Quantization of classical spectral curve and integrable systems

Marchal Olivier
Université Jean Monnet St-Etienne, France
Institut Camille Jordan, Lyon, France
Institut Universitaire de France

Nov. $02^{\text {th }} 2022$
(1) Six vertex model and reduction to Hermitian one matrix integrals
(2) Study of general Hermitian one matrix integrals
(3) Integrability at work using TR
(4) Quantization and isomonodromic deformations
(5) Summary and outlooks

Six vertex model and reduction to Hermitian one matrix integrals

Six vertex models and random matrix integrals

- Take a DWBC 6V model [18] with $a=\sqrt{a_{1} a_{2}}=q \rho-q^{-1} \rho^{-1}$, $b=\sqrt{b_{1} b_{2}}=\rho-\rho^{-1}, c=\sqrt{c_{1} c_{2}}=q-q^{-1}$:

- Korepin-Izergin determinant: $Z_{N} \propto \frac{\operatorname{det}\left(\phi\left(x_{i}, y_{j}\right)\right)}{\Delta(X) \Delta(Y)}$ with $\phi(x, y)$ explicit. $\Delta(X)=$ Vandermonde determinant.
- Determinants of these types are generalized 2-matrix models:

$$
\begin{aligned}
Z_{N} & =\frac{1}{N!\Delta(X) \Delta(Y)} \int \cdots \int \prod_{i=1}^{N} d \mu\left(a_{i}, b_{i}\right) \operatorname{det}_{1 \leq i, j \leq N}\left(e^{a_{i} x_{j}}\right) \operatorname{det}_{1 \leq i, j \leq N}\left(e^{y_{i} b_{j}}\right), \\
\phi(x, y) & =\iint d \mu(a, b) e^{a x+b y}
\end{aligned}
$$

Reduction to one matrix model

- If $\phi(x, y)$ only depends on $x-y$ the integral reduces to a generalized one-matrix integral:

$$
\begin{aligned}
Z_{N} & \propto \int \cdots \int \prod_{i=1}^{N} d \mu\left(a_{i}\right) \operatorname{det}_{1 \leq i, j \leq N}\left(e^{a_{i} x_{j}}\right) \operatorname{det}_{1 \leq i, j \leq N}\left(e^{y_{i} a_{j}}\right), \\
\phi(z) & =\int d \mu(a) e^{a z}
\end{aligned}
$$

- Homogeneous case $x_{i}-y_{i}=t$ for all $i \in \llbracket 1, N \rrbracket$:

$$
\begin{aligned}
Z_{N} & \propto \int \cdots \int \prod_{i=1}^{N} d \mu\left(a_{i}\right) \Delta(\mathbf{a})^{2} e^{t \sum_{i=1}^{N} a_{i}}, \\
\phi(z) & =\int d \mu(a) e^{a z}
\end{aligned}
$$

- Hermitian one matrix integral with potential $e^{-t A-V(A)}$ and $e^{-V(z)} d z=d \mu(z)$.

Application to DWBC 6V model

- Partition function of the DWBC 6V model [1] with $a=\sin (\gamma-t)$, $b=\sin (\gamma+t), c=\sin (2 \gamma)$:

$$
z_{N}=\frac{(a b)^{N^{2}}}{\left(\prod_{k=1}^{N} k!\right)^{2}} \tau_{N}, \tau_{N}=\operatorname{det}\left(\frac{d^{i+k-2} \phi}{d t^{i+k-2}}\right)_{1 \leq i, k \leq N}, \phi=\frac{c}{a b} \text { Hankel det. }
$$

- Hankel determinants \Rightarrow Hermitian matrix integrals \Rightarrow integrability:

$$
\tau_{N}=\frac{\prod_{i=1}^{N} i!}{\pi^{\frac{N(N-1)}{2}}} \int_{\mathcal{H}_{N}} d M e^{\operatorname{Tr}(t M-V(M))}, m(\lambda)=e^{-V(\lambda)}=\frac{\sinh \left(\frac{\lambda(\pi-2 \gamma)}{2}\right)}{\sinh \frac{\lambda \pi}{2}}
$$

