-connected) correlators by:

$$W_n(X_1,...,X_n) = \sum_{\mu \vdash \{X_1,...,X_n\}} \prod_{i=1}^{\ell(\mu)} \hat{W}_{|\mu_i|}(\mu_i)$$

where we sum over all partitions of the set $\{X_1, \ldots, X_n\}$ of *n* points.

 $W_1(X_1) = \hat{W}_1(X_1),$ $W_2(X_1, X_2) = \hat{W}_1(X_1)\hat{W}_1(X_2) + \hat{W}_2(X_1, X_2)$ $W_3(X_1, X_2, X_3) = \hat{W}_1(X_1)\hat{W}_1(X_2)\hat{W}_1(X_3) + \hat{W}_1(X_1)\hat{W}_2(X_2, X_3) + \hat{W}_1(X_2)\hat{W}_2(X_1, X_3) + \hat{W}_1(X_3)\hat{W}_2(X_1, X_2) + \hat{W}_3(X_1, X_2, X_3)$

and so on. W_n is also a symmetric *n*-form on $\hat{\Sigma}^n$

	Correlators		TT property		Conclusion
00000	000000	000000	00000000	0000	
Kernel <i>K</i> ($(\tilde{x}_1, \tilde{x}_2)$				

Definition (Fundamental kernel K)

Let $(\tilde{x}_1, \tilde{x}_2) \in \hat{\Sigma} \times \hat{\Sigma}$ and denote $(x_1, x_2) = (\operatorname{pr}(\tilde{x}_1), \operatorname{pr}(\tilde{x}_2)) \in \Sigma \times \Sigma$. We define the kernel $K(\tilde{x}_1, \tilde{x}_2)$ by:

$$\mathcal{K}(\tilde{x}_{1}, \tilde{x}_{2}) = \begin{cases} \frac{\Psi(\tilde{x}_{1})^{-1}\Psi(\tilde{x}_{2})}{\mathcal{E}(x_{1}, x_{2})} \in G_{x_{1}} \times G_{x_{2}} & \text{if } x_{1} \neq x_{2} \\ \\ Ad_{\Psi(\tilde{x}_{1})}(\Phi(x_{1})) = "\Psi(\tilde{x}_{1})^{-1}\Phi(x_{1})\Psi(\tilde{x}_{1})" \in \mathfrak{g} & \text{if } x_{1} = x_{2} \end{cases}$$

It is a $(\frac{1}{2}, \frac{1}{2})$ form on $\hat{\Sigma} \times \hat{\Sigma}$ with a simple pole at $x_1 = x_2$ (regularized by subtracting the pole at coinciding points)

	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
	000000				
Determi	nantal for	rmulas			

Theorem (Alternative expression for correlators)

Let $(\tilde{x}_1, \ldots, \tilde{x}_n) \in \hat{\Sigma}^n$ with distinct projections $x_i = pr(\tilde{x}_i)$. Let $(E_1, \ldots, E_n) \in \mathfrak{g}^n$. We have:

$$W_n(\tilde{x}_1.E_1,\ldots,\tilde{x}_n.E_n) = \operatorname{Tr} \sum_{\sigma \in S_n} (-1)^{|\sigma|} \prod_{i=1}^n \rho(E_i) \rho(K(\tilde{x}_i,\tilde{x}_{\sigma(i)}))$$

Equivalent to:

$$W_n(\tilde{x}_1.E_1,\ldots,\tilde{x}_n.E_n) = \operatorname{Tr}\left(\det\left[\rho(E_i)\rho(K(\tilde{x}_i,\tilde{x}_j))\right]_{1\leq i,j\leq n}\right)$$

sometimes called "determinantal formulas"

Remark

"Determinant" must be understood as sum over permutations and not taking determinant of the matrix representation

イロト イポト イヨト イヨト

э

	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
		• 0 0000			
Reminder	on Casim	irs			

Definition

Let $(e_1, \ldots, e_{\text{dimg}})$ be a basis of the Lie algebra g. ρ faithful and $\langle a, b \rangle = \text{Tr}(\rho(a), \rho(b))$ implies invariant form \langle , \rangle is non-degenerate on g. Thus we can define the dual basis $(e^1, \ldots, e^{\text{dimg}})$ satisfying:

 $\forall i,j \in \llbracket 1,\mathfrak{g} \rrbracket : \langle e_i, e^j \rangle = \delta_{i,j}$

