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General position of the talk

General problem

How to quantize a “classical spectral curve” ([y , x ] = 0)

P(x , y) = 0 , P rational in x, monic polynomial in y

into a linear differential equation ([~∂x , x ] = ~):

P̂

(
x , ~

d

dx

)
ψ(x , ~) = 0 ?

P̂ rational in x with same pole structure as P.

Key ingredients

Key ingredient 1: Topological recursion (Eynard and Orantin [2007]).
Key ingredient 2: Isomonodromic deformations, integrable systems, Lax
pairs:

~ ∂
∂x

Ψ(x , ~, t) = L(x , ~, t)Ψ(x , ~, t) , ~ ∂
∂t

Ψ(x , ~, t) = R(x , ~, t)Ψ(x , ~, t)
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Motivation using Matrix Models
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Eigenvalues correlation functions

Let ZN =
∫
HN

dMNe
−N TrV (MN ) with V (z) monic polynomial

potential of even degree.
Eigenvalues correlation functions (Stieltjes transforms):

W1(x) =

〈
N∑
i=1

1

x − λi

〉
N

W2(x1, x2) =

〈
N∑

i,j=1

1

(x1 − λi )(x2 − λj)

〉
N

−W1(x1)W1(x2)

Wp(x1, . . . , xp) =

〈
N∑

i1,...,ip

1

x1 − λi1
. . .

1

xp − λip

〉
N,cumulant

Generating series of joint moments

〈
N∑
i=1

λki

〉
N

,

〈
N∑

i,j=1

λri λ
s
j

〉
N

(Mehta [2004]).
Hermitian case: Correlation functions satisfy algebraic relations
known as loop equations, Schwinger-Dyson equations, Virasoro
constraints, etc.
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Loop equations

Let:

Pp(x1; x2, . . . , xp) =

〈 ∑
i1,...ip

V ′(x1)− V ′(λi1 )

x1 − λi1

1

x2 − λi2
. . .

1

xp − λip

〉
N,cumulant

Loop equations (notation Lp = {x2, . . . , xp}):

−P1(x) = W 2
1 (x)− V ′(x)W1(x) +

1

N2
W2(x , x)

Pp(x1; Lp) = (2W1(x1)− V ′(x1))Wp(Lp) +
1

N2
Wp+1(x1, x1, Lp)

+
∑
I⊂Lp

W|I |+1(x1, LI )Wp−|I |(x1, LJ\I )

−
p∑

j=2

∂

∂xj

Wp−1(Lp)−Wp−1(x1, Lp \ {xj})
x1 − xj

Property: x 7→ Pp(x ; Lp) is a polynomial. Is it enough to solve the
equations and find (Wp)p≥1?
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Limiting eigenvalues density

Under mild assumptions on the potential V :

dνN =
1

N

N∑
i=1

δ(x − λi )
law→

N→∞
dν∞ = ρ∞(x)dx

ρ∞ compactly supported on union of intervals.

Stieljes transform[ρ∞(x)dx ] ≡ y(x)dx is algebraic: y2 = P(x) ⇒
Provides a classical spectral curve for TR.

Number of intervals in the support ⇔ genus of the spectral curve

May be regular or singular
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Formal solutions

ZN =
∫
HN

dMNe
−N TrV (MN ). Assume formal series expansions in 1

N :

FN
def
= lnZN =

∞∑
g=0

F (g)

(
1

N

)2g−2

Wp(x1, . . . , xp) =
∞∑
g=0

ω(g)
p (x1, . . . , xp)

(
1

N

)p+2g−2

May also work for additional parameters:

ZN [t4] =

∫
HN

dMNe
− N

2 Tr(M2
N )− t4

4 N Tr(M4
N )

We may consider formal series of the form:

lnZN [t4] =
∞∑
g=0

∞∑
v=0

F (g ,v)(t4) v

(
1

N

)2g−2

+ similar dev. for Wp

Allow to solve recursively the loop equations.
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Applications in combinatorics

Interesting in combinatorics:

ZN [t4] =

∫
HN

dMNe
− N

2 Tr(M2
N )− t4

4 N Tr(M4
N )

Perturbative series expansion in t4 ⇒ enumeration of fat ribbon
graph (similar to Feynman expansion):

F (g ,v) count the number of such connected graphs with v vertices (4
legs) and of genus g :

lnZN [t4] =
∑

G = 4−ribbon graph

1

|Aut G|
t

#v(G)
4

(
1

N

)−χ(G)
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Applications in geometry

Kontsevich integral: Intersection theory of Riemann surfaces
moduli spaces (Kontsevich [1992]):

〈τd1 . . . τdn 〉 =

∫
M̄g,n

ψd1
1 . . . ψdn

n , F [t0, t1, . . . ] =
∑
(k)

〈
τ k0

0 τ
k1
1 . . .