- Eigenvalues distribution:

$$
\tau_{N} \propto \int_{\mathbb{R}^{N}} d \lambda_{1} \ldots d \lambda_{N} \Delta(\lambda)^{2} e^{\sum_{i=1}^{N} \operatorname{Tr}\left(t \lambda_{i}-V\left(\lambda_{i}\right)\right)}
$$

- Potential is not polynomial. Analysis of the limiting eigenvalue distributions (support, edges, etc.) is standard (saddle-point analysis).
- Many existing works $[11,17,2]$

Study of general Hermitian one matrix integrals

Hermitian random matrix models

- Hermitian random matrix integrals:

$$
Z_{N}=\int_{\Gamma} \ldots \int_{\Gamma} d \lambda_{1} \ldots d \lambda_{N} \Delta(\lambda)^{2} e^{-N \sum_{i=1}^{N} V\left(\lambda_{i}\right)}
$$

- Vandermonde-like interactions (Coulomb gas):

$$
\Delta(\boldsymbol{\lambda})=\prod_{1 \leq i<j \leq N}\left(\lambda_{i}-\lambda_{j}\right)
$$

- Potential V (in general rational function) sufficiently confining.
- Contour $\Gamma \subset \mathbb{R}$ may have hard edges: $\Gamma=\bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right]$.
- Several existing tools: Orthogonal polynomials and RHP, Eynard-Orantin topological recursion, integrable systems approach, Fredholm/Hankel determinants, etc.
- Specific local regimes lead to universality results.

Main questions arising in Hermitian random matrices

- Compute partition function Z_{N} and its large N expansion (under mild assumptions) [6]:

$$
Z_{N}=\operatorname{Prefactor}(N) \exp \left(\sum_{k=-2}^{\infty} F^{(k)} N^{-k}\right) \quad \text { (one-cut case) }
$$

- Compute correlation functions (cumulants) and their large N expansions:

$$
\begin{aligned}
W_{1}(x) & =\left\langle\frac{1}{N} \sum_{j=1}^{N} \frac{1}{x-\lambda_{j}}\right\rangle=\sum_{k=1}^{\infty} W_{1}^{(k)}(x) N^{1-2 k} \quad \text { (one-cut case) } \\
W_{n}\left(x_{1}, \ldots, x_{n}\right) & =\left\langle\sum_{i_{1}, \ldots, i_{n}=1}^{N} \frac{1}{x_{1}-\lambda_{i_{1}}} \cdots \frac{1}{x_{n}-\lambda_{i_{n}}}\right\rangle_{c} \\
& =\sum_{k=0}^{\infty} W_{n}^{(k)}\left(x_{1}, \ldots, x_{n}\right) N^{-(2-n-2 k)}
\end{aligned}
$$

- Refined large N expansion exists (Theta functions) for several cuts case.

Orthogonal polynomials/RHP and Topological Recursion

- Orthogonal polynomials $\left(p_{n}\right)_{n \geq 1}: p_{n}$ monic polynomial of degree n :

$$
\int_{\Gamma} p_{n}(x) p_{m}(x) e^{-N V(x)}=\delta_{n, m} h_{n} \Rightarrow Z_{N}=N!\prod_{i=1}^{N} h_{i}
$$

- Valid for any $N \in \mathbb{N}$. Efficient for computations at low N. Large N asymptotics is more difficult: solve RHP problem.
- Topological recursion (TR) approach: start with the large N limit: $W_{1}^{(0)}(x)\left(\Leftrightarrow\right.$ limiting density) and $W_{2}^{(0)}\left(x_{1}, x_{2}\right)$. Compute recursively all $\left(W_{n}^{(k)}\right)_{n \geq 0, k \geq 0}$. Recursion is on $2 k+n$.
- Efficient for obtaining the large N asymptotics. Impossible to recover a finite N in practice. Looses the fact that N is an integer.
- Contains the full integrability structure (recover the full model starting only with its large N limit).

Getting the classical spectral curve

- Under mild assumptions [16], empirical eigenvalues distribution $d \nu_{N}(x ; \boldsymbol{\lambda})=\frac{1}{N} \sum_{j=1}^{N} \delta_{N}\left(x-\lambda_{j}\right)$ converges to an equilibrium density:

$$
d \nu_{N}(x ; \boldsymbol{\lambda}) \xrightarrow{N \rightarrow \infty} \rho_{\mathrm{eq}}(x) d x
$$

supported on a union of intervals.

