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Six vertex models and random matrix integrals

Take a DWBC 6V model [18] with a =
√
a1a2 = qρ− q−1ρ−1,

b =
√
b1b2 = ρ− ρ−1, c =

√
c1c2 = q − q−1:

Korepin-Izergin determinant: ZN ∝ det(ϕ(xi ,yj ))
∆(X )∆(Y ) with ϕ(x , y) explicit.

∆(X ) =Vandermonde determinant.
Determinants of these types are generalized 2-matrix models:

ZN =
1

N!∆(X )∆(Y )

∫
· · ·
∫ N∏

i=1

dµ(ai , bi ) det
1≤i,j≤N

(eai xj ) det
1≤i,j≤N

(eyi bj ) ,

ϕ(x , y) =

∫ ∫
dµ(a, b)eax+by
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Reduction to one matrix model

If ϕ(x , y) only depends on x − y the integral reduces to a
generalized one-matrix integral:

ZN ∝
∫

· · ·
∫ N∏

i=1

dµ(ai ) det
1≤i,j≤N

(eai xj ) det
1≤i,j≤N

(eyi aj ) ,

ϕ(z) =

∫
dµ(a)eaz

Homogeneous case xi − yi = t for all i ∈ J1,NK:

ZN ∝
∫

· · ·
∫ N∏

i=1

dµ(ai )∆(a)2e
t
N∑
i=1

ai
,

ϕ(z) =

∫
dµ(a)eaz

Hermitian one matrix integral with potential e−tA−V (A) and
e−V (z)dz = dµ(z).
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Application to DWBC 6V model

Partition function of the DWBC 6V model [1] with a = sin(γ − t),
b = sin(γ + t), c = sin(2γ):

ZN =
(ab)N

2(
N∏

k=1
k!

)2
τN , τN = det

(
d i+k−2ϕ

dt i+k−2

)
1≤i,k≤N

, ϕ =
c

ab
Hankel det.

Hankel determinants ⇒ Hermitian matrix integrals ⇒ integrability:

τN =

N∏
i=1

i !

π
N(N−1)

2

∫
HN

dM e Tr(tM−V (M)) , m(λ) = e−V (λ) =
sinh

(
λ(π−2γ)

2

)
sinhλπ

2

Eigenvalues distribution:

τN ∝
∫
RN

dλ1 . . . dλN ∆(λ)2 e

N∑
i=1

Tr(tλi−V (λi ))

Potential is not polynomial. Analysis of the limiting eigenvalue
distributions (support, edges, etc.) is standard (saddle-point
analysis).

Many existing works [11, 17, 2]
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Study of general Hermitian one matrix integrals



Six vertex model and reduction to Hermitian one matrix integrals Study of general Hermitian one matrix integrals Integrability at work using TR Quantization and isomonodromic deformations Summary and outlooks References

Hermitian random matrix models

Hermitian random matrix integrals:

ZN =

∫
Γ

· · ·
∫
Γ

dλ1 . . . dλN ∆(λ)2 e
−N

N∑
i=1

V (λi )

Vandermonde-like interactions (Coulomb gas):

∆(λ) =
∏

1≤i<j≤N

(λi − λj)

Potential V (in general rational function) sufficiently confining.

Contour Γ ⊂ R may have hard edges: Γ =
n⋃

i=1

[ai , bi ].

Several existing tools: Orthogonal polynomials and RHP,
Eynard-Orantin topological recursion, integrable systems approach,
Fredholm/Hankel determinants, etc.

Specific local regimes lead to universality results.
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Main questions arising in Hermitian random matrices

Compute partition function ZN and its large N expansion (under
mild assumptions) [6]:

ZN = Prefactor(N) exp

( ∞∑
k=−2

F (k)N−k

)
(one-cut case)

Compute correlation functions (cumulants) and their large N
expansions:

W1(x) =

〈
1

N

N∑
j=1

1

x − λj

〉
=

∞∑
k=1

W
(k)
1 (x)N1−2k (one-cut case)

Wn(x1, . . . , xn) =

〈
N∑

i1,...,in=1

1

x1 − λi1
. . .