For any $v = \sum_{i=1}^{\dim \mathfrak{g}} v^i e_i$ we expand the characteristic polynomial:

$$\det(y \mathrm{Id}_r - \rho(v)) = \sum_{k=0}^r (-1)^k y^{r-k} \sum_{1 \leq i_1, \dots, i_k \leq \dim \mathfrak{g}} C_k(i_1, \dots, i_k) v^{i_1} \dots v^{i_k}$$

The Casimirs $(C_k)_{1 \le k \le r}$ of the Lie algebra are defined by:

$$\mathcal{C}_k = \sum_{1 \leq i_1, \dots, i_k \leq \dim \mathfrak{g}} \mathcal{C}_k(i_1, \dots, i_k) e^{i_1} \otimes \dots \otimes e^{i_k}$$

• Example: First non-trivial Casimir:

$$C_2 = -rac{1}{2}\sum_{i=1}^{\dim \mathfrak{g}} e_i \otimes e^i$$

- The previous construction may not lead to independent Casimirs C_k
- The same construction can be performed with a Cartan subalgebra \mathfrak{h} of $\mathfrak{g}.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Reduces all sums up to $dim(\mathfrak{h})$ instead of $dim(\mathfrak{g})$

	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
		00000			
W gene	rators				

Definition (W generators)

Given X_1, \ldots, X_n points of $\hat{\Sigma}$ with distinct projections on Σ , and $\tilde{x} \in \tilde{\Sigma}$, with $x = \operatorname{pr}(\tilde{x})$ distinct from the $\pi(X_i)$, we define:

$$W_{k;n}(C_k(\mathbf{x}), X_1, \dots, X_n) \stackrel{\text{def}}{=} \sum_{1 \le i_1, \dots, i_k \le \text{dim } \mathfrak{g}} C_k(i_1, \dots, i_k) W_{k+n}(\tilde{\mathbf{x}}.e^{i_1}, \dots, \tilde{\mathbf{x}}.e^{i_k}, X_1, \dots, X_n)$$

In case of identical projections, the previous regularization for K is used in the definition of W_{k+n} .

Remark

- Definition depends only on $x \in \Sigma$ but not on $\tilde{x} \in \hat{\Sigma}$
- Definition is identical when using only a Cartan subalgebra \mathfrak{h} instead of \mathfrak{g}
- Definition does not depend on the choice of the basis of g (resp. h)

	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
		000000			
Loop eq	uations				

Theorem (Loop equations)

For any $n \ge 0$, and X_1, \ldots, X_n points of $\hat{\Sigma}$ with distinct projections $x_i = \pi(X_i)$, and $\tilde{x} \in \tilde{\Sigma}$ also with distinct projection $x = pr(\tilde{x})$:

$$\sum_{k=0}^{\prime} (-1)^{k} y^{r-k} W_{k;n}(C_{k}(\mathbf{x}); X_{1}, \dots, X_{n}) = [\epsilon_{1} \dots \epsilon_{n}] det_{\rho} (y - (\Phi(x) + \mathcal{M}_{\epsilon}(x; X_{1}, \dots, X_{n})))$$

where:

$$\mathcal{M}_{\epsilon}(x; X_{1}, \dots, X_{n}) = \sum_{i=1}^{n} \epsilon_{i} \frac{M(X_{i})}{\mathcal{E}(x, x_{i})\mathcal{E}(x_{i}, x)}$$

$$+ \sum_{1 \leq i \neq j \leq n} \epsilon_{i} \epsilon_{j} \frac{M(X_{i})M(X_{j})}{\mathcal{E}(x, x_{i})\mathcal{E}(x_{i}, x_{j})\mathcal{E}(x_{j}, x)}$$

$$+ \sum_{k=3}^{n} \sum_{1 \leq i_{1} \neq \dots \neq i_{k} \leq n} \epsilon_{i_{1}} \dots \epsilon_{i_{k}} \frac{M(X_{i_{1}}) \dots M(X_{i_{k}})}{\mathcal{E}(x, x_{i_{1}})\mathcal{E}(x_{i_{1}}, x_{i_{2}}) \dots \mathcal{E}(x_{i_{k}}, x)}$$

Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000	○○○○●○	000000000	0000	O
Loop equ	uations				