〉 ∞∏
i=0

tkii
ki !

may be computed through the formal expansion of the Kontsevich
integral of F = lnZ with:

Z [t0, t1, . . . ] ∝
∫

dM exp

(
−1

2
Tr(MΛM) +

i

3!
Tr(M3)

)
and ti = −(2i − 1)!! Tr(Λ−(2i−1)), Λ positive definite Herm. matrix.
Remark: F [t0, t1, . . . ] in connection with KdV equation:

u
def
=
∂2F

∂t2
0

satisfies
∂u

∂t1
= u

∂u

∂t0
+

1

12

∂3u

∂t3
0

Generalization: Kontsevich-Penner model - Open intersection
numbers (Alexandrov [2015], Safnuk [2016]):

Z [Q, ti ] = (det Λ)Q
∫

dM exp

(
−1

2
Tr(MΛM) +

1

3
Tr(M3)− Q lnM

)
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Orthogonal polynomials and RHP formulation

Define Pn the monic orthogonal polynomials:∫
R
Pm(x)Pn(x)e−

V (x)
2 = hnδn,m , V (x) =

r∑
j=0

ujx
j

and ψn(x) = 1√
hn
Pn(x)e

V (x)
2 and ψ̃n = Cauchy(ψn)

Matrix Ψn(x) =

(
ψn ψ̃n

ψn−1 ψ̃n−1

)
satisfies

∂xΨn(x ,u) = Dn(x ,u)Ψn(x ,u) , ∂uj Ψn(x ,u) = Un,j(x ,u)Ψn(x ,u)

with Dn and Un,j polynomials in x .

Ψn has a Riemann-Hilbert-Problem characterization: analytic
properties and jump discontinuity, asymptotics at ∞ in complement
of the previous differential systems.
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Key ingredients

Christoffel-Darboux kernel: K (z1, z2) = ψn−1(z1)ψ̃n(z2)−ψn(z1)ψ̃n−1(z2)
z1−z2

.

Hermitian matrix integrals may be rewritten as Fredholm
determinants of integral operators of the kernel (Tracy and Widom
[1994]).

Specific cases (double-scaling limits) include: Airy kernel, Sine
kernel, Pearcey kernel, etc.

Large N asymptotics ⇔ Large N asymptotics of Fredholm
determinants ⇔ Large N asymptotics of RHP (steepest descent
method).

Well-known generalization for two-matrix models: P(x , y) = 0 with
arbitrary degree in y , bi-orthogonal polynomials, d × d RHP
problems.

Generalization when potentials are rational functions: V ∈ C (X ).

Generalization for hard edges (constrained eigenvalues support).
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Facing both methods

Common starting point: limiting eigenvalues density ρ∞ ⇔
Classical spectral curve P(x , y) = 0

Analytic (RHP) solutions vs Formal (Top. Rec.) solutions

Can we built linear differential equations using only the topological
recursion approach: 1

N ∂xΨN = DNΨN?

Would give a quantum curve (~↔ 1
N ): P̂(~∂x , x)Ψ1,1 = 0.

Some known examples: Airy curve y2 = x , semi-circle: y2 = x2 − 1
(Dumitrescu and Mulase [2016]).

Relation with Painlevé equations and exact WKB expansions (Iwaki
and Saenz [2016],Takei)

Description of the integrable structure (Lax formulation) and the
RHP problem?
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Topological Recursion
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Initial data

Initial data: “classical spectral curve”:
1 Σ Riemann surface of genus g .
2 Symplectic basis of non-trivial cycles (Ai ,Bi )i≤g on Σ.
3 Two meromorphic functions x(z) et y(z), z ∈ Σ such that:
⇒ P(x , y) = 0, with P monic polynomial in y , rational in x

4 A symmetric bi-differential form ω0,2 on Σ× Σ such that
ω0,2(z1, z2) ∼

z2→z1

dz1 dz2
(z1−z2)2 + reg with vanishing A-cycles integrals.

