Topological Recursion

Quantization of hyper-elliptic spectral curve

Remarks and open questions Reference

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantization of spectral curves via topological recursion

Marchal Olivier

Université Jean Monnet St-Etienne, France Institut Camille Jordan, Lyon, France

November 18th 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Motivation using Matrix Models

- Historical approach in random matrices
- Perturbative approach
- Non-perturbative approach: RHP

2 Topological Recursion

- Definition
- Remarks and properties

Quantization of hyper-elliptic spectral curves

- General setting
- Perturbative quantities
- Non-perturbative quantities
- Results for $\phi \in \mathcal{Q}(\mathbb{P}^1, D, \mathbf{T})$
- Example on Painlevé 2

A Remarks and open questions

Topological Recursion

Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference

General position of the talk

General problem

How to quantize a "classical spectral curve" ([y, x] = 0)

P(x, y) = 0, P rational in x, monic polynomial in y

into a linear differential equation $([\hbar \partial_x, x] = \hbar)$:

$$\hat{P}\left(x,\hbar\frac{d}{dx}\right)\psi(x,\hbar)=0?$$

 \hat{P} rational in x with same pole structure as P.

Key ingredients

Key ingredient 1: Topological recursion (Eynard and Orantin [2007]). Key ingredient 2: Isomonodromic deformations, integrable systems, Lax pairs:

$$\hbar \frac{\partial}{\partial x} \Psi(x,\hbar,t) = L(x,\hbar,t) \Psi(x,\hbar,t) , \ \hbar \frac{\partial}{\partial t} \Psi(x,\hbar,t) = R(x,\hbar,t) \Psi(x,\hbar,t)$$

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
00000000	0000	000000000000000000000000000000000000000	0000	

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Topological Recursion

Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference

Eigenvalues correlation functions

- Let $Z_N = \int_{\mathcal{H}_N} dM_N e^{-N \operatorname{Tr} V(M_N)}$ with V(z) monic polynomial potential of even degree.
- Eigenvalues correlation functions (Stieltjes transforms):

$$W_{1}(x) = \left\langle \sum_{i=1}^{N} \frac{1}{x - \lambda_{i}} \right\rangle_{N}$$
$$W_{2}(x_{1}, x_{2}) = \left\langle \sum_{i,j=1}^{N} \frac{1}{(x_{1} - \lambda_{i})(x_{2} - \lambda_{j})} \right\rangle_{N} - W_{1}(x_{1})W_{1}(x_{2})$$
$$W_{p}(x_{1}, \dots, x_{p}) = \left\langle \sum_{i_{1},\dots,i_{p}}^{N} \frac{1}{x_{1} - \lambda_{i_{1}}} \cdots \frac{1}{x_{p} - \lambda_{i_{p}}} \right\rangle_{N,\text{cumulant}}$$

- Generating series of joint moments $\left\langle \sum_{i=1}^{N} \lambda_{i}^{k} \right\rangle_{N}$, $\left\langle \sum_{i,j=1}^{N} \lambda_{i}^{r} \lambda_{j}^{s} \right\rangle_{N}$
 - (Mehta [2004]).
- Hermitian case: Correlation functions satisfy algebraic relations known as loop equations, Schwinger-Dyson equations, Virasoro constraints, etc.

otivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
00000000	0000	000000000000000000000000000000000000000	0000	

Loop equations

• Let:

$$P_p(x_1; x_2, \dots, x_p) = \left\langle \sum_{i_1, \dots, i_p} \frac{V'(x_1) - V'(\lambda_{i_1})}{x_1 - \lambda_{i_1}} \frac{1}{x_2 - \lambda_{i_2}} \cdots \frac{1}{x_p - \lambda_{i_p}} \right\rangle_{N, \text{cumulant}}$$

• Loop equations (notation $L_p = \{x_2, \ldots, x_p\}$):

$$\begin{aligned} -P_1(x) &= W_1^2(x) - V'(x)W_1(x) + \frac{1}{N^2}W_2(x,x) \\ P_p(x_1; L_p) &= (2W_1(x_1) - V'(x_1))W_p(L_p) + \frac{1}{N^2}W_{p+1}(x_1, x_1, L_p) \\ &+ \sum_{I \subset L_p} W_{|I|+1}(x_1, L_I)W_{p-|I|}(x_1, L_{J \setminus I}) \\ &- \sum_{j=2}^p \frac{\partial}{\partial x_j} \frac{W_{p-1}(L_p) - W_{p-1}(x_1, L_p \setminus \{x_j\})}{x_1 - x_j} \end{aligned}$$

• Property: $x \mapsto P_p(x; L_p)$ is a polynomial. Is it enough to solve the equations and find $(W_p)_{p \ge 1}$?

Limiting eigenvalues density

• Under mild assumptions on the potential V:

$$d
u_N = rac{1}{N} \sum_{i=1}^N \delta(x - \lambda_i) \stackrel{\text{law}}{\underset{N o \infty}{
ightarrow}} d
u_\infty =
ho_\infty(x) dx$$

- ρ_{∞} compactly supported on union of intervals.
- Stieljes transform $[\rho_{\infty}(x)dx] \equiv y(x)dx$ is algebraic: $y^2 = P(x) \Rightarrow$ Provides a classical spectral curve for TR.

- Number of intervals in the support \Leftrightarrow genus of the spectral curve
- May be regular or singular

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
0000000000	0000	000000000000000000000000000000000000000	0000	
e – 1 – 1 – 1				

Formal solutions

• $Z_N = \int_{\mathcal{H}_N} dM_N e^{-N \operatorname{Tr} V(M_N)}$. Assume formal series expansions in $\frac{1}{N}$:

$$F_N \stackrel{\text{def}}{=} \ln Z_N = \sum_{g=0}^{\infty} F^{(g)} \left(\frac{1}{N}\right)^{2g-2}$$
$$W_p(x_1, \dots, x_p) = \sum_{g=0}^{\infty} \omega_p^{(g)}(x_1, \dots, x_p) \left(\frac{1}{N}\right)^{p+2g-2}$$

• May also work for additional parameters:

$$Z_N[t_4] = \int_{\mathcal{H}_N} dM_N e^{-\frac{N}{2}\operatorname{Tr}(M_N^2) - \frac{t_4}{4}N\operatorname{Tr}(M_N^4)}$$

We may consider formal series of the form:

$$\ln Z_N[t_4] = \sum_{g=0}^{\infty} \sum_{\nu=0}^{\infty} F^{(g,\nu)}(t_4)^{\nu} \left(\frac{1}{N}\right)^{2g-2} + \text{similar dev. for } W_p$$

● Allow to solve recursively the loop equations.