- Stieltjes transform:

$$
\omega(x)=\int \frac{\rho_{\mathrm{eq}}\left(x^{\prime}\right)}{x-x^{\prime}} d x^{\prime}
$$

satisfies an quadratic equation

$$
\omega(x)^{2}-P_{1}(x) \omega(x)+P_{2}(x)=0
$$

with P_{1}, P_{2} determined by potential V.

- Alternative derivation [8]: Define $W_{1}(x)=\left\langle\frac{1}{N} \sum_{j=1}^{N} \frac{1}{x-\lambda_{j}}\right\rangle$ and assume $W_{1}(x)=\sum_{h=1}^{\infty} W_{1}^{(h)}(x) N^{1-2 h} . \omega(x)=W_{1}^{(0)}(x)$ satisfies (i).

Limiting densities for

$$
\begin{gathered}
V(x, T, \epsilon)=\frac{1}{T}\left(\frac{x^{4}}{4}-\frac{4 \cos (\pi \epsilon) x^{3}}{3}+\cos (2 \pi \epsilon) x^{2}+8 \cos (\pi \epsilon) x\right) \text { for } \epsilon=\frac{1}{2} . \\
\text { Phase transition at } T_{c}=1+4 \cos (\pi \epsilon) .
\end{gathered}
$$

Integrability at work using TR

Restriction to polynomial potentials

- We shall now restrict to $V^{\prime}(\lambda)=\operatorname{Pol}(\lambda)$.
- We authorize arbitrary number of hard edges (regular or irregular).
- Restrictions are made to have simpler formulas but general picture should hold for other cases.

Irregular times

- Classical spectral curve (hyperelliptic Riemann surface Σ of genus $g):\{(x(z), y(z)), z \in \Sigma\}\left(y(z(x))=W_{1}^{(0)}(x)\right)$:

$$
y^{2}-P_{1}(x) y+P_{2}(x)=0, P_{1}, P_{2} \text { rational functions }
$$

- y is singular at $\left\{\infty, X_{1}, \ldots, X_{n}\right\}$. Assume (for simplicity) that poles are not ramified. Denote $x^{-1}(\{\infty\})=\left\{\infty^{(1)}, \infty^{(2)}\right\}$ and $x^{-1}\left(\left\{X_{i}\right\}\right)=\left\{X_{i}^{(1)}, X_{i}^{(2)}\right\}$.

$$
\begin{aligned}
& y(z) \stackrel{z \rightarrow \infty^{(i)}}{=}-\sum_{k=0}^{r_{\infty}-1} t_{\infty(i), k} x(z)^{k-1}+O\left((x(z))^{-2}\right) \\
& y(z) \stackrel{z \rightarrow X_{s}^{(i)}}{=} \sum_{k=0}^{r_{s}-1} t_{x_{s}^{(i)}, k}\left(x(z)-X_{s}\right)^{-k-1}+O(1)
\end{aligned}
$$

- $\left(t_{\infty}{ }^{(i)}, k, t_{X_{s}^{(i)}, k}\right)_{i, k, s}$ are "irregular times" [3, 4] in the study of isomonodromic deformations of meromorphic connections.
"KP times" from isospectral perpective.

Irregular times 2

- Irregular times determine part of P_{1} and P_{2} :

$$
\begin{aligned}
& P_{1}(\lambda)=\sum_{j=0}^{r_{\infty}-2} P_{\infty, j}^{(1)} \lambda^{j}+\sum_{s=1}^{n} \sum_{j=1}^{r_{s}} \frac{P_{X_{s}, j}^{(1)}}{\left(\lambda-X_{s}\right)^{j}} \\
& P_{2}(\lambda)=\sum_{j=0}^{2 r_{\infty}-4} P_{\infty, j}^{(2)} \lambda^{j}+\sum_{s=1}^{n} \sum_{j=1}^{2 r_{s}} \frac{P_{X_{s}, j}^{(2)}}{\left(\lambda-X_{s}\right)^{j}}
\end{aligned}
$$

- Only $g=r_{\infty}+\sum_{s=1}^{n} r_{s}-3$ coefficients of P_{2} remain unknown.