Regularity conditions:
1 Ramification points (dx(ai ) = 0) are simple zeros of dx . ⇒ existence

of a local involution σ such that x(z) = x(σ(z)) around any
ramification points.

2 Ramification points are not finite poles of P.

Topological Recursion gives by recursion n-forms (ωh,n)n≥1,h≥0

(known as “Eynard-Orantin differentials”) and numbers
(ωh,0)h≥0 (known as “free energies” or “symplectic

invariants”).
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Topological recursion 2

Recursion formula: ((ai )1≤i≤r ramification points)

ωh,n+1(z , zn) =
r∑

i=1

Res
q→ai

dEq(z)

(y(q)− y(q̄))dx(q)

[
ωh−1,n+2(q, q, zn)

+
∑

m∈J0,hK , I⊂zn
(m,|I |) 6=(0,1)

ωm,|I |+1(q, I )ωg−m,|zn\I |+1(q, zn \ I )
]

where dEq(z) = 1
2

∫ q̄

q
ω0,2(q, z).

“Free energies” (ωh,0)h≥2 given by:

ωh,0 =
1

2− 2h

r∑
i=1

Res
q→ai

Φ(q)ωh,1(q) where Φ(q) =

∫ q

ydx

Specific formulas for ω0,0 and ω1,0
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Remarks and properties of TR

Initially designed to provide formal solutions in Hermitian RMT
but sufficient conditions (Borot and Guionnet [2011], Borot et al.
[2014]) are known to provide exact asymptotics solutions.

Only valid for regular spectral curves

Many existing generalizations: blobbed (Borot and Shadrin
[2015]), irregular curves (Do and Norbury [2018]), Lie algebras
(Belliard et al. [2018]), Airy structures (Kontsevich and Soibelman
[2017]), etc.

Many applications in enumerative geometry (Eynard [2016]), RMT
(Eynard et al. [2018]), Toeplitz determinants (Marchal [2019]), etc.

Initial Eynard-Orantin formulation is sufficient for our purpose.
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Quantization of hyper-elliptic spectral curves
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Literature on quantization of spectral curves via TR

Conditions on linear differential systems to be reconstructed from
TR: Bergère and Eynard [2009], Bergère et al. [2015]

Examples for genus 0 cases: Painlevé equations: Iwaki and Marchal
[2014], Iwaki et al. [2018]

General genus 0 case: Marchal and Orantin [2020]

Examples of quantum curves and exact WKB: Iwaki and Saenz
[2016], Bouchard and Eynard [2017]

General hyper-elliptic case, arbitrary genus: Marchal and
Orantin [2019]

In progress with B. Eynard, E.Garcia-Failde and N. Orantin:
Arbitrary degree, arbitrary genus.
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Quadratic differentials with prescribed pole structure

Definition

Let n ≥ 0 and let (Xν)nν=1 be a set of distinct points on Σ0 = P1 with
Xν 6=∞, for ν = 1, . . . , n. We define the divisor

D =
n∑
ν=1

rν(Xν) + r∞(∞)

Let Q(P1,D) be the space of quadratic differentials on P1 such that
any φ ∈ Q(P1,D) has a pole of order 2rν at the finite pole
Xν ∈ Pfinite and a pole of order 2r∞ or 2r∞ − 1 at infinity.

Remark

Up to reparametrization, ∞ is always part of the divisor. Infinity may
be a pole of odd degree (i.e. a ramification point in what to follow) but
all other finite poles are even degree.



Motivation using Matrix Models Topological Recursion Quantization of hyper-elliptic spectral curves Remarks and open questions References

Quadratic differentials with prescribed pole structure 2

Q(P1,D)

Let x be a coordinate on C ⊂ P1. Any quadratic differential
φ ∈ Q(P1,D) defines a compact Riemann surface Σφ by

Σφ :=

{
(x , y) ∈ C× C / y2 =

φ(x)

(dx)2

}
φ(x)
(dx)2 is a meromorphic function on P1, i.e. a rational function of x .