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference

(a)

Applications in combinatorics

• Interesting in combinatorics:

$$Z_N[t_4] = \int_{\mathcal{H}_N} dM_N e^{-\frac{N}{2}\operatorname{Tr}(M_N^2) - \frac{t_4}{4}N\operatorname{Tr}(M_N^4)}$$

Perturbative series expansion in $t_4 \Rightarrow$ enumeration of fat ribbon graph (similar to Feynman expansion):

 $F^{(g,v)}$ count the number of such connected graphs with v vertices (4 legs) and of genus g:

$$\ln Z_N[t_4] = \sum_{\mathcal{G} = 4-\text{ribbon graph}} \frac{1}{|\text{Aut }\mathcal{G}|} t_4^{\#\nu(\mathcal{G})} \left(\frac{1}{N}\right)^{-\chi(\mathcal{G})}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Topological Recursion

Quantization of hyper-elliptic spectral curve

Remarks and open questions Reference

Applications in geometry

• Kontsevich integral: Intersection theory of Riemann surfaces moduli spaces (Kontsevich [1992]):

$$\langle \tau_{d_1} \dots \tau_{d_n} \rangle = \int_{\tilde{\mathcal{M}}_{g,n}} \psi_1^{d_1} \dots \psi_n^{d_n}, \, \mathcal{F}[t_0, t_1, \dots] = \sum_{(\mathbf{k})} \left\langle \tau_0^{k_0} \tau_1^{k_1} \dots \right\rangle \prod_{i=0}^{\infty} \frac{t_i^{k_i}}{k_i!}$$

may be computed through the **formal expansion** of the Kontsevich integral of $F = \ln Z$ with:

$$Z[t_0, t_1, \ldots] \propto \int dM \exp\left(-rac{1}{2}\operatorname{Tr}(M\Lambda M) + rac{i}{3!}\operatorname{Tr}(M^3)
ight)$$

and $t_i = -(2i - 1)!! \operatorname{Tr}(\Lambda^{-(2i-1)})$, Λ positive definite Herm. matrix. • <u>Remark</u>: $F[t_0, t_1, ...]$ in connection with KdV equation:

$$u \stackrel{\text{def}}{=} \frac{\partial^2 F}{\partial t_0^2} \text{ satisfies } \frac{\partial u}{\partial t_1} = u \frac{\partial u}{\partial t_0} + \frac{1}{12} \frac{\partial^3 u}{\partial t_0^3}$$

<u>Generalization</u>: Kontsevich-Penner model - Open intersection numbers (Alexandrov [2015], Safnuk [2016]):

$$Z[Q, t_i] = (\det \Lambda)^Q \int dM \exp\left(-\frac{1}{2}\operatorname{Tr}(M\Lambda M) + \frac{1}{3}\operatorname{Tr}(M^3) - Q \ln M\right)$$

00000000000	0000	000000000000000000000000000000000000000	0000	
	- 1		. •	

Orthogonal polynomials and RHP formulation

• Define *P_n* the monic orthogonal polynomials:

$$\int_{\mathbb{R}} P_m(x) P_n(x) e^{-\frac{V(x)}{2}} = h_n \delta_{n,m} , V(x) = \sum_{j=0}^r u_j x^j$$

and
$$\psi_n(x) = \frac{1}{\sqrt{h_n}} P_n(x) e^{\frac{V(x)}{2}}$$
 and $\tilde{\psi}_n = \text{Cauchy}(\psi_n)$
• Matrix $\Psi_n(x) = \begin{pmatrix} \psi_n & \tilde{\psi}_n \\ \psi_{n-1} & \tilde{\psi}_{n-1} \end{pmatrix}$ satisfies

 $\partial_x \Psi_n(x, \mathbf{u}) = \mathcal{D}_n(x, \mathbf{u}) \Psi_n(x, \mathbf{u}) , \ \partial_{u_j} \Psi_n(x, \mathbf{u}) = \mathcal{U}_{n,j}(x, \mathbf{u}) \Psi_n(x, \mathbf{u})$

with \mathcal{D}_n and $\mathcal{U}_{n,j}$ polynomials in x.

• Ψ_n has a **Riemann-Hilbert-Problem** characterization: analytic properties and jump discontinuity, asymptotics at ∞ in complement of the previous differential systems.

Kov ingradiar)tc			
00000000000				
Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References

- Christoffel-Darboux kernel: $K(z_1, z_2) = \frac{\psi_{n-1}(z_1)\tilde{\psi}_n(z_2) \psi_n(z_1)\tilde{\psi}_{n-1}(z_2)}{z_1 z_2}$.
 - Hermitian matrix integrals may be rewritten as Fredholm determinants of integral operators of the kernel (Tracy and Widom [1994]).
 - Specific cases (double-scaling limits) include: Airy kernel, Sine kernel, Pearcey kernel, etc.
 - Large N asymptotics ⇔ Large N asymptotics of Fredholm determinants ⇔ Large N asymptotics of RHP (steepest descent method).
 - Well-known generalization for two-matrix models: P(x, y) = 0 with arbitrary degree in y, bi-orthogonal polynomials, $d \times d$ RHP problems.
 - Generalization when potentials are rational functions: $V \in \mathbb{C}(X)$.
 - Generalization for hard edges (constrained eigenvalues support).

Topological Recursion 0000 Quantization of hyper-elliptic spectral curve

Remarks and open questions Reference

Facing both methods

- Common starting point: limiting eigenvalues density $\rho_{\infty} \Leftrightarrow$ Classical spectral curve P(x, y) = 0
- Analytic (RHP) solutions vs Formal (Top. Rec.) solutions
- Can we built linear differential equations using only the topological recursion approach: $\frac{1}{N}\partial_x\Psi_N = \mathcal{D}_N\Psi_N$?
- Would give a quantum curve $(\hbar \leftrightarrow \frac{1}{N})$: $\hat{P}(\hbar \partial_x, x) \Psi_{1,1} = 0$.
- Some known examples: Airy curve $y^2 = x$, semi-circle: $y^2 = x^2 1$ (Dumitrescu and Mulase [2016]).
- Relation with Painlevé equations and exact WKB expansions (Iwaki and Saenz [2016], Takei)
- Description of the integrable structure (Lax formulation) and the RHP problem?

