Quantization of classical spectral curves via topological recursion

Marchal Olivier

Université Jean Monnet St-Etienne, France
Institut Camille Jordan, Lyon, France

June $15^{\text {th }} 2021$
(1) Presentation of the problem
(2) Classical spectral curve, TR

- Classical spectral curve and technical assumptions
- Topological recursion
(3) Perturbative wave functions
- Definition
- KZ equations
- Regularization for divisors at infinity
- PDE form of KZ equations and operators
(4) Non-perturbative wave functions
(5) Lax pairs
- Compatible systems arising from KZ equations
- Gauge transformations and quantum curve
(6) Example
- Classical spectral curve and coordinates
- KZ equations and Lax pairs
- Time evolution and Painlevé 2
- Gauge without apparent singularities
(7) Open questions and outlooks

Presentation of the problem

General position of the talk

General problem

How to quantize a "classical spectral curve" $([y, x]=0)$

$$
P(x, y)=0, P \text { rational in } x \text {, monic polynomial in } y
$$

into a linear differential equation $\left(\left[\hbar \partial_{x}, x\right]=\hbar\right)$:

$$
\left(\hat{P}\left(x, \hbar \frac{d}{d x}\right)\right) \psi(x, \hbar)=0 ?
$$

\hat{P} rational in x with same pole structure as P.

Key ingredients

Key ingredient 1: Topological recursion [26]. Key ingredient 2: Integrable systems, Lax pairs:

$$
\hbar \frac{\partial}{\partial x} \Psi(x, \hbar, t)=L(x, \hbar, t) \Psi(x, \hbar, t), \hbar \frac{\partial}{\partial t} \Psi(x, \hbar, t)=A(x, \hbar, t) \Psi(x, \hbar, t)
$$

Strategy of the construction

(1) Define proper initial data to apply topological recursion (TR) \Leftrightarrow Minor technical restrictions on the classical spectral curve $P(x, y)=0$: "Admissible initial data"
(2) Apply TR to initial data: \Rightarrow Output: $\left(\omega_{\mathbf{h}, \mathbf{n}}\right)_{\mathbf{h}, \mathbf{n} \geq \mathbf{0}}$: "TR differentials".
(3) Stack the $\omega_{h, n}$ into some "perturbative wave function" $\left(\psi_{i}(z)\right)_{i=1}^{d}$. $\psi_{i}(z)=\exp \left(\sum_{h, n \geq 0} \frac{\hbar^{2 h-2+n}}{n!} \int_{D_{i}} \cdots \int_{D_{i}}\left(\omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)-\frac{\delta_{h, 0} \delta_{n, 2} d x\left(z_{1}\right) d x\left(z_{2}\right)}{\left(x\left(z_{1}\right)-x\left(z_{2}\right)\right)^{2}}\right)\right)$
\Rightarrow formal WKB series in \hbar.

- Take kind of "formal Fourier transform" to get "non-perturbative wave functions" and regroup them into a wave matrix $\Psi^{\mathrm{NP}}(\lambda ; \hbar)$ \Rightarrow Formal trans-series in \hbar.
(0) Prove that $\hbar \partial_{\lambda} \Psi^{\mathrm{NP}}(\lambda, \hbar)=L(\lambda, \hbar) \Psi^{\mathrm{NP}}(\lambda, \hbar)$ with L rational with controlled pole structure. \Leftrightarrow "Quantum curve".
(0) Obtain auxiliary systems $\hbar \partial_{t} \Psi^{\mathrm{NP}}(\lambda, \hbar, t)=A(\lambda, \hbar, t) \Psi^{\mathrm{NP}}(\lambda, \hbar, t)$ with A rational with controlled pole structure.

Known results and applications

- Review on TR and quantum curves by P. Norbury [35].
- Elements of the strategy already existing in the literature [7, 20, 22, 25, 26, 34].
- Non-perturbative construction is not necessary for genus 0 classical spectral curves.
- Several examples worked out in details [16, 17, 18, 19, 29, 31, 38].
- Reverse approach also exists $[2,5,30,33]$:
[Lax pair: $(L(\lambda, \hbar), A(\lambda, \hbar))+$ Topological type property] \Rightarrow Ψ reconstructed by TR applied on the associated classical spectral curve $\lim _{\hbar \rightarrow 0} \operatorname{det}\left(y l_{d}-L(\lambda, \hbar)\right)=0$.
- Applications in enumerative geometry $[1,3,4,8,13,14,21,36,37,39,27,28]$.

Summary of our results

- Results presented following [32] for $s /_{2}$ case (hyper-elliptic case) and [24] for the general $g l_{d}$ case. Similar works for $s /_{2}$ case in [23].
- Connection with isomonodromic deformations only in $s /_{2}$ case in [32].
- Technical assumptions include
- Pole of any degree including infinity.
- Poles may be ramification points.
- Ramifications points are simple and smooth.
- Main results: Construction of the matrix wave functions, quantum curve and some compatible auxiliary systems with same pole structure as the initial spectral curve.
- Applications to two examples: $g l_{2}$ example (recovering Painlevé 2 equation) and a $g l_{3}$ example with only a single pole at infinity.

Classical spectral curve, TR

Classical spectral curve

Classical spectral curve

Let $\left(\Lambda_{1}, \ldots, \Lambda_{N}\right)$ be $N \geq 0$ distinct points on $\mathbb{P}^{1} \backslash\{\infty\}$. Let $\mathcal{H}_{d}\left(\Lambda_{1}, \ldots, \Lambda_{N}, \infty\right)$ be the Hurwitz space of covers $x: \Sigma \rightarrow \mathbb{P}^{1}$ of degree d defined as the Riemann surface

$$
\Sigma:=\overline{\{(\lambda, y) \mid P(\lambda, y)=0\}}
$$

where $x(\lambda, y):=\lambda$ and

$$
P(\lambda, y)=\sum_{l=0}^{d}(-1)^{l} y^{d-l} P_{l}(\lambda)=0, \quad P_{0}(\lambda)=1
$$

with each coefficient $\left(P_{l}\right)_{\ell \in \llbracket 1, d \rrbracket}$ being a rational function with possible poles at $\lambda \in \mathcal{P}:=\left\{\Lambda_{i}\right\}_{i=1}^{N} \bigcup\{\infty\}$. A classical spectral curve (Σ, x) is the data of the Riemann surface Σ and its realization as a Hurwitz cover of \mathbb{P}^{1}.

Classical spectral curve with fixed pole structure

Classical spectral curve with fixed pole structure

For $I \in \llbracket 1, d \rrbracket$, let $r_{\infty}^{(I)}$ and $\left(r_{\Lambda_{i}}^{(I)}\right)_{i=1}^{N}$ be some non-negative integers. We consider the subspace

$$
\mathcal{H}_{d}\left(\left(\Lambda_{1},\left(r_{\Lambda_{1}}^{(l)}\right)_{l=1}^{d}\right), \ldots,\left(\Lambda_{N},\left(r_{\Lambda_{N}}^{(l)}\right)_{l=1}^{d}\right),\left(\infty,\left(r_{\infty}^{(l)}\right)_{l=1}^{d}\right)\right) \subset \mathcal{H}_{d}\left(\Lambda_{1}, \ldots, \Lambda_{N}, \infty\right)
$$

of covers x such that the rational functions $\left(P_{l}\right)_{l=1}^{d}$ are of the form

$$
P_{I}(\lambda):=\sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(I)}} P_{P, k}^{(I)} \xi_{P}(\lambda)^{-k}, \text { for } I \in \llbracket 1, d \rrbracket \text {, }
$$

where we have defined

$$
\forall i \in \llbracket 1, N \rrbracket: \mathbf{S}_{\Lambda_{\mathbf{i}}}^{(1)}:=\llbracket \mathbf{1}, \mathbf{r}_{\Lambda_{\mathbf{i}}}^{(1)} \rrbracket \quad \text { and } \quad \mathbf{S}_{\infty}^{(1)}:=\llbracket \mathbf{0}, \mathbf{r}_{\infty}^{(1)} \rrbracket \text {, }
$$

and the local coordinates $\left\{\xi_{P}(\lambda)\right\}_{P \in \mathcal{P}}$ around $P \in \mathcal{P}$ are defined by

$$
\forall i \in \llbracket 1, N \rrbracket: \xi_{\Lambda_{i}}(\lambda):=\left(\lambda-\Lambda_{i}\right) \quad \text { and } \quad \xi_{\infty}(\lambda):=\lambda^{-1} .
$$