- $[\epsilon_1 \dots \epsilon_n]$ indicates the $\epsilon_1 \dots \epsilon_n$ coefficient of the Taylor expansion at $\vec{\epsilon} \to \vec{0}$.
- det_{ρ} $(y (\Phi(x) + M_{\epsilon}(x; X_1, ..., X_n)))$ only makes sense in the representation ρ
- R.h.s. is independent of the choice of basis in \mathfrak{g} (or \mathfrak{h})
- R.h.s is an analytic function of $x \in \Sigma$
- Loop equations proved \Rightarrow previous properties apply to the l.h.s. $W_{k;n}(C_k(x); X_1, \dots, X_n)$
- If $G = Gl_n(\mathbb{C})$ and $\Sigma = \overline{\mathbb{C}}$ and $\mathcal{E}(x, x') = \frac{x x'}{\sqrt{dxdx'}}$ then we recover matrix models loop equations.

(日) (同) (三) (三) (三) (○) (○)

- Start from l.h.s. \$\sum_{k=0}^{r}(-1)^{k}y^{r-k}W_{k;0}(C_{k}(x)\$)\$ and use definitions at coinciding points for \$C_{k}(x)\$
- Obtain $W_{k;0}(C_k(x))$ replaced by a sum over permutations σ of $\operatorname{Tr}_{\rho} e^{\sigma(j)} \Psi(\tilde{x})^{-1} \Phi(x) \Psi(\tilde{x})$
- Use cyclic property of trace to get $\operatorname{Tr}_{\rho} \Psi(\tilde{x}) e^{\sigma(j)} \Psi(\tilde{x})^{-1} \Phi(x)$
- Use invariance of Casimirs under change of basis to change $e_j \rightarrow \Psi(x)e_j\Psi(x)^{-1}$ to get $\operatorname{Tr}_{\rho} e^{\sigma(j)}\Phi(x)$
- Observe that the initial sum is:

$$\sum_{k=0}^{r} (-1)^{k} y^{r-k} W_{k;0}(C_{k}(x))$$

$$= \sum_{k=0}^{r} (-1)^{k} y^{r-k} \sum_{\substack{1 \le i_{1}, \dots, i_{k} \le \dim \mathfrak{g} \\ 0 \ det_{\rho}(y - \Phi(x)))}} C_{k}(i_{1}, \dots, i_{k}) \sum_{\sigma \in \mathfrak{S}_{k}} (-1)^{\sigma} \operatorname{Tr}_{\rho} \prod_{j=1}^{k} \left(e^{\sigma(j)} \Phi(x) \right)$$

(日) (同) (三) (三) (三) (○) (○)

• Same method used to get $W_{k;n}(C_k(x); X_1, \ldots, X_n)$

Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000		•00000000	0000	O
\hbar deform	ation				

• Introduce a 1-parameter family of deformations of the connection:

$$\hbar
abla = \hbar \mathsf{d} - \Phi \iff \hbar \mathsf{d} \Psi(ilde{x}, \hbar) = \Phi(x, \hbar) \Psi(ilde{x}, \hbar)$$

• Assume that $\Phi(x, \hbar)$ admits a formal expansion in \hbar :

$$\Phi(x,\hbar) = \sum_{k=0}^{\infty} \Phi^{(k)}(x)\hbar^k$$

• Questions:

- \hbar -Expansion of the correlators W_n ?
- Definition of a spectral curve and reconstruction of correlators by topological recursion?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000	000000	O●OOOOOOO	0000	O
TT prope	erty				

Definition

The $\hbar\text{-deformed}$ system is said to be of Topological Type if the 4 following conditions are met

Condition 1: Asymptotic expansion

There exists some simply connected open domains of Σ and an Abelian subalgebra \mathfrak{h} of \mathfrak{g} , in which the connected correlators $\hat{W}_n(X_1, \ldots, X_n)$ s with each $X_i \in \Sigma \times \mathfrak{h}$, have a Poincaré asymptotic \hbar expansion

$$\hat{W}_n(X_1,\ldots,X_n) = \frac{\delta_{n,1}}{\hbar} \hat{W}_1^{(0)}(X_1) + \sum_{k=0}^{\infty} \hbar^k \hat{W}_n^{(k)}(X_1,\ldots,X_n), \quad (4.1)$$

such that each $\hat{W}_n^{(k)}([x_1.E_1], \ldots, [x_n.E_n])$ is, at fixed $E_i \in \mathfrak{h}$, an algebraic symmetric *n*-form of x_1, \ldots, x_n . In other words, there must exist a (possibly nodal) Riemann surface S independent of k and n, which is a ramified cover of Σ , such that the pullbacks, at fixed $E_i \in \mathfrak{h}$, of $\hat{W}_n^{(k)}([x_1.E_1], \ldots, [x_n.E_n])$ to S^n are meromorphic symmetric *n*-forms

Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000	000000	000000000	0000	O
TT prope	erty 2				

Condition 2: Pole structure

For $(k, n) \notin \{(0, 1), (0, 2)\}$ and any $(E_1, \ldots, E_n) \in \mathfrak{h}^n$, the connected correlators $\hat{W}_n^{(k)}([x_1.E_1], \ldots, [x_n.E_n])$ pulled back to S, may only have poles at the ramification points of S

<u>Remark</u>: Correlators cannot have singularities at nodal points of S or at punctures (pullbacks of singularities of Φ)

Moreover $\hat{W}_2^{(0)}([x_1.E_1], [x_2.E_2])$ may only have a double pole along the diagonal of $S \times S$ of the form $\frac{dx_1 dx_2 < E_1.E_2 >}{(x_1 - x_2)^2}$ but no other singularities.

Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000		000000000	0000	O
TT prope	rty 3				

<u>Condition 3</u>: **Parity** Under the involution $\hbar \rightarrow -\hbar$:

 $\hat{W}_{n}|_{\hbar \mapsto -\hbar}([x_{1}.E_{1}],\ldots,[x_{n}.E_{n}]) = (-1)^{n}\hat{W}_{n}([x_{1}.E_{1}],\ldots,[x_{n}.E_{n}])$

<u>Condition 4</u>: Leading order For all $n \ge 1$, the leading order of the series expansion in \hbar of the correlation function \hat{W}_n is at least of order \hbar^{n-2}

Theorem (Reconstruction by topological recursion)

If the system is of Topological Type then connected correlators $\hat{W}_n^{(k)}$ can be reconstructed by the topological recursion applied to the spectral curve $\left(S, \hat{W}_2^{(0)}\right)$

• Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} (Ex: diagonal matrices in $\mathfrak{g}/_r(\mathbb{C})$). $\Phi^{(0)}(x)$ can be generically "diagonalized" into:

$$\Phi^{(0)}(x) = \operatorname{Adj}_{V(x)}(T'(x)) = "V(x)T'(x)V(x)^{-1}"$$

with $V(x) \in G_x$ and T'(x) a \mathfrak{h} -valued 1-form.

- V(x) and T'(x) defined up to Weyl group action (permutation of eigenvalues) and torus action (right multiplication of V(x) by constant)
- Spectral curve satisfied by y = T'(x):

 $P(x,y) = \det_{\rho} (y - \Phi^{(0)}(x)) \Rightarrow$ Riemann surface S

- \mathcal{S} comes with the projection $x : \mathcal{S} \to \Sigma$ with some ramification points
- T(x) can be taken as any anti-derivative of T'(x) on the universal cover Σ̃ of Σ (base point will have no effect)

Sufficient	condition	for \hbar expansion	nsion		
00000	000000	000000	000000000	0000	O
Preliminaries	Correlators	Loop equations	TT property	Painlevé / example	Conclusion

Proposition (Formal WKB solution)

Under the previous conditions, one can construct recursively a formal solution

$$\Psi(x,\hbar) = V(x) \left(Id + \sum_{k=0}^{\infty} \Psi^{(k)}(x)\hbar^k \right) e^{\frac{1}{\hbar}T(x)}$$

$$\stackrel{def}{=} V(x)\hat{\Psi}(x,\hbar)e^{\frac{1}{\hbar}T(x)}$$

of the linear differential system. $\hat{\Psi}(x,\hbar)$ satisfies:

$$\hbar \, d\hat{\Psi} = (V^{-1} \Phi V - \hbar V^{-1} dV) \hat{\Psi} - \hat{\Psi} T'$$

<u>Consequence</u>: $M(x.E) = \operatorname{Ad}_{\Psi(x)}(E)$ admits a \hbar expansion and finally correlators \hat{W}_n also admit a \hbar expansion

Preliminaries Correlators Loop equations TT property Painlevé 4 example Conclusion 000000 000000 000000 00000 00000 00000 0 Sufficient condition for pole structure Conclusion Conclusion Conclusion

Spectral curve:

$$P(x,y) = \det_{\rho}(y - \Phi^{(0)}(x))$$

defines an algebraic plane curve ${\cal S}$ immersed in the total space of the cotangent bundle ${\cal T}^*\Sigma$

- Immersion may not be an embedding \Rightarrow **nodal points**.
- Condition 2 requires that correlators \hat{W}_n do not have singularities at the nodal points
- Non trivial condition \Rightarrow Specific choice of $\Phi^{(0)}(x)$
- If Lax pair: $\hbar \partial_t \Psi(x, t) = \mathcal{R}(x, t, \hbar) \Psi(x, t)$ the Auxiliary curve $\det_{\rho}(z \mathcal{R}^{(0)}(x, t))$ is usually an embedding \Rightarrow Condition 2 satisfied.