1

xn − λin

〉
c

=
∞∑
k=0

W
(k)
n (x1, . . . , xn)N

−(2−n−2k)

Refined large N expansion exists (Theta functions) for several cuts
case.
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Orthogonal polynomials/RHP and Topological Recursion

Orthogonal polynomials (pn)n≥1: pn monic polynomial of degree n:

∫
Γ

pn(x)pm(x)e
−NV (x) = δn,mhn ⇒ ZN = N!

N∏
i=1

hi

Valid for any N ∈ N. Efficient for computations at low N. Large N
asymptotics is more difficult: solve RHP problem.

Topological recursion (TR) approach: start with the large N limit:

W
(0)
1 (x) (⇔ limiting density) and W

(0)
2 (x1, x2). Compute recursively

all
(
W

(k)
n

)
n≥0,k≥0

. Recursion is on 2k + n.

Efficient for obtaining the large N asymptotics. Impossible to
recover a finite N in practice. Looses the fact that N is an integer.

Contains the full integrability structure (recover the full model
starting only with its large N limit).



Six vertex model and reduction to Hermitian one matrix integrals Study of general Hermitian one matrix integrals Integrability at work using TR Quantization and isomonodromic deformations Summary and outlooks References

Getting the classical spectral curve

Under mild assumptions [16], empirical eigenvalues distribution

dνN(x ;λ) =
1
N

N∑
j=1

δN(x − λj) converges to an equilibrium density:

dνN(x ;λ)
N→∞→ ρeq(x)dx

supported on a union of intervals.
Stieltjes transform:

ω(x) =

∫
ρeq(x

′)

x − x ′
dx ′

satisfies an quadratic equation

ω(x)2 − P1(x)ω(x) + P2(x) = 0 (i)

with P1, P2 determined by potential V .

Alternative derivation [8]: Define W1(x) =

〈
1
N

N∑
j=1

1
x−λj

〉
and

assume W1(x) =
∞∑
h=1

W
(h)
1 (x)N1−2h. ω(x) = W

(0)
1 (x) satisfies (i).
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Example

Limiting densities for

V (x ,T , ϵ) = 1
T

(
x4

4 − 4 cos(πϵ)x3

3 + cos(2πϵ)x2 + 8 cos(πϵ)x
)
for ϵ = 1

2 .

Phase transition at Tc = 1 + 4 cos(πϵ).
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Integrability at work using TR
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Restriction to polynomial potentials

We shall now restrict to V ′(λ) = Pol(λ).

We authorize arbitrary number of hard edges (regular or irregular).

Restrictions are made to have simpler formulas but general picture
should hold for other cases.
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Irregular times

Classical spectral curve (hyperelliptic Riemann surface Σ of

genus g): {(x(z), y(z)), z ∈ Σ} (y(z(x)) = W
(0)
1 (x)):

y2 − P1(x)y + P2(x) = 0 , P1 , P2 rational functions

y is singular at {∞,X1, . . . ,Xn}. Assume (for simplicity) that poles
are not ramified. Denote x−1({∞}) = {∞(1),∞(2)} and

x−1({Xi}) = {X (1)
i ,X

(2)
i }.

y(z)
z→∞(i)

= −
r∞−1∑
k=0

t∞(i),kx(z)
k−1 + O

(
(x(z))−2

)
y(z)

z→X (i)
s=

rs−1∑
k=0

t
X

(i)
s ,k

(x(z)− Xs)
−k−1 + O (1)

(t∞(i),k , tX (i)
s ,k

)i,k,s are “irregular times” [3, 4] in the study of

isomonodromic deformations of meromorphic connections.
“KP times” from isospectral perpective.
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Irregular times 2