Canonical local coordinates and spectral times

Canonical local coordinates

Let $P \in \mathbb{P}^{1}$ and $p \in x^{-1}(P)$. Canonical coordinates on \mathbb{P}^{1} near P are

$$
\begin{array}{r}
\xi_{P}(x):=x-P \quad \text { if } P \neq \infty, \quad \epsilon_{P}:=1 \\
\xi_{P}(x):=\frac{1}{x} \quad \text { if } P=\infty, \quad \epsilon_{P}:=-1
\end{array}
$$

Canonical local coordinates near any $p \in x^{-1}(P)$ are

$$
\zeta_{p}(z)=\xi_{P}(x(z))^{\frac{1}{d_{p}}}, d_{p}=\operatorname{order}_{p}\left(\xi_{P}\right) .
$$

Spectral times (KP times)

The 1-form $y d x$ has the following expansion:

$$
y d x=\sum_{k=0}^{s_{p}-1} t_{p, k} \zeta_{p}^{-k-1} d \zeta_{p}+\text { analytic at } p .
$$

$\left(t_{p, k}\right)_{p \in x^{-1}(\mathcal{P}), k \in \llbracket 0, s_{p}-1 \rrbracket}$ are called "spectral times".

Ramification points and critical values

Ramification points and critical values

We denote by \mathcal{R}_{0} the set of all ramification points of the cover x, and by \mathcal{R} the set of all ramification points that are not poles (i.e. not in $x^{-1}(\mathcal{P})$),

$$
\begin{gathered}
\mathcal{R}_{0}:=\left\{p \in \Sigma / 1+\text { order }_{p} d x \neq \pm 1\right\} \\
\mathcal{R}:=\{p \in \Sigma / d x(p)=0, \quad x(p) \notin \mathcal{P}\}=\mathcal{R}_{0} \backslash x^{-1}(\mathcal{P})
\end{gathered}
$$

We shall refer to their images $x(\mathcal{R})$ as the critical values of x.

Admissible spectral curve

Admissible classical spectral curves

We say that a classical spectral curve (Σ, x) is admissible if it satisfies:

- The Riemann surface Σ defined by $P(\lambda, y)=0$ is an irreducible algebraic curve, i.e. $P(\lambda, y)$ does not factorize.
- All ramification points are simple, i.e. $d x$ has only a simple zero at $a \in \mathcal{R}$.
- Critical values are distinct: for any $\left(a_{i}, a_{j}\right) \in \mathcal{R} \times \mathcal{R}$ such that $a_{i} \neq a_{j}$ then $x\left(a_{i}\right) \neq x\left(a_{j}\right)$.
- Ramification points are smooth: for any $a \in \mathcal{R}, d y(a) \neq 0$ (i.e. the tangent vector $(d x(a), d y(a))$ to the immersed curve $\{(\lambda, y) \mid P(\lambda, y)=0\}$ is not vanishing at $a)$.
- Generic ramified poles: for any pole $p \in x^{-1}(\mathcal{P})$ ramified, the 1 -form $y d x$ has a pole of degree $r_{p} \geq 3$ at p, and the corresponding spectral times satisfy $t_{p, r_{p}-2} \neq 0$.

Remarks on the technical assumptions

- Topology of admissible spectral curves relatively to spectral times is complicated. \Rightarrow Spectral times are not independent. Tangent space and deformations hard to define for $d \geq 3$.
- Tangent space defined for $d=2 \leftrightarrow$ Existence of deformations $\partial_{t_{p, k}}$.
- Ingredients to lift some technical assumptions already exist in the literature: simple ramification points, smooth ramification points, reducible algebraic curves.
- Defining properly the tangent space would allow to make the connection with isomonodromic deformations for $d \geq 3$.
- Last condition allows not to include ramified poles in the residues of TR.

Admissible initial data

Admissible initial data

Given an admissible spectral curve (Σ, x) of genus g, we add

- Choice of Torelli marking $\left.\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{g}\right)$.
\Leftrightarrow Associated "Bergman" kernel (normalized fundamental second kind differential) $B^{\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{g} \text {. }}$
- A generic smooth point $o \in \Sigma \backslash x^{-1}(\mathcal{P})$ and some choice of non-intersecting homology chains $\mathcal{C}_{o \rightarrow p}$ for each $p \in x^{-1}(\mathcal{P})$ compatible with the Torelli marking:

$$
\forall p \in x^{-1}(\mathcal{P}), \forall i \in \llbracket 1, g \rrbracket, \quad \mathcal{A}_{i} \cap \mathcal{C}_{o \rightarrow p}=0=\mathcal{B}_{i} \cap \mathcal{C}_{o \rightarrow p},
$$

These three ingredients define some "admissible initial data" on which TR can be applied. Denoted $\left((\Sigma, x),\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{g}\right)$.

General considerations

- Initial version [26] of TR dating back to 2007 is sufficient since ramification points are assumed simple.
- Some generalizations of TR exist to deal with non-simple ramification points, non-irreducible curves [6, 15].
- TR takes admissible initial data as input and provides some TR differentials $\left(\omega_{h, n}\right)_{h \geq 0, n \geq 0}$ as output.

```
https://en.wikipedia.org/wiki/Topological_recursion
```

- These differentials are computed by recursion on $s=n+2 h$ starting from

$$
\omega_{0,1}:=y d x, \quad \omega_{0,2}:=B^{\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{g}}
$$

Definition of TR

Topological recursion

We have for $h \geq 0, n \geq 0$ with $(h, n) \notin\{(0,0),(0,1)\}$:

$$
\omega_{h, n+1}\left(z_{0}, \mathbf{z}\right):=\sum_{a \in \mathcal{R}} \operatorname{Res}_{z \rightarrow a} \frac{1}{2} \frac{\int_{\sigma_{a}(z)}^{z} \omega_{0,2}\left(z_{0}, \cdot\right)}{\omega_{0,1}(z)-\sigma_{a}^{*} \omega_{0,1}(z)} \widetilde{\mathcal{W}}_{h, n+1}^{(2)}\left(z, \sigma_{a}(z) ; \mathbf{z}\right),
$$

with

$$
\begin{aligned}
\widetilde{\mathcal{W}}_{h, n+1}^{(2)}\left(z, z^{\prime} ; \mathbf{z}\right):= & \omega_{h-1, n+2}\left(z, z^{\prime}, \mathbf{z}\right) \\
& +\sum^{A \sqcup B=\mathbf{z}, s \in \llbracket 0, h \rrbracket} \omega_{s,|A|+1}(z, A) \omega_{h-s,|B|+1}\left(z^{\prime}, B\right) \\
& (s,|A|) \notin\{(0,0),(h, n)\}
\end{aligned}
$$

and

$$
\omega_{h, 0}:=\frac{1}{2-2 h} \sum_{a \in \mathcal{R}} \operatorname{Res}_{z \rightarrow a} \omega_{h, 1}(z) \Phi(z), \forall h \geq 2
$$

and ($\omega_{0,0}, \omega_{1,0}$) defined by specific formulas (See [26])

