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Plan of the talk

o Differential system dW = ®W on a Lie group: define a good set of
correlators W,

@ Show that the correlators W, satisfy a set of “loop equations”
identical to the ones of matrix models and topological recursion

@ Define the h-deformation of the differential system and the
“Topological Type property”

o Sufficient condition for “Topological Type property” and connection
with reconstruction by the topological recursion

@ Example for Painlevé 4 Lax pair and open questions

Remark: Joint work with B. Eynard and R. Belliard. Paper available at
http://arxiv.org/abs/1602.01715


http://arxiv.org/abs/1602.01715
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General setting

@ Let g be a reductive Lie algebra and G = e? its connected Lie
group. (Think G = GI,(C) and g = g/,(C))
o Take a linear differential equation: VW = 0 where
e P: a principal G-bundle over a complex curve ¥ with connection V
e V € G: flat section in P
o Locally equivalent to dV = ®W with ® a g-valued holomorphic
1-form
o Faithful r-dimensional matrix representation p of g with
invariant form:

< a,b>= Tr(p(a)p(b)) & Tr,(ab)
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General prime form

@ Invariant form may depend on p but unique (up to a trivial global
multiplication) if g is semi-simple (Killing form)

@ Y is a Riemann surface possibly non-compact, with punctures,
high genus, etc.

o Let £ be any “prime form” on £ x ¥, i.e. a (—3,—3) form
behaving on the diagonal like:

!
X —X
E(x.x") ~
(x )X—>X’ vV dxdx’
with no other zeros

@ Connection V is locally d¥ = ®W with W in the universal cover ¥ of
>

@ ®(x) is called the “Higgs field"
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General picture

@ P, is the trivialized g bundle with constant fiber ¥ x g % 3 and
trivial flat sections (i.e. constant sections < trivial connection d)

P Po=pr'P=%Xxg
pl v 1m
Y — X

pr

o Notation: B
X = %.E will define a point in Py with mo(X) =X € X and E € g
and m(X) =x=pr(X) € X
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Bundle morphism M

Definition
Let M: Py — AdjP (i.e. we need both % € ¥ and an element E € g to
define M) be defined by:

M(%.E) = Ady(s)(E) = "W(X) EW(%)~V"

Transforms flat sections of Py (i.e. constant E) into flat sections of
d — adje:

dM(X) = [®(n(X)), M(X)]

| \

Remark

Action of w;(X): Turning around a non-trivial loop on ¥ implies:
e Monodromy for W: V(X + ) = W(X)S,
e Action on M: M((X +~).E) = M(X.(S, ES;l))
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Definition of 3.

Definition

We can define the quotient:
¥ ="Po/m (%)

by identifying X.E = (% +7).(S; ' E S,))
Notation: X = [X.E] points of ¥

Remark

| A,

Changing W — WC, the choice of the universal cover 3. or the
fundamental group 7,(X) is equivalent to conjugate the element E by a
constant group element. Up to these isomorphisms, the upcoming W,
will only depend on ¢ but not directly on local flat section ¥

A\
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Connected correlators W,

Definition (Connected correlators)

Let X = [X.E], and X; = [X:.Ei] be some points of 3, with distinct
projections x; = 7(X;) on X, we define the connected correlators:

WA(X) =< M(X), ®(r(X))) >= Tr, (M(X)®(n(X))),

B X — — SMOWMOG) > T MO M(X)
AT T e )Eba, ) Ela, )0k, x1)
and for n > 3,
W,(Xi, ..., Xn) =

Z (_ - rpM(Xl)M(XU(l))M(Xaz(l)) cee M(Xo-n—l(l))
S(Xl, X[,.(l))t‘:(xo.(l)7 X02(1)) cee 5(Xgn—1(1)7 X1)

1—cycle
ocexy, Y

Wi is a 1-form on & while W, is a symmetric n-form on %"
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Correlators W,

Definition (Correlators)

We define the (non-connected) correlators by:

WolXe, o Xa) = > H Wi, (1

pHE{Xq,....X,} i=1
where we sum over all partitions of the set {Xi,..., X,} of n points.
Wi(Xi) = Wi (Xa),
Wa(X1, Xo) = WA (X1) Wh(Xa) + Wa(Xi, X2)
W5 (X1, X2, X3) = W1(X1)W1(X2)W1 (X3) + ) >(X2, X3)

+WA(Xo) WXy, X3) + ( 3)Wa (X1, X2)
+Ws (X1, X2, X3)

and so on. W, is also a symmetric n-form on %"
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Kernel K()?l, )?2)