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
	0000			

Topological Recursion

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Motivation using Matrix Models	Topological Recursion ○●○○	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
Initial data				

- Initial data: "classical spectral curve":
 - **1** Σ Riemann surface of genus g.
 - **2** Symplectic basis of non-trivial cycles $(\mathcal{A}_i, \mathcal{B}_i)_{i \leq g}$ on Σ .
 - Two meromorphic functions x(z) et y(z), $z \in \Sigma$ such that:
 - $\Rightarrow P(x,y) = 0$, with P monic polynomial in y, rational in x
 - A symmetric bi-differential form $\omega_{0,2}$ on $\Sigma \times \Sigma$ such that $\omega_{0,2}(z_1, z_2) \sim_{z_2 \to z_1} \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{reg with vanishing } \mathcal{A}\text{-cycles integrals.}$
- Regularity conditions:
 - Ramification points (dx(a_i) = 0) are simple zeros of dx. ⇒ existence of a local involution σ such that x(z) = x(σ(z)) around any ramification points.
 - Q Ramification points are not finite poles of P.
- Topological Recursion gives by recursion *n*-forms $(\omega_{h,n})_{n\geq 1,h\geq 0}$ (known as "Eynard-Orantin differentials") and numbers $(\omega_{h,0})_{h\geq 0}$ (known as "free energies" or "symplectic invariants").

Topological Recursion

Quantization of hyper-elliptic spectral curve

Remarks and open questions Reference

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Topological recursion 2

• <u>Recursion formula</u>: $((a_i)_{1 \le i \le r}$ ramification points)

$$\begin{split} \omega_{h,n+1}(z,\mathbf{z}_{\mathbf{n}}) &= \sum_{i=1}^{r} \operatorname{Res}_{q \to a_{i}} \frac{dE_{q}(z)}{(y(q) - y(\bar{q}))dx(q)} \Big[\omega_{h-1,n+2}(q,q,\mathbf{z}_{\mathbf{n}}) \\ &+ \sum_{\substack{m \in [0,h], \ I \subset \mathbf{z}_{\mathbf{n}} \\ (m,|I|) \neq (0,1)}} \omega_{m,|I|+1}(q,I) \, \omega_{g-m,|\mathbf{z}_{\mathbf{n}} \setminus I|+1}(q,\mathbf{z}_{\mathbf{n}} \setminus I) \Big] \end{split}$$

where
$$dE_q(z) = \frac{1}{2} \int_q^q \omega_{0,2}(q, z)$$
.
• "Free energies" $(\omega_{h,0})_{h\geq 2}$ given by:

$$\omega_{h,0} = rac{1}{2-2h}\sum_{i=1}^{r} \mathop{\mathrm{Res}}_{q o a_i} \Phi(q) \, \omega_{h,1}(q) \, \, ext{where} \, \, \Phi(q) = \int^{q} y dx$$

• Specific formulas for $\omega_{0,0}$ and $\omega_{1,0}$

Motivation using Matrix Models 0000000000	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References

Remarks and properties of TR

- Initially designed to provide formal solutions in Hermitian RMT but sufficient conditions (Borot and Guionnet [2011], Borot et al. [2014]) are known to provide exact asymptotics solutions.
- Only valid for regular spectral curves
- Many existing generalizations: blobbed (Borot and Shadrin [2015]), irregular curves (Do and Norbury [2018]), Lie algebras (Belliard et al. [2018]), Airy structures (Kontsevich and Soibelman [2017]), etc.
- Many applications in enumerative geometry (Eynard [2016]), RMT (Eynard et al. [2018]), Toeplitz determinants (Marchal [2019]), etc.

• Initial Eynard-Orantin formulation is sufficient for our purpose.

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
000000000	0000	••••••••••	0000	

Quantization of hyper-elliptic spectral curves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves ○●○○○○○○○○○○○○○○○○○○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Literature on quantization of spectral curves via TR

- Conditions on linear differential systems to be reconstructed from TR: Bergère and Eynard [2009], Bergère et al. [2015]
- Examples for genus 0 cases: Painlevé equations: Iwaki and Marchal [2014], Iwaki et al. [2018]
- General genus 0 case: Marchal and Orantin [2020]
- Examples of quantum curves and exact WKB: Iwaki and Saenz [2016], Bouchard and Eynard [2017]
- General hyper-elliptic case, arbitrary genus: Marchal and Orantin [2019]
- In progress with B. Eynard, E.Garcia-Failde and N. Orantin: Arbitrary degree, arbitrary genus.

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Refe 0000

Quadratic differentials with prescribed pole structure

Definition

Let $n \ge 0$ and let $(X_{\nu})_{\nu=1}^{n}$ be a set of distinct points on $\Sigma_{0} = \mathbb{P}^{1}$ with $X_{\nu} \ne \infty$, for $\nu = 1, \dots, n$. We define the divisor

$$D = \sum_{\nu=1}^{n} r_{\nu}(X_{\nu}) + r_{\infty}(\infty)$$

Let $\mathcal{Q}(\mathbb{P}^1, D)$ be the space of quadratic differentials on \mathbb{P}^1 such that any $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$ has a pole of order $2r_{\nu}$ at the finite pole $X_{\nu} \in \mathcal{P}^{\text{finite}}$ and a pole of order $2r_{\infty}$ or $2r_{\infty} - 1$ at infinity.

Remark

Up to reparametrization, ∞ is always part of the divisor. Infinity may be a pole of odd degree (i.e. a ramification point in what to follow) but all other finite poles are even degree.

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Refe

Quadratic differentials with prescribed pole structure 2

$\mathcal{Q}(\mathbb{P}^1,D)$

Let x be a coordinate on $\mathbb{C} \subset \mathbb{P}^1$. Any quadratic differential $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$ defines a compact Riemann surface Σ_{ϕ} by

$$\Sigma_{\phi} := \left\{ (x,y) \in \overline{\mathbb{C}} imes \overline{\mathbb{C}} / y^2 = rac{\phi(x)}{(dx)^2}
ight\}$$

 $\frac{\phi(x)}{(dx)^2}$ is a meromorphic function on \mathbb{P}^1 , i.e. a rational function of x.