Classical spectral curve associated to φ

For any φ ∈ Q(P1,D), we shall call “classical spectral curve”
associated to φ the Riemann surface Σφ defined as a two-sheeted cover
x : Σφ → P1. Generically, it has genus g(Σφ) = r − 3 where

r =
n∑
ν=1

rν + r∞
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Quadratic differentials with prescribed pole structure 3

Branchpoints

Σφ is branched over the odd zeros of φ and ∞ if ∞ is a pole of odd
degree. We define:{

b+
ν , b

−
ν

}
:= x−1 (Xν) for ν = 1, . . . , n{

b+
∞, b

−
∞
}

:= x−1 (∞) if ∞ pole of even degree

or {b∞} := x−1 (∞) if ∞ pole of odd degree

Filling fractions

Let η = φ
1
2 . We define the vector of filling fractions ε:

∀ j ∈ J1, gK : εj =

∮
Aj

η.

and its dual ε∗ by:

∀ j ∈ J1, gK : ε∗j =
1

2πi

∮
Bj
η.
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Spectral Times

Definition (Spectral Times)

Given a divisor D, a singular type T is the data of

a formal residue Tp at each finite pole and at p = b±ν satisfying Tb+
ν

= −T
b−ν

;

an irregular type given by a vector (Tp,k )
rp−1
k=1 at each pole p ∈ P satisfying

Tb+
ν ,k

= −T
b−ν ,k

.

For such a singular type T, let Q(P1,D,T) ⊂ Q(P1,D) be the space of quadratic

differentials φ ∈ Q(P1,D) such that η = φ
1
2 satisfies

∀ b±ν , η =

rbν∑
k=1

T
b±ν ,k

dx

(x − Xν)k
+ O (dx)

η =

r∞∑
k=1

T
b±∞,k

(x−1)−kd(x−1) + O(d(x−1)) = −
r∞∑
k=1

T
b±∞,k

xk−2dx + O(x−2dx)

if ∞ pole of even degree or

η =

r∞∑
k=1

Tb∞,kx
k−1d(x−

1
2 ) = −

r∞∑
k=1

Tb∞,k

2
xk−

5
2 dx

if ∞ pole of odd degree.
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Decomposition on Q(P1,D,T): Notation

We denote [f (x)]∞,+ (resp. [f (x)]Xν ,−) the positive part of the
expansion in x of a function f (x) around ∞, including the constant
term, (resp. the strictly negative part of the expansion in x − Xν
around Xν) .

We define K∞ = J2, r∞ − 2K and for all k ∈ K∞:

U∞,k(x) := (k − 1)
r∞∑

l=k+2

T∞,l x
l−k−2

if ∞ pole of even degree and

U∞,k(x) :=

(
k − 3

2

) r∞∑
l=k+2

T∞,l x
l−k−2

if ∞ pole of odd degree.

Kν = J2, rν + 1K and for all k ∈ Kν :

Uν,k(x) := (k − 1)
rν∑

l=k−1

Tν,l (x − Xν)−l+k−2



Motivation using Matrix Models Topological Recursion Quantization of hyper-elliptic spectral curves Remarks and open questions References

Decomposition on Q(P1,D,T)

Lemma (Variational formulas)

A quadratic differential φ ∈ Q(P1,D,T) reads φ = fφ(x)(dx)2 with

fφ =

[(
r∞∑
k=1

T∞,kx
k−2

)2]
∞,+

+
n∑
ν=1

[(
rν∑
k=1

Tν,k
dx

(x − Xν)k

)2]
Xν ,−

+
∑

k∈K∞

U∞,k(x)
∂ω0,0

∂T∞,k
+

n∑
ν=1

∑
k∈Kν

Uν,k(x)
∂ω0,0

∂Tν,k

if ∞ pole of even degree and

fφ =

[(
r∞∑
k=2

T∞,k
2

xk− 5
2

)2]
∞,+

+
n∑
ν=1

[(
rν∑
k=1

Tν,k
dx

(x − Xν)k

)2]
Xν ,−

+
∑

k∈K∞

U∞,k(x)
∂ω0,0

∂T∞,k
+

n∑
ν=1

∑
k∈Kν

Uν,k(x)
∂ω0,0

∂Tν,k

if ∞ pole of odd degree
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Perturbative partition function

Definition (Perturbative partition function)

Given a classical spectral curve Σ, one defines the perturbative
partition function as a function of a formal parameter ~ as

Z pert(~,Σ) := exp

( ∞∑
h=0

~2h−2ωh,0(Σ)

)
.

where ωh,0(Σ) are the Eynard-Orantin free energies associated to Σ.
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Perturbative wave functions 1

Definition ((Fh,n)h≥0,n≥1 by integration of the correlators)

For n ≥ 1 and h ≥ 0 such that 2h − 2 + n ≥ 1, let us define

Fh,n(z1, . . . , zn) =
1

2n

∫ z1

σ(z1)

. . .