Interpretation of the g unknown coefficients

- Potential $V+$ hard edges $+g$ filling fractions \Leftrightarrow Equilibrium measure \Leftrightarrow Classical spectral curve
- Classical spectral curve \Leftrightarrow Location of Poles + irregular times $+g$ unknown coefficients
- g additional coefficients in one-to-one correspondence with solutions $\left(q_{j}\right)_{j=1}^{g}$ of Hamiltonian systems via isomonodromic deformations.
- In specific regimes:
- Potential V and part of the hard edges do not play any role
- Universal classical spectral curves
- Regimes are characterized by specific solutions of given Hamiltonian systems
- Universality.

Quantization and isomonodromic deformations

Quantization

(1) Series of works [14, 13, 7, 15] in collaboration with N. Orantin, E. Garcia-Failde, M. Alameddine and B. Eynard from 2019 to 2022.
(2) Apply topological recursion to the classical spectral curve \Rightarrow $\left(\omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)\right)_{h \geq 0, n \geq 0}$ multi-differentials on Σ.
(3) Define 2 formal wave functions (mind regularizations) with $\hbar=N^{-1}$:

$$
\begin{aligned}
\psi_{i}(\lambda) & =\left\langle\operatorname{det}\left(\lambda l_{2}-M\right)\right\rangle \\
& =\exp \left(\sum_{h, n \geq 0} \frac{\hbar^{2 h+n-2}}{n!} \int_{\infty^{(1)}}^{z} \cdots \int_{\infty^{(1)}}^{z} \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right) d z_{1} \ldots d z_{n}\right)
\end{aligned}
$$

(1) Take "Fourier transform" (Theta functions: formal \hbar-transseries)

$$
\Psi_{i}(z, \hbar ; \boldsymbol{\epsilon}, \boldsymbol{\rho}):=\sum_{\mathbf{n} \in \mathbb{Z}^{g}} e^{\frac{2 \pi \mathrm{i}}{\hbar} \sum_{j=1}^{g} \rho_{j} n_{j}} \psi_{i}(z, \hbar, \epsilon+\hbar \mathbf{n}) .
$$

(0) $\left(\Psi_{1}, \Psi_{2}\right)$ are formal \hbar-transseries solutions to an ODE ("quantum curve")

$$
\left(\hbar^{2} \frac{\partial^{2}}{\partial \lambda^{2}}+b_{1}(\lambda, \hbar) \hbar \frac{\partial}{\partial \lambda}+b_{2}(\lambda, \hbar)\right) \Psi_{i}(\lambda, \hbar)=0
$$

Quantization 2

- Property of the quantum curve:

$$
\left(\hbar^{2} \frac{\partial^{2}}{\partial \lambda^{2}}+b_{1}(\lambda, \hbar) \hbar \frac{\partial}{\partial \lambda}+b_{2}(\lambda, \hbar)\right) \Psi_{i}(\lambda, \hbar)=0
$$

- Coefficients $b_{1}(\lambda, \hbar), b_{2}(\lambda, \hbar)$ are rational functions of λ with same pole structure as initial classical spectral curve and g apparent singularities: $\left(q_{1}, \ldots, q_{g}\right)$.
- Rewrite in companion matrix form $\Psi(\lambda, \hbar)=\left(\begin{array}{cc}\Psi_{1} & \Psi_{2} \\ \hbar \partial_{\lambda} \psi_{1} & \hbar \partial_{\lambda} \psi_{2}\end{array}\right)$

$$
\hbar \partial_{\lambda} \Psi(\lambda, \hbar)=\left(\begin{array}{cc}
0 & 1 \\
-b_{2}(\lambda, \hbar) & -b_{1}(\lambda, \hbar)
\end{array}\right) \Psi(\lambda, \hbar) \stackrel{\text { def }}{=} L(\lambda, \hbar) \Psi(\lambda, \hbar)
$$

- Remove apparent singularities via gauge transformation.