Loop equations

- Some combinations of the TR differentials have interesting properties \Rightarrow "Loop equations"
- Following [7], for $(h, n, l) \in \mathbb{N}^{3}$:

$$
\begin{aligned}
& Q_{h, n+1}^{(0)}(\lambda ; \mathbf{z})=\hat{Q}_{h, n+1}^{(0)}(\lambda ; \mathbf{z})=\widetilde{Q}_{h, n+1}^{(0)}(\lambda ; z):=\delta_{h, 0} \delta_{n, 0}, \\
& Q_{h, n+1}^{(I)}(\lambda ; \mathbf{z}):=\sum_{\beta \subseteq x^{-1}(\lambda)} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\substack{l(\mu) \\
\bigcup_{i=1}^{\prime} J_{i}=\mathbf{z}}} \sum_{\sum_{i=1}^{l(\mu)} g_{i}=h+l(\mu)-l}\left[{ }_{i=1}^{l(\mu)} \omega_{g_{i},\left|\mu_{i}\right|+\left|J_{i}\right|}\left(\mu_{i}, J_{i}\right)\right] \\
& \hat{Q}_{h, n+1}^{(I)}(z ; z):=\sum_{\beta \subseteq\left(x^{-1}(x(z)) \backslash\{z\}\right)} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\sum_{i=1}^{l(\mu)} J_{i}=\mathbf{z}} \sum_{\sum_{i=1}^{l(\mu)} g_{i}=h+l(\mu)-l}\left[\prod_{i=1}^{l(\mu)} \omega_{g_{i},\left|\mu_{i}\right|+\left|J_{i}\right|}\left(\mu_{i}, J_{i}\right)\right] \\
& \tilde{Q}_{h, n+1}^{(I)}(\lambda ; \mathbf{z}):=\frac{Q_{h, n+1}^{(I)}(\lambda ; \mathbf{z})}{(d \lambda)^{I}}-\sum_{j=1}^{n} d_{z_{j}}\left(\frac{1}{\lambda-x\left(z_{j}\right)} \frac{\hat{Q}_{h, n}^{(I-1)}\left(z_{j} ; z \backslash\left\{z_{j}\right\}\right)}{\left(d x\left(z_{j}\right)^{I-1}\right.}\right)
\end{aligned}
$$

Loop equations

For any $(h, n, l) \in \mathbb{N}^{3}$ and any $\mathbf{z} \in(\Sigma \backslash \mathcal{R})^{n}$, the function $\lambda \mapsto \frac{Q_{h, n+1}^{(I)}(\lambda ; z)}{(d \lambda)^{\prime}}$ has no poles at critical values.

Perturbative wave functions

Generic perturbative wave functions

Perturbative wave functions

$\left((\Sigma, x),\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{g}\right)$ admissible initial data, $D=\sum_{i=1}^{s} \alpha_{i}\left[p_{i}\right]$ generic divisor on Σ. Perturbative wave functions associated to D are

$$
\psi(D, \hbar):=\exp \left(\sum_{h, n \geq 0} \frac{\hbar^{2 h-2+n}}{n!} \int_{D} \cdots \int_{D} \omega_{h, n}(\mathbf{z})-\delta_{h, 0} \delta_{n, 2} \frac{d x\left(z_{1}\right) d x\left(z_{2}\right)}{\left(x\left(z_{1}\right)-x\left(z_{2}\right)\right)^{2}}\right)
$$

$$
\forall i \in \llbracket 1, s \rrbracket: \psi_{0, i}(D, \hbar):=\quad \psi(D, \hbar),
$$

$\forall i \in \llbracket 1, s \rrbracket, I \geq 1: \psi_{l, i}(D, \hbar):=[\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \overbrace{\int_{D} \cdots \int_{D}}^{n} \frac{\hat{Q}_{h, n+1}^{(I)}\left(p_{i} ; \cdot\right)}{\left(d x\left(p_{i}\right)\right)^{\prime}}] \psi(D, \hbar)$.

Remark

Definition as a formal power series in \hbar times exponential terms in finite negative powers of \hbar (formal WKB series):

$$
e^{-\hbar^{-2} \omega_{0,0}} e^{-\hbar^{-1} \int_{D} \omega_{0,1}} \psi(D, \hbar) \in \mathbb{C}[[\hbar]]
$$

KZ equations

- Loop equations translates into Knizhnik-Zamolodchikov (KZ) equations [7]

Generic KZ equations

For $i \in \llbracket 1, s \rrbracket$ and $I \in \llbracket 0, d-1 \rrbracket$, we have

$$
\begin{aligned}
& \frac{\hbar}{\alpha_{i}} \frac{d \psi_{l, i}(D, \hbar)}{d x\left(p_{i}\right)}=-\psi_{l+1, i}(D, \hbar)-\hbar \sum_{j \in \llbracket 1, s \rrbracket \backslash\{i\}} \alpha_{j} \frac{\psi_{l, i}(D, \hbar)-\psi_{l, j}(D, \hbar)}{x\left(p_{i}\right)-x\left(p_{j}\right)} \\
& +\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \int_{z_{1} \in D} \ldots \int_{z_{n} \in D} \widetilde{Q}_{h, n+1}^{(I+1)}\left(x\left(p_{i}\right) ; \mathbf{z}\right) \psi(D, \hbar) \\
& +\left(\frac{1}{\alpha_{i}}-\alpha_{i}\right)[\sum_{(h, n) \in \mathbb{N}^{2}} \frac{\hbar^{2 h+n+1}}{n!} \overbrace{\int_{D} \ldots \int_{D}}^{n} \frac{d}{d x\left(p_{i}\right)}\left(\frac{\hat{Q}_{h, n+1}^{(I)}\left(p_{i} ; \cdot\right)}{\left(d x\left(p_{i}\right)\right)^{\prime}}\right)] \psi(D, \hbar) .
\end{aligned}
$$

- Valid for generic divisors (p_{i} not a pole or a ramification point).
- Simplification for two points divisors with $\left(\alpha_{1}, \alpha_{2}\right) \in\{-1,+1\}^{2}$.

Remarks

- KZ equations allow to obtain PDEs for $\psi(D, \hbar)$.
- Generic divisors provide PDEs with derivatives $\frac{\partial}{\partial \times(z)}$ up to order d^{2} generically.
- Quantum curve is expected to be of order d and not d^{2}.
- At least two specific choices of divisors allow for order d : $D=[z]-\left[\infty^{(\alpha)}\right]$ or $D=[z]-[\sigma(z)]$.
- Other choices may also provide order d PDEs.

Regularization of perturbative wave functions for
 $D=[z]-\left[\infty^{(\alpha)}\right]$

Infinity is a pole of the classical spectral curve $\Rightarrow D=[z]-\left[\infty^{(\alpha)}\right]$ is not a generic divisor \Rightarrow Some quantities requires regularization from $\lim _{p \rightarrow \infty^{(\alpha)}}([z]-[p])$

Definition of regularized wave function

$$
\begin{aligned}
& \psi^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right):=\exp \left(\hbar^{-1}\left(V_{\infty(\alpha)}(z)+\int_{\infty^{(\alpha)}}^{z}\left(y d x-d V_{\infty^{(\alpha)}}\right)\right)\right) \\
& \frac{1}{E\left(z, \infty^{(\alpha)}\right) \sqrt{d x(z) d \zeta_{\infty^{(\alpha)}}\left(\infty^{(\alpha)}\right)}} \exp \left(\sum_{n \geq 3 \delta_{h, 0}} \frac{\hbar^{2 h-2+n}}{n!} \int_{\infty^{(\alpha)}}^{z} \cdots \int_{\infty^{(\alpha)}}^{z} \omega_{h, n}\right) \\
& \psi_{I}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right):= \\
& \left(\sum_{n \geq 3 \delta_{h, 0}} \frac{\hbar^{2 h+n}}{n!} \int_{\infty^{(\alpha)}}^{z} \cdots \int_{\infty^{(\alpha)}}^{z} \frac{\hat{Q}_{h, n+1}^{(\prime)}\left(z ; z_{1}, \ldots, z_{n}\right)}{d x(z)^{\prime}}\right) \psi^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right)
\end{aligned}
$$

KZ equations for regularized wave functions

KZ equations for regularized wave functions

$$
\begin{aligned}
& \hbar \frac{d}{d x(z)} \psi_{l}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right)+\psi_{l+1}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right) \\
& =\left[\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(I+1)}} \xi_{P}(x(z))^{-k} \operatorname{Res}_{\lambda \rightarrow P} \xi_{P}(\lambda)^{k-1}\right. \\
& \left.d \xi_{P}(\lambda) \int_{z_{1}=\infty^{(\alpha)}}^{z_{1}=z} \cdots \int_{z_{n}=\infty^{(\alpha)}}^{z_{n}=z} \frac{Q_{h, n+1}^{(I+1)}(\lambda ; z)}{(d \lambda)^{I+1}}\right] \psi^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right)
\end{aligned}
$$

Comments and technical issue

- RHS of KZ equations uses residues, i.e. integrals.
- RHS may be rewritten using generalized integrals, i.e. linear operators $\mathcal{I}_{\mathcal{C}_{p, k}}$.
- $\mathcal{I}_{\mathcal{C}_{p, k}}$ is expected to correspond to $\partial_{t_{p, k}}$. Valid for $d=2$ and examples.
- Action of these operators is defined only on a sub-algebra generated by $\int_{\mathcal{C}_{1}} \ldots \int_{\mathcal{C}_{n}} \omega_{h, n}$. \Leftrightarrow Algebra of symbols
- One need to check that these operators never act on something else.
- Avoid the problematic definition on all differential forms on Σ.