Classical spectral curve associated to ϕ

For any $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$, we shall call "**classical spectral curve**" associated to ϕ the Riemann surface Σ_{ϕ} defined as a two-sheeted cover $x : \Sigma_{\phi} \to \mathbb{P}^1$. Generically, it has genus $g(\Sigma_{\phi}) = r - 3$ where

$$r = \sum_{\nu=1}^{n} r_{\nu} + r_{\infty}$$

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Refer

Quadratic differentials with prescribed pole structure 3

Branchpoints

 Σ_ϕ is branched over the odd zeros of ϕ and ∞ if ∞ is a pole of odd degree. We define:

$$\begin{array}{lll} \left\{ b_{\nu}^{+}, b_{\nu}^{-} \right\} & := & x^{-1} \left(X_{\nu} \right) \text{ for } \nu = 1, \dots, n \\ \left\{ b_{\infty}^{+}, b_{\infty}^{-} \right\} & := & x^{-1} \left(\infty \right) \text{ if } \infty \text{ pole of even degree} \\ \text{ or } \left\{ b_{\infty} \right\} & := & x^{-1} \left(\infty \right) \text{ if } \infty \text{ pole of odd degree} \end{array}$$

Filling fractions

Let $\eta = \phi^{\frac{1}{2}}$. We define the vector of filling fractions ϵ :

$$orall j \in \llbracket 1,g
rbracket \,:\, \epsilon_j = \oint_{\mathcal{A}_j} \eta.$$

and its dual ϵ^* by:

$$\forall j \in \llbracket 1, g \rrbracket : \epsilon_j^* = \frac{1}{2\pi i} \oint_{\mathcal{B}_j} \eta.$$

Notivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
000000000	0000	000000000000000000000000000000000000000	0000	
с <u>, , т</u> .				

Spectral Times

Definition (Spectral Times)

Given a divisor D, a singular type **T** is the data of

- a formal residue T_p at each finite pole and at $p = b_{\nu}^{\pm}$ satisfying $T_{b_{\nu}^{\pm}} = -T_{b_{\nu}^{\pm}}$;
- an *irregular type* given by a vector $(T_{p,k})_{k=1}^{r_p-1}$ at each pole $p \in \mathcal{P}$ satisfying $T_{b_{\nu}^+,k} = -T_{b_{\nu}^-,k}$.

For such a singular type **T**, let $\mathcal{Q}(\mathbb{P}^1, D, \mathbf{T}) \subset \mathcal{Q}(\mathbb{P}^1, D)$ be the space of quadratic differentials $\phi \in \mathcal{Q}(\mathbb{P}^1, D)$ such that $\eta = \phi^{\frac{1}{2}}$ satisfies

$$\forall b_{\nu}^{\pm}, \ \eta = \sum_{k=1}^{r_{b\nu}} T_{b_{\nu}^{\pm},k} \frac{dx}{(x - X_{\nu})^{k}} + O(dx)$$

$$\eta = \sum_{k=1}^{r_{\infty}} T_{b_{\infty}^{\pm},k} (x^{-1})^{-k} d(x^{-1}) + O(d(x^{-1})) = -\sum_{k=1}^{r_{\infty}} T_{b_{\infty}^{\pm},k} x^{k-2} dx + O(x^{-2} dx)$$

$$if \infty \text{ pole of even degree or}$$

$$\eta = \sum_{k=1}^{r_{\infty}} T_{b_{\infty},k} x^{k-1} d(x^{-\frac{1}{2}}) = -\sum_{k=1}^{r_{\infty}} \frac{T_{b_{\infty},k}}{2} x^{k-\frac{5}{2}} dx$$

$$if \infty \text{ pole of odd degree}$$

Remarks and open questions Reference 0000

Decomposition on $\mathcal{Q}(\mathbb{P}^1, D, \mathbf{T})$: Notation

- We denote $[f(x)]_{\infty,+}$ (resp. $[f(x)]_{X_{\nu},-}$) the positive part of the expansion in x of a function f(x) around ∞ , including the constant term, (resp. the strictly negative part of the expansion in $x X_{\nu}$ around X_{ν}).
- We define $K_{\infty} = \llbracket 2, r_{\infty} 2 \rrbracket$ and for all $k \in K_{\infty}$:

$$U_{\infty,k}(x) := (k-1) \sum_{l=k+2}^{r_{\infty}} T_{\infty,l} x^{l-k-2}$$

if ∞ pole of even degree and

$$U_{\infty,k}(x) := \left(k - \frac{3}{2}\right) \sum_{l=k+2}^{r_{\infty}} T_{\infty,l} x^{l-k-2}$$

if ∞ pole of odd degree.

•
$$K_{\nu} = \llbracket 2, r_{\nu} + 1 \rrbracket$$
 and for all $k \in K_{\nu}$:

$$U_{\nu,k}(x) := (k-1) \sum_{l=k-1}^{r_{\nu}} T_{\nu,l} (x - X_{\nu})^{-l+k-2}$$

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference 0000

Decomposition on $\mathcal{Q}(\mathbb{P}^1, D, \mathbf{T})$

Lemma (Variational formulas)

A quadratic differential $\phi \in \mathcal{Q}(\mathbb{P}^1, D, \mathsf{T})$ reads $\phi = f_{\phi}(x)(dx)^2$ with

$$\begin{split} f_{\phi} &= \left[\left(\sum_{k=1}^{r_{\infty}} T_{\infty,k} x^{k-2} \right)^2 \right]_{\infty,+} + \sum_{\nu=1}^n \left[\left(\sum_{k=1}^{r_{\nu}} T_{\nu,k} \frac{dx}{(x-X_{\nu})^k} \right)^2 \right]_{X_{\nu},-} \\ &+ \sum_{k \in K_{\infty}} U_{\infty,k}(x) \frac{\partial \omega_{0,0}}{\partial T_{\infty,k}} + \sum_{\nu=1}^n \sum_{k \in K_{\nu}} U_{\nu,k}(x) \frac{\partial \omega_{0,0}}{\partial T_{\nu,k}} \end{split}$$

if ∞ pole of even degree and

$$f_{\phi} = \left[\left(\sum_{k=2}^{r_{\infty}} \frac{T_{\infty,k}}{2} x^{k-\frac{5}{2}} \right)^2 \right]_{\infty,+} + \sum_{\nu=1}^n \left[\left(\sum_{k=1}^{r_{\nu}} T_{\nu,k} \frac{dx}{(x-X_{\nu})^k} \right)^2 \right]_{X_{\nu,-}} + \sum_{k\in K_{\infty}} U_{\infty,k}(x) \frac{\partial\omega_{0,0}}{\partial T_{\infty,k}} + \sum_{\nu=1}^n \sum_{k\in K_{\nu}} U_{\nu,k}(x) \frac{\partial\omega_{0,0}}{\partial T_{\nu,k}} \right]$$

if ∞ pole of odd degree

Topological Recursion

Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference

Perturbative partition function

Definition (Perturbative partition function)