Lax matrix

- Remove apparent singularities via gauge transformation:

$$
\tilde{\Psi}(\lambda, \hbar)=J(\lambda, \hbar) \Psi(\lambda, \hbar) \text { with } J(\lambda, \hbar)=\left(\begin{array}{ll}
1 & 0 \\
X & 1
\end{array}\right)
$$

- In this gauge:

$$
\hbar \partial_{\lambda} \tilde{\Psi}(\lambda, \hbar)=\tilde{L}(\lambda, \hbar) \tilde{\Psi}(\lambda, \hbar)
$$

with $\tilde{L}(\lambda, \hbar)$ rational in λ with poles only in $\left\{\infty, X_{1}, \ldots, X_{n}\right\}$.

- No apparent singularities but matrices are no longer companion-like.
- Former gauge is more natural in geometry of integrable systems [9, 5].
- For $g=0$ (i.e. one cut case), the Lax matrix is completely determined.

Isomonodromic deformations

- Study general deformations relatively to irregular times (except monodromies) and location of poles (tangent space):

$$
\mathcal{L}_{\boldsymbol{\alpha}}=\hbar \sum_{i=1}^{2} \sum_{k=1}^{r_{\infty}-1} \alpha_{\infty(i), k} \partial_{t_{\infty}(i), k}+\hbar \sum_{i=1}^{2} \sum_{s=1}^{n} \sum_{k=1}^{r_{s}-1} \alpha_{x_{s}^{(i)}, k} \partial_{t_{x_{s}^{(i)}, k}}+\hbar \sum_{s=1}^{n} \alpha_{X_{s}} \partial_{X_{s}}
$$

- Wave matrix $\Psi(\lambda, \hbar)$ satisfies

$$
\mathcal{L}_{\alpha}[\Psi(\lambda, \hbar)]=A_{\alpha}(\lambda, \hbar) \Psi(\lambda, \hbar)
$$

with $A_{\boldsymbol{\alpha}}(\lambda, \hbar)$ rational in λ with same pole structure as $L(\lambda, \hbar)$ \Rightarrow Lax pair.

- Compatibility of the Lax system is

$$
\mathcal{L}_{\alpha}[L(\lambda)]=\hbar \partial_{\lambda} A_{\alpha}(\lambda)+\left[A_{\alpha}(\lambda), L(\lambda)\right]
$$

Isomonodromic deformations 2

- Compatibility of the Lax system is

$$
\mathcal{L}_{\alpha}[L(\lambda)]=\hbar \partial_{\lambda} A_{\alpha}(\lambda)+\left[A_{\alpha}(\lambda), L(\lambda)\right]
$$

- Provides complete expression of the matrices $L(\lambda, \hbar), A_{\alpha}(\lambda, \hbar)$ in terms of irregular times and (q_{1}, \ldots, q_{g}) and their dual symplectic coordinates (p_{1}, \ldots, p_{g}).
- Provides general and explicit evolution equations:

$$
\left(\mathcal{L}\left[q_{j}\right], \mathcal{L}\left[p_{j}\right]\right)_{j=1}^{g}
$$

- Evolutions are Hamiltonians. Expression of the general Hamiltonian $H_{\alpha}\left(q_{1}, \ldots, q_{g}, p_{1}, \ldots, p_{g}\right)$ is explicit.

Reduction to isomonodromic deformations

- Space of deformations $\left(t_{\infty^{(i)}, k}, t_{b_{s}^{(i)}, k}, X_{s}\right)_{i, k, s}$ much bigger than $g=$ dimension of the expected symplectic space.
- Reduce the tangent space of deformations to only g isomonodromic times $\left(\tau_{1}, \ldots, \tau_{g}\right)$ and some trivial times $\left(T_{k}\right)_{k}$.
- Trivial times must satisfy

$$
\partial_{T_{k}} \check{q}_{j}=0=\partial_{T_{k}} \check{p}_{j}
$$

where $\check{q}_{j}=T_{2} q_{j}+T_{1}, \check{p}_{j}=T_{2}^{-1}\left(p_{j}-\frac{1}{2} P_{1}\left(q_{j}\right)\right)$ are shifted coordinates (T_{1} and T_{2} are explicit)

- Reduction is explicit.
- Hamiltonian evolutions of $\left(\check{q}_{j}, \check{p}_{j}\right)_{j=1}^{g}$ are independent of trivial times \Rightarrow Canonical choice of trivial times (in particular $T_{1}=0, T_{2}=1$)
- For $g=1$, one recovers all Painlevé Lax pairs/equations.