PDE form of KZ equations

PDE form of $K Z$ equations

$$
\hbar \frac{d}{d x(z)} \psi_{l}^{\mathrm{reg}}\left([z]-\left[\infty^{(\alpha)}\right]\right)+\psi_{l+1}^{\mathrm{reg}}\left([z]-\left[\infty^{(\alpha)}\right]\right)=\text { ev. } \widetilde{\mathcal{L}}_{l}(x(z))\left[\psi^{\mathrm{reg} \text { symb }}\left([z]-\left[\infty^{(\alpha)}\right]\right)\right]
$$

with

$$
\widetilde{\mathcal{L}}_{l}(x(z))=\sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(l+1)}} \xi_{P}(x(z))^{-k} \widetilde{\mathcal{L}}_{P, k, l}
$$

Definition of the operators

Definition of the operators $\widetilde{\mathcal{L}}_{P, k, l}$

$$
\begin{aligned}
& \tilde{\mathcal{L}}_{P, k, l}:=\epsilon_{P}^{\prime+1}\left[\xi_{P(x(z))}-(I+1) \epsilon_{P} \sum_{\ell^{\prime}=0}^{l+1} \sum_{\nu^{\prime} \subset_{\ell^{\prime}} \llbracket 1, d \rrbracket} \prod_{j \in \nu^{\prime}}\left(\sum_{m=0}^{{ }^{r} P_{P}(j)} \frac{-1}{t_{P}(j), m}{ }_{d_{P}(j)} \xi_{P}^{-\frac{m}{d_{P}(j)}}\right)\right. \\
& \sum_{0 \leq \ell^{\prime \prime} \leq \frac{l+1-\ell^{\prime}}{2}} \sum_{\nu^{\prime \prime} \in \mathcal{S}^{(2)}\left(\mathbb{1}, d \rrbracket \backslash \nu^{\prime}\right)} \prod_{\substack{\prime\left(\nu^{\prime \prime}\right)=\ell^{\prime \prime}}} \frac{\hbar^{\prime \prime}}{\hbar^{2} R(P) \nu_{i}^{\prime \prime}}{ }_{P^{\prime}\left(\nu_{i,+}^{\prime \prime}\right)^{d}{ }_{P}\left(\nu_{i,-}^{\prime \prime}\right)} \\
& \left.\nu_{l+1-\ell^{\prime}-2 \ell^{\prime \prime}}^{\subseteq} \sum_{\llbracket 1, d \rrbracket \backslash\left(\nu^{\prime} \cup \nu^{\prime \prime}\right)} \prod_{j \in \nu}\left(\hbar^{2} \sum_{m=1}^{\infty} \frac{\xi_{P}^{\frac{m}{d_{P}^{(j)}}}}{d_{P(j)}} \mathcal{I}_{\mathcal{C}_{P}(j), k}\right)\right]_{-k} \\
& +\hbar \delta_{P, \infty} \frac{\epsilon_{\infty}^{l+1}}{d_{\infty}(\alpha)}\left[\xi_{\infty}(x(z))-(I+1) \epsilon_{\infty} \sum_{\ell^{\prime}=0}^{l+1} \sum_{\nu^{\prime} \subset \ell_{\ell^{\prime}} \llbracket 1, d \rrbracket \backslash\{\alpha\}} \prod_{j \in \nu^{\prime}}\left(\sum_{m=0}^{r} \frac{\infty^{(j)}}{}{ }^{-1} \frac{t_{\infty}(j), k}{d_{\infty}(j)} \xi_{\infty}^{-\frac{m}{d}{ }_{\infty}(j)}\right)\right. \\
& \sum_{0 \leq \ell^{\prime \prime} \leq \frac{l+1-\ell^{\prime}}{2}} \sum_{\substack{\nu^{\prime \prime} \in \mathcal{S}^{(2)}\left(\mathbb{1}, d \mathbb{d} \backslash\left(\nu^{\prime} \cup\{\alpha\}\right)\right) \\
\left(\left(\nu^{\prime \prime}\right)=\ell^{\prime \prime}\right.}} \prod_{i=1}^{\ell^{\prime \prime}} \frac{\hbar^{2} R(\infty) \nu_{i}^{\prime \prime}}{d_{\infty^{\left(\nu_{i,+}^{\prime \prime}\right)^{d}} \infty_{\infty}^{\left(\nu_{i,-}^{\prime \prime}\right)}}} \\
& \left.\nu_{I-\ell^{\prime}-2 \ell^{\prime \prime}}^{\subseteq} \sum_{\left(1, d \rrbracket \backslash\left(\nu^{\prime} \cup \nu^{\prime \prime} \cup\{\alpha\}\right)\right.} \prod_{j \in \nu}\left(\hbar^{2} \sum_{m=1}^{\infty} \frac{\xi_{\infty}^{\frac{m}{d \infty(j)}}}{d_{\infty}(j)} \mathcal{I}_{C_{\infty}(j), m}\right)\right]_{-k}
\end{aligned}
$$

Monodromies

- Perturbative wave functions have bad monodromies on \mathcal{B}-cycles.
- Monodromies are directly connected to a shift of the filling fractions $\epsilon_{i}=\oint_{\mathcal{A}_{i}} \omega_{0,1}$ by \hbar.
- Monodromies issues only arises for genus $g>0$ classical spectral curves.
- Solution is to "sum over filling fractions" \Rightarrow Formal Fourier transform \Rightarrow non-perturbative corrections.

Non-perturbative wave functions

Non perturbative wave functions

Non perturbative wave functions

$$
\psi_{\mathrm{NP}}(D ; \hbar, \rho):=e^{\hbar^{-2} \omega_{0,0}+\omega_{1,0}} e^{\hbar^{-1}} \int_{D} \omega_{0,1} \frac{1}{E(D)} \quad \sum_{r=0}^{\infty} \hbar^{r} G^{(r)}(D ; \rho)
$$

where E prime form on Σ and

$$
G^{(r)}(D ; \boldsymbol{\rho}):=\sum_{k=0}^{3 r} \sum_{\left(i_{1}, \ldots, i_{k}\right) \in \llbracket 1, g \rrbracket^{k}} \Theta^{\left(i_{1}, \ldots, i_{k}\right)}(\mathbf{v}, \tau) G_{\left(i_{1}, \ldots, i_{k}\right)}^{(r)}(D)
$$

with

$$
v_{j}:=\frac{\rho_{j}+\phi_{j}}{\hbar}+\mu_{j}^{(\alpha)}(z), \phi_{j}:=\frac{1}{2 \pi \mathrm{i}} \oint_{\mathcal{B}_{j}} \omega_{0,1}, \mu_{j}^{(\alpha)}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{D} \oint_{\mathcal{B}_{j}} \omega_{0,2}
$$

Moreover

$$
\psi_{l, \mathrm{NP}}^{\infty(\alpha)}(z, \hbar, \boldsymbol{\rho}):=\sum_{\beta \subseteq}^{\frac{C_{1}}{l}\left(x^{-1}(x(z)) \backslash\{z\}\right)} \frac{1}{l!} \text { ev. }\left(\prod_{j=1}^{l} \mathcal{I}_{\mathcal{C}_{\beta_{j}, 1}}\right) \psi_{\mathrm{NP}}^{\text {symbol }}(D ; \hbar, \boldsymbol{\rho}) .
$$

and $d \times d$ wave functions matrix

$$
\widehat{\psi}_{\mathrm{NP}}(\lambda, \hbar, \boldsymbol{\rho}):=\left[\psi_{I-1, \mathrm{NP}}^{\infty(\alpha)}\left(z^{(\alpha)}(\lambda), \hbar, \rho\right)\right]_{1 \leq I, \alpha \leq d}
$$

Trans-series in \hbar

- Non-perturbative quantities are formal trans-series in \hbar of the form

$$
\sum_{r=0}^{\infty} \sum_{\mathbf{n} \in \mathbb{Z}^{g}} \hbar^{r} e^{\frac{1}{\hbar} \sum_{j=1}^{g} n_{j} \phi_{j}} F_{r, \mathbf{n}}
$$

- Equalities should only be consider coefficients by coefficients in the trans-monomials.
- Non-perturbative wave functions satisfy same KZ equations as the perturbative wave functions.
- Non-perturbative wave functions have good monodromies. \Rightarrow rational functions of λ.