Sufficient	condition	for parity	00000000	0000	0
Sufficient	condition	tor parity			

Proposition

If there exists $J \in G$ (independent of x) such that:

$$ho(J)^{-1}
ho(\Phi(x;\hbar))^t
ho(J)=
ho(\Phi(x;-\hbar))$$

then the parity condition for the correlators is satisfied

Remark

Necessary condition? No cases without existence of J but satisfying parity condition are known

Interpretation of the condition?

Preliminaries Correlators Loop equations TT property Painlexé 4 example Conclusion 00000 000000 000000 000000 00000 00000 0 Sufficient condition for leading order 00000000 0000000 0 0

- Property is trivial for \hat{W}_1 , \hat{W}_2 and \hat{W}_3 (under parity condition).
- Possible proof with an insertion operator of order \hbar : $\delta_{x_{n+1}}\hat{W}_n = \hat{W}_{n+1}$
- Alternative proof for rank 2 systems using only loop equations (simpler in dimension 2)
- No general method for higher rank (insertion operator not well-defined so far)
- Known examples: Six Painlevé cases, (p, 2) minimal models and incomplete proof with insertion operator for (p, q) models
- Proof for any integrable system with genus 0 compact spectral curve in progress

Preliminaries	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion
00000	000000		000000000	●000	O
Painlevé 4	4 Lax pair				

- $G = Gl_2(\mathbb{C}), \ \mathfrak{g} = \mathfrak{g}l_2(\mathbb{C}), \ \rho = \text{Trivial rep.}, \ < a, b >= \text{Tr}(ab)$
- Natural abelian Cartan subalgebra generated by $E_1 = diag(1,0)$ and $E_2 = diag(0,1)$
- Painlevé 4 Lax pair: $\hbar \partial_x \Psi = \Phi \Psi$ and $\hbar \partial_t \Psi = \mathcal{R} \Psi$

$$\begin{split} \Phi(x,t) &= \begin{pmatrix} x+t+\frac{pq+\theta_0}{x} & 1-\frac{q}{x} \\ -2(pq+\theta_0+\theta_\infty)+\frac{p(pq+2\theta_0)}{x} & -\left(x+t+\frac{pq+\theta_0}{x}\right) \end{pmatrix} \\ \mathcal{R}(x,t) &= \begin{pmatrix} x+q+t & 1 \\ -2(pq+\theta_0+\theta_\infty) & -(x+q+t) \end{pmatrix} \end{split}$$

• *ħ*-deformed Painlevé 4 equation:

$$\begin{split} \hbar^2 \ddot{q} &= \frac{\hbar^2}{2q} \dot{q}^2 + 2 \left(3q^3 + 4tq^2 + \left(t^2 - 2\theta_\infty + \hbar \right) q - \frac{\theta_0^2}{q} \right) \\ H_4(p,q,t) &= qp^2 + 2(q^2 + tq + \theta_0)p + 2(\theta_0 + \theta_\infty)q \end{split}$$

	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion			
				0000				
Painlevé 4 spectral curve								

Spectral curve:

$$P(x,y) = y^{2} - \frac{\left(x - q_{0}\right)^{2} \left(x^{2} + 2(q_{0} + t)x + \frac{\theta_{0}^{2}}{q_{0}^{2}}\right)}{x^{2}}$$

- S: genus 0 Riemann surface with 2 ramification points, a double point x = q₀ and poles at x ∈ {0,∞}.
- Parity matrix: (found using deformed Hamiltonian structure)

$$J(t) = \begin{pmatrix} -2(pq + \theta_0 + \theta_\infty) & 0\\ 0 & 1 \end{pmatrix} \Rightarrow J(t)\Phi(x, t; \hbar)^t J(t)^{-1} = \Phi(x, t; -\hbar)$$

• <u>Auxiliary curve</u>: $z^2 = -\det \mathcal{R}_4^{(0)} = -q_0^2 \left(x^2 + 2(q_0 + t)x + \frac{\theta_0^2}{q_0^2} \right)$ is regular at $x = q_0$ and x = 0.