Definition (Fundamental kernel K)

Let (%1, %) € ¥ x 3 and denote (x1,x) = (pr(%1), pr(%2)) € & x ¥. We
define the kernel K (X1, %) by:
%) V(% :
o %EGXIXGX2 if x1#x
K(Xl,XQ) =
Adw(;l)(‘ib(xl)) = "W()'Zl)*ld)(xl)\.l]()?l)” cg if x1=x

ltisa (3,1) form on £ x & with a simple pole at x; = x; (regularized
by subtracting the pole at coinciding points)

<
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Determinantal formulas

Theorem (Alternative expression for correlators)

Let (%4,...,%,) € £ with distinct projections x; = pr(%;). Let
(Ex,...Ep) € g". We have:

Wo(%1.Er, .. %0 En) = T > (=1)" I [ p(E)p(K (%, %o(i)))
o€eS, i=1

Equivalent to:

Wo(%.Er,. ... 5%0.Ey) = Tr (det [P(E)p(K (%, %'))]19,19)

sometimes called “determinantal formulas”

Remark

| \

“Determinant” must be understood as sum over permutations and not
taking determinant of the matrix representation
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Reminder on Casimirs

Definition
Let (e1, ..., €dimg) be a basis of the Lie algebra g. p faithful and
< a,b >= Tr(p(a), p(b)) implies invariant form <, > is

non-degenerate on g. Thus we can define the dual basis (el,.. ., edm?)
satisfying: .
Vi,je[l,g] : <e,-,e1> =i
dimg |
For any v = > v'e; we expand the characteristic polynomial:
i=1

det(yId, — p(v)) = Z(fl)ky’*k Z Cility .oy i)V v

k=0 1<i,...,ik<dim g

The Casimirs (Cx)1<k<, of the Lie algebra are defined by:

G = Z Cilir,---»ik)e" @ ® ek
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Reminder on Casimirs 2

@ Example: First non-trivial Casimir:

dimg

ng—%Ze,-@ei
i=1

@ The previous construction may not lead to independent Casimirs Cy
@ The same construction can be performed with a Cartan subalgebra b
of g.
Reduces all sums up to dim(}) instead of dim(g)
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W generators

Definition (W generators)

Given Xi, ..., X, points of 3 with distinct projections on ¥, and X € f,
with x = pr(X) distinct from the 7(X;), we define:

Wk;n(Ck(X),Xl, 000 ,Xn) déf

> Cilits - i) Wipn(%.€™, .. & Xy, ..., X,)

1<ii,...,ix<dim g

In case of identical projections, the previous regularization for K is used
in the definition of W .

Remark

| A

o Definition depends only on x € ¥ but not on X € N

o Definition is identical when using only a Cartan subalgebra by instead
of g

o Definition does not depend on the choice of the basis of g

(resp. b)
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Loop equations

Theorem (Loop equations)

For any n >0, and Xy,..., X, points of S with distinct projections
=7(X;), and X € ¥ also with distinct projection x = pr(X):

r

Z(_l)kyr_k Wien(C(%); X1, - -+, Xp) =
k=0
[e1- .- €n] det, (y — (P(x) + Mc(x; X1, ..., Xn)))

where:

M(x; X1, Xq Z "E(x,x;)E (2(,,)
3 . (X)M( 9

1<l7éj<n ; Jg X X’)S(X”XJ)E(XJ’ )

M(X;) ... M(X;
+Z Z €jp ... €j ( ) ( )

S L CE N A B CAE




Loop equations
[e]e] o)

Loop equations

[e1 - ~;€n] indicates the €7 ... ¢, coefficient of the Taylor expansion at
€—0.

det, (y — (®(x) + Mc(x; X1,...,X,))) only makes sense in the
representation p

R.h.s. is independent of the choice of basis in g (or b)

R.h.s is an analytic function of x € ¥

Loop equations proved = previous properties apply to the l.h.s.
Wk;n(Ck(X); Xl, e ,Xn)

If G =Gl,(C)and £ =C and &(x,x’) = \;d%;;, then we recover

matrix models loop equations.
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Sketch of the proof of the Loop equations for n =0

o Start from Lh.s. > (—1)Ky" % W,.0(Ck(x)) and use definitions at
k=0
coinciding points for Cg(x)

@ Obtain Wy.o(Ck(x)) replaced by a sum over permutations o of
Tr, e?DW(R) 1o (x)W(X)
Use cyclic property of trace to get Tr, V(%)e”WW (%)~ 1d(x)