Lax systems

Lax systems

We have the Lax systems

$$
\begin{aligned}
\hbar \frac{d \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)}{d \lambda} & =\widehat{L}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar) \\
\hbar^{-1} \mathrm{ev} \cdot \mathcal{L}_{P, k, l} \widehat{\Psi}_{\mathrm{NP}}^{\text {symbol }}(\lambda, \hbar) & =\widehat{A}_{P, k, I}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)
\end{aligned}
$$

with

$$
\begin{aligned}
\widehat{L}(\lambda, \hbar) & =\left[-\widehat{P}(\lambda)+\hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_{P}^{-k}(\lambda) \widehat{\Delta}_{P, k}(\lambda, \hbar)\right] \\
{\left[\widehat{\Delta}_{P, k}(\lambda, \hbar)\right]_{2, j} } & =\left[\widehat{A}_{P, k, l}(\lambda, \hbar)\right]_{1, j}, \forall j \in \llbracket 1, d \rrbracket,
\end{aligned}
$$

and

$$
\widehat{P}(\lambda):=\left[\begin{array}{ccccc}
-P_{1}(\lambda) & 1 & 0 & \ldots & 0 \\
-P_{2}(\lambda) & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-P_{d-1}(\lambda) & 0 & 0 & \ldots & 1 \\
-P_{d}(\lambda) & 0 & 0 & \ldots & 0
\end{array}\right]
$$

Gauge transformation to recover companion-like matrix

 when $\hbar \rightarrow 0$Define

$$
G(\lambda):=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
P_{1}(\lambda) & -1 & 0 & \cdots & 0 & 0 \\
P_{2}(\lambda) & -P_{1}(\lambda) & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
P_{d-2}(\lambda) & -P_{d-3}(\lambda) & P_{d-4}(\lambda) & \cdots & (-1)^{d-2} & 0 \\
P_{d-1}(\lambda) & -P_{d-2}(\lambda) & P_{d-3}(\lambda) & \cdots & (-1)^{d-2} P_{1}(\lambda) & (-1)^{d-1}
\end{array}\right]
$$

and

$$
\begin{aligned}
\widetilde{\Psi}(\lambda, \hbar) & :=(G(\lambda))^{-1} \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar) \\
\hbar \frac{d \widetilde{\Psi}(\lambda, \hbar)}{d \lambda} & =\widetilde{L}(\lambda, \hbar) \widetilde{\Psi}(\lambda, \hbar) \\
\hbar^{-1} \mathrm{ev} \cdot \mathcal{L}_{P, k, I} \widetilde{\Psi}(\lambda, \hbar) & =\widetilde{A}_{P, k, l}(\lambda, \hbar) \widetilde{\Psi}(\lambda)
\end{aligned}
$$

with

$$
\widetilde{L}(\lambda, \hbar)=\left[\widetilde{P}(\lambda)+\hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_{P}^{-k}(\lambda) \widetilde{\Delta}_{P, k}(\lambda, \hbar)\right]
$$

$\widetilde{\mathbf{P}}(\lambda)$ companion-like matrix associated to classical spectral curve.

Main result: pole structure of the Lax system

Pole structure of the Lax system

Matrices $\widetilde{A}_{P, k, l}(\lambda, \hbar)$ are rational functions of λ with no pole at critical values $u \in \times(\mathcal{R})$.
Matrices $\widetilde{L}(\lambda, \hbar)$ and $\hat{L}(\lambda, \hbar)$ are rational functions of λ with possible poles only at $\lambda \in \mathcal{P}$ and at zeroes of the Wronskian $\operatorname{det} \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)$ (i.e. apparent singularities).

- Long and technical proof by induction on the order in the trans-series.
- Proof uses some of admissibility conditions (distinct critical values, smooth and simple ramification points).
- Proof should adapt without the admissibility conditions but involving more technical computations.

Quantum curve

Quantum curve

$\forall j \in \llbracket 1, d \rrbracket, \psi_{0, \mathrm{NP}}^{\infty}\left(z^{(j)}(\lambda), \hbar\right)$ is solution to a degree d ODE of the form

$$
\forall j \in \llbracket 1, d \rrbracket: \sum_{k=0}^{d} b_{d-k}(\lambda, \hbar)\left(\hbar \frac{\partial}{\partial \lambda}\right)^{k} \psi_{0, \mathrm{NP}}^{\infty(\alpha)}\left(z^{(j)}(\lambda), \hbar\right)=0,
$$

Coefficients $\left(b_{l}(\lambda, \hbar)\right)_{l \in \llbracket 0, d]}$ with $b_{0}(\lambda, \hbar)=1$ are rational functions of λ with poles only at $\lambda \in \mathcal{P}$ and zeros of the Wronskian.
\Leftrightarrow Matrix form: $\Psi(\lambda, \hbar):=\left[\left(\hbar \frac{\partial}{\partial \lambda}\right)^{i-1} \psi_{0, \mathrm{NP}}^{\infty}\left(z^{(j)}(\lambda), \hbar\right)\right]_{1 \leq i, j \leq d}$ satisfies:

$$
\begin{aligned}
\hbar \frac{\partial}{\partial \lambda} \Psi(\lambda, \hbar) & =\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots \\
0 & 0 & & 1 \\
-b_{d}(\lambda, \hbar) & -b_{d-1}(\lambda, \hbar) & \cdots & -b_{1}(\lambda, \hbar)
\end{array}\right] \Psi(\lambda, \hbar) \\
& :=\begin{array}{c}
L(\lambda, \hbar) \Psi(\lambda, \hbar)
\end{array}
\end{aligned}
$$

Gauge transformation to remove apparent singularities

- Apparent singularities \Leftrightarrow zeros of Wronskian:

$$
W(\lambda, \hbar):=\operatorname{det} \Psi(\lambda, \hbar)=\kappa \frac{\prod_{i=1}^{G}\left(\lambda-q_{i}(\hbar)\right)}{\prod_{i=1}^{N}\left(\lambda-\Lambda_{i}\right)^{G_{\Lambda_{i}}}} \exp \left(\hbar^{-1} \int_{0}^{\lambda} P_{1}(\lambda) d \lambda\right)
$$

- Explicit gauge transformation $J(\lambda, \hbar)$ to remove apparent singularities

$$
\check{\Psi}(\lambda, \hbar):=\left[\begin{array}{cccc}
1 & \cdots & 0 & 0 \\
\ddots & \ddots & & \vdots \\
0 & \cdots & 1 & 0 \\
\frac{Q_{d}(\lambda, \hbar)}{\prod_{i=1}^{G}\left(\lambda-q_{i}(\hbar)\right)} & \cdots & \frac{Q_{2}(\lambda, \hbar)}{\prod_{i=1}^{G}\left(\lambda-q_{i}(\hbar)\right)} & \frac{Q_{1}(\lambda, \hbar)}{\prod_{i=1}^{G}\left(\lambda-q_{i}(\hbar)\right)}
\end{array}\right] \Psi(\lambda, \hbar)
$$