Given a classical spectral curve Σ , one defines the **perturbative** partition function as a function of a formal parameter \hbar as

$$Z^{\mathsf{pert}}(\hbar,\Sigma) := \exp\left(\sum_{h=0}^\infty \hbar^{2h-2} \omega_{h,0}(\Sigma)
ight).$$

where $\omega_{h,0}(\Sigma)$ are the Eynard-Orantin free energies associated to Σ .

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference 0000

Perturbative wave functions 1

Definition $((F_{h,n})_{h\geq 0,n\geq 1}$ by integration of the correlators)

For $n \ge 1$ and $h \ge 0$ such that $2h - 2 + n \ge 1$, let us define

$$F_{h,n}(z_1,\ldots,z_n)=\frac{1}{2^n}\int_{\sigma(z_1)}^{z_1}\ldots\int_{\sigma(z_n)}^{z_n}\omega_{h,n}$$

where one integrates each of the *n* variables along paths linking two Gallois conjugate points inside a fundamental domain cut out by the chosen symplectic basis $(A_j, B_j)_{1 \le j \le g}$. For (h, n) = (0, 1) we define:

$$F_{0,1}(z) := \frac{1}{2} \int_{\sigma(z)}^{z} \eta$$

For (h, n) = (0, 2) regularization is required:

$$F_{0,2}(z_1, z_2) := \frac{1}{4} \int_{\sigma(z_1)}^{z_1} \int_{\sigma(z_2)}^{z_2} \omega_{0,2} - \frac{1}{2} \ln \left(x(z_1) - x(z_2) \right)$$

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference 0000

Perturbative wave functions 2

Definition (Definition of the perturbative wave functions)

We define first:

$$\begin{split} S_{-1}^{\pm}(\lambda) &:= \pm F_{0,1}(z(\lambda))\\ S_0^{\pm}(\lambda) &:= \frac{1}{2}F_{0,2}(z(\lambda),z(\lambda))\\ k \geq 1\,, \; S_k^{\pm}(\lambda) &:= \sum_{\substack{h \geq 0, n \geq 1\\ 2h-2+n=k}} \frac{(\pm 1)^n}{n!}F_{h,n}(z(\lambda),\ldots,z(\lambda)) \end{split}$$

where for $\lambda \in \mathbb{P}^1$, we define $z(\lambda) \in \Sigma_{\phi}$ as the unique point such that $x(z(\lambda)) = \lambda$ and $y(z(\lambda))dx(z(\lambda)) = \sqrt{\phi(\lambda)}$. The perturbative wave functions ψ_{\pm} by:

$$\psi_{\pm}(\lambda,\hbar,\Sigma):=\exp\left(\sum_{k\geq -1}\hbar^k S_k^{\pm}(\lambda)
ight)$$

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
Remarks				

- Standard definitions used by K. Iwaki for Painlevé 1.
- Formulas do not require restriction to Q(P¹, D, T) but are well-defined for any classical spectral curve.
- $S^{\pm} = \ln(\psi_{\pm})$ are somehow more natural than ψ_{\pm} .
- ψ_\pm do not have nice monodromy properties
 - Sor i ∈ [[1,g]], the function ψ_±(λ, ħ, ϵ) has a formal monodromy along A_i given by

$$\psi_{\pm}(\lambda,\hbar,\epsilon)\mapsto e^{\pm 2\pi i \frac{\epsilon_i}{\hbar}}\psi_{\pm}(\lambda,\hbar,\epsilon).$$

② For i ∈ [[1,g]], the function ψ_±(λ, ħ, ϵ) has a formal monodromy along B_i given by

$$\psi_{\pm}(\lambda,\hbar,\epsilon)\mapsto \frac{Z^{\text{pert}}(\hbar,\epsilon\pm\hbar\,\mathbf{e}_{i})}{Z^{\text{pert}}(\hbar,\epsilon)}\psi_{\pm}(\lambda,\hbar,\epsilon\pm\hbar\,\mathbf{e}_{i})$$

- ロ ト - 4 回 ト - 4 □ - 4

• Necessity of non-perturbative corrections (already known in the exact WKB literature).

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference

Non-perturbative quantities

Definition

We define the non-perturbative partition function via **discrete Fourier transform**:

$$Z(\hbar,\Sigma,oldsymbol{
ho}):=\sum_{\mathbf{k}\in\mathbb{Z}^g}e^{rac{2\pi i}{\hbar}\sum_{j=1}^gk_j
ho_j}Z^{pert}(\hbar,\epsilon+\hbar\mathbf{k})$$

and the non-perturbative wave function:

$$\Psi_{\pm}(\lambda,\hbar,\Sigma,\boldsymbol{\rho}) := \frac{\sum_{\mathbf{k}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum_{j=1}^g k_j \rho_j}}{Z^{pert}(\hbar,\epsilon+\hbar\mathbf{k}) \ \psi_{\pm}(\lambda,\hbar,\epsilon+\hbar\mathbf{k})}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
Remarks				

- Definitions similar to those of K. Iwaki for Painlevé 1 (genus 1)
- Discrete Fourier transforms of perturbative quantities
- Provide good monodromy properties (see next slide)
- Dependence in \hbar is no longer WKB: trans-series in \hbar :

$$Z(\hbar, \Sigma, \rho) = Z^{pert}(\hbar, \Sigma) \sum_{m=0}^{\infty} \hbar^m \Theta_m(\hbar, \Sigma, \rho)$$

$$\Psi_{\pm}(\lambda, \hbar, \Sigma, \rho) = \psi_{\pm}(\lambda, \hbar, \Sigma) \frac{\sum_{m=0}^{\infty} \hbar^m \Xi_m(\lambda, \hbar, \Sigma, \rho)}{\sum_{m=0}^{\infty} \hbar^m \Theta_m(\hbar, \Sigma, \rho)}$$

Coefficients $\Theta_m(\hbar, \Sigma, \rho)$, $\Xi_m(\lambda, \hbar, \Sigma, \rho)$ finite linear combinations of derivatives of Theta functions.