∫ zn

σ(zn)

ωh,n

where one integrates each of the n variables along paths linking two
Gallois conjugate points inside a fundamental domain cut out by the
chosen symplectic basis (Aj ,Bj)1≤j≤g .

For (h, n) = (0, 1) we define:

F0,1(z) :=
1

2

∫ z

σ(z)

η

For (h, n) = (0, 2) regularization is required:

F0,2(z1, z2) :=
1

4

∫ z1

σ(z1)

∫ z2

σ(z2)

ω0,2 −
1

2
ln (x(z1)− x(z2))
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Perturbative wave functions 2

Definition (Definition of the perturbative wave functions)

We define first:

S±−1(λ) := ±F0,1(z(λ))

S±0 (λ) :=
1

2
F0,2(z(λ), z(λ))

∀ k ≥ 1 , S±k (λ) :=
∑

h≥0,n≥1
2h−2+n=k

(±1)n

n!
Fh,n(z(λ), . . . , z(λ))

where for λ ∈ P1, we define z(λ) ∈ Σφ as the unique point such that

x(z(λ)) = λ and y(z(λ))dx(z(λ)) =
√
φ(λ). The perturbative wave

functions ψ± by:

ψ±(λ, ~,Σ) := exp

∑
k≥−1

~kS±k (λ)
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Remarks

Standard definitions used by K. Iwaki for Painlevé 1.

Formulas do not require restriction to Q(P1,D,T) but are
well-defined for any classical spectral curve.

S± = ln(ψ±) are somehow more natural than ψ±.

ψ± do not have nice monodromy properties
1 For i ∈ J1, gK, the function ψ±(λ, ~, ε) has a formal monodromy

along Ai given by

ψ±(λ, ~, ε) 7→ e±2πi
εi
~ ψ±(λ, ~, ε).

2 For i ∈ J1, gK, the function ψ±(λ, ~, ε) has a formal monodromy
along Bi given by

ψ±(λ, ~, ε) 7→ Z pert(~, ε± ~ ei )

Z pert(~, ε)
ψ±(λ, ~, ε± ~ ei )

Necessity of non-perturbative corrections (already known in the
exact WKB literature).
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Non-perturbative quantities

Definition

We define the non-perturbative partition function via discrete Fourier
transform:

Z (~,Σ,ρ) :=
∑
k∈Zg

e

2πi
~

g∑
j=1

kjρj

Z pert(~, ε + ~k)

and the non-perturbative wave function:

Ψ±(λ, ~,Σ,ρ) :=

∑
k∈Zg

e

2πi
~

g∑
j=1

kjρj

Z pert(~, ε + ~k) ψ±(λ, ~, ε + ~k)

Z (~,Σ,ρ)
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Remarks

Definitions similar to those of K. Iwaki for Painlevé 1 (genus 1)

Discrete Fourier transforms of perturbative quantities

Provide good monodromy properties (see next slide)

Dependence in ~ is no longer WKB: trans-series in ~:

Z (~,Σ,ρ) = Z pert(~,Σ)
∞∑

m=0

~mΘm(~,Σ,ρ)

Ψ±(λ, ~,Σ,ρ) = ψ±(λ, ~,Σ)

∞∑
m=0

~m Ξm(λ, ~,Σ,ρ)

∞∑
m=0

~m Θm(~,Σ,ρ)

Coefficients Θm(~,Σ,ρ), Ξm(λ, ~,Σ,ρ) finite linear combinations of
derivatives of Theta functions.
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Monodromy properties

For j ∈ J1, gK, Ψ±(λ,Σ,ρ) has a formal monodromy along Aj given
by

Ψ±(λ,T, ε,ρ) 7→ e±2πi
εj
~ Ψ±(λ,Σ,ρ).