Summary and outlooks

Summary

- Construction from classical spectral curve (large N limit of Hermitian random matrix models) to formal wave functions via topological recursion.
- We obtain rational Lax pairs with explicit isomonodromic Hamiltonian evolutions and complete reduction to isomonodromic deformations.
- Construction is valid for any arbitrary number of poles. Poles may be regular (Fuchsian case) or irregular poles of arbitrary degrees.
- Similar construction is expected to hold for any classical spectral curve (not only hyperelliptic), i.e. two matrix models. Construction of the quantum curve is already done in [7].

Outlooks

- Wave functions are formal WKB series $(g=0)$ or formal transseries in $\hbar=N^{-1}(g \geq 1)$. Borel resumation is expected to provide analytic wave functions. Can we describe the analytic structure and Stokes phenomenon of these wave matrices?
- Can we use the Hamiltonian evolutions for Borel resumation?
- Can we relate the choice of solutions $\left(q_{1}, \ldots, q_{g}\right)$ to the choice of filling fractions $\left(\epsilon_{1}, \ldots, \epsilon_{g}\right)$?
- Make the connection with 2×2 matrices arising from orthogonal polynomials and RHP method.
- In the universal regimes, can we characterize (and prove existence and uniqueness) the specific solution of the Hamiltonian systems that arises in random matrices (For example: Hastings-McLeod solution of the Painlevé 2 equation [10], specific solution of Painlevé 5 for the sine kernel [12])?
- Can we deal with non-polynomial potentials (6 V model)?

References I

[1] P. Bleher and L. Karl. Riemann-hilbert approach to the six-vertex model, 2012.
[2] P. Bleher and L. Karl. Random Matrices and the Six-Vertex Model. American Mathematical Society, 1st edition, 2013.
[3] P. Boalch. Symplectic Manifolds and Isomonodromic Deformations. Adv. Math., 163(2):137-205, 2001.
[4] P. Boalch. Simply-laced isomonodromy systems. Publ. Math. IHÉS, 116:1-68, 2012.
[5] P. Boalch, J. Douçot, and G. Rembado. Twisted local wild mapping class groups: configuration spaces, fission trees and complex braids, 2022.
[6] G. Borot, A. Guionnet, and K. Kozlowski. Large-N asymptotic expansion for mean field models with Coulomb gas interaction. Int. Math. Res. Not., 2015(20), 2015.
[7] B. Eynard, E. Garcia-Failde, O. Marchal, and N. Orantin. Quantization of classical spectral curves via topological recursion, 2021. math-ph/2106.04339.

References II

[8] B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. Commun. Number Theory and Physics, 1(2), 2007.
[9] J. Harnad. Hamiltonian Dynamics, Classical R-matrices and Isomonodromic Deformations. Lect. Notes Phys, 502:137-205, 2007.
[10] S. Hastings and J. McLeod. A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal., 73:31-51, 1980.
[11] A. Izerpin, D. Coker, and V. Korepin. Determinant formula for the six-vertex model. J. Phys. A, 25:4315-4334, 1992.
[12] M. Jimbo, T. Miwa, Y. Môri, and M. Sato. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D, 1(1):80-158, 1980.
[13] O. Marchal and N. Orantin. Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the $\mathfrak{s l}_{2}$ case. J. Math. Phys., 61(6), 2020.
[14] O. Marchal and N. Orantin. Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion. J. Geom. Phys., 177, 2022.
[15] O. Marchal, N. Orantin, and M. Alameddine. Hamiltonian structure of isomonodromic deformations of $g l_{2}$ meromorphic connections. To appear.
[16] M. L. Mehta. Random Matrices. Elsevier Science, 3rd edition, 2004.
[17] P. Zinn-Justin. The six-vertex model on random lattices. EPL, 50(1):15-21, 2000.
[18] P. Zinn-Justin. Six-vertex, loop and tiling models: integrability and combinatorics, 2009.