000000000	0000	00000000000 00 00000000	0000	
Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References

Monodromy properties

For j ∈ [[1,g]], Ψ_±(λ, Σ, ρ) has a formal monodromy along A_j given by

$\Psi_{\pm}(\lambda, \mathbf{T}, \boldsymbol{\epsilon}, \boldsymbol{\rho}) \mapsto e^{\pm 2\pi i \frac{\epsilon_j}{\hbar}} \Psi_{\pm}(\lambda, \boldsymbol{\Sigma}, \boldsymbol{\rho}).$

• For $j \in [\![1,g]\!]$, $\Psi_{\pm}(\lambda, \Sigma, \rho)$ has a formal monodromy along \mathcal{B}_j given by

 $\Psi_{\pm}(\lambda,\mathbf{T},\boldsymbol{\epsilon},\boldsymbol{\rho})\mapsto e^{\mp 2\pi i\frac{\rho_{j}}{\hbar}}\Psi_{\pm}(\lambda,\boldsymbol{\Sigma},\boldsymbol{\rho}).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	0000		0000	
Notivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References

Wronskian

Wronskian

Let $\phi \in \mathcal{Q}(\mathbb{P}^1, D, \mathbf{T})$ defining a classical spectral curve Σ_{ϕ} . Then, the Wronskian $W(\lambda; \hbar) = \hbar(\Psi_- \partial_\lambda \Psi_+ - \Psi_+ \partial_\lambda \Psi_-)$ is a rational function of the form:

$$W(\lambda;\hbar) = w(\mathbf{T},\hbar) \frac{P_{g}(\lambda)}{\prod_{\nu=1}^{n} (\lambda - X_{\nu})^{r_{b_{\nu}}}} = w(\mathbf{T},\hbar) \frac{\prod_{i=1}^{g} (\lambda - q_{i})}{\prod_{\nu=1}^{n} (\lambda - X_{\nu})^{r_{b_{\nu}}}}$$

with P_g a monic polynomial of degree g.

Remark

We denote $(q_i)_{i \leq g}$ the simple zeros of the Wronskian and $(p_i)_{i \leq g}$ by:

$$\forall i \in \llbracket 1, g \rrbracket : \ p_i = \left. \frac{\partial \log \Psi_+}{\partial \lambda} \right|_{\lambda = q_i} = \left. \frac{\partial \log \Psi_-}{\partial \lambda} \right|_{\lambda = q_i}.$$

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions
000000000	0000	000000000000000000000000000000000000000	0000

Quantum curve

Quantum Curve

The non-perturbative wave functions Ψ_\pm satisfy a linear second order PDE with rational coefficients:

$$\left[\hbar^2 \frac{\partial^2}{\partial \lambda^2} - \hbar^2 R(\lambda) \frac{\partial}{\partial \lambda} - \hbar Q(\lambda) - \mathcal{H}(\lambda)\right] \Psi_{\pm}(\lambda; \hbar) = 0$$

with
$$R(\lambda) = \frac{\partial \log W(\lambda)}{\partial \lambda}$$
 and

$$\mathcal{H}(\lambda) = \left[\hbar^2 \sum_{k \in K_{\infty}} U_{\infty,k}(\lambda) \frac{\partial}{\partial T_{b_{\infty},k}} + \hbar^2 \sum_{\nu=1}^n \sum_{k \in K_{b_{\nu}}} U_{b_{\nu},k}(\lambda) \frac{\partial}{\partial T_{b_{\nu},k}}\right]$$

$$\left[\log Z(\mathbf{T}, \epsilon, \rho) - \hbar^{-2} \omega_{0,0}\right] + y^2(\lambda)$$

$$Q(\lambda) = \sum_{j=1}^g \frac{p_j}{\lambda - q_j} + \frac{\hbar}{2} \left[\sum_{k \in K_{\infty}} U_{\infty,k}(\lambda) \frac{\partial (S_+(\lambda) - S_-(\lambda))}{\partial T_{\infty,k}}\right]_{\infty,+}$$

$$+ \frac{\hbar}{2} \sum_{\nu=1}^n \left[\sum_{k \in K_{\nu}} U_{\nu,k}(\lambda) \frac{\partial (S_+(\lambda) - S_-(\lambda))}{\partial T_{\nu,k}}\right]_{X_{\nu},-}$$

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference

Quantum curve 2

Additional relations

The pairs (q_i, p_i) satisfy $\forall i \in \llbracket 1, g \rrbracket$:

$$p_i^2 = \mathcal{H}(q_i) - \hbar p_i \left[\sum_{j \neq i} \frac{1}{q_i - q_j} - \sum_{\nu=1}^n \frac{r_\nu}{q_i - X_\nu} \right] \left. \frac{\partial \log \Psi_+(\lambda)}{\partial \lambda} \right|_{\lambda = q_j} + \left[\frac{\partial \left(Q(\lambda) - \frac{p_i}{\lambda - q_i} \right)}{\partial \lambda} \right]_{\lambda = q_i}$$

Asymptotics $S_{\pm}(\lambda)$ are given by:

$$\begin{split} S_{\pm}(\lambda) &= \ \mp \frac{1}{\hbar} \sum_{k=2}^{r_{b_{\nu}}} \frac{T_{b_{\nu},k}}{k-1} \frac{1}{(\lambda - X_{\nu})^{k-1}} \pm \frac{1}{\hbar} T_{b_{\nu},1} \log(\lambda - X_{\nu}) + \sum_{k=0}^{\infty} A_{\nu,k}^{\pm} (\lambda - X_{\nu})^{k} \\ S_{\pm}(\lambda) &= \ \mp \frac{1}{\hbar} \sum_{k=2}^{r_{\infty}} \frac{T_{b_{\infty},k}}{k-1} \lambda^{k-1} \mp \frac{1}{\hbar} T_{b_{\infty},1} \log(\lambda) - \frac{\log \lambda}{2} + \sum_{k=0}^{\infty} A_{\infty,k}^{\pm} \lambda^{-k} \\ \text{or} \\ S_{\pm}(\lambda) &= \ \mp \frac{1}{\hbar} \sum_{k=2}^{r_{\infty}} \frac{T_{b_{\infty},k}}{2k-3} \lambda^{\frac{2k-3}{2}} \mp \frac{1}{\hbar} T_{b_{\infty},1} \log(\lambda) - \frac{\log \lambda}{4} + \sum_{k=0}^{\infty} A_{\infty,k}^{\pm} \lambda^{-\frac{k}{2}} \end{split}$$