	Correlators	Loop equations	TT property	Painlevé 4 example	Conclusion			
				0000				
Pole structure for Painlevé 4								

•
$$M(x.E_1) = I_2 - M(x.E_2)$$
 in dimension 2.

$$M^{(0)}(x.E_{1},t) = \begin{pmatrix} \frac{1}{2} + \frac{\mathcal{R}_{1,1}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} & \frac{\mathcal{R}_{1,2}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} \\ \frac{\mathcal{R}_{2,1}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} & \frac{1}{2} - \frac{\mathcal{R}_{1,1}^{(0)}(x,t)}{2\sqrt{-\det \mathcal{R}^{(0)}(x,t)}} \end{pmatrix}$$

 Recursive system for M^(k)(x.E₁, t) requires to invert a 3 × 3 matrix (same for all orders):

$$\det \begin{pmatrix} 0 & -\mathcal{R}_{2,1}^{(0)} & \mathcal{R}_{1,2}^{(0)} \\ -2\mathcal{R}_{1,2}^{(0)} & 2\mathcal{R}_{1,1}^{(0)} & 0 \\ \mathcal{R}_{1,1}^{(0)} & \frac{1}{2}\mathcal{R}_{2,1}^{(0)} & \frac{1}{2}\mathcal{R}_{1,2}^{(0)} \end{pmatrix} = -2\mathcal{R}_{1,2}^{(0)}(x,t) \det \mathcal{R}^{(0)}(x,t)$$

- No singularity is introduced at the double zero $x = q_0$
- Direct computation for $\hat{W}_2^{(0)}(x_1.E_i, x_2.E_j) = \frac{\delta_{i,j}dx_1dx_2}{(x_1-x_2)^2}$

• Simpler form of loop equations $(X = x.E_1 \text{ and } X_j = x_j.E_1, L_n = \{X_1, \dots, X_n\})$:

$$\begin{array}{lll} \mathcal{D} & = & \mathcal{P}_{1;n}(x;L_n) + \hat{W}_{n+2}(X,X,L_n) + 2\hat{W}_1(X)\hat{W}_{n+1}(X,L_n) + \\ & & \sum_{J \subset L_n, J \notin \{\emptyset,L_n\}} \hat{W}_{1+|J|}(X,J)\hat{W}_{1+n-|J|}(X,L_n \setminus J) \\ & & + \sum_{j=1}^n \frac{d}{dx_j} \frac{\hat{W}_n(X,L_n \setminus X_j) - \hat{W}_n(L_n)}{x - x_j} \end{array}$$

• Analysis of the singularities of $\mathcal{P}_{1;n}(x; L_n)$ $(x \in \{0, \infty\})$

$$x\mapsto \mathcal{P}_{1;n}(x,L_n)=\frac{C_{1;n}(L_n)}{x}$$

• If leading order $\hat{W}_n < \hbar^{n-2}$. Recursion leads to:

$$0 = \mathcal{P}_{1;i_0}^{(n-3)}(x; L_{i_0}) + 2y(x)\hat{W}_{i_0+1}^{(n-2)}(X, L_{i_0})$$

$$\Rightarrow \hat{W}_{i_0+1}^{(n-2)}(X,L_{i_0}) = \frac{C_{1;i_0}^{(n-3)}(L_{i_0})}{2(x-q_0)\sqrt{x^2+2(q_0+t)x+\frac{q_0^2}{q_0^2}}}$$

• Contradiction with the pole structure of $\hat{W}_{i_0+1}^{(n-2)}(X, L_{i_0})$

Preliminaries 00000	Correlators 000000	Loop equations	TT property 000000000	Painlevé 4 example 0000	Conclusion
Conclusio	n				

- General derivation of loop equations in a Lie algebra setting
- Generalization of Topological Type property and corresponding sufficient conditions
- Valid for any reductive Lie algebra, any Riemann surface Σ and any choice of prime form ${\cal E}$
- Recover known results in simple cases (Painlevé, minimal models)
- May be useful for the inverse problem: (Spectral curve S + Top. Rec.) \Rightarrow Correlators $W_n^{(g)} \stackrel{?}{\Rightarrow}$ Differential system $\hbar d\Psi = \Phi \Psi$ (i.e. a quantum curve)

• Application to usual Lie groups?