Irregular times determine part of P1 and P2:

P1(λ) =
r∞−2∑
j=0

P
(1)
∞,jλ

j +
n∑

s=1

rs∑
j=1

P
(1)
Xs ,j

(λ− Xs)j

P2(λ) =
2r∞−4∑
j=0

P
(2)
∞,jλ

j +
n∑

s=1

2rs∑
j=1

P
(2)
Xs ,j

(λ− Xs)j

Only g = r∞ +
n∑

s=1
rs − 3 coefficients of P2 remain unknown.
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Interpretation of the g unknown coefficients

Potential V + hard edges + g filling fractions ⇔ Equilibrium
measure ⇔ Classical spectral curve

Classical spectral curve ⇔ Location of Poles + irregular times + g
unknown coefficients

g additional coefficients in one-to-one correspondence with solutions
(qj)

g
j=1 of Hamiltonian systems via isomonodromic deformations.

In specific regimes:

Potential V and part of the hard edges do not play any role
Universal classical spectral curves
Regimes are characterized by specific solutions of given
Hamiltonian systems
Universality.
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Quantization and isomonodromic deformations
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Quantization

1 Series of works [14, 13, 7, 15] in collaboration with N. Orantin, E.
Garcia-Failde, M. Alameddine and B. Eynard from 2019 to 2022.

2 Apply topological recursion to the classical spectral curve ⇒
(ωh,n(z1, . . . , zn))h≥0,n≥0 multi-differentials on Σ.

3 Define 2 formal wave functions (mind regularizations) with ℏ = N−1:

ψi (λ) = ⟨det(λI2 −M)⟩

= exp

∑
h,n≥0

ℏ2h+n−2

n!

∫ z

∞(1)
· · ·
∫ z

∞(1)
ωh,n(z1, . . . , zn)dz1 . . . dzn


4 Take “Fourier transform” (Theta functions: formal ℏ-transseries)

Ψi (z, ℏ; ϵ,ρ) :=
∑
n∈Zg

e

2πi
ℏ

g∑
j=1

ρjnj
ψi (z, ℏ, ϵ+ ℏn).

5 (Ψ1,Ψ2) are formal ℏ-transseries solutions to an ODE (“quantum
curve”) (

ℏ2
∂2

∂λ2
+ b1(λ, ℏ)ℏ

∂

∂λ
+ b2(λ, ℏ)

)
Ψi (λ, ℏ) = 0
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Quantization 2

Property of the quantum curve:(
ℏ2

∂2

∂λ2
+ b1(λ, ℏ)ℏ

∂

∂λ
+ b2(λ, ℏ)

)
Ψi (λ, ℏ) = 0

Coefficients b1(λ, ℏ), b2(λ, ℏ) are rational functions of λ with same
pole structure as initial classical spectral curve and g apparent
singularities: (q1, . . . , qg ).

Rewrite in companion matrix form Ψ(λ, ℏ) =
(

Ψ1 Ψ2

ℏ∂λΨ1 ℏ∂λΨ2

)

ℏ∂λΨ(λ, ℏ) =
(

0 1
−b2(λ, ℏ) −b1(λ, ℏ)

)
Ψ(λ, ℏ) def

= L(λ, ℏ)Ψ(λ, ℏ)

Remove apparent singularities via gauge transformation.
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Lax matrix

Remove apparent singularities via gauge transformation:

Ψ̃(λ, ℏ) = J(λ, ℏ)Ψ(λ, ℏ) with J(λ, ℏ) =
(
1 0
X 1

)
In this gauge:

ℏ∂λΨ̃(λ, ℏ) = L̃(λ, ℏ)Ψ̃(λ, ℏ)

with L̃(λ, ℏ) rational in λ with poles only in {∞,X1, . . . ,Xn}.
No apparent singularities but matrices are no longer companion-like.

Former gauge is more natural in geometry of integrable systems
[9, 5].