Thus,

$$Q(\lambda) = \sum_{j=1}^{g} \frac{p_j}{\lambda - q_j} + \sum_{k=0}^{r_{\infty} - 4} Q_{\infty,k} \lambda^k + \sum_{\nu=1}^{n} \sum_{k=1}^{r_{\nu} + 1} \frac{Q_{\nu,k}}{(\lambda - X_{\nu})^k}$$

Topological Recursion 0000 Quantization of hyper-elliptic spectral curves

Remarks and open questions Reference

Linearization and \hbar -deformed spectral curve

• Linearize the quantum curve, i.e. choose $\vec{\Psi}_{\pm} = \begin{pmatrix} \Psi_{\pm} \\ \alpha(\lambda)\Psi_{\pm} + \beta(\lambda)\partial_{\lambda}\Psi_{\pm} \end{pmatrix}$ to have a 2 × 2 system

$$\hbar \partial_{\lambda} \vec{\Psi}_{\pm}(\lambda) = L(\lambda) \vec{\Psi}_{\pm}(\lambda) = \begin{pmatrix} P(\lambda) & M(\lambda) \\ W(\lambda) & -P(\lambda) \end{pmatrix} \vec{\Psi}_{\pm}(\lambda)$$

• Define the \hbar -deformed spectral curve: $det(y I_2 - L(\lambda)) = 0$

$$y^{2}(\lambda) = \mathcal{H}(\lambda) + \hbar \sum_{j=1}^{g} \frac{p_{j}}{\lambda - q_{j}} + \frac{\hbar^{2}}{2} \left[\sum_{k \in K_{\infty}} U_{\infty,k}(\lambda) \frac{\partial (S_{+}(\lambda) + S_{-}(\lambda))}{\partial T_{\infty,k}} \right]_{\infty,+} \\ + \frac{\hbar^{2}}{2} \sum_{\nu=1}^{n} \left[\sum_{k \in K_{\nu}} U_{\nu,k}(\lambda) \frac{\partial (S_{+}(\lambda) + S_{-}(\lambda))}{\partial T_{\nu,k}} \right]_{X_{\nu},-} + \hbar \frac{\partial P(\lambda)}{\partial \lambda} \\ - \hbar \frac{\partial \log W(\lambda)}{\partial \lambda} P(\lambda)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
Additional ma	aterial 2			

• Write the time differential systems

$$\partial_{\mathcal{T}_{\nu,k}} \vec{\Psi}_{\pm} = \mathcal{R}_{\nu,k}(\lambda) \vec{\Psi}_{\pm}$$

- Define isomonodromic times $t_{\nu,k}$ and the map $(T_{\nu,k})_{\nu,k} \rightarrow (t_{\nu,k})_{\nu,k}$ and the differential systems $\partial_{t_{\nu,k}} \vec{\Psi}_{\pm} = L_{\nu,k}(\lambda) \vec{\Psi}_{\pm}$
- Connected to the problem isospectral \rightarrow isomonodromic: Existence of times t such that $\frac{\delta L(\lambda)}{\delta t} = \frac{\partial L_t}{\partial \lambda}$ where δ is the variation to explicit dependence on t only.
- Define g Hamiltonians (H_j(q₁,...,q_g, p₁,..., p_g, ħ))_{1≤j≤g} so that ħ-deformed Hamilton's equations are satisfied:

$$\forall (i,j) \in \llbracket 1,g \rrbracket^{g} : \hbar \partial_{t} q_{i} = \frac{\partial H_{j}}{\partial p_{i}} \text{ and } \hbar \partial_{t} p_{j} = -\frac{\partial H_{j}}{\partial q_{i}}$$

• Apply to all Painlevé equations and their hierarchies.

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	Re
000000000	0000	000000000000000000000000000000000000000	0000	

Example on Painlevé 2

• Corresponds to n = 0, $n_{\infty} = 0$ and $r_{\infty} = 4$: Family of classical spectral curves:

$$y^{2} = T^{2}_{\infty,4}x^{4} + 2T_{\infty,3}T_{\infty,4}x^{3} + (T^{2}_{\infty,3} + 2T_{\infty,4}T_{\infty,2})x^{2} \\ + [2T_{\infty,3}T_{\infty,2} + 2T_{\infty,4}T_{\infty,1}]x + H_{0}$$

• Quantum curve reads:

$$0 = \left[\hbar^{2} \frac{\partial^{2}}{\partial x^{2}} - \frac{\hbar^{2}}{x - q} \frac{\partial}{\partial x} - \frac{\hbar p}{x - q} - T_{\infty,4}^{2} x^{4} - 2T_{\infty,3} T_{\infty,4} x^{3} - (T_{\infty,3}^{2} + 2T_{\infty,4} T_{\infty,2}) x^{2} - [2T_{\infty,3} T_{\infty,2} + 2T_{\infty,4} T_{\infty,1}] x - H_{0} - \hbar T_{\infty,4} q \right] \Psi_{\pm}(x)$$

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
000000000	0000	000000000000000000000000000000000000000	0000	
Example on I	Dainlavá 2			

Example on Painlevé 2

• Hamiltonian H₀ is given by:

$$\begin{aligned} H_0 &= p^2 - T_{\infty,4}^2 q^4 - 2T_{\infty,3}T_{\infty,4}q^3 - \left(T_{\infty,3}^2 + 2T_{\infty,4}T_{\infty,2}\right)q^2 \\ &- \left[2T_{\infty,3}T_{\infty,2} + 2T_{\infty,4}\left(T_{\infty,1} + \frac{\hbar}{2}\right)\right]q \end{aligned}$$

• Define $t_{\infty,1} = 2T_{\infty,2}$, Darboux coordinates (q, p) satisfy Hamiltonian equations:

$$2\hbar \frac{\partial p}{\partial t_{\infty,1}} = \frac{\partial H_0}{\partial q}$$
 and $2\hbar \frac{\partial q}{\partial t_{\infty,1}} = -\frac{\partial H_0}{\partial p}$.