- Q_{j} : polynomial of degree $G-1$ at most defined by interpolation.
- Gauge transformation does not introduce new poles because

$$
\operatorname{det} J(\lambda, \hbar)=\left(\prod_{k=1}^{N}\left(\lambda-\Lambda_{k}\right)^{G_{\Lambda_{k}}}\right)\left(\prod_{i=1}^{G}\left(\lambda-q_{i}(\hbar)\right)\right)^{-1}
$$

Remarks

4 equivalent gauges:

- Gauge $\hat{\Psi}(\lambda, \hbar)$: Natural gauge from KZ equations and provides compatible auxiliary systems. But leading order in \hbar of $\hat{L}(\lambda, \hbar)$ is not companion-like \Rightarrow Classical spectral curve is not easily recovered.
Contains apparent singularities.
- Gauge $\widetilde{\Psi}(\lambda, \hbar)$: Same properties as the previous gauge (\hbar^{0} gauge transformation) except leading order in \hbar is companion-like and recovers the classical spectral curve.
- Gauge $\Psi(\lambda, \hbar): L(\lambda, \hbar)$ is companion-like \Rightarrow Quantum curve is directly read in the last line of $L(\lambda, \hbar)$. Classical spectral curve directly obtained as $\hbar \rightarrow 0$ limit of $L(\lambda, \hbar)$. But contains apparent singularities. Natural framework for Darboux coordinates and isomonodromic deformations.
- Gauge $\check{\Psi}: \check{L}(\lambda, \hbar)$ has no apparent singularity. But no longer companion like (last two lines are non-trivial) so less adapted to read the classical and quantum curves.

Example

Classical spectral curve

Classical spectral curve

We take $d=2, N=0, r_{\infty}^{(1)}=2$ and $r_{\infty}^{(2)}=4$. Two points above infinity denoted by $\infty^{(1)}$ and $\infty^{(2)}$ non-ramified.

$$
y^{2}-P_{1}(\lambda) y+P_{2}(\lambda)=0
$$

with

$$
\begin{aligned}
& P_{1}(\lambda)=P_{\infty, 2}^{(1)} \lambda^{2}+P_{\infty, 1}^{(1)} \lambda+P_{\infty, 0}^{(1)} \\
& P_{2}(\lambda)=P_{\infty, 4}^{(2)} \lambda^{4}+P_{\infty, 3}^{(2)} \lambda^{3}+P_{\infty, 2}^{(2)} \lambda^{2}+P_{\infty, 1}^{(2)} \lambda+P_{\infty, 0}^{(2)}
\end{aligned}
$$

6 Spectral times $\left(t_{i, j}\right)_{1 \leq i \leq 2,0 \leq j \leq 3}$ are defined by $\forall i \in\{1,2\}$:
$y(z)=-t_{i, 3} x(z)^{2}-t_{i, 2} x(z)-t_{i, 1}-t_{i, 0} x(z)^{-1}+O\left(x(z)^{-2}\right)$, as $z \rightarrow \infty^{(i)}$

Connection with spectral times

Relations between spectral times and Coefficients of the classical spectral curve:

$$
\begin{aligned}
P_{\infty, 2}^{(1)} & =-t_{1,3}-t_{2,3} \\
P_{\infty, 1}^{(1)} & =-t_{1,2}-t_{2,2} \\
P_{\infty, 0}^{(1)} & =-t_{1,1}-t_{2,1} \\
P_{\infty, 4}^{(2)} & =t_{1,3} t_{2,3} \\
P_{\infty, 3}^{(2)} & =t_{1,2} t_{2,3}+t_{1,3} t_{2,2} \\
P_{\infty, 2}^{(2)} & =t_{1,2} t_{2,2}+t_{1,3} t_{2,1}+t_{1,1} t_{2,3} \\
P_{\infty, 1}^{(2)} & =t_{1,3} t_{2,0}+t_{1,0} t_{2,3}+t_{1,2} t_{2,1}+t_{1,1} t_{2,2}
\end{aligned}
$$

and $0=-t_{1,0}-t_{2,0}$.

KZ equations

Using the general theory, we get:

KZ equations

$$
\left\{\begin{array}{l}
\hbar \frac{\partial \psi_{0, N P}^{\infty}(z, \hbar)}{\partial x(z)}+\psi_{1, N P}^{\infty}(z, \hbar)=P_{1}^{(1)}(x(z)) \psi_{0, N P}^{\infty}(z, \hbar), \\
\hbar \frac{\partial \psi_{1, N P}^{\infty(1)}(z, \hbar)}{\partial x(z)}=P_{2}(x(z)) \psi_{0, N P}^{\infty}(z, \hbar)+\hbar \mathrm{ev} \cdot \mathcal{L}_{\mathrm{KZ}}^{(1)}(x(z))\left[\psi_{0, \mathrm{NP}}^{\infty^{(1)}, \text { symbol }}(z, \hbar)\right]
\end{array}\right.
$$

where

$$
\mathcal{L}_{\mathrm{KZ}}(\lambda):=\hbar \mathbf{t}_{1,3} \mathcal{I}_{\mathcal{C}_{\infty^{(2)}, 1}}+\hbar \mathbf{t}_{2,3} \mathcal{I}_{\mathcal{C}_{\infty^{(1)}, 1}}-\mathbf{t}_{2,3} \lambda-\mathbf{t}_{2,2}
$$

Lax pair from KZ equations

Define $\Psi(\lambda, \hbar)=\left(\begin{array}{cc}\psi_{0, \mathrm{NP}}^{\infty}\left(z^{(1)}(\lambda), \hbar\right) & \psi_{0, \mathrm{NP}}^{\infty}\left(z^{(\alpha)}(\lambda), \hbar\right) \\ \hbar \partial_{\lambda} \psi_{0, \mathrm{NP}}^{\infty}\left(z^{(\alpha)}\left(z^{(1)}(\lambda), \hbar\right)\right. & \hbar \partial_{\lambda} \psi_{0, \mathrm{NP}}^{\infty}\left(z^{(2)}(\lambda), \hbar\right)\end{array}\right)$
KZ equations are equivalent to

$$
\begin{aligned}
& \hbar \partial_{\lambda} \Psi(\lambda, \hbar)=\left(\begin{array}{cc}
0 & 1 \\
-P_{2}(\lambda)+\hbar P_{1}^{\prime}(\lambda)+H-\frac{p}{\lambda-q}+\hbar \alpha \lambda & P_{1}(\lambda)+\frac{\hbar}{\lambda-q}
\end{array}\right) \Psi(\lambda, \hbar) \\
& \text { ev. } \mathcal{L}_{K Z}(\lambda)\left[\Psi^{\text {symbol }}(\lambda, \hbar)\right]=\left(\begin{array}{cc}
-\alpha \lambda-\frac{H}{\hbar}+\frac{p}{\hbar(\lambda-q)} & -\frac{1}{\lambda-q} \\
{\left[A_{K Z}\right]_{2,1}(\lambda, \hbar)} & {\left[A_{K Z}\right]_{2,2}(\lambda, \hbar)}
\end{array}\right) \Psi(\lambda, \hbar)
\end{aligned}
$$

for $\alpha=t_{1,3}+2 t_{2,3}$ and some unknown H.
Equivalently defining

$$
\mathcal{L}:=\mathcal{L}_{\mathrm{KZ}}(\lambda)+\mathbf{t}_{2,3} \lambda+\mathbf{t}_{2,2}=\hbar \mathbf{t}_{1,3} \mathcal{I}_{\infty^{(2)}, \mathbf{1}}+\hbar \mathbf{t}_{2,3} \mathcal{I}_{\infty^{(1)}, 1}
$$

we have

$$
\begin{aligned}
\mathrm{ev} \cdot \mathcal{L}\left[\Psi^{\text {symbol }}(\lambda, \hbar)\right] & =\left(\begin{array}{cc}
P_{\infty, 2}^{(1)} \lambda+t_{2,2}-\frac{H}{\hbar}+\frac{p}{\hbar(\lambda-q)} & -\frac{1}{\lambda-q} \\
A_{2,1}(\lambda, \hbar) & A_{2,2}(\lambda, \hbar)
\end{array}\right) \Psi(\lambda, \hbar) \\
& :=A(\lambda, \hbar) \Psi(\lambda, \hbar)
\end{aligned}
$$