Use invariance of Casimirs under change of basis to change
e — W(x)ejV(x)~! to get Tr, e”U)d(x)
Observe that the initial sum is:

D (=1 T Wio(Ci(x))

k

= Sy Y Ck(il,...,ik)Z(—l)”TrpH(e”(j)d)(x))
k=0 1<iy,...,ix<dim g cES j=1

—  det,(y — ®(x)))

Same method used to get Wi.,(Ci(x); X1,..., Xn)
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h deformation

@ Introduce a 1-parameter family of deformations of the
connection:

EV = hd — & < hdW(%,h) = &(x, h)W(K, )

@ Assume that ®(x, k) admits a formal expansion in A:

d(x,h) = ok

oo

k=0

@ Questions:
e h-Expansion of the correlators W,?
o Definition of a spectral curve and reconstruction of correlators by
topological recursion?
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TT property

Definition

The h-deformed system is said to be of Topological Type if the 4
following conditions are met

Condition 1: Asymptotic expansion

There exists some simply connected open domains of £ and an Abelian
subalgebra § of g, in which the connected correlators W,,(Xl, ooy Xn)s
with each X; € ¥ x B, have a Poincaré asymptotic /& expansion

N Op1 ~ A
W,(X1,..., X,) = hvl O) + S WX, X)), (41)
k=0

such that each W,Sk)([xl.El], ..y [xn-Ep]) is, at fixed E; € b, an algebraic
symmetric n—form of x1,...,x,. In other words, there must exist a
(possibly nodal) Riemann surface S independent of k and n, which is a
ramified cover of ¥, such that the pullbacks, at fixed E; € b, of

VA\/rEk)([xl.El] ..... [xn.En]) to 8" are meromorphic symmetric n-forms
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TT property 2

Condition 2: Pole structure

For (k,n) ¢ {(0,1),(0,2)} and any (E1,...,E,) € ", the connected

correlators VAV,Sk)([Xl.El], ..y [%n-En]) pulled back to S, may only have
poles at the ramification points of S

Remark: Correlators cannot have singularities at nodal points of S or at
punctures (pullbacks of singularities of )

Moreover Wz(o)([xl.El]., [x2.E>]) may only have a double pole along the

diagonal of S x S of the form 20%2<ELE> byt no other singularities.
(a—x2)
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TT property 3

Condition 3: Parity
Under the involution A — —h:

Walnos—n([xi-E1l, - . -, [xn-En]) = (=1)"Wo([x1.E1], . - ., [Xn-En])
Condition 4: Leading order

For all n > 1, the leading order of the series expansion in A of the
correlation function W, is at least of order 472

Theorem (Reconstruction by topological recursion)

If the system is of Topological Type then connected correlators VAV,Sk)
can be reconstructed by the topological recursion applied to the

spectral curve (S, |/AV2(O)>
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Sufficient conditions for TT

@ Let h be a Cartan subalgebra of g (Ex: diagonal matrices in g/,(C)).
®(©)(x) can be generically “diagonalized” into:

®O(x) = Adjy (o (T'(x)) =" V)T )V (x) 7

with V(x) € G and T'(x) a h-valued 1-form.

e V(x) and T'(x) defined up to Weyl group action (permutation of
eigenvalues) and torus action (right multiplication of V/(x) by
constant)

@ Spectral curve satisfied by y = T'(x):
P(x,y) = det, (y — ®©(x)) = Riemann surface S

@ S comes with the projection x : § — ¥ with some ramification
points

@ T(x) can be taken as any anti-derivative of T'(x) on the universal
cover X of ¥ (base point will have no effect)
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Sufficient condition for A expansion

Proposition (Formal WKB solution)

Under the previous conditions, one can construct recursively a formal
solution

V(x,h) = V(x) <Id+ i \Il(k)(x)hk> enT0)
k=
e vx)U(x, h)e%OUX)
of the linear differential system. W(x, h) satisfies:
hal = (V7ioV — AV V)0 — U T’

Consequence: M(x.E) = Ady(x)(E) admits a / expansion and finally
correlators W,, also admit a & expansion
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Sufficient condition for pole structure

@ Spectral curve:
P(x,y) = det,(y — ®9(x))
defines an algebraic plane curve S immersed in the total space of
the cotangent bundle T*X
@ Immersion may not be an embedding =- nodal points.

e Condition 2 requires that correlators W, do not have singularities at
the nodal points

o Non trivial condition = Specific choice of ®(®)(x)
e If Lax pair: hoW(x,t) = R(x, t, h)V(x, t) the Auxiliary curve
det,(z —R©(x, t)) is usually an embedding = Condition 2 satisfied.
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Sufficient condition for parity

If there exists J € G (independent of x) such that:
p(I) " p(®(x; 1)) p(J) = p(®(x; —h))

then the parity condition for the correlators is satisfied

@ Necessary condition? No cases without existence of J but satisfying
parity condition are known

@ Interpretation of the condition?