Recovers the standard Painlevé 2 by setting $T_{\infty,4} = 1$, $T_{\infty,3} = 0$, $T_{\infty,1} = -\theta$

$$\hbar^2 \frac{\partial^2 q}{\partial t_{\infty,1}^2} = 2q + t_{\infty,1}q + \frac{\pi}{2} - \theta.$$

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
000000000	0000	000000000000000000000000000000000000000	0000	

Remarks and open questions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions OOOO	References
Summary				

Given classical spectral curve ⇒ Top. Rec. (ω_{h,n}(z₁,..., z_n))_{h≥0,n≥0}
 (ω_{n,h})_{n≥0,h≥0}(z₁,..., z_n) ⇒ Wave function

$$\psi^{\mathsf{pert}} = e^{\int^z \dots \int^z rac{(-1)^n}{2^n} \omega_{n,h} \hbar^{n+2h-2}}$$

- Define $\vec{\Psi} = (\psi^{\text{non-pert}}, \partial_{\lambda}\psi^{\text{non-pert}}, \dots, (\partial_{\lambda})^{d-1}\psi^{\text{non-pert}})$. Satisfy a companion-like linear differential system \Rightarrow Quantum spectral curve.
- Fix the gauge to remove apparent pole singularities
- Connect deformations of the coefficients of the classical spectral curves (family of spectral curves with prescribed pole structure and fixed genus) with isomonodromic deformations.

Topological Recursion 0000

Remarks for the hyper-elliptic case

- Genus 0 curves ⇒ No Fourier transform (standard WKB expansions)
 ⇒ Reconstruction via Topological Type property possible.
- Isomonodromic times differ from spectral times (naturally arising in the spectral curve and topological recursion). ⇒ creates technical complications.
- Standard gauge choice for the 2 × 2 matrix system is usually not companion-like to avoid apparent singularities.
- These technical issues have been solved in the hyper-elliptic case.

Open questions and future works

- Connection with isomonodromic deformations is missing in the general setting (non-hyper-elliptic).
- Deformations of the classical spectral curves with fixed genus are problematic in the loop equations.
- Technical assumptions like non-degenerate ramification points, poles
 ≠ ramification points should be lifted but requires technical
 computations.
- Analytic properties of Ψ : Description of the associated RHP to be done.
- Connection with orthogonal polynomials in the case of RMT ?

Deferences I				
Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References

- A. Alexandrov. Open intersection numbers, Kontsevich-Penner model and cut-and-join operators. *Journal of High Energy Physics*, 8, 2015.
- R. Belliard, O. Marchal, and B. Eynard. Loop Equations from Differential Systems on Curves. *Annales Henri Poincaré*, 19, 2018.
- M. Bergère and B. Eynard. Determinantal formulae and loop equations. *arxiv:0901.3273*, 2009.
- M. Bergère, G. Borot, and B. Eynard. Rational differential systems, loop equations, and application to the qth reductions of KP. *Annales Henri Poincaré*, 16, 2015.
- G. Borot and A. Guionnet. Asymptotic Expansion of β Matrix Models in the One-cut Regime. *Communications in Mathematical Physics*, 317, 2011.
- G. Borot and S. Shadrin. Blobbed topological recursion: properties and applications. *Mathematical Proceedings of the Cambridge Philosophical Society*, 2015.
- G. Borot, A. Guionnet, and K. Kozlowski. Large-N asymptotic expansion for mean field models with Coulomb gas interaction. *International Mathematics Research Notices*, 20, 2014.

Deferences II				
Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References

- V. Bouchard and B. Eynard. Reconstructing WKB from topological recursion. *Journal de l'Ecole polytechnique*, 4, 2017.
- N. Do and P. Norbury. Topological recursion for irregular spectral curves. *Journal of the London Mathematical Society*, 97, 2018.
- O. Dumitrescu and M. Mulase. Quantization of spectral curves for meromorphic Higgs bundles through topological recursion. *Proceedings of The AMS Von Neumann Symposium on Topological Recursion and Its Influence in Analysis, Geometry, and Topology held at Charlotte, North Carolina,* 2016.
- B. Eynard. Counting Surfaces. Progress in Mathematical Physics, 70, 2016.
- B. Eynard and N. Orantin. Invariants of algebraic curves and topological recursion. *Communications in Number Theory and Physics*, 1:347–452, 2007.
- B. Eynard, T. Kimura, and S. Ribault. Random Matrices. *arXiv:1510.04430*, 2018.
- K. Iwaki and O. Marchal. Painlevé 2 Equation with Arbitrary Monodromy Parameter, Topological Recursion and Determinantal Formulas. *Annales Henri Poincaré*, 2014.

D ()				
000000000	0000	000000000000000000000000000000000000000	0000	
Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References

References III

- K. Iwaki and A. Saenz. Quantum Curve and the First Painlevé Equation. *SIGMA*, 12, 2016.
- K. Iwaki, O. Marchal, and A. Saenz. Painlevé equations, topological type property and reconstruction by the topological recursion. *Journal of Geometry and Physics*, 124, 2018.
- M. Kontsevich. Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function. *Communications in Mathematical Physics*, 147, 1992.
- M. Kontsevich and Y. Soibelman. Airy structures and symplectic geometry of topological recursion. *arXiv:1701.09137*, 2017.
- O. Marchal. Asymptotic expansions of some Toeplitz determinants via the topological recursion. *Letters in Mathematical Physics*, 2019.
- O. Marchal and N. Orantin. Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion. *arXiv preprint: arXiv:1911.07739*, 2019.
- O. Marchal and N. Orantin. Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the *sl*₂ case. *Journal in Mathematical Physics*, 61, 2020.
- M. Mehta. Random matrices, volume 142. Elsevier academic press, 2004.

Motivation using Matrix Models	Topological Recursion	Quantization of hyper-elliptic spectral curves	Remarks and open questions	References
References IV	/			

- B. Safnuk. Topological recursion for open intersection numbers. *Communications in Number Theory and Physics*, 10, 2016.
- C. Tracy and H. Widom. Fredholm Determinants, Differential Equations and Matrix Models. *Communications in Mathematical Physics*, 163, 1994.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