For j ∈ J1, gK, Ψ±(λ,Σ,ρ) has a formal monodromy along Bj given
by

Ψ±(λ,T, ε,ρ) 7→ e∓2πi
ρj
~ Ψ±(λ,Σ,ρ).
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Wronskian

Wronskian

Let φ ∈ Q(P1,D,T) defining a classical spectral curve Σφ. Then, the
Wronskian W (λ; ~) = ~(Ψ−∂λΨ+ −Ψ+∂λΨ−) is a rational function of
the form:

W (λ; ~) = w(T, ~)
Pg (λ)

n∏
ν=1

(λ− Xν)rbν

= w(T, ~)

g∏
i=1

(λ− qi )

n∏
ν=1

(λ− Xν)rbν

with Pg a monic polynomial of degree g .

Remark

We denote (qi )i≤g the simple zeros of the Wronskian and (pi )i≤g by:

∀ i ∈ J1, gK : pi =
∂ log Ψ+

∂λ

∣∣∣∣
λ=qi

=
∂ log Ψ−
∂λ

∣∣∣∣
λ=qi

.
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Quantum curve

Quantum Curve

The non-perturbative wave functions Ψ± satisfy a linear second order
PDE with rational coefficients:[

~2 ∂
2

∂λ2
− ~2R(λ)

∂

∂λ
− ~Q(λ)−H(λ)

]
Ψ±(λ; ~) = 0

with R(λ) = ∂ log W (λ)
∂λ and

H(λ) =

~2
∑

k∈K∞

U∞,k(λ)
∂

∂Tb∞,k
+ ~2

n∑
ν=1

∑
k∈Kbν

Ubν ,k(λ)
∂

∂Tbν ,k


[
logZ(T, ε,ρ)− ~−2ω0,0

]
+ y 2(λ)

Q(λ) =

g∑
j=1

pj
λ− qj

+
~
2

[ ∑
k∈K∞

U∞,k(λ)
∂(S+(λ)− S−(λ))

∂T∞,k

]
∞,+

+
~
2

n∑
ν=1

[∑
k∈Kν

Uν,k(λ)
∂(S+(λ)− S−(λ))

∂Tν,k

]
Xν ,−



Motivation using Matrix Models Topological Recursion Quantization of hyper-elliptic spectral curves Remarks and open questions References

Quantum curve 2

Additional relations

The pairs (qi , pi ) satisfy ∀ i ∈ J1, gK:

p2
i = H(qi )−~pi

∑
j 6=i

1

qi − qj
−

n∑
ν=1

rν

qi − Xν

 ∂ log Ψ+(λ)

∂λ

∣∣∣∣
λ=qj

+

∂
(
Q(λ)− pi

λ−qi

)
∂λ


λ=qi

Asymptotics S±(λ) are given by:

S±(λ) = ∓
1

~

rbν∑
k=2

Tbν ,k

k − 1

1

(λ− Xν)k−1
±

1

~
Tbν ,1 log(λ− Xν) +

∞∑
k=0

A±ν,k (λ− Xν)k

S±(λ) = ∓
1

~

r∞∑
k=2

Tb∞,k

k − 1
λk−1 ∓

1

~
Tb∞,1 log(λ)−

log λ

2
+
∞∑
k=0

A±∞,kλ
−k

or

S±(λ) = ∓
1

~

r∞∑
k=2

Tb∞,k

2k − 3
λ

2k−3
2 ∓

1

~
Tb∞,1 log(λ)−

log λ

4
+
∞∑
k=0

A±∞,kλ
− k

2

Thus,

Q(λ) =

g∑
j=1

pj

λ− qj
+

r∞−4∑
k=0

Q∞,kλ
k +

n∑
ν=1

rν+1∑
k=1

Qν,k

(λ− Xν)k
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Linearization and ~-deformed spectral curve

Linearize the quantum curve, i.e. choose

~Ψ± =

(
Ψ±

α(λ)Ψ± + β(λ)∂λΨ±

)
to have a 2× 2 system

~∂λ~Ψ±(λ) = L(λ)~Ψ±(λ) =

(
P(λ) M(λ)
W (λ) −P(λ)

)
~Ψ±(λ)

Define the ~-deformed spectral curve: det(y I2 − L(λ)) = 0

y2(λ) = H(λ) + ~
g∑

j=1

pj

λ− qj
+

~2

2

 ∑
k∈K∞

U∞,k (λ)
∂(S+(λ) + S−(λ))

∂T∞,k


∞,+

+
~2

2

n∑
ν=1

∑
k∈Kν

Uν,k (λ)
∂(S+(λ) + S−(λ))

∂Tν,k


Xν ,−

+ ~
∂P(λ)

∂λ

−~
∂ log W (λ)

∂λ
P(λ)
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Additional material 2

Write the time differential systems

∂Tν,k
~Ψ± = Rν,k(λ)~Ψ±

Define isomonodromic times tν,k and the map (Tν,k)ν,k → (tν,k)ν,k
and the differential systems ∂tν,k

~Ψ± = Lν,k(λ)~Ψ±

Connected to the problem isospectral → isomonodromic: Existence

of times t such that δL(λ)
δt = ∂Lt

∂λ where δ is the variation to explicit
dependence on t only.