Evolution equations

- Compatibility equations $\mathcal{L}[L(\lambda, \hbar)]=\hbar \partial_{\lambda} A(\lambda, \hbar)+[A(\lambda, \hbar), L(\lambda, \hbar)]$:

$$
\begin{aligned}
\mathcal{L}\left[P_{\infty, 4}^{(2)}\right] & =\mathcal{L}\left[P_{\infty, 3}^{(2)}\right]=0 \\
\mathcal{L}\left[P_{\infty, 2}^{(2)}\right] & =-2 \hbar P_{\infty, 4}^{(2)}+\hbar\left[P_{\infty, 2}^{(1)}\right]^{2} \\
\mathcal{L}\left[P_{\infty, 1}^{(2)}\right] & =-\hbar P_{\infty, 3}^{(2)}+\hbar P_{\infty, 1}^{(1)} P_{\infty, 2}^{(1)} \\
\mathcal{L}\left[P_{\infty, 0}^{(2)}\right]-\mathcal{L}[H] & =2 \hbar P_{\infty, 4}^{(2)} q^{2}+\hbar P_{\infty, 3}^{(2)} q-P_{\infty, 2}^{(1)} p+\hbar P_{\infty, 0}^{(1)} P_{\infty, 2}^{(1)} \\
H & =\frac{p^{2}}{\hbar^{2}}-P_{1}(q) \frac{p}{\hbar}+P_{2}(q)-\hbar P_{1}^{\prime}(q)+\hbar\left(P_{\infty, 2}^{(1)}-t_{2,3}\right) q \\
\mathcal{L}[q] & =P_{1}(q)-2 \frac{p}{\hbar} \\
\mathcal{L}[p] & =-P_{1}^{\prime}(q) p+\hbar P_{2}^{\prime}(q)+\hbar^{2} t_{2,3}
\end{aligned}
$$

- Equivalent to
$\mathcal{L}\left[t_{1,3}\right]=\mathcal{L}\left[t_{2,3}\right]=\mathcal{L}\left[t_{1,2}\right]=\mathcal{L}\left[t_{1,0}\right]=\mathcal{L}\left[t_{2,0}\right]=0, \mathcal{L}\left[t_{1,1}\right]=\hbar t_{2,3}, \mathcal{L}\left[t_{2,1}\right]=\hbar t_{1,3}$
- Equivalent to $\mathcal{L}=\hbar t_{2,3} \partial_{t_{1,1}}+\hbar t_{1,3} \partial_{t_{2,1}}$

Hamiltonian evolution

Hamiltonian evolution

"Time" (\mathcal{L})-evolution is Hamiltonian $\Leftrightarrow(p, q)$ are Darboux coordinates

$$
\mathcal{L}[q]=-\hbar \frac{\partial H_{0}}{\partial p}, \quad \mathcal{L}[p]=\hbar \frac{\partial H_{0}}{\partial q}
$$

for Hamiltonian $H_{0}(p, q, \hbar)$:

$$
H_{0}(p, q, \hbar)=\frac{p^{2}}{\hbar^{2}}-P_{1}(q) \frac{p}{\hbar}+P_{2}(q)-\hbar P_{1}^{\prime}(q)+\hbar q\left(2 P_{\infty, 2}^{(1)}-t_{2,3}\right)
$$

giving $H=H_{0}(p, q, \hbar)+\hbar\left(t_{1,3}+t_{2,3}\right) q$.

Connection with the Painlevé 2 equation

- q satisfies the evolution equation:

$$
\begin{aligned}
\mathcal{L}^{2}[q]= & 2\left(t_{1,3}-t_{2,3}\right)^{2} q^{3}+3\left(t_{1,3}-t_{2,3}\right)\left(t_{1,2}-t_{2,2}\right) q^{2} \\
& +\left(\left(t_{1,2}-t_{2,2}\right)^{2}+2\left(t_{1,3}-t_{2,3}\right)\left(t_{1,1}-t_{2,1}\right)\right) q \\
& +\left(t_{1,2}-t_{2,2}\right)\left(t_{1,1}-t_{2,1}\right)+\left(2 t_{1,0}-\hbar\right)\left(t_{1,3}-t_{2,3}\right)
\end{aligned}
$$

- Change of variables $\left(t_{1,1}, t_{2,1}\right) \leftrightarrow(\tau, \tilde{\tau})$ and affine rescaling:

$$
\begin{aligned}
\tau & =\frac{1}{t_{1,3}-t_{2,3}}\left(t_{2,1}-t_{1,1}\right), \quad \tilde{\tau}=\frac{1}{t_{1,3}-t_{2,3}}\left(t_{1,3} t_{1,1}-t_{2,3} t_{2,1}\right) \\
t & =\left(-2\left(t_{1,3}-t_{2,3}\right)^{2}\right)^{\frac{1}{3}}\left(\tau+\frac{\left(t_{1,2}-t_{2,2}\right)^{2}}{4\left(t_{1,3}-t_{2,3}\right)^{2}}\right) \\
\tilde{q} & =\left(\frac{-\left(t_{1,3}-t_{2,3}\right)}{2}\right)^{\frac{1}{3}}\left(q+\frac{t_{1,2}-t_{2,2}}{2\left(t_{1,3}-t_{2,3}\right)}\right)
\end{aligned}
$$

Then $\tilde{q}(t, \hbar)$ satisfies the Painlevé 2 equation

$$
\hbar^{2} \partial_{t^{2}}^{2} \tilde{q}=2 \tilde{q}^{3}+t \tilde{q}-\left(t_{1,0}-\frac{\hbar}{2}\right)
$$

Gauge without apparent singularities

- Gauge transformation to remove apparent singularity:

$$
\check{\Psi}(\lambda, \hbar)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{p}{\hbar(\lambda-q)} & \frac{1}{\lambda-q}
\end{array}\right) \Psi(\lambda, \hbar):=J(\lambda, \hbar) \Psi(\lambda, \hbar)
$$

- Provides another Lax pair (Jimbo-Miwa type) without apparent singularity:

$$
\begin{array}{rcc}
\check{L}(\lambda, \hbar) & =\left(\begin{array}{cc}
\frac{p}{\hbar} & \lambda-q \\
-\left((\lambda+q)\left(t_{1,3}+t_{2,3}\right)+t_{2,2}+t_{1,2}\right) \frac{p}{\hbar}+Q_{3}(\lambda, \hbar) & -\frac{p}{\hbar}+P_{1}(\lambda)
\end{array}\right) \\
\check{A}(\lambda, \hbar) & =\left(\begin{array}{ccc}
-\left(t_{1,3}+t_{2,3}\right) \lambda-\frac{H}{\hbar}+t_{2,2} & -1 & \\
\left(t_{1,3}+t_{2,3}\right) \frac{p}{\hbar}+Q_{2}(\lambda, \hbar) & \left(t_{1,3}+t_{2,3}\right) q+t_{1,2}+2 t_{2,2}-\frac{H}{\hbar}
\end{array}\right)
\end{array}
$$

where

$$
\begin{aligned}
Q_{3}(\lambda, \hbar)= & -P_{\infty, 4}^{(2)} \lambda^{3}-\left(P_{\infty, 4}^{(2)} q+P_{\infty, 3}^{(2)}\right) \lambda^{2}-\left(P_{\infty, 4}^{(2)} q^{2}+P_{\infty, 3}^{(2)} q+P_{\infty, 2}^{(2)}\right) \lambda \\
& \left.+P_{\infty, 4}^{(2)} q^{3}+P_{\infty, 3}^{(2)} q^{2}+P_{\infty, 2}^{(2)} q+P_{\infty, 1}^{(2)}+\hbar t_{1,3}\right) \\
Q_{2}(\lambda, \hbar)= & P_{\infty, 4}^{(2)} \lambda^{2}+2 P_{\infty, 4}^{(2)} q \lambda+P_{\infty, 3}^{(2)} \lambda+\left(3 P_{\infty, 4}^{(2)} q^{2}+2 P_{\infty, 3}^{(2)} q+P_{\infty, 2}^{(2)}\right)
\end{aligned}
$$

Open questions and outlooks

Open questions and outlooks

- Non-perturbative quantities (wave function, Lax pairs, etc.) are formal \hbar trans-series \Rightarrow Can we obtain convergent solutions? Possible solution: works of Costin $[9,10,11,12] \Rightarrow$ Write down the RHP satisfied by $\Psi(\lambda, \hbar)$. Make connections with (bi)orthogonal polynomials RHP in the hermitian matrix models case.
- Remove some of the admissibility conditions: simple ramification points, smooth ramification points.
- General connections with isomonodromic deformations? Require to define in general the tangent space $\partial_{t_{i, j}}$ and "admissible" deformations of curves. Check that operators \mathcal{L} may always be written using spectral times derivatives. Prove that time evolutions are Hamiltonian. Issue solved for $d=2$ in $[32,33]$.
- Study the change of Torelli marking \Rightarrow Hitchin's equations for choice of polarization in geometric quantization.
- Consider classical spectral curves over \mathbb{C}^{*} (or more complicated base curve) to study of Gromov-Witten invariants of toric Calabi-Yau three-folds by mirror symmetry.