For g = 0 (i.e. one cut case), the Lax matrix is completely
determined.
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Isomonodromic deformations

Study general deformations relatively to irregular times (except
monodromies) and location of poles (tangent space):

Lα = ℏ
2∑

i=1

r∞−1∑
k=1

α∞(i),k∂t∞(i),k
+ℏ

2∑
i=1

n∑
s=1

rs−1∑
k=1

α
X

(i)
s ,k

∂t
X
(i)
s ,k

+ℏ
n∑

s=1

αXs∂Xs

Wave matrix Ψ(λ, ℏ) satisfies

Lα[Ψ(λ, ℏ)] = Aα(λ, ℏ)Ψ(λ, ℏ)

with Aα(λ, ℏ) rational in λ with same pole structure as L(λ, ℏ)
⇒ Lax pair.

Compatibility of the Lax system is

Lα[L(λ)] = ℏ∂λAα(λ) + [Aα(λ), L(λ)]
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Isomonodromic deformations 2

Compatibility of the Lax system is

Lα[L(λ)] = ℏ∂λAα(λ) + [Aα(λ), L(λ)]

Provides complete expression of the matrices L(λ, ℏ),Aα(λ, ℏ) in
terms of irregular times and (q1, . . . , qg ) and their dual symplectic
coordinates (p1, . . . , pg ).

Provides general and explicit evolution equations:

(L[qj ],L[pj ])gj=1

Evolutions are Hamiltonians. Expression of the general
Hamiltonian Hα(q1, . . . , qg , p1, . . . , pg ) is explicit.
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Reduction to isomonodromic deformations

Space of deformations
(
t∞(i),k , tb(i)

s ,k
,Xs

)
i,k,s

much bigger than g =

dimension of the expected symplectic space.

Reduce the tangent space of deformations to only g isomonodromic
times (τ1, . . . , τg ) and some trivial times (Tk)k .

Trivial times must satisfy

∂Tk
q̌j = 0 = ∂Tk

p̌j

where q̌j = T2qj + T1 , p̌j = T−1
2

(
pj − 1

2P1(qj)
)
are shifted

coordinates (T1 and T2 are explicit)

Reduction is explicit.

Hamiltonian evolutions of (q̌j , p̌j)
g
j=1 are independent of trivial times

⇒ Canonical choice of trivial times (in particular T1 = 0, T2 = 1)

For g = 1, one recovers all Painlevé Lax pairs/equations.
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Summary and outlooks
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Summary

Construction from classical spectral curve (large N limit of
Hermitian random matrix models) to formal wave functions via
topological recursion.

We obtain rational Lax pairs with explicit isomonodromic
Hamiltonian evolutions and complete reduction to isomonodromic
deformations.

Construction is valid for any arbitrary number of poles. Poles
may be regular (Fuchsian case) or irregular poles of arbitrary
degrees.

Similar construction is expected to hold for any classical spectral
curve (not only hyperelliptic), i.e. two matrix models. Construction
of the quantum curve is already done in [7].
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Outlooks

Wave functions are formal WKB series (g = 0) or formal transseries
in ℏ = N−1 (g ≥ 1). Borel resumation is expected to provide
analytic wave functions. Can we describe the analytic structure and
Stokes phenomenon of these wave matrices?

Can we use the Hamiltonian evolutions for Borel resumation?

Can we relate the choice of solutions (q1, . . . , qg ) to the choice of
filling fractions (ϵ1, . . . , ϵg )?

Make the connection with 2× 2 matrices arising from orthogonal
polynomials and RHP method.

In the universal regimes, can we characterize (and prove existence
and uniqueness) the specific solution of the Hamiltonian systems
that arises in random matrices (For example: Hastings-McLeod
solution of the Painlevé 2 equation [10], specific solution of Painlevé
5 for the sine kernel [12])?

Can we deal with non-polynomial potentials (6V model)?
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