Define g Hamiltonians (Hj(q1, . . . , qg , p1, . . . , pg , ~))1≤j≤g so that
~-deformed Hamilton’s equations are satisfied:

∀ (i , j) ∈ J1, gKg : ~ ∂tqi =
∂Hj

∂pi
and ~ ∂tpj = −∂Hj

∂qi

Apply to all Painlevé equations and their hierarchies.
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Example on Painlevé 2

Corresponds to n = 0, n∞ = 0 and r∞ = 4: Family of classical
spectral curves:

y2 = T 2
∞,4x

4 + 2T∞,3T∞,4x
3 +

(
T 2
∞,3 + 2T∞,4T∞,2

)
x2

+ [2T∞,3T∞,2 + 2T∞,4T∞,1] x + H0

Quantum curve reads:

0 =
[
~2 ∂

2

∂x2
− ~2

x − q

∂

∂x
− ~p

x − q
− T 2

∞,4x
4 − 2T∞,3T∞,4x

3

−
(
T 2
∞,3 + 2T∞,4T∞,2

)
x2

− [2T∞,3T∞,2 + 2T∞,4T∞,1] x − H0 − ~T∞,4q
]
Ψ±(x)
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Example on Painlevé 2

Hamiltonian H0 is given by:

H0 = p2 − T 2
∞,4q

4 − 2T∞,3T∞,4q
3 −

(
T 2
∞,3 + 2T∞,4T∞,2

)
q2

−
[

2T∞,3T∞,2 + 2T∞,4

(
T∞,1 +

~
2

)]
q

Define t∞,1 = 2T∞,2, Darboux coordinates (q, p) satisfy
Hamiltonian equations:

2~
∂p

∂t∞,1
=
∂H0

∂q
and 2~

∂q

∂t∞,1
= −∂H0

∂p
.

Recovers the standard Painlevé 2 by setting T∞,4 = 1, T∞,3 = 0,
T∞,1 = −θ

~2 ∂2q

∂t2
∞,1

= 2q + t∞,1q +
~
2
− θ.
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Remarks and open questions
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Summary

1 Given classical spectral curve ⇒ Top. Rec. (ωh,n(z1, . . . , zn))h≥0,n≥0

2 (ωn,h)n≥0,h≥0(z1, . . . , zn) ⇒ Wave function

ψpert = e
∫ z ...

∫ z (−1)n

2n ωn,h~n+2h−2

3 Discrete Fourier transform of ψpert ⇒ ψnon-pert

4 Define ~Ψ = (ψnon-pert, ∂λψ
non-pert, . . . , (∂λ)d−1ψnon-pert). Satisfy a

companion-like linear differential system ⇒ Quantum spectral curve.

5 Fix the gauge to remove apparent pole singularities

6 Connect deformations of the coefficients of the classical spectral
curves (family of spectral curves with prescribed pole structure and
fixed genus) with isomonodromic deformations.
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Remarks for the hyper-elliptic case

Genus 0 curves ⇒ No Fourier transform (standard WKB expansions)
⇒ Reconstruction via Topological Type property possible.

Isomonodromic times differ from spectral times (naturally arising in
the spectral curve and topological recursion). ⇒ creates technical
complications.

Standard gauge choice for the 2× 2 matrix system is usually not
companion-like to avoid apparent singularities.

These technical issues have been solved in the hyper-elliptic case.
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Open questions and future works

Connection with isomonodromic deformations is missing in the
general setting (non-hyper-elliptic).

Deformations of the classical spectral curves with fixed genus are
problematic in the loop equations.

Technical assumptions like non-degenerate ramification points, poles
6= ramification points should be lifted but requires technical
computations.

Analytic properties of Ψ: Description of the associated RHP to be
done.

Connection with orthogonal polynomials in the case of RMT ?
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