N
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Sufficient condition for leading order

o Property is trivial for W;, W, and W; (under parity condition).

@ Possible proof with an insertion operator of order f:
(an“ Wn - Wn+1

@ Alternative proof for rank 2 systems using only loop equations
(simpler in dimension 2)

e No general method for higher rank (insertion operator not
well-defined so far)

@ Known examples: Six Painlevé cases, (p,2) minimal models and
incomplete proof with insertion operator for (p, g) models

@ Proof for any integrable system with genus 0 compact spectral curve
in progress
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Painlevé 4 Lax pair

G = Gh(C), g = gh(C), p=Trivial rep., < a, b >= Tr(ab)

Natural abelian Cartan subalgebra generated by E; = diag(1,0) and
E, = diag(0,1)

o Painlevé 4 Lax pair: i,V = ®V and ho;V = RV

X—‘,—t—l—m 1—-49
d(x,t) = (_2(pq+90+900)+i’("q+290) _ (X+t+ pq+90)>

. x+q+t 1
Rlat) = (—2(pq+eo+eoo) —(x+q+t)>

h-deformed Painlevé 4 equation:

h2 62
g = 2qc'72+2<3q3+4tq2+(t2—2900+h)q—;)

Ha(p.q.t) = ap*+2(¢° + tq+60)p+ 2(6o + Osc)q
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Painlevé 4 spectral curve

@ Spectral curve:

2
, (x — q0)° (x2 +2(qo + t)x + f,—g)

P(x,y)=y" — =2

@ S: genus 0 Riemann surface with 2 ramification points, a double
point x = go and poles at x € {0, c0}.

o Parity matrix: (found using deformed Hamiltonian structure)

J(t) = <_2(pq +090 +6x) ?) = J(t)®(x, t; h)tJ(t)fl = ®(x, t; —h)

2
o Auxiliary curve: z> = —det Rgo) =—q <x2 +2(qo + t)x + %) is
- 0

regular at x = qop and x = 0.
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Pole structure for Painlevé 4

M(x.E1) = I — M(x.E;) in dimension 2.

1 R (x.t) RE(x,¢)

2/~ det RO (x 2y/— det RO (x,
MO(cEt) = |7 Yttt /el
2/~ det RO)(x, 1) 5_2\/—de;tR(°)(x,t)

o Recursive system for M()(x.E;, t) requires to invert a 3 x 3 matrix
(same for all orders):

0 0

0 RO R
det —2755‘2 272(%0% 0() = 2RO} (x, t) det RO (x, 1)

0 0 0

Rii %Rz,l %Rm

o No singularity is introduced at the double zero x = qg

6, JdX1 dX2
(1—x2)?

@ Direct computation for W( )(Xl Ei, x.Ej) =
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Leading order condition for Painlevé 4

@ Simpler form of loop equations (X = x.E; and X; = x;.E;,
Ly ={Xq,..., X }):

0 = PralxiLn) + Wosa(X, X, Ln) 4+ 2W4 (X)W1 (X, Ln)+

Z Wig 1) (X, DWWy (X, L \ J)
JCLmJe{@aLn}
" d Wi(X, Lo\ Xj) = Wa(Ln)

— dx; X — Xj

o Analysis of the singularities of Py.,(x; L,) (x € {0,00})
Cl;n(Ln)

X

x = Pr.n(x, Ln) =

~

o If leading order W, < h"~2. Recursion leads to:

0= P (x; Liy) + 2y (GOWT P (X, L)

(L)

92
2(x = o)y /x* +2(q0 + t)x + 3
ER)

2
= WU (X, L) =

e Contradiction with the pole structure of Wl(if)(X L)
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Conclusion

@ General derivation of loop equations in a Lie algebra setting

o Generalization of Topological Type property and corresponding
sufficient conditions

e Valid for any reductive Lie algebra, any Riemann surface ¥ and
any choice of prime form &£

@ Recover known results in simple cases (Painlevé, minimal models)
e May be useful for the inverse problem: (Spectral curve S + Top.

Rec.) = Correlators W& L Differential system AdW = OV (ie. a
quantum curve)

@ Application to usual Lie groups?
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