References I

[1] J. Andersen, G. Borot, and N. Orantin. Geometric recursion. 2017. math.GT/1711.04729.
[2] M. Bergère, G. Borot, and B. Eynard. Rational differential systems, loop equations, and application to the qth reductions of KP. Ann. Henri Poincaré, 16(12):2713-2782, 2015. math-ph/1312.4237.
[3] G. Borot, B. Eynard, M. Mulase, and B. Safnuk. A matrix model for simple Hurwitz numbers, and topological recursion. J. Geom. Phys., 61(2):522-540, 2011. math-ph/0906.1206.
[4] G. Borot and E. Garcia-Failde. Simple maps, Hurwitz numbers, and Topological Recursion. 2017. math-ph/1710.07851.
[5] G. Borot, A. Guionnet, and K. Kozlowski. Large-n asymptotic expansion for mean field models with coulomb gas interaction. Int. Math. Res. Not., 2015(20), 2015.
[6] V. Bouchard and B. Eynard. Think globally, compute locally. J. High Energy Phys., 2013(2):143, front matter +34 , 2013. math-ph/1211.2302.
[7] V. Bouchard and B. Eynard. Reconstructing WKB from topological recursion. J. Éc. polytech. Math., 4:845-908, 2017. math-ph/1606.04498.

References II

[8] V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti. Remodeling the B-model. Commun. Math. Phys., 287(1):117-178, 2009. hep-th/0709.1453.
[9] O. Costin. Exponential asymptotics, transseries, and generalized borel summation for analytic rank one systems of ode's. arXiv:math/0608414.
[10] O. Costin. Exponential asymptotics, transseries, and generalized borel summation for analytic, nonlinear, rank-one systems of ordinary differential equations. Int. Math. Res. Not., 1995(8):377-417, 1995.
[11] O. Costin. Correlation between pole location and asymptotic behavior for Painlevé I solutions. Comm. Pure Appl. Math., 52(4):461-478, 1999. arXiv:math/9709223.
[12] O. Costin, R. D. Costin, and M. Huang. Tronquée solutions of the Painlevé equation PI. Constr. Approx., 41(3):467-494, 2015. arXiv:1310.5330.
[13] N. Do, A. Dyer, and D. Mathews. Topological recursion and a quantum curve for monotone Hurwitz numbers. J. Geom. Phys., 120:19-36, 2017. arXiv:1408.3992.

References III

[14] N. Do and D. Manescu. Quantum curves for the enumeration of ribbon graphs and hypermaps. Commun. Number Theory Phys., 8(4):677-701, 2014. arXiv:1312.6869.
[15] N. Do and P. Norbury. Topological recursion for irregular spectral curves. J. Lond. Math. Soc. (2), 97(3):398-426, 2018. arXiv:1412.8334.
[16] O. Dumitrescu and M. Mulase. Quantum curves for Hitchin fibrations and the Eynard-Orantin theory. Lett. Math. Phys., 104(6):635-671, 2014. arXiv:1310.6022.
[17] O. Dumitrescu and M. Mulase. Quantization of spectral curves for meromorphic Higgs bundles through topological recursion. In Topological recursion and its influence in analysis, geometry, and topology, volume 100 of Proc. Sympos. Pure Math., pages 179-229. Amer. Math. Soc., Providence, RI, 2018. arXiv:1411.1023.
[18] P. Dunin-Barkowski, M. Mulase, P. Norbury, A. Popolitov, and S. Shadrin. Quantum spectral curve for the Gromov-Witten theory of the complex projective line. J. Reine Angew. Math., 726:267-289, 2017.

References IV

[19] P. Dunin-Barkowski, N. Orantin, A. Popolitov, and S. Shadrin. Combinatorics of loop equations for branched covers. Int. Math. Res. Not., 2017. math-ph/1412.1698.
[20] B. Eynard. Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence. J. High Energy Phys., 2009(3):003, 20, 2009. math-ph/0802.1788.
[21] B. Eynard. Counting Surfaces, Progress in Mathematical Physics Volume 70. 2016.
[22] B. Eynard. The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition. 2018. math-ph/1706.04938.
[23] B. Eynard and E. Garcia-Failde. From topological recursion to wave functions and PDEs quantizing hyperelliptic curves. 2019. arXiv:1911.07795.
[24] B. Eynard, E. Garcia-Failde, O. Marchal, and N. Orantin. Quantization of classical spectral curves via topological recursion. 2021. arXiv:21xxxxx.

References V

[25] B. Eynard and M. Mariño. A holomorphic and background independent partition function for matrix models and topological strings. J. Geom. Phys., 61(7):1181-1202, 2011. hep-th/0810.4273.
[26] B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. Commun. Number Theory and Physics, 1(2), 2007. math-ph/0702045.
[27] B. Eynard and N. Orantin. Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models. 2007. math-ph/0705.3600.
[28] B. Eynard and N. Orantin. Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Commun. Math. Phys., 337(2):483-567, 2015. math-ph/1205.1103.
[29] K. Iwaki. 2-parameter τ-function for the first Painlevé equation: topological recursion and direct monodromy problem via exact WKB analysis. Comm. Math. Phys., 377(2):1047-1098, 2020. arXiv:1902.06439.
[30] K. Iwaki, O. Marchal, and A. Saenz. Painlevé equations, topological type property and reconstruction by the topological recursion. J. Geom. Phys., 124:16-54, 2018. math-ph/1601.02517.

References VI

[31] K. Iwaki and A. Saenz. Quantum curve and the first Painlevé equation. SIGMA Symmetry Integrability Geom. Methods Appl., 12:Paper No. 011, 24, 2016. math-ph/1507.06557.
[32] O. Marchal and N. Orantin. Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion. 2019. arXiv:1911.07739.
[33] O. Marchal and N. Orantin. Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the $\mathfrak{s l}_{2}$ case. J. Math. Phys., 61(6):061506, 33, 2020. arXiv:1901.04344.
[34] M. Mulase and P. S. kowski. Spectral curves and the Schrödinger equations for the Eynard-Orantin recursion. Adv. Theor. Math. Phys., 19(5):955-1015, 2015. arXiv:1210.3006.
[35] P. Norbury. Quantum curves and topological recursion. In String-Math 2014, volume 93 of Proc. Sympos. Pure Math., pages 41-65. Amer. Math. Soc., Providence, RI, 2016. arXiv:1502.04394.
[36] P. Norbury and N. Scott. Gromov-Witten invariants of \mathbb{P}^{1} and Eynard-Orantin invariants. Geom. Topol., 18(4):1865-1910, 2014. math.AG/1106.1337.

References VII

[37] B. Safnuk. Topological recursion for open intersection numbers. Commun. Number Theory Phys., 10(4):833-857, 2016. arXiv:1601.04049.
[38] N. C. V. Bouchard and T. Dauphinee. Quantizing Weierstrass. Commun. Number Theory Phys., 12(2):253-303, 2018. math-ph/1610.00225.
[39] J. Zhou. Intersection numbers on Deligne-Mumford moduli spaces and quantum Airy curve. 2012. arXiv:1206.5896.

